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Abstract

Providing interactive video on hand-held, mobile devices is
extremely difficult. These devices are subject to processor,
memory, and power constraints, and communicate over wire-
less links of rapidly varying quality. Furthermore, the size of
encoded video is difficult to predict, complicating the encod-
ing task. We presentFugue, a system that copes with these
challenges through a division alongtime scales of adapta-
tion. Fugue is structured as three separate controllers:trans-
mission, video, and preference. This decomposition pro-
vides adaptation along different time scales: per-packet, per-
frame, and per-video. The controllers are provided at modest
time and space costs compared to the cost of video encoding.

We present simulations confirming the efficacy of our
transmission controller, and compare our video controller
to several alternatives. We find that, in situations amenable
to adaptive compression, our scheme provides video qual-
ity equal to or better than the alternatives at a comparable or
substantially lower computational cost. We also find thatdis-
tortion, the metric commonly used to compare mobile video,
under-values the contribution smooth motion makes to per-
ceived video quality.

1 Introduction

Consider the task of building a small, hand-held, wireless
video conferencing device. The central difficulty facing such
a system is the constantly varying quality of the wireless
channel. These changes are due to physical effects, and
hence cannot be controlled. Instead, one must adapt to them.

There are several adaptive strategies available. For ex-
ample, one can combat wireless fading with an increase in
transmission power. However, there are physical and prac-
tical limits on the degree to which this is useful. This is
particularly true for hand-held devices, which must rely on
batteries until they can be charged at a stationary source. Be-
yond these limits, one must resort to rate-limiting strategies.

Video is particularly amenable to rate adaptation through
reductions infidelity, such as lowered frame rate or frame
quality. However, it is often unclear how best to trade be-
tween these two; such decisions must be guided by user
preference. Furthermore, the savings obtained through re-
ductions in frame rate and frame quality is uncertain. One
could speculatively encode a video sequence several differ-
ent ways in order to precisely match a target bit rate. Un-
fortunately, such speculation is computationally expensive.

This is a chilling prospect in the embedded systems domain,
where cost is a primary concern.

In order to manage these adaptive strategies, one could
create an integrated, monolithic system. However, doing so
would be unnecessarily complicated and difficult to maintain
and evolve. We have chosen instead to attack the problem
by dividing adaptive techniques according to thetime scales
over which they are effective. This leads to a simple, elegant
design for providing interactive video services on mobile de-
vices.

This paper presentsFugue, our realization of this de-
sign. It is composed of three separatecontrollers, each of
which has a simple interface to the others. Thetransmission
controller uses a truncated power, rate adaptive scheme to
mask short-term fluctuations in wireless channel quality. The
video controllerchooses fine-grained video compression pa-
rameters to provide the best quality frames possible given an
instantaneous measure of bit rate. Thepreference controller
balances the conflicting demands for improved frame rate,
frame quality, and transmission power given a long-term av-
erage channel state.

We present the detailed design of each of these controllers.
We then present an initial evaluation of our design. We first
detail the modest space and time costs required to imple-
ment the three controllers. Then, we present a simulation to
demonstrate the effectiveness of combining rate and power
control in the transmission layer over power control alone.
We conclude our evaluation by comparing our encoding al-
gorithm to three other schemes: a more expensive scheme
that speculatively produces several different encodings for
each frame, and two simpler schemes.

We find that when the available bit rate over-constrains
the choice of video encodings, the best strategy is to conser-
vatively encode the video at a single, static quality. When
there is some freedom in choosing encoding parameters, our
scheme provides video quality equal to or better than the
others at a comparable or substantially lower computational
cost. Finally,distortion, a metric commonly used to com-
pare the qualities of differently-encoded video streams, over-
values sharpness of frames compared to smoothness of mo-
tion. Focusing on distortion rather than perceptual quality
can lead to incorrect compression decisions.
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2 Related Work

The Odyssey system [21] supports applications that vary
their fidelity in response to changing network conditions.
Like Fugue, Odyssey focuses on end-host adaptation.
Odyssey infers changes in network performance from end-
to-end packet observations; in contrast, Fugue considers
wireless channel quality for finer-grained adaptations. Fur-
thermore, Odyssey’s video application deals only with stored
video that has been pre-encoded at multiple fidelities.

