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Abstract

The Unified Modeling Language is becoming more and more popular in the software
development. However because of its ambiguisity in its semantic model, few verification tool
has been built. Abstract State Machines have been successfully applied in giving semantics
for programming language like C. In this report, we try to use the Abstract State Machines
to give a semantics model for UML and then use ASM Model Checker to design a verification
tool for UML. Last we give a toy example to show how the verification tool works.

1 Software Crisis and Software Model

In the past thirty years, the computer industry has undergone dramatic changes that no other
industry has experienced. With the surprising drops in hardware cost, software costs have shown
an incredible growth in the computer industry. Although a lot of money has been invested in
software development, a lot of software products still can not be used. In order to overcome
these problems, people look for some methodologies and the waterfall model is one of them.

1.1 Waterfall Model

People are developing disciplines by which software development can pass through a series of
stages. One of the disciplines is the “waterfall model”. The traditional waterfall model di-
vides software development into the following stages: requirements, design, coding, testing, and
operations.

In the requirement stage, requirements for a software system to be developed are given. This
stage includes analyzing the software problem and gives a complete specification of the desired
software system. In the next stage a developer decomposes the software system into its actual
constituent components, generating modules with its input, output and functions.

Then software development enters the third stage: coding. This stage transforms the modules
defined during the design stage into a computer-understandable language. After then, the testing
stage is entered; testers test the system according to the software requirements to uncover and
remove “bugs”. If there are no “bugs”, then the software is delivered to a user.



From the above development it is obvious that the problems occurring in the requirement
or design stage are uncovered or removed after the coding stage. Actually this results in a
lot of money and time spent in the coding stage. To save the money and labor in software
development, one question will be raised: is it possible for software developers to find the bugs
at the early stage, for example just after the design stage or even before the design stage?

To answer the above question, we first need a good method to be used throughout the whole
software development. As a good method, it should be able to deal with the more and more
complicated software system. This good method should catch the main characteristics in the
software industry. Additionally, it should be easy to understand so that it can be accepted in
industry.

In order to find a good way, researchers presented a lot of methodologies to solve the problem
in software industry. Now it seems that the object-oriented methodology has played a very
important role in designing and analyzing software systems since it was first presented. Many
object-oriented methods have been invented but users of these methods had trouble finding a
modeling language that met their needs completely.

During the mid-1990s, Grady Booch and Ivar Jacobson, the two inventors of Object-Oriented
Software Engineering, and James Rumbaugh, who presented the Object Modeling Technique,
began to adopt ideas from each other’s methods. This gave a birth to the Unified Modeling
Language. Now the Unified Modeling Language has been widely accepted in industry.

After having a good language, we need a solid mathematical method to find bugs at the
early stage of software development. Abstract State Machines are a good candidate to deal with
this notoriously difficult problem. An abstract state machine has been used in many fields to
show its strength in software specification and verification.

This proposal tries to present a tool to find bugs after the design stage so that designers can
redesign their model. Designers iteratively deploy this verification tool till no bug is found. This
can save time and labor spent in the later stages. We will use Abstract State Machines to give
semantics for UML diagrams. Testing, once considered an important method for uncovering
faults in unanticipated behaviors, is still viewed as inadequate. Additionally, tests designed
for specific scenarios leave unexplored possible combinations of behavior that fall outside the
anticipated patterns. To overcome these difficulties, a lot of formal methods are invented to
prove a system correct. Model Checker [11] is one of them and it has been successfully applied
in a lot of real applications. In this project we will use the Model Checker to do some property
verification. The project combines an existed tool, which translates Abstract State Machines
into a Model Checker(SMV) input language, and the Model Checker(SMV) tool to implement
a UML verification tool.

1.2 Unified Modeling Language

The Unified Modeling Language(UML) is a standard language for writing software blueprints.
The UML may be used to visualize , specify, construct and document the artifacts of a software-



intensive systems. UML has become a standardized notation for specifying complicated software
systems.

With its birth in 1994, a lot CASE tools for UML have been generated up to now like
Rational Rose, Microsoft Visual Modeler etc. All of these tools are very helpful in developing
the complex softwares!. As far as I know, most of these tools are used to generate the executable
code and do some static analysis check.

But UML itself is a very expressive and rich language. The UML models given by designers
sometimes contain some behaviors not expected by the designers. How to check whether a UML
model satisfies some specifications expected by designers is still a notoriously difficult problem
and most of the UML tools have not touched this kind of problems.

To show whether a UML model satisfies a specification is not an easy task, and it becomes
more challenging because providing a formal semantics for a language is always difficult. Al-
though OMG provides the semantics for UML in English, it still suffers a lot of ambiguity in
its meaning which results in a lot of research which has been done in this field. State machines
in UML play a very crucial role in modeling software system behavior. In general an UML
dynamic model can be represted by state machines. Activity diagrams and statechart diagrams
are two special cases of state machines. As a major result of this proposal, we will give an ASM
model for state machines in UML; therefor an ASM model for activity diagrams and statechart
diagrams is also given.

1.3 The Role of Verification Tool in UML CASE Tools

Before introducing how a verification tool works, we introduce a UML CASE toolset and the
role of a verification tool in the CASE toolset.

As mentioned before, now the software system is becoming more and more complicated and
people are looking for some tools when they build a complex software system. And these tools
are called CASE tools (Computer Aided Software Engineering tools). With the birth of UML,
many CASE tools for UML are also generated. Now we illustrate a toolset provided by Rational
Rose to demonstrate how it looks like and works.

In order to provide users to give a model for their software, Rational Rose provides some
diagrams editors like class diagram editor and statechart diagram editor etc. Users can use these
editors to give different diagrams for a software system. And all these diagrams define a model
for a software system being built.

Having given a model by providing different diagrams, we can generate code that represents
the model by using Rational Rose. Rational Rose provides several kinds of code generation.
From a model Rational Rose can generate C++-, Java, PowerBuilder, and Visual Basic. Having
generated a code like C4++ or Java etc., users can run their software system and try to find bugs
in their system. If there are some bugs in the software system, users can redesign the system by

'"Here “developing” refers to the stage after the design stage. More details about the tools can be found in the
next section.



using some diagram editors to give a new model.

On the other hand, the ability to create a model from source code is becoming more and
more important. This is the so called “reverse engineering”. Rational Rose provides a reverse
engineering tool in its CASE toolset for UML. One of the advantages for using the reverse
engineering is that visual modeling is easier for people to design a software system and find
problems in the software design. Rational Rose provides the reverse engineering from C++,
Java, PowerBuilder and Visual Basic etc. In the following diagram 1, we show the structure
for UML CASE toolset provided by Rational Rose. Boxes with a rounded corner represent the
tools in the UML CASE toolset; otherwise boxes represent an input or output structure to the
tools.
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Figure 1: The Structure of a Rational Rose UML CASE Toolset.

However, if there is a verification tool which can verify a model provided by designers before
it generates the code, it will provide a great benefit to designers. This can save the time
and money spent in the code generation and testing. In general a verification tool accepts a
model and specifications, given by designers, and then checks whether the model satisfies the
specification. If the verification tool finds some problems, it returns some error information to
designers and designers can redesign their system.

On the other hand, assuming we are given a source code and know some bugs in that code.
But we are not clear about the design problems in that code. In order to try to find the



problems, we can use the reverse engineering tool in Rational Rose to obtain a model for that
buggy code. Then we can deploy the verification tool to find out the problems. By using this
reverse engineering, we can find bugs existed in all the software we have had now. This will be
of great importance to the whole computer world! In the following diagram 2 we show the role
of a verification tool in UML CASE Toolset in Rational Rose.
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Figure 2: The Role of a Verification Tool in Rational Rose UML CASE Toolset.

1.4 How the tool works

In this thesis, we want to try to build a tool which can be used to check whether a UML model
satisfies some properties. Before considering it, we need to find a method to give the semantics
for UML, which is another hot topic in UML community. Abstract State Machines(ASM) were
first presented by Prof. Gurevich ten years ago and it has been widely used in many aspects
of computer systems, including the software engineering. One of the features is that although
it has a very simple form, it is powerful in specifying and verifying a lot of complex computer
systems.

In order to build a tool to verify a UML model, we will first give an ASM specification for
UML models; then we use the ASM verifier to check whether the corresponding UML model
satisfies some specifications given by designers. This tool is to be as automatic and transparent



to the designers as possible. Therefore, any error information will be returned to a user as UML
notations. The overall structure of this verification tool is shown in Figure 3. All boxes with
rounded corner denote subtools and other boxes represent the input/output data.

veriUML: an ASM Prover for UML

Model Checker

UML Diagram

| Successinfo |

Figure 3: The Structure of the Verification Tool for UML.

In the following sections, we will discuss it in detail. Section 2 will give the reason why
Abstract State Machines can be applied in modeling a UML model and we will illustrate this with
a previous work: using Montages to give both the static and dynamic semantics for programming
language C. Section 3 will focus on how the verification tool works. This includes how we can
give the ASM specification for a UML state machine. In section 4, we will discuss a real example:
Elevator Problem and show how the verification tool works on this example.

2 Why Use Abstract State Machines?

In this section?, we will see how Abstract State Machines provide a powerful model for the
programming language C. From this section, we are confident that Abstract State Machine can
be used in modeling a UML model.

2.1 Introduction to ASM

In the following we describe an ASM model [5] which is sufficient to represent the semantics of
C [7]. (ASMs have many features not presented here; see [5] for details.)

