
Lightweight Failure Detection in Secure Group Communication�

Patrick McDaniely and Atul Prakash
Electrical Engineering and Computer Science Department

University of Michigan, Ann Arbor
pdmcdanfaprakashg@eecs.umich.edu

Abstract

The secure and efficient detection of process failures is an essential requirement of many distributed
systems. In this paper, we present the design and analysis of a mechanism used for the detection of
member failures in secure groups. Based onone-time passwords, our solution does not obviate the
need for periodic statements from group members, but significantly reduces the cost of their generation
and validation. A study comparing the costs of traditional mechanisms with our proposed approach is
presented. Results of the study indicate the average case performance of the proposed scheme is1=10th
of traditional failure detection in trusted groups, and negligible in the untrusted groups. A discussion of
security and performance tradeoffs made through mechanism policy is provided.

1 Introduction

As the Internet grows, the importance of group communication as an efficient means of distributing ap-
plication content will increase. However, the security afforded by existing group oriented applications is
insufficient to meet the needs of all session environments. Providing flexible, robust, and scalable security
services within groups is an active area of research. A key requirement of these services is resiliency to
failures of group participants. In this paper we present an efficient approach to one part of this resiliency;
the secure detection of process failures.

A secure group is a collection of collaborating processes transferring content over a secured broadcast
medium. Established via a group key distribution protocol [1, 2, 3, 4], a security context contains asession
keyknown by each participant1. The group ensures the confidentiality, integrity, and authenticity of indi-
vidual messages using the session key. However, there is an inherent cost to providing these guarantees.

�This work is supported in part under the National Science Foundation Grant #ATM-9873025 and by the Defense Advanced
Research Projects Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F30602-00-2-0508. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA), the Air Force Research Laboratory, or the U.S. Government.

yPatrick McDaniel’s research was supported in part by the NASA Graduate Student Researchers Program, Kennedy Space
Center, Grant Number 10-52613.

1Groups whose members do not share a session key typically emulate a broadcast channel using secure point to point messages
(e.g. the RAMPART system [5]). For simplicity, we assume groups share a common session key. However, our approach is also
applicable to these types of groups.



Security is achieved by the cryptographic transformation of group messages using keys present in the secu-
rity context. Due to the cost of these operations, it is desirable to limit the amount of data being transformed
by the cryptographic algorithms.

Traditionally, detection of failed process requires the encryption and transmission of a periodic freshness
indicator and identifier information under a known key. The freshness indicators may take the form of time-
stamps (where some secure source of time is globally available) or nonces. Typically known asheartbeats,
the messages containing this information is generated by any party wishing to state its continued presence
in the group, and validated by interested members. In high throughput, dynamic, or large groups, the costs
of processing heartbeat messages from each member can be prohibitive.

In this paper, we present the design and analysis of an approach for the secure detection of failures. This
approach amortizes the cost of heartbeat processing over many messages. Initially intended to be developed
within the Antigone framework [6], the failure detection service can be implemented by any secure group
having access to shared keying material. We also present a variant of our approach appropriate for groups
with stronger security requirements. Based on public key algorithms, this variant is used in groups where
compromised members may actively attempt to circumvent the failure detection mechanism. We consider
the performance tradeoffs between the two variants in Section 3.

Based onone-time passwords[7, 8], our solution does not obviate the need for periodic heartbeat mes-
sages, but significantly reduces the cost of their generation and validation. Validation information is securely
distributed to each member prior to the monitoring process. The validation information seeds an algorithm
generating periodic secure heartbeats. These heartbeats are subsequently released by the member as proof
of its continued presence in the group. Each heartbeat contains enough information to assess the freshness
and authenticity of the message. Thus, we need not ensure reliable delivery.

Without loss of generality, we assume the group contains a single distinct member (called thefailure
monitor) monitoring the state of group members. We denote a member that has not failed as beinglive,
and a member that has failed as beingfailed. We assume all failures arefail-stop [9]; a failed member
will immediately and permanently stop transmitting messages to the group. We assume in mounting an
attack, non-members (calledadversaries) may attempt to intercept messages, modify messages, or prevent
messages from being delivered.

The way in which groups should recover from failures is largely dependent on the the group threat model
and session context. Several possible ways in which the group can react to the detection of a member failure
include: a) the group disbands and suspends operation until the group member recovers and re-joins the
group (in the case where is the failed process is essential to the group mission), b) the group can purge the
member and continue, or c) ignore the failure. A thorough discussion of group failure recovery is outside
the scope of this document.

