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Abstract

Using a very general symbolic decomposition template for logic synthesis we show how to pre-
compute libraries for the decomposition patterns implied by the function structure. When cou-
pled with decomposition the outfitted libraries are intended to produce improved synthesis
quality. We illustrate the pre-computation process for functions that are symmetric in some
inputs. For these functions we derive a set of fan-in-bounded cell libraries that guarantee a
reduction in the width of the circuit being synthesized with each successive decompaosition step.

I. Introduction and Motivation

In this report we take a fresh look at functional decomposition, and show how it can be used to infer appropri-
ate decomposition patterns, and their underlying libraries, from a function structure. Functional decomposition has
been studied by many authors. The original concepts were due to Ashenhurst [1], Curtis [8], and Roth and Karp
[16]. These early investigations were mostly concerned with the existence of certain types of decomposition rather
than the development of scalable synthesis algorithms. More recently, several authors have re-visited this early
work for application in the limited domain of FPGA synthesis [13, 15, 19, 20, 23]. Practical general-purpose syn-
thesis approaches, based on fast algebraic division algorithms, emerged in the early eighties [4, 22]. The primary
motivation for these approaches was efficient decomposition and realization of large random logic functions by a
two-stage process: technology-independent restructuring followed by binding to a specified library of primitive
gates. This methodology enjoyed a great deal of success and is incorporated in most commercial synthesis tools in

use today.

The central idea of this report is based on the premise that functional specifications havesglottaral
attributes that can be profitably used to induce a favorable structural implementation, while reducing the run time
complexity of the synthesis process. These attributes can have a profound effect on the suitability of one decompo-

sition type over another. They can be further utilized to study requirements on the functionality of library primitives
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to make a particular decomposition type effective. Thus, by judiciously coupling the decomposition type with a
library using structural attributes of a function we are able to merge the traditionally separate technology-indepen-
dent and technology-dependent synthesis stages. The effect of the integration leads to improved synthesis quality,

reflecting the global functional properties in the final circuit structure.

We begin in Section Il by presenting a very general symbolic model of functional decomposition and show
how it can be “solved” to determine all feasible decompositions. In Section Ill, we develop a model to pre-compute
libraries under a set of practical constraints that are imposed under existing semiconductor technologies. This
model is applied in Section IV to pre-compute symmetric libraries. Section V concludes the paper with suggestions

on further extensions of this methodology.

[I. Symbolic Formulation of Decomposition

In this section we propose a symbolic model for functional decomposition that allows us to pose and answer
several key questions related to scalable synthesis, including the existence of a decomposition, and the existence of

universal primitives that allow the decomposition of certain classes of functions.

A. Generic decomposition template

Given ann-variable Boolean functiorf (x) , arldn-variable Boolean functiong, (x), ..., 9, (x) , we say that
f has am-to-k decomposition with respect @, (x), ..., g, (x)  if and only if there exists\ariable functionh
such that

f(x) = h(gy(x), ..., g(x)) 1)

A pictorial representation of this decomposition template is shown in Filg. 1;  will be referred to eantip@si-
tion function whereasgl, oo O will be called theecomposition function3.hese functions introduce intermedi-
ate variablesyy, ...,y into the network that serve as the support of the composition function. The decomposition
is support-reducingf k < n. The k decomposition functions can be viewed as a single multi-output decomposition
function g(x) =(g94(x), ..., 9, (x)) , and the intermediate variables can be represented blvector

Y= (Y1 o Vi) -

y
g, ()2
n Y,
X 9,(X)—

Vi

gk (%)

Fig. 1. Generic decomposition step
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The decomposition template in (1) is sufficiently general to encompass all types of functional decomposition
described in the literature, including simple and complex disjunctive and non-disjunctive decompositions [8]. As
we show later, support-reducing decompositions in terms of fan-in bounded decomposition functions are particu-
larly attractive from a practical perspective. Before such restrictions are imposed, though, we show in the remain-
der of this section the relations that must exist between the composition and decomposition functions for equation
(1) to hold.

B. Computation of composition function

To determine if the decomposition in (1) exists, we can solven{yr) in terngg ¥ féry . The solu-
tion, in general, is not unique and can be expressed as a function interval [5]. The interval solutify)for corre-
sponds to a partially specified function, whose flexibilities are modeled in terms of the following function:

c(x,y) = (Y1 =9;(x))-. (¥ = 9c(X)) 2)
Originally introduced by Cerny [7] as amutput characteristic function2) captures the consistent input-output
behavior of a circuit. In recent years output characteristic functions have been used to describe the flexibility that
arises in design optimization. Viewed as Boolean relations, Brayton and Somenzi [2] described how they can be
used to compute the flexibility in optimizing hierarchical designs. Savoj [18] has used the output characteristic

function to describe the maximum flexibility in the optimization of Boolean networks.

Functionc(x,y) represents the constraints introduced by the decompaosition functions which can viewed as a

care setwhen selectindi(y) . Indeed, for each po{mt]yD)  from this set the value wf) must agree with the
value of f(xD) ; in all other points outside @f(x,y) we have a choice defining valud pf arbitrarily. This
flexibility in selectingh(y) can be described by the means of a partially specified funidtfgh which identifies
all valid selections foh(y) . We perform derivation Bif(y)  in two steps: first, functitix, y) is defined within

the extended domain of functiaix, y) , and then its domain is reduced to bkit@in

In our first step of reasoning we show formally thé(x, y) can be modeled in terms of the function interval.

Formal derivation of this result is given below:

c(x,y) - (H(x,y) = f(x)) 3
c(x, y) LH(x,y) O f(x)) _

c(x, y) LH(x, y) Of (x) + H(x, y) Tf (x)) =0

c(x, y) LH(x, y) Of (x) + c(x,y) [H(x, y) [f (x) = 0

c(x, y) f (x) tH(x,y) = 00c(x,y) Of (x) LH(x, y) =0

(c(x,y) Of (x) =H(x,y)) O(H(x, y) < f(x) +c(x,y))

8

8

8

8

8

The last assertion in the above derivation corresponds naturally to the interval:

H(x,y) = [c(x,y) f (x), c(x, y) + f(X)] 4
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The dependence ¢l (x,y) onthe variables inthe above interval makes the solution unconditionally consistent,
implying that for a giverc(x, y) there is always a non-emptyx, y) . Note that wdfeny) = 1 , equation (4)
reduces tof (x) ;foc(x,y) = 0 , on the other hand, the equation becomes the interval [0, 1] denoting an arbitrary

function.