2Most of the work in this section has been reported in World Congress on Formal Method ’99 and it is submitted
to ASM 2000 conference.



The signature of an ASM A is a finite collection of function names, each name having a
fixed arity. A state of A is a set, the superuniverse, together with interpretations of the function
names in the signature. These interpretations are called basic functions of the state. A basic
of function of arity r is an r—ary operation on the superuniverse. When r = 0, such a basic
function is called a distinguished element. The superuniverse does not change as A evolves; the
basic functions may. The superuniverse contains some distinct elements true, false and undef
which are used to describe relations and partial functions. They are logical constants, whose
names do not appear in the signature. In addition, we use equality as a logical constant.

A universe Uis an important concept in ASMs. It is a special type of basic function: a unary
relation usually identified with the set {z : U(z)}. ASMs provide some built-in universes such as
the logic constant Boolean = {true, false}. When we define a function f from a universe U to
a universe V, and write f : U — V, we mean that f is a unary operation on the superuniverse
such that f(a) € V for all a € U and f(a) = undef otherwise. We can extend this notation to
notations such as f : U3y XUy — V' and f : V, which means the distinguished element f belongs
to V. In addition the expression f(a) can be written in the form a.f. For the general case, the
expression f(ai,...a,) can be written in the form a;.f(as9,....,a,).

There are three kinds of functions in ASMs. A function fis dynamic if f can be changed
as the ASM evolves. Functions which are not dynamic are called static. Ezternal functions are
syntactically static, but have their values determined by an oracle(that is, the outside world).

In principle, a program of A is a finite collection of rules, which are defined inductively in
the following:

e Update Rules:
f(5) =1
is a rule with head f.
Here 5 is a tuple (s1,...,s;) of terms where r is the arity of f and r > 0. If f is relational,
then the term ¢ must be Boolean. To fire such a rule, change the value of f at the value
of term 3 to the value of t.
e Conditional Rules: if g is a Boolean term and Ry, Ry are rules then
if g then Ry
else Ry
endif
is a rule. To fire this rule at a given state A, examine the guard g. If ¢g’s value is true at
A, then fire R;; otherwise, fire Rs.
e Block: If R, R are rules then

do in — parallel



Ry
Ry
enddo
is a rule with components R1, Rs. Do-in-parallel rules are called blocks.

Let 1 and ro be update rules of the following forms:
i fi(5) =t ro:  fo32) :=to

r1 and ro are said to be mutually inconsistent at a given state A if f; = fo, and the
values of 37 and 33 are equal but the values of ¢; and t are not equal. Otherwise they are
mutually consistent.

To fire a block R at a given state A, determine first if the update rules which will be fired
in Ry and Ry are mutually consistent. If yes, then fire them simultaneously. If not, do
nothing; R is inconsistent at A.

e Do-forall Rules: If v is a variable, g(v) is a Boolean term and Ry(v) is a rule, then
do forallv: g(v)
Ry (v)
enddo

is a rule with head wvariable v, guard g¢(v) and body Ry. A do-forall rule is similar
to the do-in-parallel rule, except that the components are not listed explicitly. Suppose
R is the do-forall rule above. At a state A which maps every variable in R to a value,
the components of R are the rules Ry(a) where a is any element in the state A satisfying
g(a) = true. To fire R at A, fire simultaneously all these R(a) unless they are mutually
inconsistent. In the latter case, do nothing.

2.2 Introduction to Montages

Montages[8] are a semi-visual formalism that allow unified and coherent specification of syntax,
static analysis and semantics, and dynamic semantics. Generally speaking, for every syntax rule
there is one corresponding Montage. In every Montage there can be four parts. The first three
parts define the static aspects of the language, which refers to the work which can be done at
compile time (such as static analysis), and the fourth part defines the dynamic semantics of the
language.

The first part of a Montage is the syntaz rule. In general a syntax rule has the form n ::= FE
where n is a nonterminal symbol and F is a string of nonterminal and terminal symbols. We say
this rule is associated with the nonterminal n. Terminal symbols are the symbols which do not
appear on the left-hand side of any syntax rule. The terminal symbols are also called tokens. All



nonterminal and terminal symbols are called grammar entities in the following. The universe
Node consists of all grammar entities; according to the elements in the universe Node, it can be
divided into two subuniverses Token and Nontoken. The grammar entities on the right hand
side of the “::=” symbol are called the descendants of n. During the static analysis phase, we
use the distinguished element CN to denote the token which is currently being analyzed.

The second part of a Montage is the data and control flow diagram, also called the static
analysis graph, where the Montage describes the data and control flow functions among the
nonterminal and terminal symbols defined in the syntax rule. Control flow functions describe
the execution order among the grammar entities and data flow functions describe how values flow
through these grammar entities. Control flow functions are represented by dotted arrows and
data flow functions are represented by solid arrows. For brevity, we call dotted arrows control
arrows and the solid arrows data arrows. Every data and control function has a name associated
with it. Montages provide some special names for certain control functions. I and T represent
the initial and terminal control flow for a Montage. They are used to connect local control
flow information to global control flow. NT, another important control flow function, represents
the token to be executed in the next step during the dynamic semantics computation. Boxes
represent nonterminal symbols and ovals represent terminal symbols in the syntax rule. All of
the names appearing in boxes or ovals start with “S-” followed by the corresponding grammar
entities’ name. They represent selector functions which allow one to select that grammar entity
from its parent when a program is parsed. Besides these attributes one can define other static
aspects which can not be represented directly by the flow diagram.

The third part of a Montage is the static condition; the conditions in this part should be
satisfied during the static analysis phase, otherwise a syntax error will be reported by the static
analysis phase. The fourth part of a Montage is the dynamic semantics for this syntax rule,
written by ASM transition rules. Actually all the above four parts are translated into ASM and
have the final result after running the interpretor for ASM.

2.3 Semantics of C

In this section, we will outline the C semantics by several examples. More details about this
can be found in [6].

2.3.1 While Statements

We choose the while statement in the following to show how we use Montages to represent the
semantics of statements in C. The Montage is shown in Figure 4; here we give an explanation
of key points of the Montage.

In a while statement, the substatements in it are executed repeatedly so long as the value of
the guard expression remains unequal to 0. This behavior is represented by the two control flow
arrows emerging from the node labeled “self” in the static portion of the Montage; the arrow



Whilestatement ::= ”while” ”(” Expression ”)” Statement

( quard

= > S-Expression T

NN wuard.value!: 0

\
_ ,)@ \____| S-Statement T

self. lastCtrlStm := EnclosingCtrlStm
EnclosingCtrlStm := self

breakPoint

EnclosingCtrlStm := lastCtrlStm

condition IsArithmeticOrPointerType(self.S-
Expression. Terminal)=true

Figure 4: Montage for while Statements.

labeled “guard.value! = 07 is followed when that guard expression is true (i.e., when the loop
should continue), while the other arrow is followed when the guard is false.

The guard expression in the while statement must be of arithmetic or pointer type. This re-
striction is given in the condition part of its Montage; the function IsArithmeticOr PointerType
has a detailed definition which we omit for brevity.

The semantics of the while statement becomes complicated when there is a jump statement
within it. For example, a break statement terminates execution of the smallest enclosing loop or
switch statement; a continue statement causes control to pass to the loop-continuation portion
of the smallest enclosing loop statement. In the static part of the Montage, we use two ovals
named “contPoint” and “breakPoint” to denote the two targets for a continue statement and a
break statement respectively. Function EnclosingCtriStm : Node and lastCtrlStm : Node —
Node are used to represent the smallest enclosing loop statement; we set (and reset) those
functions as we process the loop’s substatements, so that the Montages for those substatements
will know where to direct control flow in those situations.

2.3.2 Assignment Expressions

We consider here the simplest form of the assignment statement in C, shown in Figure 5; again,
we give an explanation of key points of the Montage.

The value of an assignment expression is the value stored in the left operand after the
assignment has taken place. This is given in the dynamic part of the following Montage. The
order in which the two operands is evaluated is ambiguous (i.e. under-specified by the definition

10



Assignment ::= TUnaryexp Assignop Assignmentexp
Assignop = ” =

I————»@ leftfirst ? G%}»T
! |

! ./ ! leftfirst |
————— —>| S-Assignmentexp |— —_—————

staticType := S-Unaryexp. Terminal.staticType

if ((Primarycasel (S-Assignmentexp)=true) and
(S-Assignmentexp. Terminal.staticType.array Type=true)) then
S-Assignmentexp.onlyArrayName Visted := true

else
S-Assignmentexp.onlyArrayNameVisted := false

endif

condition (CompareType(S-Unaryexp.Terminal,
S-Assignmentexp. Terminal,S-Assignop.Name)=true) and
(S-Unaryexp. Terminal.lvalue=true)

value := AssignOp(var, expr, S-Assignop.Name)

Figure 5: Montage for assignment expressions
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of C); a function leftfirst : Boolean is used to denote whether the left subexpression should be
evaluated first or not.

The condition portion of the Montage makes use of a function CompareType which ensures
that both operands are of types which are compatible for assignment (e.g., both are arithmetic
values). The definition is lengthy but straightforward; we omit it for brevity.

A special case in handling assignment statements occurs when the right-hand expression in
the statement represents the name of an array rather than a variable name; in such situations, we
need a different value to be computed by the subexpressions in order to complete the operation.
The function only ArrayN ameVisited : Node — Boolean is used to denote whether this case has
occurred; the value of this function is used by other Montages while evaluating the subexpression
in order to generate the correct value.