In contrast to end-host approaches, several systems have
placed responsibility for supporting adaptation in the net-
work. Mobiware [1, 5] is an architecture based on pro-
grammable, active services placed throughout the network.
Each application submits a utility curve, and centralized
points provide utility-fair allocations. The TIMELY ar-
chitecture [4] provides a similar model based on revenue
maximization. It also adds lower-bound resource reserva-
tions, with the possibility of additional resources allocated
to increase revenue. These systems require substantial in-
network deployments, while Fugue depends only on local
observations. However, Mobiware and TIMELY both pro-
vide first-class support for handoff, while Fugue focuses
mainly on single-channel performance. Fugue’s preference
controller could be used as a basis for generating utility and
revenue curves, something that these systems have not fully
addressed.

Fox et al. [9] promotes active services to degrade the fi-
delity of video at key points in a multi-hop network. The sys-
tem handles interactive data, but only adapts the frame rate
of the video and does not consider the particulars of wireless
transmission or end-client preferences. MobiWeb [20], an-
other proxy-based solution, employs conventional resource
reservation. Fugue, like Odyssey and Mobiware, takes the
position that adaptation is preferable to reservation in rapidly
varying wireless networks.

Bahl [3] presents a framework for supporting video over
wireless networks. This framework explores the same space
of unpredictable channel performance and compact, low
power devices as does Fugue. He puts forth the notion that
adaptive techniques apply over diverse time scales, but does
not use this as a structuring primitive. His system relies
on replacing standard encoders with multi-resolutioncodecs,
such as wavelets, and complex network reservation schemes
such as RSVP.

Others have proposed video systems that control codecs
and channels for variable wireless bit rates. Rate adaptable
coding has been explored [19], but does not take advantage
of controlling video codec parameters. Perceptual quality
metrics [26] were applied as well, but only for evaluation
and not as a control method. Another method for optimiza-
tion is to match multiple pre-encodings of the video [14] to a
given a rate, optimizing each frame for low distortion. This
method has a high computational burden; it also strives to

minimize frame distortion at the expense of frame rate, di-
minishing perceived quality. Some work has been done to
find optimal encodings using Lagrange multipliers [27], but
network supplied rate constraints were not considered. Ad-
justing the video frame rate has been considered in conjunc-
tion with a bit allocation scheme [25], however prediction of
bit rates and distortion from quantization parameters is not
explored.

Power control is an area that has received considerable at-
tention. An analysis of truncated power control with out-
age has been explored [10] as well as an analysis of trun-
cated rate/power control [18] over Nakagami fading chan-
nels. Shadowing has not been considered, nor has it been
shown how one can integrate the rate estimates with upper
layer controllers.

3 Hand-held, Mobile Video

Hand-held wireless devices present several inherent con-
straints, and are subject to many sources of variability in
performance. Processor and battery power are limited, wire-
less link performance changes rapidly, and the efficacy of
video encoding algorithms is uncertain. There are a num-
ber of techniques one can use to cope with such dynamic
change. For example, one can vary transmitter power, bit
duration, frame rate, or frame quality. Unfortunately, none
of these are able to cope with all sources of variation, and
each is applicable to different components in the system.

3.1 Constraints and Variations

Hand-held devices are subject to unusually severe engineer-
ing constraints, particularly those of cost and power effi-
ciency. For such devices to have mass-market appeal, cost
must be a first-order concern. In contrast to general purpose
devices, these embedded systems generally do not take full
advantage of the aggressive improvements in capacity and
performance of components, instead tracking reductions in
cost. Therefore, when designing for these systems one must
justify any techniques requiring additional processing power
or memory.

Similarly, the power budgets on these devices are tight.
Battery capacity, in terms of deliverable energy per pound, is
growing at an extremely slow pace. Users often have some
expectations of how long the device must operate, and this
time horizon can be used to adapt power consumption be-
havior [8]. Barring such user-supplied information, devices
are typically designed with a specific battery life; this can-
not be provided at the expense of extra weight. For example,
current laptops must have a rated battery life of at least a few
hours, and can not weigh more than several pounds. This
limits the amount of energy one can devote to processing
power and wireless transmission.
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Wireless networks also give rise to substantial challenges.
Wide-area coverage necessarily provides lower bit rates to
individual devices [17] using channels that exhibit rapidly,
dramatically changing performance [22]. The frequency of
change depends on the speed of the mobile device. Slow
moving users may have bad signal quality for long periods,
and fast moving users may suffer from channels that are dif-
ficult to measure and react to.