The dependence an  H(X,y) is not consistent with the decomposition template in (1) however, — the tem-
plate restricts composition functidm  to be vacuous inxhe variables, Wwie y) does not. Tahake)
vacuous in thex variables we must ensure that for any given assigrnyhent , vald€z,of) agree for all

assignments . This requirement is reflected in the following relation
H(y) = OxH(x,y) ®)

or equivalently

H(y) = Ox[(c(x,y) Tf(x)), (c(x, y) + £(x))] (6)
The universal quantification of can be distributed inside of the interval relying on the identity for abstracting

variable from an interval [12]:

H(y) = [[x(c(x,y) OOf (x)), Dx(c(x, y) + f(x))] (")
The existential and universal quantificatiomof in the interval is consistent with the earlier result, given in [5, Th.

4.9.1], for finding redundant variables in a partially specified function.

The existential and universal quantificationxofrom the lower and upper interval bounds corresponds to the
removal of these variables from the support of possible make it a function of just intermediate variables
thereby reflecting the structure of Fig. 1. If the interval (7) is non-empty, then there is a Boolean function  which
is vacuous inx , and which belongs to this interval. We say that decomposition exists when the interval is hon-
empty; otherwise the decomposition does not exist. In the examples below we illustrate how choices on the decom-
position functions can effect the existence of decomposition.

Example 2.1 Let f(xq,X5) = X 0O Xy, 91(Xq, X5) = X, Gx(Xq, Xo) = Xy + Ry, andgs(Xq, X5) = X, . The
input-output characteristic function of the decomposition functions is:
C(X,y) = (Y =Xq) LY, =X +%y) LYz =X5)
Using this function we compute the lower bound for the interval (7):
IX(c(X, y) Of (X)) = ¥1YoY3 [0+ Yy Yo¥3 L+ §1Yoys (L + Yy, ¥,y5 [0

Similarly for the upper bound:

Ox(c(x,y) + f(X)) = (Yyp+ ¥, +Yy3+0) Ay + Y, +ys + 1) [y, + Y, + Y5+ 1) Y, + Y, + Y3 +0)
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These bounds define an interval of sixteen composition functions  which can be equally selected for the decom-

position off .
H = [y Y593+ V1YoY3 V195 + V1Yo + V593 +Y,Yal
For instanceh; (Y, Y5, Y3) = Y1Y3+ Y1y, andh,(y,, Yo, ¥3) = y1Y,+Y,y3  are two functions from this inter-

val that represent two possible decompositiorfsasfcan be readily verified by substitution in (1). "

Example 2.2 Let f(X;, X5, X3) = X7 O X, 0 X3, 97(Xq, X9, X3) = X3 + Xy, and gy(Xq, X5, X3) = X5 . TheH
interval in this case is:

H = [y; Y5 ¥1Y5l
which is empty since its upper bound is less than its lower bound. Tloagnot be decomposed in terms of the

given decomposition functions. If, however, the first decomposition function is replaced with

91(Xq, X9, X3) = X4 O X,, then (1) yields the following interval:
H = [y]_ Uy, y, U y2]

representing a unique composition function. "

In general, it is always possible to fikd decomposition functions that make the interval in (7) non-empty. For
example, wherk= n the decomposition functions can be selected by assuming that at least of these functions
are trivial pass through wires corresponding to the suppoft of . The remaining decomposition functions can be
selected arbitrarily since their output signals can be assumed redundgmf)in . Similarlyk wimen decompo-
sition functions always make the interval non-empty letting one of them correspdig)to . Such trivial selections
of decomposition functions have little practical value though, and additional constraints on decomposition func-
tions must be imposed to make decomposition useful in synthesis. These additional constraints, and their implica-

tion on synthesis quality are addressed in this work.

C. Computation of decomposition functions

Equation (7) can be used to compute sets of decomposition functions that will guarantee the existence of a
decomposition according to the template in (1). Computation of such decomposition functions forms the starting
point for the problem of library construction which we discuss later in Section Ill. To solve for the decomposition

functions, we begin by noting that an arbitraryariable Boolean function can be expressed in tern® of binary

coefficients that denote the function value at each point in its variable space. Thus, we cargf(x@ress as:
2"-1
gj(x) = Z Yij 0, (x) (8)
i=0
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Whereyij 0{0, 1} andm(x) isthe minterm oxn whose bits form decimal value . UEim;[yij] to denote
the 2" x k matrix of coefficients representing thkdecomposition functions, the care ££K, y) can be re-written

as:

k 2"-1
Cxy.T) = T] |:y]' = > Vi DTli(X):| 9)
i=0

=1

| =
A decomposition exists if the interval (7) is non-empty, landing the following derivation:
[Cx(c(x, y) Of (x)), Ox(c(x, y) + f(x))]

= [x(cx, y) Of (x)) < Ox(c(x, y) + f(x))
= [x(c(x, y) Of (x)) + Ox(c(x, y) + £(x)) = 1

Substituting (9) in the last step of the above derivation, and universally quanyifyieghave

G(M) = Oy(Ix(C(x,y, ) Tf (x)) + Ox(C(x,y, ) + £(x))) (10)
which is a Boolean function that encodes all feasible decomposition fungtidre universal quantification of the
y variables in (10) ensures that computed decompaosition functions remain valid in the decomposition for all com-

binations of their output values.

Example 2.3 We apply formula (10) to compute 3-to-2 decomposition solutions for tiie,, x,, X3) =

X4 O X, O x5 function. The space of two 3-input decomposition functions is encoded as:

Cx Y, T) = (y1 = (Yo1X1XoXg + V11X XoXg + Y% XoXg V31X XpXg +
Ya1X1%0%3 + V51X XoXg F Vg1X1 X0X3 +Y71X1 X9X3))
X (Yo = (YooXgXoXg + V12X XoXg + Yo% XoXg + Yo% XpXg +
V42X %o%g * V5X1 XoXg t YpX1 XoXg +Y79X1 X5X3))
Together withf this function is then used to compute formula (10). For the part corresponding to the lower bound
in the formula we have:
X(C(x,y, ) TF (X)) = (Y1 =Yo1) HY2=Ygo) O+ (Y =Yqq) HY,=Yqp) L+
(Y1 =VYo1) Y, =Y5,) L+ (Y =Y5q) HY,=Y3,) O+

(Y1=VY41) QY2 =VY40) L+ (Y =Y5) HY,=Y5,) O+
(Y1 =Yg LYo =Vep) O+ (Y =Y71) Ry, =Y4,) L

Similarly for the upper bound part:
Ox(C(x, y, ) + £(x)) = ((yp O Yo + (Yo Uygp) +0) Ll(y; Uyyg) + (Y, 0ygp) +1) 0
((y, Oy, + (Y, 0Yy) +1) [y, Oygq) +(y,0Y5,) +0) O

((yp Ovg9) (Y, 0VYy0) +1) Ty, Oysp) +(y, Oysp) +0) O
((y, Ovygy) + (Y, Oygp) +0) Ly, Oyqq) + (Y, Oy4,) +1)