2.3.3 Additive Expressions

There are many mathematical expressions in C involving binary operators (“*”, “47, “—",
etc.) whose behaviors are similar. (We treat the bit-wise operators (e.g.,|,&) as ordinary
mathematical operators.) The Montage for addition expressions is shown in Figure 6; again, we
comment on relevant features of the Montage.

To evaluate an addition expression, one evaluates both subexpressions (in some order) and
combines the results appropriately. The control-flow for this Montage is thus similar to that for
the assignment operator considered previously.

The combining operation is usually conventional addition; however, C overloads the addition
operator by allowing addition of an integer 7 and pointer p, with the result being a pointer
which is ¢ units forward in memory from p. The dynamic rules for this Montage implement this
overloading.

Determining the static type of this expression presents a couple of complications. One is the
operator overloading just discussed; most of the rules in the static section distinguish between
various integer/pointer operand combinations. The other complication comes with arithmetic
conversions between arithmetic types; the function ConvertName : Node X Node — Node
encodes the complicated rules of [7] for this situation (again, we omit the details).

2.3.4 Function Definition

We consider the Montage for user-defined function definitions (as opposed to ASM functions)
in Figure 7; we highlight relevant portions of the Montage below.

As one might expect, function definitions present a great deal of static information which
must be analyzed; consequently, the static portion of the Montage is large. Here we discuss
various portions of the static analysis.

User-defined functions (as opposed to ASM functions) are block-structured in C; the variables
which are declared in a C-function can only be referenced within that function. Thus, when a
variable is referenced, the corresponding declaration in the smallest enclosing block structure

12



Addexp := Additiveexp AddOp Multiplicaexp

AddOp = 747
leftfirst V(
s~ 7777 S-Additiveexp
I— »C(:)) leftﬁrsti A
I
I\_ I S-Multiplicaexp

L

if(((S-Additiveexp. Terminal.staticType.point Type=true) or
(S-Additiveexp. Terminal.staticType.array Type=true)) and
(S-Multiplicaexp. Terminal.staticType.Name="int”))then
staticType:=S-Additiveexp. Terminal.staticType
elseif(((S-Multiplicaexp. Terminal.staticType.point Type=true) or
(S-Multiplicaexp. Terminal.static Type.array Type=true)) and
(S-Additiveexp. Terminal.staticType.Name="int”)) then
staticType:=S-Multiplicaexp.Terminal.staticType
else
staticType:=ConvertName(S-Additiveexp. Terminal,S-Multiplicaexp. Terminal)
endif
constValue := Apply(S-Additiveexp. Terminal.const Value,
S-Multiplicaexp. Terminal.const Value,S-AddOp.Name)

condition CompareArithType(S-Additiveexp.Terminal S-Multiplicaexp.Terminal,
S-AddOp.Name)=true

if((left.staticType.array Type=true) or
(left.staticType.point Type=true)) then
value := left.value + (right.value * left.static Type.staticType.typelength)
elseif((right.staticType.array Type=true) or (right.staticType.pointType=true))then
value := right.value + (left.value * right.staticType.staticType.typelength)
else
value := left.value + right.value
endif

Figure 6: Montage for addition.
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Funcdefcase2 ::= Declspecifier Declarator Compoundstatement

I- - —-~>{ S-Declarator 13—Comp0undstatemen1;

I ]
* @D
T (end)
CurFundef := true
CurFunc := self
self.lastScope := EnclosingScope
EnclosingScope := self
FuncDef := true

CurFundef := false
FuncDef := undef — used to distinguish fun def and decl
CurFunc := undef
EnclosingScope := self.lastScope
do forall g in Gotostatement
if Within(g, self)=true then
g-gotoTarget := RecLabelLookup(g.S-Identifier. Name,g.scope)
endif
enddo
let d=LookUpFuncDcl(S-Declarator.Initial. Name,self.lastScope) in
if(S-Declarator.S-Parametertypelist#undef)then
d.AddrToFunc := S-Declarator.S-Parametertypelist.Initial
S-Declarator.S-Parametertypelist.nextStatement:=
S-Compoundstatement.Initial

else
d.AddrToFunc := S-Compoundstatement.Initial
endif
d.funvarType := true
endlet

condition do forall g in GotoStatement
if Within(g, self)=true then
RecLabelLookup(g.S-Identifier. Name,g.scope)#undef endif
enddo

@end:
StackTop := StackTop - 1
CT := RecCaller(StackTop)

Figure 7: Montage for function declarations.
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is found. The function EnclosingScope : Node is used to denote the current block structure;
the function lastScope : Node — Node is used to denote the outer block structure containing
the current block structure. They are assigned before and after a C-function is called, thus
maintaining a chain of enclosing scopes while permitting other Montages to know their enclosing
scope immediately.

C permits the infamous goto statement within a function block. While processing that block,
we build a function RecLabel Lookup : String x Node — Node to indicate the node within the
specified scope labeled with the specified string. At the point that static processing returns
to this node, we will have seen all targets for goto statements; we thus can patch those goto
statements with the locations of their targets. The condition part of the Montage ensures that
all goto statements have defined targets.

In C, user-defined functions are stored in memory; the names of functions are treated as
variable names, just like other variables. The value that is stored in a C-function variable is an
implementation-dependent address which is used to transfer control to that function. In order
to create an executable Montage for C, we will have to give meaning to this implementation-
dependent value; we choose to store in this variable the Montage node corresponding to the
declaration for this function. We use an additional function AddrToFunc : Node — Node to
map the node where a function is declared to its initial definition node. In the static analysis,
we set AddrToFunc to point to the first executable node for this function: either the list of
parameters to be initialized (in the function declarator) if parameters exist, or the first statement
of the function block otherwise.

At the same time, C functions may have several active incarnations at a given time during
their execution. Thus we must have some means for storing multiple values of some ASM
functions (e.g. “value”) for a given token. We use a universe Stack comprising the positive
integers for this purpose; a dynamic distinguished element StackTop:Integer is used to indicate
the current top of the stack.

The dynamic semantics of the Montage decrements the value of StackT op because the C-
function execution has finished. In order to make control transfer to the corresponding token
after a C-function has been executed, we define a new function RecCaller : Stack — Node
to store the node that calls this C-function at a given recursion level. We set the value of
RecCaller when a C-function is called, which is shown in the Montage for C-function calls.
Then the dynamic semantics transfers control to the node following the function call by using the
function RecCaller. This same mechanism is also used by our Montage for return statements
to handle function returns.

2.3.5 Function Call

The Montage for function calls is shown in Figure 8; again, we highlight the relevant features.
In C, a function call is an expression whose type is given by the return type of the func-
tion. An expression of type “function returning T” is usually converted to “pointer to function
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Postfunpar ::= Postfixexp ”(” Assignmentexp {”,” Assignmentexp } ”)”

func

——— LIST
S-Assignmentexp | [ S—Pos

T dctualParam(IndexOf(trg))

if((S-Postfixexp. Terminal.staticType.point Type=true) and

(S-Postfixexp. Terminal.staticType.staticType.funvarType=true) )then
returnPoint.staticType:=S-Postfixexp. Terminal.staticType.staticType.static
else

returnPoint.staticType:=S-Postfixexp. Terminal.static Type.staticType
endif

CT := Memory Value(func.value). AddrToFunc
StackTop := StackTop + 1
RecCaller(StackTop+1) := returnPoint

Figure 8: Montage for function calls.




returning T”. So we need to distinguish between the two cases when computing the type of a
function.

We showed in the previous section how the AddrToFunc function is used to establish the
correspondence between addresses where (user-defined) functions are stored and the first node
in their Montage representations. To perform a function call, we use the AddrToFunc function
to find the corresponding next node, increment the value of the stack, set the return node in
the RecCaller function, and perform the branch. (Note that the arguments to the function call
will have already been evaluated; those values will be copied into the callee when the callee’s
parameter nodes are visited.)

3 Behind the Verification

In this section we will discuss the structure of the verification tool (veriUML) and how it can
be used to check whether a UML model satisfies a specification and other issues related to this
tool veriUML.

3.1 How the tool works

Users of this tool are those designers who want to use UML to develop a complex software
system. They can use any existing UML edit tool to provide a UML model as an input to this
verification tool. At the same time, they need to provide specifications so that they can check
whether the UML model satisfies these specifications.

The verification tool will use a UML model and some properties as its input; then it analyzes
and checks them. If it finds something wrong, it will return its users some error information.
The users don’t need to know how this verification tool works behind them. As a result, what
they will have, when a UML model does not satisfy a property, is some kinds of UML diagrams.

3.2 Structure of the Verifier

In order to provider UML designers a good tool to verify some requirements during the software
specification phase, we design the verification tool which consists of the following subtools. The
translation tool reads a UML model and translates it into an ASM model. The model check tool,
which reads an ASM model and specifications provided by a designer, checks whether the ASM
model, which is directly translated from the UML model, satisfies the specifications. The last
subtool is an analysis tool which is used to analyze the result returned by the model checker tool.
The verifier will return the result in both UML diagrams and textural form so that designers
are not involved too much about the mathematics knowledge behind this tool.

The verifier reads a UML model, which is represented by UML diagrams, as its input. And
the at the same time, it reads a requirement from a user who wants to verify whether the UML
model satisfies the requirement. Generally speaking, to model a complex software by using UML
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diagrams, a user uses a class diagram, collaboration diagram and state machine. In the current
implementation of the verifier we will use these diagrams as the input notation.