Our target application presents its own difficulties. Inter-
active video is intolerant of latency beyond human percep-
tual limits. Therefore, even if one could devote resources on
the device to buffering transmitted traffic, there are limited
opportunities to do so. Furthermore, users might have differ-
ent ways of valuing the importance of high-quality frames
and smooth motion. A user watching a live lecture may
prefer high resolution in order to read notes written on the
board. Someone watching a sporting event may instead want
the fluid motion provided by a high frame rate.

3.2 Coping with Variations

There are several ways to hide or adapt to variations in per-
formance and user preference. At the transmission layer,
these include power control, rate control, and adaptive cod-
ing and retransmission schemes. At the application layer,
one can change the base frame rate at which video is de-
livered, and apply various degrees of lossy compression to
components ofeach frame.

Power control — varying the power at which packets are
transmitted — can be used to combat many sources of chan-
nel fading. However, for fast-moving devices, it is often hard
to adapt power to the rapid variation in the channel’s signal-
to-noise ratio. Even for slow-moving devices, such power
expenditures may be unwise due to battery limitations. In-
stead, one could combat losses in the channel by adapting the
transmission rate; a low-rate sender will suffer fewer packet
losses under fading channels than a high-rate one.

Combining these mechanisms is not straightforward. For
example, it is better to increase power — and hence avail-
able bit rate — if doing so would not drop battery life below
the desired horizon. Furthermore, transmission-layer adap-
tations are limited; they can smooth the variations seen by
higher layers, but cannot hope to remove them entirely. In-
stead, higher layers are forced to adapt to changing circum-
stances [16, 24]. One way is to change thefidelity of de-
livered data [21], trading delivered data quality for resource
consumption.

Video is particularly amenable to lossy compression, such
as that provided by H.263 [23, 13]. We have based our sys-
tem on H.263 for two reasons. First, it is explicitly designed
for the low bit rates common in wireless deployments. Sec-
ond, its algorithms form the core of the visual component of
MPEG-4 [15], a system-level encoding standard.

These compression schemes use two techniques to reduce

the size of the video: inter-frame motion compensation and
intra-frame quantization. The quantization factor determines
the quality of the resulting frame. In addition to per-frame
compression, one can also vary the base frame rate at which
the video is encoded. However, decreasing the frame rate
increases the motion between adjacent frames, compounding
demands on the encoder. Balancing these two dimensions of
fidelity requires consideration of user preferences for smooth
motion or sharp resolution.

For stored, off-line video, it is easy to measure the ef-
fectiveness of all possible compressions a priori, and then
match a particular encoding to the available bit rate. Pre-
computation is not possible for interactive video. Unfortu-
nately, latency intolerance limits look ahead. Because the ef-
fectiveness of encoding is dependent on inter-frame motion
and intra-frame entropy, the sizes ofeach potential encoding
are difficult to predict. One can encode each frame a number
of different ways, and then choose the one that empirically
fits the available rate. Such speculative encoding requires
substantial processing power, which is in short supply on a
hand-held, embedded device.

4 Time Scales of Adaptation

Variation in link quality, size of the encoded video, and pos-
sible changes in users preferences lead to a complex, dy-
namic system that is difficult to control. One possible design
is a monolithic but complicated system that integrates ev-
ery part of the encoding and transmission process. However,
a modular system based on adaptations appropriate toeach
disturbance simplifies the design, while yielding the desired
performance.

Our system is structured around the notion oftime scales
of adaptation; adaptive techniques are arranged according to
the time scales over which they are effective. There are four
parameters we can control: frame rate of delivered video,
quantization level of each separately encoded portion of a
frame, transmitter rate, and transmitter power. Each of them
is subject to a different set of constraints, and can be used to
adapt to video and link variations on a different scale. Frame
rate and average frame quality are subject to user preference,
and can only be used to combat very long-term changes on
the order of hundreds of milliseconds. Individual quantiza-
tion choice is constrained by the desired long-term average
bit rate, and applies only to changes within an individual
frame: tens to hundreds of milliseconds. The transmission
layer parameters — transmitter rate and power — apply to
individual packets, and are effective on the same and smaller
scales. Figure 1 depicts the the logical organization of these
layers.