The following section details the background and design of our proposed failure protection mechanism.
Section 3 compares the cost of our proposed solution with traditional failure detection mechanisms. Sec-
tion 4 gives a brief overview of the related work. Section 5 considers a number of issues relating to the
integration and use of the proposed approach. We conclude in Section 6.

2 Secure Failure Detection

A failure monitor requires periodic proof that each monitored process has not failed. This proof typically
takes the form of a member generated statement indicating its continued presence. These statements must be
authenticated for the failure detection mechanism to be secure; some information proving the message was
generated by stated member is necessary. If authenticating information is not included, an adversary can
mask failures by generating counterfeit statements. In groups where the members are not completely trusted
(or resiliency to member compromise is required), the authentication information must uniquely identify the

2



Notation Description

A The identity of a group member.
S The identity of the failure monitor.
g An identifier used to uniquely identify the (group) session.

x1; x2; :::; xn Concatenation of fieldsx1 throughxn.
H[x1; x2; :::; xn]k HMAC computation over fieldsx1; :::xn with keyk.

CA Digital certificate of member A.
fXgCA Digital signature by A on X using private key associated with the certificateCA.
kg The (symmetric) session key for groupg.
S0

A The first heartbeat sequence number for memberA.
SiA The heartbeat sequence numberi for memberA.
Æ0 The seed value for a hash chain.
Æk Thekth application of the hash function on an initial value ofÆ0.

Table 1: Description of the notation used throughout.

sender. The ability to securely identify the sender of a group message, calledsource authentication, is an
active area of research. Current methods providing source authentication can be prohibitively expensive or
unreliable in high throughput groups [10, 11, 12].

Traditional mechanisms detect failures by the absence of periodic statements made by monitored pro-
cesses. These statements, called heartbeats, are generated by each member and transmitted to the group
directly or to the failure monitor via unicast. Each heartbeat must contain member identifying information
and proof of its freshness. If a correct heartbeat is not received by the failure monitor, the process is deemed
failed.

We use a simplified version of the Antigone secure failure detection mechanism to illustrate this ap-
proach. The notation used for the remainder of this paper is described in Table 1. Denoted as traditional
failure detection (or simply the traditional approach) throughout, each member of groupg is assigned a
unique identifier (A), obtains the group session key (kg), and establishes a starting sequence number (S0

A)
prior to the detection of failures. At some agreed upon periodicity,A generates and transmits the following
message:

g;A; SiA;H[G;A; SiA]kg

When a failure monitor receives the message, it validates the authenticity of the message via the HMAC
(H[(: : :)]kg ). If the message is authentic and the identifiers and sequence numbers are consistent with
the expected values, the process is deemed live. The sequence number of the first heartbeat isS0

A. Each
subsequent heartbeat is incremented by one (i.e.S1

A; S
2

A; : : :).
When a member joins the group, a timer set to expire at the time the first heartbeat is expected is created.

This timer is reset each time a correct heartbeat is received from the member. An expired timer indicates to
the failure monitor that the process is no longer operating correctly. In this case, the failure monitor notifies
the group that the process has failed and the group reacts appropriately.

We assume there is unique session identifying information present in the group identifier or session
keys. For example, group identifiers in Antigone consist of a group description string and a nonce used to
uniquely identify the session key. If identifiers and keys are reused between sessions, heartbeat messages
can be replayed. However, in practice, it is unlikely session keys will be used for more than one session.

The failure monitor should allow additional time for network delays and lost messages when selecting
the timeout value. Note that it may be acceptable to lose some heartbeats entirely. In accepting some

3



heartbeat loss, a failure monitor may tradeoff detection latency with resiliency to network packet drops. A
detailed discussion of the selection of timer values is presented in [6].

The following subsections outline an approach that reduces the cost of heartbeat generation and vali-
dation over the traditional approach. This scheme modifies the way in which authentication is performed.
In all other respects, the behavior of the monitored process and members is the same as in the traditional
approach.