After translating a UML into an ASM model, the Model Checker takes the responsibility to
analyze whether the requirements satisfy the ASM model. Actually Model Checker translates
the ASM model into SMV which is used to implement the properties check. When an counter-
example is found, the result will be output to the next subtool in the verifier so as to return to
the user an error information in UML diagrams.

Last the analysis tool is used to accept the result returned by the Model Checker. If the
result is a counter-example, then analysis tool returns the textural form and UML diagrams as
well. According to the error information in these two forms, the user can redesign their system.

3.3 Translation Tool

The Translation Tool is used to translate a UML model into ASM specification. In order to
give a model for a software system, a user of UML usually uses the class diagram, collaboration
diagram and state machine?. Among these diagrams, state machine plays a crucial role in
describing the software dynamic behavior. In this section we will see how we can give an ASM
specification for a state machine diagram in UML.

3.3.1 State Machine in UML

A state machine is a behavior that specifies the sequences of states an object goes through
during its lifetime in response to events, together with its response to those events. It focuses
on an object’s dynamic behavior.

A state machine consists of the following elements. A state is a condition or situation during
the life of an object during which it satisfies some condition, performs some activity, or waits
for some event. An event is a specification of a significant occurrence that has a location in time
and space. It is an occurrence of a stimulus that can trigger a state transition. A transition
is a relationship between two states indicating that an object in the first state will perform
some actions and enter the second state when a specified event occurs and specified guards are
satisfied.

A diagram of a state machine in UML generally consists of an initial state, a set of states
and a set of arcs which connect the state. First let us introduce the basic elements in state
machine.

1. state. A state* is a condition or situation during the life of an object during which it
satisfies some condition, performs some activity, or waits for some event. A state has sev-
eral parts: name, entry/exit actions, internal transitions, substates and deferred events.

3In UML, a statechart diagram shows a state machine
“In the following unless it is explicitly stated, a “state” refers to a state of a state machine in UML.
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A state is represented as follows. Entry/exit actions denote the actions executed on enter-
ing and leaving the state. The substates refer to a nested structure of a state, involving
sequentially active or concurrently active substates. Figure 9 shows a standard state in a
state machine diagram in UML. In the example shown in Figure 9, setMode(onTrack) is
an entry action; setMode(off Track) is an exit action and followTarget is an activity. Gen-
erally a state is represented by a box with a rounded corner. If a state does not include a
substate, then this state is called a simple state; otherwise the state is called a composite
state. A composite state can be divided into two types. One is concurrent composite
state which includes several regions. Every region includes a set of states and regions are
separated by dotted lines. The other is sequential composite state. It includes a set of
states and no dotted line within the state. There are two special kinds of state, initial
state and final state. Because there is no action in both initial and final state. So an initial
state is represented by a bullet; a final state by a bullet surrounded by a circle. They are
shown in Figure 10.

Tracking

entry/setM Ode(onTrack)
exit/ setMode(off Track)
do/ followTarget

Figure 9: An example for a state in a state machine diagram.

-

Figure 10: A initial and final state in a state machine diagram.

2. transition A transition is an arc between two states in the state machine diagram. It has
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five parts: source state, event trigger, guard condition, action and target state. A source
state denotes the state affected by the transition. An event trigger denotes the event whose
reception by the object in the source state makes the transition eligible to fire if the guard
is true. This guard is represented by a guard condition. An action denotes an executable
atomic computation. A target state is a state which is active after the completion of the
transition. Let us take a look at an example to see how a transition is represented in a
state machine in UML. Assume tr=(src,event, guard,actions, target), the corresponding
transition in a state machine is shown in 11.

event[guard]/action

(o target

Figure 11: A transition ¢r in a state machine in UML.

Whenever a state is entered, it executes its entry action before any other action is executed.
Conversely, when a state is exited, it executes its exit action as the final step prior to leaving
the state.

The activity of a state represents the execution of a sequence of actions, which occurs while
the state machine is in that state. An action in UML is an atomic computation, which is not
interruptible. If the activity completes while the state is still active, it raise a completion event.
In case where there is an outgoing completion transition, which has no explicit trigger event,
the state will be exited. If the state is exited as a result of the firing of an outgoing transition
before the completion of the activity, the activity is aborted prior to its completion.

In a state machine diagram in UML, there are two kinds of composite state. One is a sequen-
tial composite state and the other is a concurrent composite state. If a sequential composite
state is entered, only one of its substates is active. If a concurrent composite state is entered,
all of its regions are active.

If a transition terminates on the outside edge of a sequential composite state, then the entry
action of that state is executed before the action associated with the initial transition. If the
transition goes to a substate of the composite state, then that substate becomes active and its
entry code is executed after the execution of the entry code of the composite state.

Whenever a concurrent composite state is entered, each one of its regions (concurrent sut-
states) is also entered, either by default or explicitly. If a transition terminates on the edge
of the composite state, then all the regions are entered using default entry. In this case the
transition coming out from the initial node is taken. If the transition explicitly enters one or
more regions, these regions are entered explicitly and the others by default.
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When exiting from a sequential composite state, the active substate is exited recursively.
This means that the exit actions are executed in sequence starting from the innermost active
state.

When exiting from a concurrent state, each of its regions is exited. After that, the exit
actions of the regions are executed.

3.3.2 Sketch of ASM Model for State Machine in UML

Before we dive into the details about an ASM model for the state machine in UML, we first give
some general ideas about this model in this section.

First we extend a state machine diagram to an extended Abstract State Machine diagrams.
The extension mainly focuses on adding some transitions between nodes in an extended Abstract
State Machine diagram. First we consider those transitions coming from a node®. In UML state
machine if an event associated with a transition occurs, then not only is the node, which is
the source node of that transition, affected but those nodes, which are either subnodes of that
transition’s source node or the ones including the transition’s source node, are affected as well.
To explicitly denote these nodes affected by that transition, we add a transition for every affected
node which is a source node of the new generated transition. In Figure 16 and 17 readers will
find more details about these new transitions.

Therefore, in an extended Abstract State Machine diagram, when an event occurs we just
need to consider how to interrupt the activity associated with a node affected by that event;
and we don’t need to think about the other nodes.

On the other hand, we also add some transitions in an extended Abstract State Machine
diagram for those transitions coming into a composite node. The purpose for this is to explicitly
give the target node for every transition coming into a composite node.

If a transition enters a concurrent composite node and does not explicitly terminates on
some of its regions, then we add some new transitions on these implicit regions, which is shown
in Figure 13.

Having derived an extended Abstract State Machine diagram, we consider how to give a
dynamic model for a state machine in UML. To model a dynamic execution of a state machine
in UML, two special function CurArc and CurNode are defined to denote the current active
transition and node. The current node refers to a node whose actions are being executed. And
the incoming transition is called an active transition.

To model a node’s execution, we give two kinds of agent. One is used to execute all actions
associated with a node which is called a graphical agent, simply referred as an agent. The other
is to execute the activity associated with a node and we call it an activity agent. When an
activity agent finished its execution, it will trigger a completeness event to possibly pass control
to the next node.

SStrictly speaking, state and transition are used in a UML state machine. And node and arc are used in an
ASM extended diagram. But sometimes we use these names interchangable
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When an agent’s control reaches a concurrent composite node, it creates a new agent for
every region in that concurrent composite node. And every new agent executes a corresponding
node within that region.

To model an interruption in UML, we let an agent generally sit at a either simple or concur-
rent composite node. The reason for an agent not sitting at a sequential composite node is that
an agent’s control is passed to a subnode of the sequential composite node when that composite
node is reached.

If an interruption (an event) with a transition occurs and control sits at a simple node, then
control stops the simple node’s activities and executes its exit action. Next control passes to
its immediate outside node to execute the outside node’s exit action. All exit actions will be
executed one by one until either the most outside source node for that transition® or a concurrent
composite node is reached. Informally, a most outside node for a transition is the outside node
which includes the source node for that transition but does not include the target node. A
list of nodes, which have a nested structure relationship, are represented by a function called
NestStructure.

If control sits at a concurrent composite node, all agents associated with that node will
be killed and only does the agent associated with that concurrent composite node exist and it
executes the exit action and all its outside node’s exit actions. This implements the requirement
for an interruption.

Because we extend the state machine in UML to an extended Abstract State Machine di-
agram and all transitions occur explicitly for every node, it is fairly easy to model the state
machine diagram in a methodic way. In the next we will give the details about this model.

3.3.3 Signature for An Extended ASM Diagram

A UML user can use states and transitions to model an object dynamic behavior. Before
giving the ASM specification for a state machine, we introduce an extended Abstract State
Machine diagram (abbreviated as extended ASM diagram in the following) corresponding to
every state machine diagram. In an extended ASM diagram we refer as a node a state in a
state machine diagram. And an arc represents a transition in a state machine diagram. The
universe NODE denotes all possible nodes whose corresponding states can possibly appear in
the state machine diagram. A special element TOPNODE : NODE denotes an imaginary top
node which includes the whole extended ASM diagram.