In Fugue,each layer is realized as a separate controller.
The remainder of this section describes each controller in
turn, from shortest to longest granularity: thetransmis-
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This figure shows the hierarchical structure of adaptation, ar-
ranged by the varying time scales over which each layer is
effective. Each adaptation layer responds to a different class
of variations, and each controls a different set of parameters.

Figure 1: Adaptation Layered by Time Scales

sion controller, thevideo controller, and thepreference con-
troller. In this section, we present the responsibilities ofeach
of these controllers and detail their interactions. Section 5
presents the design of each controller in detail.

4.1 Transmission Controller

At the finest grain, the transmission controller manages the
transmission of packets across a wireless channel. This chan-
nel is subject to degradation from a number of sources, in-
cluding multi-path fading and shadowing. As the channel
quality drops, the bit error rate (BER) may exceed a tolera-
ble level. The transmitter can combat increases in BER by
increasing the transmission power, thereby improving the re-
ceived signal.

Such power increases are limited by a physical transmitter
maximum, but the practical limit might be below that max-
imum in order to maintain the desired battery life. When
faced with such limits, the controller can lower the trans-
mission rate instead. Transmitter power,P , and rate,T , are
determined by an average power constraint,Pav and spot ob-
servations of channel quality.

The transmission controller must produce two estimates
of bit rate for higher levels. The first is an instantaneous rate,
R, used by the video controller. The second is a long-term
average channel rate,Rav, used by the preference controller.

4.2 Video Controller

In many encoding schemes, an individual frame’s pixels are
grouped into regions calledmacroblocks; a typical size for
these is sixteen by sixteen pixels. These macroblocks are
grouped intogroups of blocks, orGOBs. The GOB is the unit
of compression; an encoder can vary the degree of quantiza-
tion, orQ, for each GOB. This allows the encoder to adapt
the size of encoded video every ten to fifteen milliseconds
for QCIF frame sizes [12].

The video controller is given a target frame rate,F , and
initial quantization,Qinit, by the preference controller, as

well as an instantaneous rate,R, by the transmission con-
troller. The video controller’s goal is to produce the highest-
quality GOBs it can without exceeding the transmission time
budget. For example, if the target rate is ten frames per sec-
ond, the video encoder wants to produce an encoded frame
that will take 100 ms to transmit in current channel condi-
tions.

4.3 Preference Controller

In the long term, the system must trade off three compet-
ing concerns: frame rate, frame quality and battery life. The
preference controller must relate these parameters through a
cost function, which is expressed as three independent func-
tions ofF ,Qinit, andPav. By optimizing this cost function,
the preference controller chooses optimal values foreach of
these parameters, and exposes them to the other controllers.

In general, the cost function must come from user and ap-
plication input. However, one can implement reasonable de-
faults. The cost function forPav can be derived from the
desired battery life of the device; this can be provided by the
user or the system designer. The cost functions forF and
Qinit can be based on perceptual quality. By relating per-
ception to measurable features of encoded video [26], Fugue
produces video that matches an average viewer’s expecta-
tions.

5 Controller Design

Figure 2 summarizes how the three controllers work in con-
cert. Each controller is shown with the inputs it considers in
making decisions, along with the set of outputs it produces
— either for other controllers, or for the encoder and trans-
mitter. This section describeseach controller in detail.

5.1 Fine Grain: Power and Bit Duration

The transmission controller is responsible for smoothing out
variations in wireless channel quality. The controlleraccom-
plishes this by monitoring the quality of the channel and
matching transmission power and rate to channel quality.
This truncated power, rate-adaptive scheme was analyzed for
Nakagami channels [18] and similar analysis has been done
for a system without rate adaptation [10], referred to as chan-
nel inversion. Our analysis includes the addition of shadow-
ing and an approximation technique to simplify implementa-
tion in a low-cost, embedded device.

The choice of transmission power is limited by the desired
long-term average transmission power,Pav, which is sup-
plied by the preference controller. By combiningPav with
observations of channel behavior, the transmission controller
supplies instantaneous and long-term transmission rates,R
andRav to the other controllers. For simplicity, we provide
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This figure summarizes the architecture of our design, fo-
cusing on the interactions between the three controllers, the
encoder, and the transmitter. The preference controller gen-
erates frame rate, initial quantization, and average power tar-
gets given cost functions and the average channel capacity.
The video controller selects quantization factors given an
initial quantization, a frame rate, and a short-term estimate
of bit rate. The transmission controller selects transmitter
power and bit duration for each packet, subject to an average
power constraint.