Dropping O-terms in above two expansions computation of funGidn) now has form:
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G(I) = Oy[((yy Oyqp) + (Yo O yq0)) (Y1 O ypq) + (Yo O yyy)) O
((y1 O v49) + (Yo O Yy0) QY Oy79) + (Y, 0Y75))
+((y, OYgp) + (Yo, 0Yg,) My, Oygq) +(y,0Y35)) O
((y1 OY¥s5) + (Y, O ¥sy)) Ty, Ovgy) + (Yo O ¥go))]
Quantifying outy we have:
G(I) = ((V11* V12) LV21+V20) Va1 + Va2) LV71+V70) +
(Yo1 * Yo2) dV31+ V30) V55 + Vs2) UVe1 * Ve20))
X (Y111 Y12) QY1 +VYo0) UVaq+Vao) HY71+Y70) +
(Vo1 Yo2) LV31+Y32) UVs5* Vs0) UVg1 * Vo))
X (Y111 Y12) QY1 +V00) dYaq+Vao) HY7q V7o) +
(Vo1 Yo2) Y31+ V32) LYso* Vs0) HYgr t Vg2))
X (Y111 Y12) QY1+ Vo) dYgq+Vao) Y71 +Y70) +
(Vo1 Yo2) Y31+ V32) LYs5o+Vso) HYg1 t Vo))

This is a function of 1812 ON-set minterms, each corresponding to a feasible 3-to-2 decomposition. However, only
99 of them define non-trivial (i.e. with no decomposition function, or its complement, corresponding to ) decom-
position solutions invariant under complementation of the decomposition functions. This number can be further
reduced by discarding solutions whose decomposition functions have redundant signals. Some of the more interest-

ing solutions are:

Solution A: Solution B: Solution C:
01 = X Xy 01 = XXp* X1X3 91 = XX,
9 = X3 O = XXz + XX Jo = X X3+ XXz + X X5X3

Example 2.4 Similarly to the previous example, application of (10)ft(x;, X,, X3) = XX, + X;X yields also 99

3

3-to-2 non-trivial decomposition solutions invariant under output complementation. We list some of them below:

Solution A: Solution B: Solution C:
g1 = X X% 91 = XX 91 = XX
92 = X1X5 O = XXz * XoX3 92 = X1X3 n

Equation (10) encompasses all the decomposition solutions for a given fuhctimfind the decomposition
solutions for an arbitrary-variable functionf, we introduce a vector 02" encoding coefficieribs= [¢;] to
express the universe pivariable functions as:

2"-1
F(x,®) = ¥ ¢; 0n(x) (11)
0

i=
Note that a complete assignment®o  represents a particular completely specified feinction ; partial assignments

to ® denote families of functions. Re-writing (10) in termd=¢k, ®) we obtain:

G(o, M) = Oy(IX(C(x,y, N [F(x, P)) + Ox(C(x,y, N +F(x, D)) (12)
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which is a Boolean function that encodes all feasible decomposition fungifmrsany given functiorf. We show
next how this encoding function can be used to derive libraries of primitive decomposition functions suitable for

large-scale synthesis.

Example 2.5 We can use equation (12) to compute 3-to-2 decompositions for all 3-variable functions. The universe
of these functions can be encoded as:

F(X, @) = ¢g IR XXg+ 1 [RyRoXg + §p Ry XoX3 + G5 TRy XoX3

T 04 DX RoR3 + 05 [X Xo X3+ G LKy XoR3 + 07 [X X5 X3

Using this encoding in (12) we can identify all 3-to-2 decompositions for every assignment ® the  variable.
Indeed, computation o&(®, ') shows that there are non-trivial decompaositions for every functigix,id)
induced by the assignments tb variable. In particular, assignnmj@its01000] [GO1d 010 to the
O=[dy0,0,030,9:050,] variables induce Example 2.3 decomposition solutions computeg, far x, [ X5

andx;x, + X, X, , respectively. Note that assignments to that assignments @ the  variables for the two functions

3 b
have the same number 6f ’s add s, implying their equivalent structures. This structural equivalence provides

explanation for the equal number of decompositions generated in Example 2.3 for these two functions.m

[ll. Enforcing Practical Decomposition Constraints

Although decomposition template in (1) is very general, the associated computational complexity and lack of
qualitative constraints makes its use difficult in scalable synthesis. In this section we address the complexity prob-
lems by imposing practical fan-in constraints on the decomposition functions. These constraints are reflected in the
modified decompaosition template, which is used to define appropriate decomposition patterns deduced from a

function structure.

A. Fan-in constraint

Equation (10) requires, in the worst case, the construction of a Boolean characteristic funélidikof encod-
ing variables. Our first decomposition constraint for the equations (10) has therefore an objective of reducing expo-
nential inn number of encoding variablés . We satisfy this objective by requiring the support gfxhe
functions to be bounded by , whese is the maximum allowable fan-in of the underlying implementation tech-
nology; in current CMOS processes, s typically four. When the support of each functgfix)n is known, and
is bounded bys , we are effectively eliminatidg]zn_s encoding variables in (11), thereby reducing exponen-
tially its computational effort. In general, the fan-in bound restriction on the decomposition functions introduces

additional algorithmic component whose goal is to identify suited support for the functig¢s) of
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Although for the fan-in of at least 2 it is always possible to find decomposition functions (e.g. trivial wire func-
tions) which make computation (10) non-empty, the number of such decomposition functions can vary greatly
depending on a functional structure of a giviix) . In general, the number of decomposition functions required to
make (10) non-empty increases significantly as the fan-in constrain becomes stricter. The example below illustrates

the effect of fan-in constraint on the existence of decomposition.

Example 3.1 Suppose that we would like to decompose function of a second sum bitnn an  -bit adder with two
decomposition functions. This function is given in terms of the following factored form:

s; = a; O by O (agby + cy(ag U by))
Let C(x,y, ') encode the space of two decomposition functions (as in Example 2.3). We can then compute the set
of all decomposition solutions fors;  using (10). Indeed, functi@(I’) , computed in (10), contains
1,116,591,93Mon-trivial pairs of decomposition functions assuming invariance under complementation of their
outputs. Restricting the fan-in of these solutions to four, we find that there is total of 795 solutions. Further restric-

tion of three on the fan-in shows only four such solutions. Their decomposition functions are listed in the table

below:

Solution A: Solution B: Solution C: Solution D:
g, =a,0by g, = cgUa; 0by g, = cgUa, 0by g, = cgUa; 0by

J2 = CoBp* Cobg +agby g, = Coaghy+coagby 9, = Coaghy+ CoBgby G, = Coaghy+ Codghy m
The general decomposition template in the presence of a fan-in bound has the form:
f(x) = h(gy(xy), - Ge(xy)) (13)
wherex; 's are composed from tise -subsetxof . When the decomposition varables  fgr each  are given to
us we can now use computational form in (10) to find all feasible seks of decomposition functions. Solving (10)

simultaneously for alk decomposition functions however, still requires a large number of encoding vdriables —

in the worst cas& [2° . This makes computatioiOr ) a formidable task even for a small problem.