In an extended ASM diagram, a node includes a name, entry action, exit action, internal
transition, activity and deferred events”. Associated with a simple state are incoming transitions
and outgoing transitions. We denote such a state as Node(name, entry, exit, internal, activity,
deferred, inArcy, ..., inArc,, outArei, ..., outArcy) where inArc;,i € {1,...,n}, denote all
the incoming transitions and outArc;,i € {1,...,m}, all the outgoing transitions to and from

5The formal definition for a outside source node for a transition is defined in the following.
"At this moment, deferred events are not considered.
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the node respectively. The rest parameters denote the entries in the corresponding state defined
in a state machine.

Similarly, we denote a sequential composite state as Node(name, entry, exit, internal, ac-
tivity, deferred,inArcy,...,inArc,,nodes,outArcy,...,outArc,) where nodes is a set of subn-
odes {D1,...,Dy}, each of which is an either simple or composite node. For any node D=
Node(...{D1,...Dj...,Dy}...), a function UpNode : NODE — NODE assigns to a node its
immediately enclosing node. A function DownNode : NODE — 2NOPE indicates a set of im-
mediately enclosed nodes for a given node. Given the above example, we have UpNode(D;) = D
and DownNode(D) = {D1,...,D,}. D; is called an immediate subnode of D. If a composite
sequential node is active, exactly one of its subnodes is active.

We denote a concurrent composite node as Node(name, entry, exit, internal, activity, de-
ferred, inArci, ... ,inArcy,nodesi, . . .,nodesy, outArc, . . . ,outArcy,), where nodes; (i € {1,...,n})
is a set of nodes {Dj1,...,Djj;, ..., Dim;}. Djj, is an either simple or composite node. node; is
called a region® in that composite concurrent node. Every region is separated from the other
regions by dotted lines. Every node D;j, in a region can be an either simple or composite
node. If a node D is an instance for the above definition, then function UpNode(D;;;) = D and
DownNode(D) = {...,Djj;,...} are defined. D;j, is called an immediate subnode of D. If a
concurrent composite node is active, then all of its regions are active. A concurrent composite
node or sequential composite node is also called a composite node.

A boolean function IsSimple : NODE — Boolean is used to indicate whether a node has
subnodes or not. If a node a satisfies IsSimple(a) = true, then it means there is no subnode in a.
We call it a simple node in the extended ASM diagram. Otherwise it includes subnodes which
are either sequentially active or concurrently active. In order to distinguish these two cases, a
function IsCompSeq : NODE — Boolean indicates whether a node is a sequential composite
node or not. And a function IsCompConcur : NODE — Boolean denotes concurrent composite
nodes.

Given two nodes, we can check whether these two nodes have an enclosing relation by a
function Including : NODE x NODE — Boolean. Its definition is given in the following:

Including(D1, Ds) = true iff
(UpNode(D2) = D1) V (3D : (UpNode(D3) = D A Including(D, D) = true)) or Dy = Dy

If two nodes Dy, Do satisfy Including(Dy,Ds) = true, then a function UpChainNode :
NODE x NODE — NODE?* is used to indicate a chain of nodes between the two nodes.

UpChainNode(D1, D2)={Th,...,T,} where
Ty = D1,T5 = UpNode(Ty),...,T, = UpNode(T,_1) = Do

8In a state machine diagram there are no names for regions. Here we give names for convenience.
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The universe ARC denotes all possible transitions appearing in a state machine diagram.
An arc is denoted as Arc(sourcestate,event, guard,action,targetstate). Except for targeststate?,
the rest of parameters are the ones appearing in the corresponding transition.

The universe EVENT denotes all possible trigger events occuring in the arc. There are
two types of arc in the extended ASM diagram. One is an arc with a trigger event and the
other is without a trigger event. For those arcs which do not have any event, we call them
completion arcs. A boolean function IsTriggerless : ARC — Boolean denotes this kind of
arc. A completion arc is triggered by a completion event which is generated when all arc and
entry actions and activities in the currently active node are complete. Given a completion arc,
a function HasGenFEvent : ARC — Boolean indicates whether a completion event has already
generated. For each type of parameter occuring in either Node or Arc, we use a function param
to yield the corresponding parameter.

For a given arc, we can denote as a node the least common ancester, which is denoted by a
function lca : ARC — NODE. A least common ancester node of an arc is the lowest composite
node that contains the explicit source and target nodes of the arc. Its definition is shown in the
following;:

lca(ar)=a iff
Vb € NODE : Including(a, targetstate(ar)) = trueA
Including(a, sourcestate(ar)) = trueA
Including(b, targetstate(ar)) = trueA
Including(b, sourcestate(ar)) = true =
Including(b,a) = true.

Given an arc ar, the most outside source node of the arc ar is yielded by a function
OutMostSource : ARC — NODE. The node indicates a source node which is a subnode
of the least common ancester node and its definition is as follows:

OutMostSource(ar) = D iff Including(D, sorucestate(ar)) = true AUpNode(D) = lca(ar)

A function OutMostTarget : ARC — NODE yields a most outside target node which is a
subnode of the least common ancester.

OutMostTarget(ar) = D iff Including(D, targetstate(ar)) = true A UpNode(D) = lca(ar)

Figure 12 shows how to compute the above functions. Given an arc ar, we have lca(ar)=c,
OutMostSource(ar) = b and OutMostTarget(ar) = d.

%If an arc’s corresponding transition has more than one target state, we replace it with a new arc in the
extended ASM diagram so that every arc has only one target. This is shown in the following section.
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Figure 12: An example for the function OutMostSource and OutMostTarget.

Now given a node and an arc which comes out from the node, a function NestNodesFromArc :
NODE x ARC — NODE* is used to indicate a chain of nodes between a source and its most
outside source node. Its definition is as follows:

NestNodesFromArc(node,ar) = UpChainNode(node, D), where D = Qut M ostSource(ar)
For example, in Figure 12 NestNodesFromArc(s,ar) = {s,a,b}.

Assuming List : NODE* whose elements are represented as a list {D1,Da,..., Dy}, we
denote as the first element head(List) = Dy and tail(List) = {Ds,..., Dy}

3.3.4 An extended ASM diagram

Now we introduce how to derive an extended abstract state machine diagram from a state
machine diagram. All the states in a state machine diagram are kept but some changes are
made on some transitions in an extended ASM diagram. This changes can be divided into two
separate parts. One is for incoming transitions and the other is for outgoing transitions. First
we consider the changes to those incoming transitions.

1. step one: If an arc enters a concurrent composite node and does not terminate on a one or
more regions, then we extend this arc so that it explicitly terminates on all its regions. We
extend this arc which terminates on the node(s), which is the target node for the initial
node within the implicitly region(s) for the concurrent composite node, see Figure 13. This
kind of arc is called a fork arc, whose target nodes are more than one.
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Figure 13: (a) shows an transition in a state machine diagram terminating on a substate within
a concurrent composite state. (b) shows a new arc is generated in the other region.

2. step two: If an arc ar’s corresponding transition in a state machine diagram enters
a composite state and terminates on the edge of its substates, then the arc ar is re-
placed by a new arc whose target node is set to OutMostTarget(ar). Except for the
target state, the new arc copies all parameters from the old arc ar. Furthermore, for
every target node t = targetstate(ar), including the arc ar having more than one tar-
get state, we add a set of new imaginary arcs based on the following rule. If Vdi,dy €
UpChainNodes(t, OutMostTarget(ar)) : UpNode(dy) = dy and (IsCompSeq(ds) = true
or IsCompConcur(dy) = true), then a new imaginary arc between d; and dy is generated.
The new arc’s source and target states are d; and do respectively. All these imaginary
arcs, used in the definition for a function ¢nit Arc, indicate where control should go when a
composite node is entered. All these imaginary arc’s guards are set to true and no trigger
event, actions in the arc. Figure 14 shows an example for this change. We use a dotted line
ended by an arrow to represent the new imaginary arc. In this and the following Figures
we denote tr as a transition name.

tr

/“7@
o i

@ (b)

nodel

nodel

Figure 14: (b) shows some changes are made on an arc ¢r shown in (a). The new imaginary arcs
are represented by dotted line ended by an arrow.
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When there is more than one target state in an arc, there is only one arc to be generated if the
two new imaginary arcs’ source and target nodes are identical. For example, only one arc a is
generated in the following case shown in Figure 15.

) L)
| - A i
@ ®)

Figure 15: The only arc a is generated in (b) for a case shown in (a) .

Now we consider how to make changes to those outgoing arcs. All these changes are made
based on the exit action associated with a node.

There are two ways to exit from a node in general. One is a normal exit. It satisfies two
conditions. One condition is there is a completion arc which is an arc without any explicit event
trigger. The other condition is: for a simple state, its activity is done; for a sequential composite
node, besides finishing the activity defined in that composite node, the final node within that
composite node is reached; for a concurrent composite state reaches, all its regions reach their
final node as well as the activity defined in that composite node is done. When the second
condition is satisfied, then the completion arc is fired if the guard associated with it is true.
This is so called a normal exit.

An abnormal exit is another way to exit from a state. It occurs when an event associated
with an arc happens and the arc’s guard condition is true. This results in stopping the activities
for those nodes affected by this arc. And those nodes’ exit actions will be executed.

To reflect an abnormal exit, we add new arcs for a given arc based on the following two
cases.

If an arc ar=(sourcestate,. .. targetstate) satisfies sourcestate! = OutMostSource(lca(ar)),
then VD € UpChainNodes(sourcestate, OutMostSource(lca(ar))) and IsCompConcur(D)=true
we add a new arc from D arp=(D,... targetstate) where the first parameter of ar is replaced
by D. Except for the source node and guard condition, all the other parameters are kept in the
new arc. The guard condition is generated by a boolean function whose name is the characters
“guard_” followed by the associated arc name. For example, the condition for the new generated
arc for the above ar is guard_ar. If the guard condition for the original arc ar becomes true and
its event occurs, we set the function guard_ar to be true. Therefore all these newly generated
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arcs can be fired. This additional arc is shown in Figure 16.