2.1 Approach

We begin the description of our approach by introducing the use of hash chains in authentication schemes.
A hash chain [13] is the sequence of values resulting from the repeated application of a secure hash function
(f ) on some initial value. For example, given an initial valuex, a one-way hash functionf(x), and chain of
lengthk + 1, the hash chain is:

f0(x) = x; f1(x); f2(x); : : : ; fk(x)

Because, by definition, (even partial) inversion off is not feasible, knowledge off i(x) gives no meaningful
information to derivef i�1(x), for somei; 0 < i < k [14]. By revealingfk(x) securely, the remaining
values can be used in reverse order as proof of the knowledge ofx. This is useful in authentication schemes
(one-time passwords) because only a entity with knowledge ofx can generate the intermediate values.

Once a valuef i(x) has been used, an adversary can produce not onlyf i(x), but all f j(x) such that
j > i. Thus, the values of the hash chain can only be used once and in reverse order. Becausef i(x) is
used only once, it can be sent in the clear. With slight modification, this approach is used in the S-Key
authentication [7] system to authenticate users in distributed environments.

We now present our approach. We assume a session key shared by the members of the group and the
failure monitor has been established prior to the detection of failures. For example, the GKMP protocol
[1, 15] could be used to establish the group session key. Trivially, we also assume the failure monitor has
some means of determining which process it is to be monitoring.

As in traditional schemes, we assume all processes have access to a hardware or software clock. The
clock at each member need not be synchronized, but should not advance at significantly different rates. The
proposed method can detect failures at rates bounded only by network latency and throughput. So, for the
types of groups envisioned, it is unlikely any two clocks will progress at rates such that the correctness of
the failure detection mechanism will be affected. We note some applications, such as real-time systems,
may implement groups with very specific failure detection timing constraints. We defer a rigorous analysis
of the timing requirements and constraints of these systems to future work.

Process failures are detected at the failure monitor by the absence of received heartbeat messages. Prior
to the monitoring process, the member and the failure monitor must agree on an operating policy. In de-
termining policy, each group member must state or accept the periodicity with which heartbeat messages
will be transmitted. A second policy states the number of messages that may be lost before the member is
deemed failed. In lossy environments, it may be desirable for members to frequently send heartbeats, and
the monitor accept several consecutive losses before declaring the process failed. However, as the number
of acceptable losses before failure detection increases, so does the latency with which failures are detected.
Similarly, as the number of acceptable losses decreases, the probability that some live process is declared
failed increases (false-positives). It is up to the application to identify parameters appropriate for its oper-
ating environment. The means by which participants agree on and distribute policy is outside the scope of
this paper.

Based on policy, each member periodically transmits asecure heartbeatto the failure monitor. The
freshness of each heartbeat message is indicated by a monotonically increasing sequence number. When

4



initiating the monitoring process, both the member and the failure monitor set the next/expected sequence
number to zero. The member generates each heartbeat by inserting the next sequence number and increment-
ing the local sequence number counter by one (see below). At the failure monitor, a heartbeat containing the
(authenticated) next sequence number is deemed valid and the expected sequence number is incremented by
one.

Secure heartbeats are generated as follows. Initially, the memberA generates a random valuex of
length equal to the output of the hash function (e.g. MD5 has a 128 bit output).A applies the hash function
a member-determined number of times (k) to x to generate the following hash chain2:

Æ0 = x; Æ1 = f(x); Æ2 = f2(x); : : : ; Æk = fk(x)

A generates aheartbeat validation blockcontaining the group identifierg, her identityA, the first heartbeat
sequence number for which this hash is to be usedS0

A, the last value in the hash chainfk(x) = Æk, and a
HMAC [16] covering these fields:

g;A; S0

A; Æ
k;H[g;A; S0

A; Æ
k]kg

A heartbeat message is generated by concatenating the current sequence number (SiA = S0

A + i) and the
next value in the hash chain (in reverse order,Æk�i) with the validation block. So, the transmitted heartbeat
message for sequence numberi would be:

SiA; Æ
k�i; g; A; S0

A; Æ
k;H[g;A; S0

A; Æ
k]kg

Because encryption is only required when creating the validation block and the hash chain itself is cached,
heartbeat generation is fast. When the values of a chain are exhausted (i > k), the member can generates a
new hash chain and associated validation block.

A received heartbeat message is validated by checking the HMAC and calculating:

fS
i
A
�S0

A(Æk�i) = Æk.

If this relation holds, then the heartbeat is valid. The heartbeat is authentic because of the use of the shared
secret key (or group private key) in the validation block. The heartbeat is fresh because of the presence
of the next value in the hash chain. After receiving and validating the initial heartbeat for a hash chain,
subsequent HMAC validation can be achieved by byte comparison of a validation block of a previously
validated heartbeat. Thus, heartbeat validation is fast.