B. Modified decomposition template

We reflect the fan-in bound restriction on the decomposition functions by defining a new decomposition tem-
plate which partitions the input variables into two SR{S, {nd ,|wé}h= s (see Fig. 2-a):
The gl(xg), gt(xg) functions, or coIIectiveI;g(xQ) , can be assumed to be library primitives, possibly pass-

through wires.
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Y1

: y
) g(Xg) Yy h ¢ ))%:: Tl
X, Xg——- k
a) partition of the supporf (x) inttxg b) accommodation of non-disjoint de-
andxy, composition Withing(xg)

Fig. 2. lllustration of the decomposition templdigx) = h(g((xg), Xp))

Within this template the generality of decomposition in (13) still can be preserved if we change the algorithmic
flow in which the equation is been solved. Instead of finding simultaneously all decomposition functions for
which (13) holds we find them iteratively for the subsetxof . These subsets are required to have size ofat most
which is the fan-in bound on the decomposition functions. A particular solution for each of the subsets presents us
with a collection oft decomposition functions, which can be viewed as a multi-output module. Encoding of a com-

plete set of such solutions uses at mag® varidbles

Letting some of the decomposition functions to be trivial wire functions we are able to accommodate non-dis-
joint decomposition, allowing supports of the distinct subs%ts to overlap during decomposition flow. This is
illustrated in Fig. 2-b, where signal;  is used not only in the non-trivial functiong(ag) but also becomes
available toh as a wire. This wire can be reused in the subsequent decomposition steps. The effect of such reuse is

a preserved generality of the decomposition template (13).

Example 3.2 Using template (14) let us decompose function

f(a, b ¢ d = ac+ad+ bd+ bd
using three non-trivial decomposition functions at the first level of logic, and the fan-in end . The first step
of decomposition finds a subset of decomposition functions Wh83e suppertlis c} . Letting decomposition

functions to be

g,(a, b, ¢ =ab+ac

g(a,bc=Db
gi(a, b o =c
we havef(a, b, ¢ d = h(ab+ ag h ¢ § . Thef function can be further decomposed using another subset of
decomposition functions whose supporf s c, d} . The set of decomposition functions for this support is
gy(b,c,d) =b0d
g,(b, ¢ d) = cd

These two decomposition functions are now used to complete decomposition of at the first level:

f(a,b, ¢ d = h(ab+ ag bl d cd
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Observe that all of the decomposition functions have overlapping variables in their supports. This is achieved by
letting some of the decomposition functions at the first step of decomposition to be trivial wires. These wires are

then used as support to the decomposition functions introduced at the next step. |

When Xg variables are given, we find their sets of feasible decomposition functions by modifying computation
of G(I') in (13). The modification is based on the observation that variablesg in can be viewed as trivial wire
functions, which we use to relabel their corresponding output signals in . The new variant on the computation of

G(I") now has form:

G(I) = Oyg Xp(EXg(C(Xg Y ) OF (X)) + DX (C(Xg Y T) + F(X)))

Whereyg variables correspond to the output signals of decomposition fungﬂag)ss (gl(xg), gt(xg)) . The

g subscript inyg is superfluous however, and we therefore re-write the above formula as:

G(I) = Oy, xp(Xg(Cxg y, ) Tf (X)) + Oxo(C(Xg, ¥, T) + (X)) (15)

The computational effort in (15) can be reduced significantly taking into account decomposition properties of

template (14). Its partition of the function support ir)¢8 agd  can be used to W in the expanded form
as [8]:
2°-1
f(xg, Xp) = > mi(xg) Of ; (xp,) (16)
i=0

where f,(x,,) ’s are the cofactors [3] df(x)  with respectxtg . Théx,) cofactors can be arbitrarily complex
functions of thex,, variables. However, their significance in the decomposition lies in the relation to each other
rather than their individual dependencexyp . The dependengg on  can, therefore, be abstracted away allowing
us to replace cofactors by a set of variables [(;] such that the same variable is associated with the identical
cofactors. Thus, for any value mfwe encoda-variable functions in terms of thedidecomposition variablesg

r-1
F(xg2) = 3 Mi(xg) I, (17)
i=0

Each of theMi(xg) 's in the above equation denotes a largest subset of minterms whose cofactors are identical,
thereby defining a factor. The factors are often referred tecasvalence classesf minterms [16], which are

induced by the equality relation of their cofactors.

Example 3.3 Given function

f(a,b ¢ d e = abd+ ae+ ader bed bce
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we can write it in the form of (17) Ietting{g to be a set of three varial§lasb, c} . The minterm space of these

variables induces a set four distinct cofactors, which are listed below together with theirl‘(rh,m(gjs

i Factor, M;(a, b, ¢) Cofactor, f,(d, €)
0 {abg} 0

1 {abg abg abg d+e

2 {abg abg de

3 {abg abg e

Each of the distinct cofactor§;  from the above table can be replaced by a single véjiable ),Fe(hdgng)

for the functionf :
F(a, b, ¢y, {5 (5 (,) = abTlLy+ (abt+ abct+ aby [L, + (abt+ abg [, + (abT+ abg (L,

SubstitutingF(xg, Z) forf(x) in(15) we finally obtain a computational form for all feasible decompositions

of F(xg, Z) (and subsequently df(x) ):

G(I) = DOzOy(Ixg(C(Xg Y, T) [F(Xg, 2)) + OXg(C(Xg, ¥, T) + F(Xg, 2))) (18)
Together with the substitution (ﬁ(xg, Z) this formula replaces abstraction okthe variables in (15) with the
abstraction oZ variables. This transformation of (15) is made possible due to the following relation:
2°—1 r—1

O O O
thgf(xg, Xp) = 2 Mi(xg) Dfi(xh)gc» DZEF(XQ, Z) = Z

M. (x,) 2,0
i=0 i=0 e ID

This relation signifies importance of thielative values that the cofactors assume in the decomposition, and not
their individual dependence ax, . The universal quantification ofzhe  variables in (18) ensures validity of its
computed decomposition functions for all output values offtlie,) cofactors.
Example 3.4 We illustrate the application of (18) continuing with the decomposition of funcfifm b, ¢ d €
from Example 3.3. The space of two decomposition functions f%its variphlds c} can be encoded as:
C(Xg Y, T) = (y1= (Yg;abt+y,,abc+y,,abt+y,abe+y,abt+ygabe +yg,abt +y,abc)) x
(Y, =(ygpabt+y,,abc+y,,abt+yg.abe+y,,abe+ygabe+yg,abt+y,,abc)