Figure 16: An arc is generated in (b) according to the arc tr in (a).

If an arc tr=(sourcestate,. . .,targetstate)’s source state is a composite state, then, VD : IsSim-
ple(D)=true A Including(sourcestate,D)=true, we add a new arc originating from D trp=(D,. . .,targetstate).
And for any D' € UpChainNodes(D, sourcestate)\ IsCompConcur(D')=true, we also add a
new arc trp=(D’,...,targetstate). Similarly except for the source node and the guard condition,
all the other parameters are kept in the new arc. For the guard condition, we deal with it in
the same way we mentioned before. This can be shown in the Figure 17. The reason for a set
of new arcs being added is that those source nodes of the new arcs are affected by the event
associated with the old arc.

Based on the above rules for adding new arcs, for a given state machine diagram, we can
derive an extended abstract state machine diagram. For every node in the diagram, a function
evList : NODE — EVENT* indicates a list of events which cause an abnormal exit during
the execution. The arc, associated with a node, containing that event is yielded by a function
event2arcEVENT x NODE — ARC. A function NormalevList : NODE — ARC* indicates
a list of transitions with a node, which do not have any event. If a node’s activity is done and
serveral arcs associated with that node are eligible to be fired, a function ChooseArc : NODE —
ARC is used to indicate which arc will be fired. And a external function HighPriority :
ARC x ARC — Boolean indicates whether the first parameter arc has a higher priority than
the second one. The function ChooseArc is shown in Figure 18.

Now we discuss which arc will be active when a composite node is initially entered. A
function initArc : ARCx NODE — ARC indicates which arc is active when the composite node
is initially entered. The first parameter represents an incoming arc and the second parameter
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Figure 17: Some arcs are generated according in (b) according to the arc ¢r in (a).

ChooseArc(node)= k iff
ELIGIBLE2EXE (outArcy (node) )=true and
(V i: ELIGIBLE2EXE(outArc;(node))=true =
HighPriority(our Arcy (node) ,our Arc; (node) ) =true)

Figure 18: The definition for function ChooseArc(node).
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refers to a region within that (concurrent) composite node. When an arc ar terminates on the
edge of a sequential composite node n, then the arc coming out from an initial node is the
value for the function initArc(ar,n). When an arc ar terminates on the edge of a concurrent
composite node n, node; is used to get the next active arc within the region node;'. If a new
arc is generated in that region, then the new arc is the value for that function initArc; otherwise
the arc coming from the initial node in that region is the value for the function initArc. For
example in Figure 14(b), initArc(nodel,tr)=trl.

3.3.5 Agent and Activity Agent

There are two kinds of agent in the ASM model. The universe AGENT denotes all the abstract
set of agents which move through the extended ASM diagram. In the following, “agent” always
refers to an element in AGENT. The universe AGENT_ACT denotes agents which model an
execution of an activity associated with a node. An activity agent is always created by an
agent in AGENT and their relation is denoted by a function Agent2Act: AGENT x NODE —
AGENT_ACT. A function IsActAgent: AGENT_ACT — Boolean indicates whether an agent
belongs to the universe AGENT_ACT. An agent in the universe AGENT can create an activity
agent in the universe AGENT_ACT for a given node by the following macro shown in Figure 19.
Per formActivity is another module used to execute the activities in a state machine diagram.

CREATE_ACT (node):
extend AGENT with a
Agent2Act(Self,node):=a;
Mod(a):=PerformActivity(node);
endextend

Figure 19: The macro definition for CREATE_ACT(com)

Figure 20 shows the general structure of the program executed by all activity agents whose
details we are not interested in. Therefore we just give how it can trigger a completion event. An
activity, which is composed of a set of actions, is also mapped into a list of ASM specifications.
For a normal execution, at the end of an activity associated with a node, we add an additional
ASM specification to set a function HasGenFEvent : ARC — Boolean to be true, triggering
complete events associated with a node. And we set function act_done : Boolean, which is used
to indicate whether an activity agent is done, to be true. All these are shown in Figure 20. In
addition, node;,i € {1,2,...,n} in Figure 20 denote all the nodes in an extended ASM diagram.

'"We can regard node; as a composite node containing all the nodes within the region node;.
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PERFORMACT (node):
if node=node; then

if act_done = true then

do forall ar € NormalevList(nodel):
HasGenEvent(ar):=true;

enddo
act_done := false;
Mod(Self) := undef;

endif

elseif node=nodes then

endif

Figure 20: The ASM specification for an activity agent.

3.3.6 Rules of extended ASM diagrams

In order to represent the current arc the agent a’s control lies in, a function CurArc: AGENT —
ARC is defined and its updates will reflect the movement of the agent during the execution.

We divide the execution of an agent into the following different modes MODES={node,
arc, interrupt, suspended, undef}. Mode node denotes an agent is executing a node; Mode arc
indicates an agent is executing an arc. Mode interrupt indicates an agent is interrupted by
some event. Mode suspended indicates an agent is suspended by its creator agent because of
an interrupt. Mode undef indicates an agent does not exists any more. Function CurMode :
AGENT — MODES is used to indicate current mode an agent is at.

For each node, its execution (by an agent) can be divided into three different phases. A
function Phase:NODE — {init, internal_exe, wait_for_ezxit} is used to indicate which phase a
node is at. Before an agent’s control reaches a node, it is in phase init. When control reaches
it and entry action is being executed, the node enters phase internal_eze. During internal_eze,
when the internal transition and activities start to execute, the node enters the third phase
wait_for_exit. When the exit action associated with the node starts to execute, the node’s phase is
reset back to init. The only exception to this is a sequential composite node which is exited when
a final node within that node is reached. A function IsFinal : NODE x NODE — Boolean
indicates whether a node is a final node in anther node. For example, IsFinal(Dy, Dy) = true
means that D; is a final node in Ds.

When an agent is to execute an arc, all the nodes’ exit and enter actions affected by this arc
are to be executed. A function NestStructure : AGENT — NODEY is used to indicate a chain
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of nodes whose exit actions are to be executed next. In addition, during an agent execution,
a function CurNode : AGENT — NODZE represents a node which is possibly interrupted by
some event associated with an arc coming out from that node.

An agent is created by the following macro shown in Figure 21. All the children agents
created by an agent a are denoted by function ChildAgent(a)={a’ € AGENT | parent(a')=a}.
a is called a parent of these child agents.

CREATE_AGENT (agent,node,arc):
CurMode(agent):=node;
CurArc(agent):= initArc(node,arc);
parent(agent):= Self;
Mod(agent):=Mod(Self);

Figure 21: The macro definition for CREATE_AGENT (agent,node,arc).

[

To kill an agent, we set several functions to “undef” shown in Figure 22.

KILL(a):
Mod(a):=undef;
CurMode(a):=undef;
parent(a):=undef;

Figure 22: The macro definition for KILL(a).

When an agent needs to execute an entry action associated with a node, we give the fol-
lowing macro in Figure 23. Besides executing the entry action, we assign Phase for that node
to internal_exe because the entry action is executed during phase init. In addition, function
GName : Guard - STRING is used to get a string name for a guard in an arc. And function
Concat : STRING x STRING — STRING is used to append the second parameter to the
first parameter to produce a new string name. Function OriginalGurd : Guard — Boolean
is used to denote whether a guard is a original one or not. If it is an original one, we set the
corresponding guard condition to be true so that the new corresponding arcs associated with
this arc will be fired. Function Name2G : String — Guard is used to get a guard from a name.

When an agent is about to exit from a node, we need to update some functions for this agent.
These updates include to set functions Cur Arc, Cur Mode and NestStructure to corresponding
new values. These updates are showned in Figure 24.

The following Figure 25 gives a definition for a marco EXE_EXIT_OUTWARDS(List) which
is used to execute one exit action from the head of List. In addition, if a node execution is

32



EXE_ENTRY_ACTION (node):

let gname = GName(guard(node)) in

Action2ASM(entry(node));

Phase(node):=internal_ezxe;

if (OriginalGurd(guard(node))=true) then
Name2G(Concat( “Guard_”,gname)) := true;

endif

endlet

Figure 23: The macro definition for EXE_ENTRY_ACTION (node).

EXIT_FROM_NODE (outArc,node):
CurArc(Self):=outArc(node);

CurMode(Self):=arc;

NestStructure(Self ):=NestNodesFromArc(node,outArc(node));

Figure 24: The macro definition for EXIT FROM_NODE(outArc, node).

caused by an arc which is newly generated in the ASM extended diagram, we should reset the
guard condition to be false so that this arc can be fired later.

When an agent q is in mode node, indicated by the function CurMode(a) = node, we need
the following macro ISREACHABLE(arc) to check whether the target node associated with
arc can be entered. The definition is given in Figure 26.

In addition, the macro ELIGIBLE2EXE(arc) is used for a completion arc to check whether
the completion event is done and the guard associated with it is true. If both of them are true,
then the completion arc is about to happen. This is shown in Figure 27.