Each heartbeat is self-contained; all information needed to determine authenticity and freshness is
present in the message. Therefore, the heartbeat messages need not be reliably sent. This scheme does
not require the validation block be sent in the same message as any particular heartbeat. Acceptance only
requires the validation block be obtained prior to validation. If some reliability service is used to deliver the
validation block, one may decrease the transmission costs associated with failure detection by omitting the
validation block from each heartbeat message.

As in our description of the traditional approach, we assume the group identifierg has enough informa-
tion to uniquely identify the session key and group. However, in the case where this is not possible, replay
protection can be achieved by introducing additional timestamp or nonce fields into the authentication block.

Any entity with access to the group session key can mask the failure of group members. Because the
knowledge of the session key is used for authentication, the entity can generate heartbeats for other members.
We address this limitation in a variant of hash chained heartbeats introduced in the following subsection.

2We note it may be desirable for the failure monitor to control the length of the hash chains. In these environments, the value
can be negotiated or distributed in a manner similar to the other algorithm parameters.

5



Traditional Hash chained
Symmetric Public Key Symmetric Public Key

Generation (avg, clock ticks) 6,650 8,584,340 2,160 818,290
Validation (avg, clock ticks) 5,810 51,890 2,590 51,890
Message Size (bytes) 52 164 86 198

Table 2: Summary of performance experiments. Hash chains of length 10 were used in all tests. If chains of
longer lengths were used, improvements over the traditional approach would increase.

2.2 Failure Detection with Source Authentication

Some tightly coupled groups require each member to detect failures of all other members. This is useful
in groups where distributed consensus is reached using voting protocols [5], where the group is sensitive
to network partitions [17], or where group members are marginally trusted (i.e. the group wishes to be
protected from the masking of failures by compromised members).

We use public key certificates to generate heartbeat messages and broadcasting to support failure pro-
tection in tightly coupled groups. Heartbeat message and hash chains are generated as described above, save
that the HMAC is replaced by a digital signature generated using the private key associated with the public
key certificate of the transmitting member. The resulting heartbeat for memberA would be:

SiA; Æ
k�i; g; A; S0

A; Æ
k; fg;A; S0

A; Æ
kgCA

Validation is performed by acquiring and validating the public key certificate of the sending member (if
it is not cached), validating the digital signature, and checking the heartbeat relation as described above.
Similar to the previous approach, after the first heartbeat message of a hash chain is validated, the heartbeat
validation block (underlined portion of the above message description) can be validated by byte comparison.

This solution has a number of additional costs and requirements over the previously described (symmet-
ric key) failure detection mechanism. First, the public key certificate of each member must be available and
verifiably authentic. This requires the presence of some globally trusted certificate service (e.g. PKI). Due
to issues of trust and performance, providing certificate services to members of groups spanning multiple
administrative domains may be problematic [18].

A second cost of this scheme is the additional computational resources required to generate and validate
the heartbeat messages. Public key algorithms can be up to 1000 times slower than symmetric key algo-
rithms [19]. Thus, in large groups, the computation costs of processing these messages may be increased.
However, because the digital signatures of each heartbeat message following the first can be validated by
byte comparison, these costs are significantly lower than in traditional public key supported failure detection.
We study the costs of both variants of this approach in the next session.

3 Performance

In this section, we compare the performance of our proposed approach with traditional failure detection.
These experiments study the cost of heartbeat message generation and validation. We look at these costs in
both symmetric key and public key based approaches. A summary of the experimental results described in
this section is presented in Table 2.

Network latency and drop rates may affect the performance and efficiency of failure detection mech-
anisms. While both network latency and message loss may introducefalse failures, these failures occur
in either approach; a lost message in traditional failure protection will have exactly the same effect in the

6



0

2

4

6

8

10

12

14

16

18

60 80 100 120 140

C
lo

ck
 C

yc
le

s 
(1

,0
00

s)

Test Number

Normal Heartbeat Generation
Hash Chain Heartbeat Generation

Figure 1: Symmetric key heartbeat generation
costs - Cost of generating heartbeat messages in
traditional and hash chained approaches.

0

2

4

6

8

10

12

14

16

18

60 80 100 120 140

C
lo

ck
 C

yc
le

s 
(1

,0
00

s)

Test Number

Normal Heartbeat Validation
Hash Chain Heartbeat Validation

Figure 2: Symmetric key heartbeat validation
costs - Cost of validating heartbeat messages in
traditional and hash chained approaches.

approaches proposed in this paper. For the purposes of this study, we ignore network reliability and latency
issues.