Using this functionC(xg, y,[) ,and functioﬁ(xg, Z) described in the earlier example, the computation for the

lower bound part of (18) has the form:

(g (CXg ¥, 1) TF (X, ¥)) = (Y1 =Yo1) HY2 = Vop) Do+ (Y1 =V11) HY2 = V10) [y
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+ (Y1 =VYo1) AV =VY50) [ + (Y1 = Y3q1) Y, =V30) [y
+ (Y1 =VY41) QY2 =VYg0) (23 + (Y1 = Y57) LY, =Ys) [y
+ (Y1 =VYe1) A2 =VYg0) [ + (Y1 = Y79) LY, =Y70) [y

Its upper bound part is computed analogously:

DXg(C(Xg, y,[)+ F(Xg, y)) = ((Y1 O Yo + (Yo OYgo) +29) (Y, Oyq19) + (Yo, 0 Y10) +29)
X ((y1 O Yop) + (Yo Uygo) +25) Ly Uygzg) + (Yo Uygo) +23)
X ((Y1=Va1) + (Y2 =V40) +2Z3) (Y1 O ¥sgo) + (Yo U Yso) +2y)
X ((y1 O VYgp) + (Yo UVgo) +25) Ly D y7q) + (Yo O yg0) +27)

Applying lower and upper bound computations in (18) we have:

G(I) = DZ(((Yo1 + Voo * 20) HV11+ V12 27) HVp1 + Vop t25) HV31 + V3 +25) U
(Va1 Va2 + 23) V52 Y52+ ) V1 + Voo t 20) V71t V721 29) +
(Vo1 + Vo2 * Zp) V11 + V12 29) HVo1 + V20 *+ 25) HV31 + V32 +25) U
(Va1 * Va2 + 23) Vs + V52 + ) V61 * Voo t 22) UV71+ V721 Z1))
X ((Vor* Yoo * 20) V11 + Vip+21) Vo1 + Voo + 25) HV3p +Y3p+ Z3) U
(Var+ Vap + 23) UVsp+ Vo + 21) HVe1 + Vo + ) V71 + V72 +2) +
(Vo1 Yoo * 20) HV11+ Y10+ 2) HVo1 +Vpp+2) UV + V3 +23) U
(Var+ Vap + 23) HVsp+ Vo + 21) HVe1 + Yeo + 25) V71 + V72 +21))
X ((Yor* Yoo + 20) Y11+ Vip + 21) HYp1 + Voo + 25) HYag +V3p+ 23) U
(Va1 t Va2 + 23) QY5+ Vs2t 2) UYe1 t Vo2 t 20) Y71t V721 29) +
(Yo + Voo * 20) Y11+ V1ot 21) WY +Vpp+2) MYz + V3 +25) U
(Va1 Va2t 23) QY52+ V52t 2) MYe1 * Vo2 t 22) Y71t V721 21))
X ((Yor* Yoo * 20) Y11+ Vio+27) Vo1 + Voo + 25) Y3y +Y3p+ 23) U
(Va1 Va2t 23) Y5t Voot ) UYgr t Voo t 20) Y71 t Y72+ 29) +
(Yo Yoo * 20) Y11+ Y10+ 21) WY1 +¥pp+2) MYz + V3 +23) O
(Va1 Va2 + 23) QY5+ Va2t 2) MYe1 * Vo2 t 22) Y71t V721 Z1)))
Abstraction of fourZ variables gives 16 product terms, each of which is listed on a separate line below:
G(MN=1
X ((\_/01 + \_/02) + (\_/11 + Vlz) [(\_/21 + sz) E(\_/gl + V32) E(\_/41 + V42) E(\_/52 + \_/52) E(\_/el + \_/62) |:(\_/71 + \_/72))
X ((V11+V12) + (Vo1 * Vo2) HV21 * V20) HV31 +V30) LVaq+ Va2) UYso* Vso) HVg1 * Vg2) V71 +V72))
X ((Yor+ Yo2) LV11+ V12) HVs50* V50) LV71+V790) + (Vo1 + Vo) LY31 + V30) UVa1 * Va0) HV71+V72))
X ((\_/21 + \_/22) E(\_/fsl + \_/62) + (V01 + Voz) [(\_/11 + Vlz) [(\_/31 + ng) E(\_/41 + V42) E(\_/52 + V52) E(\_/71 + \_/72))
X ((\_’01 + \_/02) E(\_’21 + \_/22) [(\_’51 + \_/62) + (\_/11 + \_/12) [(\_/31 + \_/32) [(\_/41 + \_/42) [(\_/52 + \_/52) [(\_/71 + \_/72))
X ((V11+V12) LVo1 +V20) UVs50* Vs50) UVe1 + Ve2) LV71+ V72) + (Vo1 * Yoo) AV31 + V30) HVag +Va2))
X ((\_/01 + \_/02) E(vll + \_/12) E(\_/21 + \_/22) E(\_/sz + \_/52) E(\_/el + \_/62) [(\_/71 + \_/72) + (\_/31 + ng) |:(\_/41 + \_/42))
X ((\_/31 + \_/32) [(\_/41 + \_/42) + (701 + Voz) [(\_/11 + Vlz) E(\_/21 + sz) E(\_/sz + V52) E(Vel + Vez) [(\_/71 + \_/72))
X ((Yor+ Yo2) tV31+V32) Va1 * Va0) + (V11 +V12) LVoq +Vo0) V5o + Vso) UVg1 + Vgo) V71 +V72))
X ((Vll + Vlz) [(Vgl + ng) [(V41 + V42) E(\_/52 + V52) |:(\_/71 + V72) + (V01 + \_/02) E(Vzl + \_/22) [(Vﬁl + \_/62))
X ((\_’01 + \_/02) [(\_’11 + \_/12) [(\_’31 + \_’32) [(\_’41 + \_’42) E(\_/52 + \_’52) [(\_/71 + \_’72) + (\_/21 + \_/22) E(\_’sl + \_/62))
X ((Vo1+V22) LV31+V32) UVa1* Va0 HVe1+Ve2) + (Vor ¥ Vo2) LY11+ V12 HVs50+ Vs50) HV71+V72))
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X ((\_/01 + \_/02) E(\_/21 + \_/22) E(\_/gl + \_/32) |:(\_/4]_ + \_/42) [(\_/61 + \_/62) + (\_/11 + Vlz) [(\_/52 + V52) |:(\_/71 + V72))
X ((\_/11 + \_/12) E(\_/zj_ + \_/22) [(\_/31 + \_/32) E(\_/41 + \_/42) E(\_/52 + \_/52) E(\_/Gl + \_/62) E(\_/n_ + \_/72) + (\_/01 + \_/02))
x 1
This function has total of 24 ON-set minterms, each corresponding to a pair of decomposition functions. Assuming

order-invariance of the decomposition functions, and invariance of their complements the number of solutions
reduces to three:

Solution A: Solution B: Solution C:
g, = ab+ab+ bc g, = ab+ab+ bc g, = a+bc
g, = ab+ bt+ac g, = a+ bc g, = ab+ bt+ac -

It is possible to simplify the process of instantiating computation in (18) observing that terms corresponding to
the lower and upper bounds in the formula can be simplified, and that they also have virtually identical structure.
The first step of simplification multiplies out two functions corresponding to the interval’s lower bound. Let vector
y; denote the th row of variables in the= [yij] matrix, and let functix(n) identify the index of a variable in
Z corresponding to a cofactdt(x,) . We then have:

k 2"-1 O -1
Clxgy, ) [F (x4 2) Ul[ Z Yii Em(x)}guﬂz M;(xg) I D

= i= 0
1

0o, JooO
"M |m

mxg) (=B 3. M) T
o i\g |D E\:o i\*g O'(I)D
*—1
= Z mi(Xg) dy=y;) Elc(i) (19)

i=0

N

We similarly rewrite the upper bound part of (18):

2°-1
ClXg Y, ) +F(xg2) = CXy ¥, 1) F(x 2) = 3 mi(xg) Ty =y;) Loy (20)
i=0
Substituting results of (19) and (20) into (18) we have:
-1 O -1 i
G(r) = DZDyﬂix DZ m;(xg) Ly = v)EZG(.)D+D< DZ m;(xg) Ky = v)EEo(.)DD (21)

The two summands in the above formula are identical with the exception of complenZented  variables, suggesting

that during computation o&(I') one summand can be constructed from the other by simple complementation of
Z variables.
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C. Support constraints in composition function

Introducing a fan-in constraint on the decomposition functions enabled us to define decomposition in terms of
the computationally efficient, yet very general, template (14). The generality of this template however, also offers a
great variety of the decomposition patterns which become available during the synthesis process. In addition to the
fan-in bounds we can classify these decomposition patterns according to the number of decomposition functions
t used during a decomposition step. Such  tto- classification of the decomposition patterns provides us with a

simple estimation of a decomposition quality, and links it to the structure of function.

The decomposition template (14) establishes a strong relation between the number of decomposition variables
s and the number of decomposition functions , as their relative values significantly determine flexibility in select-
ing the composition functioh . Indeed, letting to be smallertean may imply non-existertte of , and therefore
non-existence decomposition. On the other hand, letting to be largesthan may present us with a vast number of

choices forh , making it difficult to find a good composition function which improves synthesis quality.

According to the decomposition template (14) the tto- decomposition pattern determines the difference in
the support sizes between functiodns and the composition funbtion . Whesever , the decomposition is sup-
port-reducing as it implies that the number of variablefin is less than the number of vafiables . Similarly, the
decomposition is support-maintaining or support-increasing whenever, respedively, s< tor . In this work
we are primarily interested in the support-reducing decomposition, and in the enabling it conditions. This type of
decomposition defines a particularly attractive class of circuits whose width for each of its outputs decreases at the

successive levels of logic.

Although the support-reducing decomposition under a fan-in constraint produces very attractive circuits, it also
places a restriction on the function classes for which such decomposition pattern is feasible. Depending on a func-
tion structure, and the -to- parameters of the decomposition pattern, template (14) may have no feasible decom-
position. In general the existence of teke -to- decomposition requires that the number of distinct cofactors
induced by the minterm space of the decomposition variableis . Otherwise, it is impossibletto find decom-
position functions whos@" producg“i(xg) .. Egt(xg) 1 do not contain minterms from two distinct factors
Mi(xg) , making these minterms indistinguishable in the decomposition. The cofactor count argument has been
used extensively in the classical theory for disjoint decomposition relying on the notion of column multiplicity in
partition tables [8].

The support-reducing decomposition implied by the tto- pattern translates into a requirenigri on :fora

s—1

support reduction of one, i.¢.= s—1 , the numbeff’sfdistinct cofactors must bet 2 . The following two

examples illustrate how the relation between cofactofs of impacts existence of decomposition.

1. The dot above functions denotes their fixed phase, either complemented or not complemented.
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Fig. 3. Dependence of the distinct cofactor counts on the number of decompositions variables

Example 3.5 We use functionf (a, b, ¢ d 8 = abd+ ae+ adce+ bed bcefrom Example 3.3 to illustrate how
existence of decomposition depends on the choice of decomposition variables. The three decomposition variables
in the earlier example induce four distinct cofactérsd @ de, ,and , implying existence of 3-to-2 reduction.

This fact re-confirmed in Example 3.4 applying our symbolic computation of decomposition.

On the other hand, selectirgb, e  as decomposition variaQJes for the furfction we can quickly determine
the non-existence of 3-to-2 reduction based on the distinct cofactor counts for these variables. Indeed,ffunction
has total of5 distinct cofactors with respect to these variables+ d, ¢ , dand , prohibiting support-reducing

decomposition. m

In general the number of distinct cofactors induced by the decompaosition variables can vary greatly depending
on the structure of a given function. For a set of non-vacuods in  decomposition variables the number of distinct
cofactors is at least 2. There is also an upper bound on the maximum number of distinct cofactors for any given set
of decomposition variables. For an arbitrary functiomof variables the count of its distinct cofactors induged by

decomposition variables must satisfy the following two conditions:

e itis bounded b)QS , the total number of [need not be distinct] cofactors that can be possibly indused by

decomposition variables

-S

* itis bounded byz2 , the total number of distinct cofactor functions that can be possibly createdfrem

non-decomposition variables
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As follows from the above two constraints, the potential number of distinct cofactors increases exponergially in

while being bounded b§22 . This relation is used below as a starting point to derive a simpler form relating to

n:

(2°<2? ) < (s2°<2" < (log(s2%) < n) « (log(s) +s<n)
Whenevers anch satisfipg(9 +s<n  we can find a function whese decomposition variables ipduce  dis-

tinct cofactors. Thus, the number of distinct cofactors for the  decomposition variables can theoretically be

between 2 an@® , even for the large approachming

The theoretical bound on the maximum number of distinct cofactors implies that for some large sets of decom-
position variables we may not be able to achieve support-reducing threshold requiring the number of distinct cofac-
tors to bezs_1 . Among functions for which no small set of support-reducing decomposition variables exists are
functions of a multiplier circuit. To illustrate this fact Fig. 3-a plots minimum and maximum numbers of distinct
cofactors among all possible setsoof1{s<12 ) of decomposition variables for an 8-th bit product function in a
6-bit multiplier. In this figure the smallest set of decomposition variables for which support-reducing decomposi-
tion exists has 8 variables inducing 75 distinct cofactors. (Indeedﬁmzs_ ! relation enables support reduc-

tion.)