First we consider the case when an agent’s control reaches a simple node which is of the
form: Node(name,entry,exit,internal,activity,inArci,...,inArc,,outArcy,...,outArcy). If the
guard condition associated with the current arc Cur Arc is true, the node is a simple node and
the node’s phase is init, then besides the actions defined in EXE ENTRY_ACTION we assign
CurNode to the current node. This is shown in Figure 28.

When a simple node is entered by an agent, we create a new agent to execute the activity
defined in this simple node. The node then enters the last phase, waiting for a normal exit.

If a simple node is in state wait_for_exit and an arc, which results in a normal exit from the
current node, is eligible to fire, the agent will execute the exit actions and entry actions along the
arc!!. If there are more than one completion arc which is eligible to fire, a function ChooseArc

L All the arcs shown in Figure 30, 33 and 36 are the completion arc.
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EXE_EXIT_OUTWARDS (List):

let gname = GName(guard(node)) in

Action2ASM (exit(head(List)));

List := tail(List);

Phase(head(list) ):=init;

do forall ev € NormalevList(head(List))
HasGenEvent(ev):=undef;

enddo

if (OriginalGurd(guard(node))!=true) then
Name2G(Concat(“Guard.”, gname)) := false;

endif

endlet

Figure 25: The macro definition for EXE_EXIT_ OUTWARDS.

ISREACHABLE (arc)=
CurMode(Self)=node and guard(arc)=true

Figure 26: The definition for ISREACHABLE.

ELIGIBLE2EXE (arc)=
IsTriggerless(arc)=true and HasGenFEvent(arc)=true and guard(arc)=true

Figure 27: The macro definition for ELIGIBLE2EXE(arc).

let node =targetstate(CurArc) in
if ISREACHABLE(CurArc(Self))=true and IsSimple(node)=true and Phase(node)=init then
EXE_ENTRY_ACTION(node);
CurNode(Self) := node;
endif
endlet

Figure 28: The initial phase for a simple state.
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let node = targetstate(CurArc) in
if ISREACHABLE(CurArc(Self))=true and IsSimple(node)=true and
Phase(node)=internal_eze then
CREATE_ACT(node);
Phase(node) := wait_for_exit;
endif
endlet

Figure 29: The internal phase for a simple state.

returns a highest priority arc, which is about to execute. In order to execute the exit acitons
along the arc, a function NestStructure is set for this agent. The phase for the agent is also
set to arc. And function CurNode is set to undef in that the agent is about to leave from that
node.

let node = targetstate(CurArc) in
if ISREACHABLE(CurArc(Self))=true and IsSimple(node)=true and
Phase(node)=wait_for_ezit then
let j=ChooseArc(node) in
if (7 /= undef) then
CurNode(Self) := undef;
EXIT_FROM_NODE(outArcj,node);
endif
endlet
endif
endlet

Figure 30: The last phase for a simple node.

But the semantic becomes complicated when a node is not a simple node. For a sequential
composite node, we assume it has the form: Node(Name, entry, exit, internal, activity, deferred,
subnodes, inArc, outArc), where subnodes represents all the immediate subnodes which are
composed of the sequential composite node. When the guard associated with the current arc
is true and the composite node’s phase is init, then the entry action is to be executed and the
phase for that node is set to internal_eze. This is shown Figure 31.

After executing the entry action defined in the composite node, the agent creates a new
activity agent to execute the activity and then sets CurArc to the arc given by function initArc
and Cur Mode to node so that a subnode of that composite node is about to execute in the next.
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let node = targetstate(CurArc) in
if ISREACHABLE( CurArc) and Phase(node)=init and IsCompSeq(node)=true then
EXE_ENTRY_ACTION(node);
endif
endlet

Figure 31: The initial Phase for a sequential composite node.

This is shown in Figure 32.

let node = targetstate(CurArc) in
if ISREACHABLE( CurArc) and Phase(node)=internal_eze and
IsCompSeq(node)=true then
CREATE_ACT(node);
CurArc(Self) := initArc(node, CurArc);
CurMode(Self) := node;
Phase(node) := wait_for_exit;
endif
endlet

Figure 32: The internal phase for a sequential composite node.

Now we consider how to exit from a sequential composite state. Here we consider a normal
exit and we will discuss an abnormal exit caused by some event late. When an agent reaches
the final state of a sequential composite state, and a completion arc coming out from the com-
posite state is eligible to fire, we will execute the exit and entry actions affected by the arc.
If the composite node is TOPNODE, it means that we have finished the execution for the
extended ASM diagram, otherwise we execute the actions decided by the arc, using the macro
EXIT_FROM_NODE. This ASM specification is shown in Figure 33.

Now we consider a concurrent composite node. A concurrent composite node is of form:
Node(name,entry,exit,internal, activity, deferred, inArcy, ..., inAre,, nodes, . . ., nodes,, outArcy,

.., outArc,, ). When a composite concurrent node is entered by an agent whose phase is init,
besides the actions defined in EXE_ENTRY_ACTION, we set function Cur Node to the current
node. This is shown in Figure 34'2.

During the phase internal_eze, apart from creating a new activity agent as we have shown

12We can combine Figure 34 and Figure 28 into one if we add condition TsCompConcur(node) = true in Figure
28.
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let node = targetstate(CurArc) in
if ISREACHABLE( CurArc) and Phase(node)=init and
IsFinal(node, UpNode(node))=true then
if IsCompSeq(UpNode(node))=true then
if UpNode(node) = TOPNODE then
CurMode(Self) := undef;
else
let i=ChooseArc(node) in
if (i!=undef) then
EXIT_FROM_NODE(outArc;,UpNode(node));
endif
endlet
endif
endif
endif
endlet

Figure 33: The last phase for a final state in a composite sequential node.

let node = targetstate(CurArc) in
if ISREACHABLE( CurArc) and Phase(node)=init and IsCompConcur(node)=true then
CurNode(Self) := node;
EXE_ENTRY_ACTION(node);
endif
endlet

Figure 34: The initial phase for a concurrent composite node.
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above, we create a new agent for every region within that concurrent composite node to execute
nodes in that region. This is shown in Figure 35.

let node = targetstate(CurArc) in
if ISREACHABLE( CurArc) and Phase(node)=internal_eze and
IsCompConcur(node)=true then
CREATE_ACT(node);
extend AGENT with c¢1,...,¢c,
CREATE_AGENT(c;,nodes;, CurArc);
endextend
Phase(node) := wait_for_exit;
endif
endlet

Figure 35: The internal phase for a concurrent composite node.

In the following we consider a normal exit from a concurrent composite node. Assuming an
agent is waiting for a normal exit, if all its child agents are in their final states and a completion
arc is eligible to fire, then the agent Kkills all its child agents and execute the actions defined in
macro EXIT FROM_NODE. This is shown in Figure 36.

Now let us consider the abnormal exit. During an agent execution, if an event occurs, which
belongs to evList associated with the node the agent lies in, the agent’s mode is set to interrupt
immediately, indicating to stop its normal execution.

When an agent enters the mode interrupt, it needs to stop all the activities being executed
and start to execute all exit actions in the nodes which the arc, whose event occurs, comes out
from. There is no difference in executing the exit actions caused by either normal or abnormal
exit. So we give one ASM specification in Figure 38 for both cases.

If a node, whose exit action is be executed next, is a composite concurrent node, then we
need to distinguish two cases. One is the execution for the exit action is caused by an event
belonging to that concurrent composite node and that composite node’s exit action is to be first
executed during the (abnormal) exit. The other is the execution for the exit action is caused by
the pass from its immediate subnode.

If the first case occurs, the agent needs to wait for all its child agents execution for their exit
actions to be done. If all the child agents finish their exit execution, then the agent kills all of
its child agents (if exists) and executes the action defined in EXE_EXIT_OUTWARDS. If the
second case occurs, the agent stops the execution for exit action and waits for its parent agent
to kill itself. When an agent finishes the execution for all the exit actions associated with an
arc, we set function Cur Mode back to node, meaning a target node of the arc is a candidate to
be executed in the next.
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let node = targetstate(CurArc) in
if ISREACHABLE(CurArc) and Phase(node)=wait_for_ezit and
IsCompConcur(node)=true then
if Va; € SubAgent(Self) : IsFinal(targetNode(CurArc(a;)),node)=true then
let i=ChooseArc(node) in
if (i!=undef) then
do forall a; € SubAgent(Self)
KILL(a;);
EXIT_FROM_NODE(outArc;,node);
enddo
endif
endlet
endif
endif
endlet

Figure 36: The last phase for a concurrent composite node.

if occured(ev) and ev € evList(CurNode)then
CurMode(Self) := interrupt;
CurArc(Self) := event2arc(ev, CurNode);
NestStructure(Self ):=NestNodesFromArc(CurNode,arc(ev));
endif

Figure 37: The model for an event occurs.
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if CurMode(Self)=interrupt or CurMode(Self)=arc then
if (head(NestStructure(Self )=undef) then
CurMode(Self ):= node;
Action2ASM/(action(CurArc(Self));
else
if (IsCompConcur(head(NestStructure(Self)))!=true) then
EXE EXIT OUTWARDS(NestStructure(Self));

else
if CurNode!=head(NestStructure(Self)) then
NestStructure(Self ):=undef; #agent stops exit execution
Mod(Agent2Act(Self,head(NestStructure(Self)) ):=undef;
CurMode(Self ):=suspended;
else
if Va € ChildAgent(Self): CurMode(a)=suspended then
EXE_EXIT_-OUTWARDS(NestStructure(Self));
Ve € ChildAgent(Self): KILL(c);
endif
endif
endif
endif

endif

Figure 38: The model for executing an arc.
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3.4 Verification Tool

The Verification Tool is the major tool in the verifier. We single out the SMV among all other
methods as the following reason.