Figure 2: Fugue System Structure

a sketch of the derivation; interested readers are directed to
the appendix for the details.

A transmitter sends a single bit with a certain power,P ,
for a certain duration,T . The total energy received,Eb, is de-
termined by the channel gain. Because gain is a time-varying
property, we write it asg(t). The receiver measuresg(t),
and reports it to the sender. The sender now has informa-
tion about what the gain was one round-trip time,�t, in the
past. In other words, at timet, the sender knowsg(t ��t).
If one assumes that gain — and hence fade state — is slow
to change, one can assume that this estimate is current; this
turns out to be true for relatively slow-moving nodes. Faster
nodes must augment this scheme with error correcting codes
and interleaved transmission.

Given g(t) and knowledge of the channel modulation
scheme, it is easy to compute the instantaneous transmission
power required to keep the probability of bit error,Pb, below
a specified bound,Pb;max. Unfortunately, one must be care-
ful in adjusting power; if one expends too much power early
in the battery’s lifetime, there may not be enough residual
energy to meet the user’s needs. So, we must cap the trans-
mission power atPmax.

One can compute the value ofPmax given the desired av-
erage power consumption,Pav, plus some knowledge about
channel fading behavior. Our analysis combines Rayleigh-
distributed multi-path fading with shadowing to produce an
overall channel model. With these, one can expressPav as an
integral of the fading state over the range of possible power
levels; this range is capped byPmax. Solving numerically,
one can expressPmax, as a function of the average power,
Pav. Figure 3 plotsPmax for values ofPav, using a set of

reasonable assumptions detailed in the appendix.
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This figure plots maximum power values,Pmax for given
average power values,Pav.

Figure 3: Computed maximum power

One question remains: what do we do when the channel
requires more power to maintainPb;max than we are will-
ing to expend? Recall that the figure of merit is the amount
of delivered energy per bit,Eb, which is proportional to the
power with which the bit is transmitted times the time used to
transmit it. Therefore, when we cannot increase the power,
we can instead lengthen the bit transmission duration. As bit
duration — and hence transmission rate,R — change over
time,R is reported to the video controller for medium-grain
rate matching.

The transmission controller must also report the long-term
average transmission rate,Rav, to the preference controller.
This is determined by the fluctuations of the instantaneous
rate,R, which are in turn driven by the same fading mod-
els that allowed us to derive the function forPmax. Rav can
thus be described as a function ofPav by numerically solv-
ing a similar integral. Figure 4 plotsRav for values ofPav,
computed with same set of parameters as forPmax.

While the equations used to derive these functions are
complex, the functions themselves are smooth and mono-
tonic. Therefore, we can avoid generating them on the fly by
precomputing them for a number ofPav values, and interpo-
lating between these precomputed values.

5.2 Medium Grain: GOB Quantization

The video controller operates under two sets of constraints.
It is given instantaneous bit rate information from the trans-
mission controller and a frame rate and initial quantization
value by the preference controller. By combining the frame
rate and bit rate information, the controller derives abit bud-
get for each frame; it strives to send each frame at the ini-
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This figure plots the average rate,Rav, for given average
power values,Pav.

Figure 4: Computed Average Rate

tial quantization value. However, since the bit rate can vary
and the prediction of encoded video sizes is uncertain, the
video controller must adjust the quantization parameter as it
encodes the frame. The quantization parameter,Q, can be
changed at the beginning of each GOB to increase or de-
crease the rate of the video.

Before encoding each GOB, the controller checks to see
how much time remains. If the estimated encoded size of the
remaining GOBs is too large, then the quality is lowered. If
the lowest quality produces GOBs that are too large, then the
overrun is subtracted from the next frame’s budget. If there
is an under-run, that transmission capacity is lost; the next
frame cannot be encoded until it becomes available.

The following equation expresses the decision that the
controller makes at the beginning of theith GOB:

i�1X
g=0

E(f; g)

R(g)
+

GOB�1X
g=i

E�(f; g)

R�(g)
� 1

Rf

� O(f � 1): (1)

In this equation,E(f; g) denotes the number of bits con-
sumed by the previous GOBs andR(g) is the actual bit rate
during their transmittal.E�(f; g) is the estimate for the rest
of the GOBs in the frame andR�(g) is the estimate for the
transmission rate during the rest of the frame. IfRf is the
frame rate, then1=Rf is the time budgeted for this frame,
andO(f �1) is the overrun, if any, from the previous frame.