All tests were performed on a Linux kernel 2.2.14-5.0 running on a 500Mhz Pentium II. To remove
the effects of processor speed on the performance measurements, kernel-level clock ticks are used as the
performance metric. The DES [20] and RSA [21] (1024 bit keys) algorithms were used for the symmetric
and public key operations, respectively. MD5 [22] was used for all cryptographic hashing. Keyed message
authentication codes (HMACs) were generated per the RFC 2104 specification [16]. Message generation and
validation methods where built on an alpha version of the Antigone 2.0 applications programmer interface
libraries. The interfaces provided by the OpenSSL library version 0.9.5a [23] (upon which Antigone 2.0
is built) were used to implement all cryptographic algorithms and certificate processing. All hash chains
contained 10 hash values.

Traditional failure detection is modeled through the generation and validation of signed or HMACed
heartbeat messages. As described in section 2, traditional heartbeat messages contain a sequence number,
a user identifier, a group identifier, and a HMAC computed over the previous fields. Upon reception of a
heartbeat, the failure monitor validated the authentication information using the appropriate key or certifi-
cate, checked the user and group identifiers, and compared the sequence number against the expected value.
The hash chained message format, generation, and validation is as described in the previous section.

In the first series of tests, we compare the cost of heartbeat generation in a symmetric key environment.
Described in Figure 1, each tenth heartbeat costs 3 times as much as in the traditional approach3. These
costs are due to the generation of a the new hash chain. Generation of the new hash chain requires the
acquisition of random data, allocation of the appropriate structures, the hashing of the intermediate values,
and the generation of the message itself. The costs of the traditional heartbeat are the construction of the
message, the hashing of the message data, and the encryption of the hash data. Once the hash chain has
been constructed, the costs of generating the validation block are roughly equivalent to the generation of a
traditional heartbeat.

The generation of heartbeats using existing hash chain values is about1=10th the cost of traditional
generation. No hashing or encryption is required; the entire message can be generated by concatenating
known values. Performance improvements of hash chained failure detection will increase as the length of
the the hash chain increases. The cost of lengthening a hash chain by one value is negligible. However,
because one may need to generate new hash chains based on reasons other than its values being exhausted,

3Each data-point in Figures 1, 2, 3, and 4 represents the time required to generate (or validate) a single message.

7



0

2000

4000

6000

8000

10000

60 80 100 120 140

C
lo

ck
 C

yc
le

s 
(1

,0
00

s)

Test Number

Normal Heartbeat Generation
Hash Chain Heartbeat Generation

Figure 3: Public key heartbeat generation costs -
Cost of generating heartbeat messages in traditio-
nal and hash chained approaches.

0

100

200

300

400

500

600

700

800

900

60 80 100 120 140

C
lo

ck
 C

yc
le

s 
(1

,0
00

s)

Test Number

Normal Heartbeat Validation
Hash Chain Heartbeat Validation

Figure 4: Public key heartbeat validation costs -
Cost of validating heartbeat messages in traditio-
nal and hash chained approaches. Due to the per-
formance of the underlying cryptographic algo-
rithms, heartbeat generation is more than an order
of magnitude slower than public key based vali-
dation.

it is often desirable to limit their length. We discuss factors contributing to the length of the hash chain in
Section 5.

The performance of validation in the symmetric key environment mirrors generation. Described in Fig-
ure 2, both schemes reverse the generation process by extracting the appropriate values from the messages
and validating the HMAC. When the first value from a hash chain is received, a new hash chain structure
with the appropriate size is allocated, the validator is stored, and the validation block is validated. Subse-
quent validation of heartbeats created from the hash chain only require the application of the hash function
on the received hash chain value. Thus, the cost of validation in the hash chained approach is about1=7th
of traditional failure detection.

The amount of state and hash processing by the failure monitor in the current implementation can be
significantly reduced by storing only the last received value and the validation block. We expect this opti-
mization would allow the performance of heartbeat validation with newly received hash chains to approach
the cost of the traditional approach.