Despite the exponential bound on the number of distinct cofactors, our analysis of the MCNC benchmarks [24]
shows that the vast majority of the functions do enable support-reducing decomposition for small values of , usu-
ally less than 5. Existence of a support-reducing decomposition in a typical function from this suit of benchmarks
is very sensitive to a given set of decomposition variables, necessitating their careful selection during decomposi-
tion process. In Fig. 3-b we illustrate this fact for a sixth sum bit function of an adder. Analogous to Fig. 3-a, the
two sets of data points plotted in the figure are for the minimum and the maximum numbers of distinct cofactors
induced by the sets f 1(<s<12 ) decomposition variables. The gap between these data points is much wider
though than in the case of a multiplier function. In fact, as Fig. 3-b for the adder function suggests for any there
is a set of decomposition variables of this size inducing at rBost  cofactors. These small numbers of the cofactor

counts enable support-reducing decomposition forsang

IV. Symmetric Libraries Construction

Functions that satisfy requirement of support-reducing decomposition under a practical fan-in constraint
include the class of symmetric functions [9, 10], namely functions that remain invariant under certain permutations
of their inputs. In this section we focus on the library computation required to achieve decompasition function

classes of this type.
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A. Class-universal decompaosition primitives

Functions that are symmetric in tise  decomposition variables can have asmast distinct cofactors imply-
ing the existence of the decomposition in (14) whenever is a solution to the relatitre Zalie , remely
Denoting such functions b, , we can express them by the follogirdL) -term sum:

S
folxgXp) = 3 Si(xg) i(xp) (22)
i=0

whereS represents a class of equivalent minterms induced by the symmetry relation between varj%bles in ;itis
a totally symmetric function which is equal to 1 for those minterms<8n whose weight (number of positive liter-

als) is equal to . Thé;(x,) functions in (22) represent cofactofg of  with respegct to

Example 4.1 Suppose we would like to decompose function
f = abtde+ “abcdr “abcd ~abcde abed abcde “abede abcd
with respect to mutually symmetric decomposition varialdeb, ¢ . The equivalent minterms of the decomposi-

tion variables induced by symmetry relation along with their cofactors are given in the table below:

i Factor, S(a, b, ¢ Cofactor, &;(d, €)
0 {abt} de

1 {abg abgabt} d

2 {abc abcabt} de

3 {abg} d

According to the table we can wrife in the factored form as
f = (abcd)de+ (abc+ aber abyd + (abc+ abet abyde+ (abgd

There is total of four distinct cofactors, and therefore there is a 3-to-2 support-reducing decomposition.m

Abstracting away the dependencexygp  we replace cofactors in (22) by a set of independent \ardldlg¢s
that, for any value oh, encoden-variable functions in terms of their symmetric core with respect tcstkléa vari-
ables, yielding:

S
Fs(xgl Z) = Z Sﬁ(xg) EZ| (23)
0

Instantiating (18) witH:S(xg, Z) we obtain a computational form for all feasible support-reducing decomposi-

tions ofn-variable functions that are symmetricsior fewer variables:
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G(r) = DZDy(D(g(C(xg, y, ) EFS(xg, Z)) + Dx(C(xg, y, M)+ Fs(xg, 2))) (24)

The above computational form provides us with the decomposition solutions which hold universally for any func-
tion represented in (23). Each of these solutions provide us with a set of decomposition primitives which serve as a

pre-computed symmetric library.

As stated, equation (24) yields a non-empty set of solutidBfl;) # 0 , for the function classes when the
number of decomposition functions encoded@@(g, y,[) 2zibg(s+1) . This effectively implies that the
universal support-reducing decomposition primitives exist only vaef in (23).

B. Subclass-universal decompaosition primitives

To perform computation of the sets of decomposition primitives for the class of functions when support-reduc-
ing decomposition in (24) yield&(I') = 0  we compute decomposition primitives for the subclasses of
Fs(xg, Z) . These subclasses of functions are defined according to the weakest relations bgtween  variables
which make decomposition feasible. A symmetric library for the decomposable functions is then constructed as a

union of representative libraries taken from each subclass.

To derive libraries for the case when (24) yields the empty set, we first encode the universe of possible equality

relations betwee variables in terms of the following function:

s
Je(Z,A) = 11 ( EZ]' +(7ij) (25)

i<j
An assignment to thd variables in this function induces an equality relation between variables . The non-trivial
equality relation between variables v corresponds to a reduction of distinct cofactors in (22), and therefore
reduced decomposition constraints. By restricting computation of (24) to the conditions which satisfy such an
induced relation we can relax computational form (24), and provide decomposition solutions for subclass of
FS(xg, Z) . Such decomposition solutions can be computed simultaneously for all assignmenito the  variables by

means of the following extension to (24):

G(I', A) = Oz0y,(Dxg(C(x M) [F(Xg 2)) + OX(C(Xg Yg ) + Fo(Xg 2)) + Up(Z, A)) (26)

For each of the assignmentsAo  functiG(l", A) now gives sets of feasible decomposition functions. Note that

g Yy

a 0 assignment to all of th&  variables in the above formula induces a set completely independent \Ariables
reducing it to (24).
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0z abed

Table 1: Characteristics of cell libraries necessary for support-reducing symmetric decomposition

Symmetry type

Cell library characteristics

Possible
Max #distinct | .50t

S aC)C()faCItSOEC reduction | #Libraries | Size Example library (composed of-input symmetric primitives)

2 2 2-to-1 1 3 D D D

3 2 3o-1 1 7 T 8 S ¥ Sz MAB

3 4 3-t0-2 3 2 3 > MAJ3

4 : 401 |1 |15 S S DaS2 - S1a Su3 Sig Saa

4 4 4-t0-2 15 8 0,1 50,3 0,451 2-S14S53 S 4

4 5 4-to-3 140 3 DS EIlDS MAJ4

5 2 Sl |1 318y S Sy S5 Si2 S5 Sya S5 Sy Sy
S4,5 S0.1,2""'80,1,5 S0,2,3'---’50,2,5 S0,3,4 S0,3,5 S0,4,5

5 4 5-t0-2 105 221913 S5 S120-S14 S35 5 S34 S35 Si

S0,12%,15 S23 Su25 Su34 So,35 0,45
5 6 5-to-3 420 3 SO 3 %:> MAJS
5 6 5-to-4 14385 4 So 3 DY MAJS ANY5




We must observe however, that some of the assignments td the  variables are superfluous in the encoding
U(Z, A) —they are subsumed by other assignments due to the transitive property of the equality relation. We dis-
card such solutions defining a universe of assignments for which the transitive property of the equality is satisfied:

T(A = T] (aikakj - aij) (27)
i<k<j
The above equation provides us with a characteristic function for all assignments valid under the transitive relation

betweenZ variables. We can therefore restrict our analy§ifoA) [T (A)