The system uses an empirical model to estimate the size of
encoded GOBs. This model is derived from an experiment
that measures bit rates of several video sequences encoded
by an H.263 codec. Since quantization decisions are specific
to a GOB, we measure at that granularity.

The benefits of lossy compression applied to video are
highly dependent on scene content and motion. However,
within a scene, the same GOB in two adjacent frames is
likely to contain similar information. If the frame rate or

GOB quantization did not change, one would expect the
sizes to be similar across frames, modulo scene changes.
However, such scene changes are likely to be rare for in-
teractive, live sources; they typically arise through off-line
editing.

Due to these observations, we use the encoded size of the
previous frame’s GOB to predict the encoded size of that
GOB in the current frame. We express changes in frame
rate or quantization as the ratio of encoded sizes of the
two GOBs. By measuring these ratios for each combina-
tion across several test sequences, we generate a distribu-
tion of ratios. These test sequences are single-scene, without
abrupt changes. Measuring ratios removes some dependence
on per-video differences. In order to make this experiment
tractable, we make the simplifying assumption that changes
in frame rate and quantization are orthogonal. While this is
not strictly true, it turns out to give adequate results.
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Figure 5: Rate Ratio Example

An example of this measurement is shown in Figure 5.
The figure shows two sample frames of encoded video bro-
ken into three GOBs. The video source provides 30 frames
per second. In this example, it is encoded at ten frames per
second, skipping two source frames betweeneach pair of en-
coded frames. This is referred to as theframe skip rate. The
encoder uses differentQ values for each GOB. Depending
on the amount of motion between frames, it produces a vari-
able number of bits. The ratio of the sizes is measured for
each pair of current and futureQ values. For example, the
first GOB has a ratio of 1.5 for a presentQ value of 13 and a
futureQ value of 10.

Because we treat changes in frame rate and quality sep-
arately, there are different experiments to measure the im-
pact of each. In the first experiment, the encoder processes
a suite of eight commonly available test videos at a frame
skip rate of 2 (10 fps) and at each integer quality level in the
range [1..30]. Figure 6 shows the results for an initialQ of
1. The solid line gives the average ratio across all test se-
quences, and the shaded region gives the standard deviations
for each point. Unfortunately, the uncertainty in prediction
is quite high; the median standard deviations is 80% of the
mean across all experiments. Furthermore, Figure 6 shows
the best case; when the prior GOB encoded at full quality, it
gives the most predictive power about the current GOB. Es-
timates based on lower-quality GOBs are even less certain.
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This figure shows the expected change in rate caused by in-
creased quantization for a GOB, expressed as a ratio of the
new GOB over the same GOB in the previous frame, en-
coded atQ = 1. The solid line gives the mean of our test
sequences, while the shaded region shows the mean plus or
minus the standard deviation. Note that the y axis is in log
scale.

Figure 6: Bit Rate Ratios at Higher Q-Factors
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This figure shows the expected change in rate caused by in-
creased frame skip rates for a sequence, expressed as a ratio
of the new frame rate over the old frame rate. The solid line
gives the mean of our test sequences, while the shaded region
shows the mean plus or minus the standard deviation. Note
that the y axis is in log scale.

Figure 7: Bit Rate Ratios at Higher Frame Skip

In the second experiment the encoder processes the same
suite of test videos at a constant quantization level of 13
and at each frame skip rate, between 0 (30 fps) and 29 (1
fps). The experiment measures the rate ratios of the different
frame skip rates. The results for switching from full frame
rate to a lower one are presented in Figure 7.

As with Figure 6, starting from full frame rate gives the
best basis on which to predict. However, the standard de-
viation of the frame rate observations is lower than that for
a quality change; the median standard deviation is 40% of

the observed mean. This implies that changes in frame rate
require less adaptation than quality changes. Since quality
changes are done at a smaller time scale than frame rate
changes, we are better able to cope with the unpredictabil-
ity shown in these experiments.