The advantages of our approach are more pronounced in the public key variant. For the reasons cited
above, the hash chain costs are high at every tenth heartbeat, but relatively low for all other heartbeats.
Described in Figures 3 and 4 and as compared to traditional failure detection, the additional costs of hash
chain generation and processing are negligible. This is due in large part to the performance characteristics of
the underlying cryptographic algorithms. The modular exponentiation required by RSA is computationally
expensive. Thus, the allocation and initialization of hash chains is completely dominated by the cost of
signing the validation block. As shown in figures 3 and 4, the cost of heartbeat generation and validation
for the first value in a hash chain is roughly equivalent the traditional approach. These costs are negligible
in all cases where a new validation block is not generated or authenticated.

In the public key variant, the cost of generation is an order of magnitude larger than validation. This is a
desirable side-effect of the way in which RSA based certificates are generated. Dependent on the selection
of public key exponents, operations using a private key (generation) can be significantly more expensive than
operations using the public key (validation). This is also consistent with the needs of the failure detection.
The failure monitor may need to process (validate) many heartbeats. However, each member need only
generate one heart per period.

8



An advantage of a traditional approach over hash chained failure detection is message size. Described
in table 2, heartbeats based on hash chains are slightly larger than traditional heartbeat messages. However,
because of the frequency of these messages, it may not likely to effect session throughput.

A second limitation of this approach is the amount of additional state needed at both the sender and
failure monitor. To obtain the performance advantages of this approach, the sender needs to store the cur-
rent hash chain intermediate values. However, they may be recalculated as necessary without significantly
reducing the generation costs. Similarly, the failure monitor needs to keep track of the latest authentication
information (authentication block). If this information is not stored, the monitor will not receive the benefit
of past authentication. The amount of state held at each process can be significantly reduced by storing only
the most recently received values. In the current implementation, a failure monitor (sender) could store as
little as 214 (110) bytes (198 (94) authentication block + 16 last received (sent) hash value) and still obtain
the reported performance.

4 Related Work

Many of the existing techniques used for the detection of failures in group communication systems were de-
veloped within the context of reliable multicast. Often cited as the genesis of reliable group communication,
the Isis [24] and later HORUS [25] group communication platforms developed many of the mechanisms
under which contemporary reliable group communication systems are built. The robust detection of failures
is often essential to these mechanisms. Typically, reliable multicast frameworks detect failures by the pres-
ence or absence of message acknowledgements. A central property of reliable multicast issafety; a message
is either received by every non-failed member or by none. Thus, systems providing safety much receive
an acknowledgement from each member before committing it. Because these acknowledgements implicitly
state a non-failed state, they serve a dual purpose as messages acknowledgements and member heartbeats.
More recent systems (i.e. TRANSIS [17], Ensamble [26], and CACTUS [27]) rely on similar reliability or
process group managementprotocol mechanisms to detect failures.

The RAMPART system [5] provides secure group communication in the presence of actively malicious
processes and Byzantine failures. Protocols in RAMPART rely heavily on distributed consensus algorithms
to reach agreement on the course of group action. Secure channels between pairs of members are used to
ensure message authenticity. Authenticity guarantees are used to ensure the accuracy of the group informa-
tion and for the detection of failures. To simplify, members of RAMPART groups are removed (detected as
failed) from the current group if they are deemed unresponsive (i.e. fail to respond to group messages).

Similar to the traditional heartbeats, group members in the Iolus system [28] are required to periodically
re-assert their presence in the group. However, rather than using these messages as periodic proof of a pro-
cess’s continued presence, they provide a means by which a group member canREFRESHits membership
in the group. Each member is assigned a membership expiration time during the join process. The member
may refresh its membership prior to the expiration time. Any member who does not refresh its membership
before the expiration time is ejected from the group. While this approach has the advantage of being sender
driven, it requires a refresh acknowledgement mechanism. Without an acknowledgement, the refresh can be
lost and the member incorrectly ejected from the group.

The Antigone framework [6] provides flexible interfaces for the definition and implementation of a wide
range of secure group policies. A central element of the Antigone architecture is a set ofmechanismspro-
viding the basic services needed for secure groups. The Antigone failure detection and recovery mechanism
defines an abstract interface for the detection of member failures and compromises. In its initial version,
each Antigone process transmits a periodic heartbeat message asserting their continued presence in the
group. The definition of the traditional failure detection used throughout this paper was taken directly from
this work.