First SMV is also based on the transition systems. All the transitions internally are regarded
as binary decision diagrams which leads to very efficient algorithms. The SMV checks a temporal
logic formula against the system specification and outputs a counter-example if the system fails
to meet the requirement.

Secondly, a translation tool from ASM to SMV has been implemented by a group in Germany
[2]. We hope the verifier can take the advantage of the existed tool. In the following, let us take
a look at the transformation schema from an ASM Model to a SMV model, showing why this
schema can be applied to our verifier.

Kirsten Winter [12] reported the work about this transformation schema which covers the
most ASM structures we will be using in this verifier. All these transformation schemas are
shown in the following.

Update instructionR : f(t) := to will be translated into

ASSIGNnext(l) ==y

with the location | = (f,Valg(t)) and the value y = Valg(to))
Guarded transition rule if gy then Ry elseif ¢ ...,... elseif g; then Ry endif is translated
into the following:
ASSIGNnext(l) :=
case

go : Yo;

gk * Yk
1:7
esac;
where location | = (f,Valg(t))and values y; = Valg(t;) for all 4.

The SMV language allows modules to be used as a unit to run in parallel. If we instantiate
a module with the keyword process, then the semantics is running of interleaving concurrency:
on two modules with the same parent run at the same time. However if running is used in
a parameter of an instance of a module, then that module is always running when the parent
module is. This is true concurrency in the sense of simultaneous execution.

In ASMs, agents and all the transition rules inside an agent are running concurrently. So
in [12] all agents in ASM are translated into SMV modules that are instantiated without the
keyword process, meaning a true concurrency is generated. In order to instantiate all modules,
a module main is initially generated. All modules are running whenever the module main is
running.
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3.5 Analysis Tool

Because users of this tool are those engineers of object-oriented software systems, all the details
about the implementation of this tool are hidden from the users. The analysis tool is used to
build a bridge between these two aspects so as to make it easier for the engineers to use in the
industry world. The analysis tool accepts the result from the verification tool and it returns
some UML diagrams to the users if the verification tool finds some errors.

One of the diagrams which will return to the engineers is the sequence diagram in UML. The
reason that we consider to represent the error is that it not only shows the time dimension but
also gives the configuration for message exchanges. It is more easier for the engineers to find
the problem in their design.

Using the collaboration diagram to represent errors in the design model is another way
we are considering. Although the collaboration diagram represents the message exchange, it
concentrates on the links between the objects. When a user can not find the problem in his
design from the sequence diagram, he can also look at the collaboration diagram to investigate
the problem possibly occurring among the objects.

Although a sequence diagram is equivalent to a collaboration diagram in UML, we provide
the both two diagrams to satisfy the different users’ preference in this tool.

4 A Toy Example: Elevator Problem

In this section, we show how the tool veriUML we will be building works when an UML model
is given. Then we give a conclusion about this project.

4.1 Elevator Problem

First let us take a look at the elevator problem.

1. A product is to be installed to control elevators in a building with m floors. The problem
concerns the logic required to move elevators between floors according to the following
constraints: Each elevator has a set of m buttons, one for each floor. These illuminate
when pressed and cause the elevator to visit the corresponding floor. The illumination is
canceled when the elevator visits the corresponding floor.

2. Each floor, except the first floor and top floor has two buttons, one to request a up-
elevator and one to request a down-elevator. These buttons illuminate when pressed. The
illumination is canceled when an elevator visits the floor and then moves in the desired
direction.

3. When a request is pressed at any certain floor, then the request will be served eventually.

4. When an elevator has no requests, it remains at its current floor with its doors closed.
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In general, the design phase should produce the details about class diagrams, collabora-
tion diagrams, sequence diagrams, statechart diagrams and activity diagrams. Here because of
simplicity of this problem, we skip the activity diagram for the elevator problem.

4.2 A UML Model for Elevator Problem

Class diagrams show the static structure of the objects, their internal structure and their re-
lationships. From the problem description, we know that there are following classes in the
class diagram: Elevator, Ele_Controller, Button, Elevator_Button and Floor_Button. The class
Ele_Controller controls the class Elevator. And the class Ele_Controller controls one Elevator.
There are m Button classes associated with the class Ele_Controller. And the Class Button has
two subclasses: Elevator_Button and Floor Button. The class diagram is shown in Figure 39.

In the following we give the collaboration diagram for the elevator problem. Here to simplify
the problem, we just give the collaboration diagram for serving door button. In general, control
flows among the objects in the following. When a passenger at floor 3 presses the up button.
The object floor3 sends a message to the object ele_controller to update a requested. The object
ele_controller sends a message, like move, to the object elevator to move to the floor 3. When
the elevator reaches floor 3, it sends a message arrived back to the object ele_controller. So the
collaboration diagram for serving door button is shown in Figure 40.

Now we consider statechart diagrams for these objects. Statechart diagrams show a state
machine which models the dynamic aspects of a system. It concentrates on the flow of control
from state to state, so especially useful in modeling the lifetime of an object. First we consider the
statechart diagram for the object ele_controller. There are two states in the object ele_controller.
One is waiting and the other state is working. In state waiting, the object sits at there, waiting
for a message possibly from the object floor_m, elevator and door. After receiving a message,
the object ele_controller enters state working which means that it will send a message to the
corresponding object according the message it received. This is shown in Figure 41.

Now we consider the statechart diagram for the object elevator. There are two states in
it, Idling and Moving. In both states, the object receives the message move from the object
ele_controller. After receiving this message, the object elevator always stays at state Moving.
When the elevator reaches the floor, it sends a message arrived back to the controller. The
Figure 42 shows the statechart diagram for object elevator.
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Figure 39: A class diagram for the elevator problem.
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Figure 40: The collaboration diagram for the elevator problem.
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Figure 41: The statechart diagram for object ele_controller.
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Figure 42: The statechart diagram for object elevator.

For the other parts in this model, we skip the diagrams for them. Additionally, designers
should provide a specification which should be met by the model. For this elevator problem,
designers can provide the following temporal logic formula as a specification:

O(press(z) = Gopen(z))

But in the above model combined with the above specifiction, a careful reader must have
noticed a problem. If John presses the button on the third floor first, then the elevator moves
to that floor. But during that movement, another passenger Dave presses the button on the
fifth floor. The elevator control receives this message and updates its control system and sends
a message to the elevator. The elevator receives the new command and moves to the fifth floor
during its movement to the third floor. More worse, the elevator does not have the function to
remember the previous commands. Therefore, the third floor will be never arrived until John
presses the button again later. Obviously, it violates the requirement for the elevator problem.

Whenever an error is detected in SMV, it generates a trace showing how to produce the
error. The tool analyses the error trace and represent it as a UML diagram which is returned
to the designer. Figure 43 shows an error where the third floor will not be reached.

5 Conclusion

In this project as first step, we give the semantics for a state machine in UML. At the same time
a group led by Prof. Egon Borger etc. was also working on an Abstract State Machine model
for the State Machines. As first step they gave an ASM model for activity diagram in UML[3],
the author read this paper and some of ideas are borrowed from that paper. But there are still
a lot of work to do when giving an Abstract State Machine model for the state machine in UML
because the difference between the activity diagram and state machine.

One of the major differences between the two diagrams is that both the source and target
node for a transition in the state machine in UML may not be on the same level. This difference

46



John Dave f3 f5 ele con elevator
press update
illuminate move
press update
illuminate move
arrived
open

Figure 43: A sequence diagram for a counter-example.c
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results in changes for modeling an interruption. To deal with the change, we extend the state
machine diagram in UML to an extended Abstract State Machine diagram by adding some new
arcs. Therefore it is easy to deal with an interruption whose source and target states are possibly
at the different level.

Additionally, in the Abstract State Machine Model for the state machine in UML, all agents
sit at either a simple node or composite concurrent node to wait for a possible interruption.
This simplifies the interruption model for the state machine in UML. However, [3] does not have
this in their model.

The other difference is that an activity can occur in any state in the state machine diagram
in UML; however this is not allowed in the activity diagram in UML. To model its execution,
we create a new agent to execute the activity associated with a state.

Last in the ASM model given in the above, we give more details about the implementation
of some functions; for example, how to compute the functions like NestStructure. That is why
we need to derive a ASM extended state machine diagram from the original one.

When we finished writing this proposal, we found another similar work related to our tool
which is vUML[9]. That tool is being worked by a group in Finland. Although that tool is still
being worked, most of the ideas between these two tools are quite similar. They receive UML
diagrams as the input and return UML diagrams as the output if there exist some errors in the
input specification. Similarly, they use another model checker tool, named SPIN, to verify some
properties.

Because they use SPIN to verify the properties, they translate the UML diagrams into
PROMELA, an input language of SPIN. But PROMELA is not a formal specification language
which can be applied to model UML diagrams. Therefore, they use operational semantics to
give the semantics model [10]. They separate a model from its verification.

However, in this project, we first give a semantic model for UML diagrams by using Abstract
State Machines; then we can verify some properties from an Abstract State Machine model.
Abstract State Machines connect a model to its verification, which shows the strength when
using Abstract State Machines. It is this strength that distinguishes Abstract State Machines
from the other methods, including the method used in vUML.
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