To reduce further the number of assignments needed to be considered another observation analogous to the
transitive relation betwee§, ~ variables can be made. Itis based on the fact that some of the assignments derive
“weaker” equality relation constraints than the other. Formally, an assignment to variiBlesveakisrthan an
assignmenBl! if and only if relationr;; < B;
there exists at least one pair of components sucm{patﬁij . Symbolically we define such relation as:

holds componentwise between values of these assignments, and

LT(A B) = T1 (O(ij < Bij) D_|_|_(O(ij = Bij) (28)
i<j i<

The above equation encodes thgs-tharrelation between two domais  aml , which can be used to extract the

subset of weakest assignments from a givefeg€f) = I (G(I", A))
Ew(B) = DA(EL((A) - E(B) [LT(A B))) (29)

E\(B) encodesinterms d variables all weakest functional structures for which decomposition exists. It can be
easily brought to the form which depends on the  variablgg(A) . Constrafa{ing A) ByA) we
have all feasible decompositions. For each of the assignmeits to , sudfjba) = 1 , we now have a set of
decompositions. These sets provide decomposition primitives which can be used to construct libraries covering all

function subclasses.

C. Computed libraries

Table 1 summarizes the results of solving (24) fossal-t support-reducing decompositions where5 . The
first two columns in the table characterize the symmetry of the function being decomposed in terms of the number
of symmetric decomposition variables and the maximum number of distinct cofactors with respect to those vari-
ables. Column 3 indicates the corresponding achievable support reduction. The remaining columns characterize the
cell libraries required to realize these decompositions: column 4 is the number of possible minimal-size libraries,
column 5 is the number of requiresinput cells in each library, and column 6 shows a sample library. The counts
in column 4 include only libraries of symmetric cells and assume that libraries consisting of the same cells up to

complementation of their functions are indistinguishable. Some of the library cells listed in column 6 are expressed

Page 21



using theS, notation, whera is a set of integers identifying the weights of the minterms for which the function

evaluates to 1.
We can make the following observations about the results in Table 1:

» The libraries in this table represent pre-computed decomposition primitives that map a structural property of
the functions being decomposed (symmetry) into a structural property of the circuit implementation (width
reduction). Indeed, the complexity of the function being synthesized is reflected directly in the
implementation: the support of the most complex symmetric functions &ithdistinct cofactors) can only
be reduced by one, whereas the support of the least complex symmetric functions (with 2 distinct cofactors)

can be maximally reduced to 1.

 Whenevers>3 and=[log(s+1)]| ,the libraries feito-t reduction are universal in the sense that they will
yield the desired decomposition for all functions that are symmetris or more variables; they are
“functionally complete” for the class of symmetric functions. For instance, there are exactly three universal
libraries that enable 3-to-2 decomposition, one of which is shown in the table. The other two are
{XOR3 SAMEB and {MAJ3 SAME3 , where SAMEQ X, X,, X3) = X;X,X3+X;X,X3 . Some of the
decomposition functions in the -tb- pattern may become redundant however. The 5-to-4 pattern is an
example of such redundancy, where the fourth function (denoted by ANY5 in the library) can be defined

arbitrarily.

» For a giversthe number of libraries decreases and their size (number of cells) increases with stronger support

reduction (smallet.) Fort = 1, the libraries become unique, up to complementation, and coRitail cells.

» Thelibraries in this table can be extended to handle the class of functions that are invariant with respect to both
the permutation and complementation of their inputs [12] by placing corresponding inversions on the

respective primitive inputs.
When simple symmetries do not exist other structural attributes of a function might be present. In particular, a
multiplexer-like symmetry of the form
(X1 X0 X wves Xory Xom s 11 ++0 Xy 10 Xn) = F(Xgs X3, Xy s Xom s 10 Xopy +++0 Xp— 10 xn) (30)

often arises in datapath circuits. The invariance described by this relation swaps two ordered groups of variables of

sizem while complementing one variable outside these groups:
{ IXqs Xoy Xy wvvs X[ [Kq, Xg, Xey vy Xy 4 10 (31)

In benchmark circuits the most common functions of this type can be described as a sum:
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2"-1
(g X)) = 3 [%g OM(xg) + %y T (xg)] Zi(xp) (32)
i=0

. L _ R _
Wherexg is composed of; Xg = DX Xgs voes Xy an% = [Xg X5, «oes Xo 4 10

Using the decomposition template (32) we can now pre-compute corresponding 3-to-2 libraries using a proce-
dure similar to the one we used in the case of simple symmetries. Specifically, we first express all functions admit-
ting template (32) using a suitable encoding functigy in which the dependence on the non-decomposition
variables is eliminated through the introduction of a set of binary encoding coefficist§]

2"-1

Fr(Xg Xor ooy Xom s 10 Z) = Z [)‘(lEmi(xz,x4,...,x2m)+x1Emi(x3,x5,...,x2m+1)] L,
i=0

Next, noting that this decomposition template is independent of the “datapath widte reduce it to a width of
one by choosing a single representative from each group of “left” and “right” variax'lales ngand . Without loss of
generality, choosing, to represe«tt and to represgnt we obtain:

1 1
Fm(Xp Xo X3, Z) = 5 X I (Xp) L+ 5 xq Lmy(Xg) [L; 4 5
i=0 i=0

which can be rewritten asF,;(Xq, X5, X3, Z) = X%, EZO +X1X, EEl + X1 %5 [Z2 +X;X3 [L5 . Substituting

Fu (X X0, X3, Z) in (12) we obtain a computational form similar to (24). The solution for this 3-to-2 decomposi-
tion vyields three possible 2-output modulesf X X, + X %3 X1} {X X5 + X1 Rg, Xy X5 + X1 X3} and

{ X1 X5 + X1 X3, X, } . As follows from the last module, we can accommodate this type of decomposition by means of
a 2-to-1 multiplexer and a wire. (Note that whenewer= 1 template (32) admits 3-to-1 reduction using just a 2-
to-1 multiplexer.) It is interesting to note that restricting our decomposition pattern to three decomposition vari-
ables as we did above allows us to avoid computing an exact symmetry structure of the form (31) to identify
X, and x5 . These three decomposition variables can be identified with the help of quantifying out control signal

x; from f,,(x) which gives a function symmetricky  argd

V. Conclusions and Future Work

For the functions that are symmetric in some inputs we have pre-computed libraries required for their decom-
position patterns. These decomposition patterns capture the structural properties of a function and reflect them in
the implementation structure. We are currently studying other forms of structure-aware functional decomposition
which might yield “natural” decomposition patterns for the efficient synthesis of control logic. Among these
decomposition patterns we are studying implications of functional structure on a library required by the composi-

tion functions to improve synthesis quality.
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