9



The security requirements of failure detection mechanisms are similar to those of source authentication
in groups. Each facility requires the sender to provide authentication information for transmitted data. While
general purpose source authentication requires the sender to commit to some previously unknown data (the
contents of a packet), failure protection only requires the sender generate an authenticated message contain-
ing a previously and globally known sequence number. Thus, in failure protection schemes, the sender can
use pre-authenticated information (in our proposal, the intermediate values of the hash chain). Any mech-
anism providing source authentication can be used for failure detection. Furthermore, our approach can be
augmented with any of these schemes; rather than encrypting or signing the authentication block, one could
use any existing source authentication mechanism.

Perrig et. al. [10] define an efficient mechanism providing source authentication in groups. This ap-
proach is based on sender commitment to an authentication key during transmission (at timet) which is
later exposed (at timet+ Æ). If a receiver can prove the message was received before the key was exposed
(message received< t+ Æ), then it is deemed authentic. Other approaches for achieving source authentica-
tion in groups are described in [11, 12, 29].

5 Discussion

The length of the hash chain used in this scheme will influence the efficiency of failure detection. If the
chain is long, the costly heartbeat validation block generation process will occur infrequently. However, if
other factors require the hash chain be discarded, the unused intermediate values represent wasted effort.
For example, failure monitor may desire newly received session keys be used to generate heartbeats. In this
case, each receiver must establish a new hash chain and associated validation block after receiving the new
key. Thus, when deciding the length of a hash chain, the process must take into account the length of time
over which it is likely to be useful.

An interesting question is whether secure heartbeats may be used for other purposes. For example, in
Antigone [6], heartbeats are not only used to detect failures, but also as implicit acknowledgements of group
keying material. If each heartbeat validation block includes session key identifiers, then it can also be used
as a receipt of the most recent key distribution message. A similar approach may be used to reduce the cost
of secure acknowledgement (or negative acknowledgement) generation in reliable group communication.

One optimization of this approach is to piggyback secure heartbeats onto other group messages. For
example, a secure heartbeat could be concatenated onto each key distribution or data message. This is
similar to the optimization of HORUS [30], where potentially many data messages are compressed (packed)
and sent in a single transmission.

In large groups, requiring each member to generate and transmit secure heartbeats may be infeasible. A
potential modification to our approach addressing this limitation would be the set the frequency with which
members are required to transmit heartbeats independently. Members essential to the group (e.g. senders,
arbitrators) would transmit heartbeats more frequently than non-essential members. Non-essential members
would transmit heartbeats less frequently or not at all.

6 Conclusions

In this paper we have presented the design and analysis of an approach for the secure and efficient detection
of group member failures. We reduce the costs associated with traditional failure detection by usingone-
time-passwordsas proof of members’ continued correct operation. This approach amortizes the costs of
secure heartbeat generation and validation by distributing the initial value of an authenticated hash chain.
Subsequent heartbeats are generated using the hash chain intermediate values as freshness indicators. By
maintaining state at monitoring processes, we reduce these costs without sacrificing correctness or security.

10



The performance study shows the proposed approach can significantly reduce the message processing
costs of traditional failure detection mechanisms. In trusted environments, the cost of heartbeat processing is
roughly1=10th the cost of traditional heartbeat processing in the average case. In the exceptional case where
a new hash chain is generated, our approach is about 3 times as expensive. However, through manipulation
of the of the hash chain, the frequency with which the exceptional case occurs is in control of the sending
process.

In environments where group members are not completely trusted or resiliency to member compromise
is required, the performance of the hash chained approach is roughly equivalent to traditional approaches
in the worst case, and negligible in the average case. Thus, for these environments, the secure detection of
failures can scale to very large groups.

Our solution addresses one problem found facing secure groups; the reliable and secure detection of
failures. Other outstanding issues include recovery from member failures, scalability of failure detection,
and the effects of failed members on the group security context. We plan to investigate these and other issues
in the future.

7 Acknowledgements

We would like to thank Avi Rubin for his invaluable advice and analysis on the design of this approach.

References

[1] H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP) Specification.Internet
Engineering Task Force, July 1997. RFC 2093.

[2] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A New Approach to Group Key Agreement. In
International Conference on Distributed Computing Systems (ICDCS’98). IEEE, May 1998.

[3] Bob Briscoe. MARKS: Zero Side-Effect Multicast Key Management Using Arbitrarily Revealed Key
Sequences. InProceedings of First International Workshop on Networked Group Communication,
November 1999.

[4] C. K. Wong, M. Gouda, and S. S. Lam. Secure Group Communication Using Key Graphs. InPro-
ceedings of ACM SIGCOMM ’98, pages 68–79. ACM, September 1998.

[5] M. Reiter. Secure Agreement Protocols: Reliable and Atomic Group Multicast in Rampart. InPro-
ceedings of 2nd ACM Conference on Computer and Communications Security, pages 68–80. ACM,
November 1994.

[6] P. McDaniel, A. Prakash, and P. Honeyman. Antigone: A Flexible Framework for Secure Group
Communication. InProceedings of 8th USENIX UNIX Security Symposium, pages 99–114. USENIX
Association, August 1999. Washington D. C.

[7] N.M. Haller. The S/Keytm One-Time Password System. InProceedings of 1994 Internet Society
Symposium on Network and Distributed System Security, pages 151–157, February 1994. San Diego,
CA.

[8] Aviel D. Rubin. Independent One-Time Passwords.USENIX Journal of Computer Systems, 9(1):15–
27, February 1996.

[9] Sape Mullender.Distributed Systems. Addison-Wesley, First edition, 1993.

11



[10] Adrian Perrig, Dawn Song, Doug Tygar, and Ran Canetti. Efficient Authentication and Signature of
Multicast Streams over Lossy Channels. In2000 IEEE Symposium on Security and Privacy, page (to
appear). IEEE, May 2000. Oakland, CA,.

[11] R. Gennaro and P. Rohatgi. How to Sign Digital Streams. InProceedings of CRYPTO 97, pages
180–197, August 1997. Santa Barbara, CA.

[12] C. Wong and S. Lam. Digital Signatures for Flows and Multicasts. In6th International Conference on
Network Protocols. IEEE, 1998. Austin TX.

[13] Leslie Lamport. Password Authentication with Insecure Communication.Commuications of the ACM,
24(11):770–772, 1981.

[14] D. Stinson.Cryptogaphy: Theory and Practice. CRC Press, first edition, 1995.

[15] H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP) Architecture.Internet
Engineering Task Force, July 1997. RFC 2094.

[16] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication.Inter-
net Engineering Task Force, April 1997. RFC 2104.

[17] D. Dolev and D. Malki. The Transis Approach to High Availibility Cluster Communication.Commu-
nications of the ACM, 39(4), April 1996.

[18] P. McDaniel and A. Rubin. A Response to ‘Can We Eliminate Certificate Revocation Lists?’. InPro-
ceedings of Financial Cryptography 2000. International Financial Cryptography Association (IFCA),
February 2000. Anguilla, British West Indies. (to appear).

[19] Bruce Schneier.Applied Cryptography. John Wiley & Sons, Inc., second edition, 1996.

[20] National Bureau of Standards. Data Encryption Standard.Federal Information Processing Standards
Publication, 1977.

[21] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems.Communications of the ACM, 21(2):120–126, February 1978.

[22] R. Rivest. The MD5 Message Digest Algorithm.Internet Engineering Task Force, April 1992. RFC
1321.

[23] The OpenSSL Group. OpenSLL, May 2000. URL:http://http://www.openssl.org/ .

[24] K. Birman. The Process Group Approach to Reliable Distributed Computing.Communications of the
ACM, 36(12):37–53, December 1993.

[25] R. Van Renesse, K. Birman, and S. Maffeis. Horus: A Flexible Group Communication System.Com-
munications of the ACM, 39(4):76–83, April 1996.

[26] O. Rodeh, K. Birman, M. Hayden, Z. Xiao, and D. Dolev. Ensemble Security. Technical Report
TR98-1703, Cornell University, September 1998.

[27] Matti A. Hiltunen, Sumita Jaiprakash, and Richard D. Schlichting. Exploiting Fine-Grain Config-
urability for Secure Communication. Technical Report TR99-08, Department of Computer Science,
University of Arizona, May 1999.

12



[28] S. Mittra. Iolus: A Framework for Scalable Secure Multicasting. InProceedings of ACM SIGCOMM
’97, pages 277–278. ACM, September 1997.

[29] Pankaj Rohatgi. A Compact and Fast Hybrid Signature Scheme for Multicast Packet Authentication. In
Proceedings of 6th ACM Computer and Communications Security Conference. ACM, 1999. Singapore.

[30] R. Friedman and R. van Renesse. Packing Messages as a Tool for Boosting the Performance of Total
Ordering Protocols. Technical Report TR-95-1527, Department of Computer Science, Cornell Univer-
sity, July 1995.

13