5.3 Coarse Grain: Global Preferences

The preference controller must match the long-term changes
in available bandwidth with changing user preferences, ex-
pectations for battery life, and underlying video properties.
It specifies the target frame rate of the encoded video, the
initial quality parameter provided to the encoder, and the av-
erage power constraint for the transmitter. There is a clear
tradeoff between these parameters; given more power, higher
bit rates can support either increased frame rates, increased
quality, or both.

At the beginning of a video frame the preference controller
sets its three parameters to meet the expected bandwidth con-
straints in the system. It does so by minimizing a cost func-
tion that weights the parameters according to user or appli-
cation preferences. The cost function at frame numberf is:

J(f) = �P (Pav (f)) + �F (F (f)) + �Q (Qinit (f)) ; (2)

wherePav(f), F (f) andQinit(f) denote the transmitter
power, the frame skip rate, and the initial Q-factor at frame
f , respectively, and the� (: : :) terms are the associated cost
functions.

Several constraints must be met in optimizing this cost
function. First the total estimate bit rate created by the video
coder must match the available rate of the channel. This con-
straint is:

GOB�1X
g=0

E�(f; g)

R�(g)
=

1

Rf

�O(f � 1): (3)

This equation is the same as (1), withi = 0.
Although applications can supply their own cost functions

based on user preference, we provide a set of reasonable de-
faults. These default cost functions comprise two compo-
nents. First, we incorporate a perceptual model of video that
allows us to trade quantization and frame rate. Second, we
provide acliff function to value power, based on expecta-
tions of battery life supplied by the user of the device or its
designer.

Fugue’s perceptual quality model is based on a set of ob-
jective metrics — developed by Webster et al. [26] — for
measuring the subjective quality of encoded video at differ-
ent quality and frame rates. These metrics were developed
by matching a linear combination of three quantitative mea-
sures of encoded video to qualitative observations. Human
subjects were shown a set of test videos encoded at varying
quantizations and frame rates. The test videos were drawn
from a number of domains, and featured varying degrees of
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scene change, inter-frame motion, and scene detail. The sub-
jects rated the resultant quality on a one through five scale,
with five being the best. In parallel, Webster et al. examined
a large set of quantitative metrics, and chose the three that
together most successfully predicted user satisfaction. The
first of these metrics, the sharpness of a rendered frame, cap-
tures spatial quality. The other two — the motion lost and the
perceived burstiness added at lowered frame rates — express
temporal properties.

We have implemented these metrics and applied them to
eight “talking head” test videos. We filtered the results to en-
sure that grades were monotonic in quantization and frame
rate; at high quantization factors, blocking artifacts are mis-
taken for increased detail and given positive weight by the
first metric. The results of this experiment give a single, em-
pirical valuation for the sum of the cost functions�F (F (f))
and�Q (Q (f)) is depicted in Figure 8.
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Figure 8: Subjective Grade Point

This graph shows several features of interest. First, all
frame skip rates equal to or higher than 17 result in roughly
equal grade points, given the same quantization. This means
that, for extremely low frame rates, it is usually better to try
to increase frame quality than to increase frame rate. How-
ever, at frame skip rates lower than 17, it is almost always
better to increase frame rate rather than frame quality. Fi-
nally, recall that Figures 6 and 7 show that adjustments in
quantization and frame skip each cover roughly two orders of
magnitude variation in rate. However, they affect grade point
differently; quantization accounts for less than one third of a
grade point, while frame rate accounts for more than a full
point. Therefore, given a limited increase in available trans-
mission rate, it will almost always be better to decrease frame
skip provided one can ultimately achieve better than 2 frames
per second1.

1Note that the dynamic range of quantization’s impact on grade point
may be understated if our smoothing was too conservative. However, such
underestimation does not change the basic strategy of decreasing quantiza-
tion below 2fps, and frame skip above that rate.

To place a value on power, we take advantage of the fact
that a user often knows how long she expects to use a mo-
bile device before she can recharge its batteries [8]. It is not
useful to have any power remaining after the lifetime has ex-
pired, and it is infinitely costly to use power faster than that
rate. This results in a cliff cost function:

�P (Pav(f)) =

�
0 : Pav(f) � Pdesign
1 : Pav(f) > Pdesign

(4)

Absent user advice about expected operating times, one can
instead rely on a designed-for battery lifetime to setPav.

The cost of computing the optimal point is the most com-
putationally expensive part of Fugue’s control system. Let
Np, Nf , andNq be the number of discrete power levels,
frame rates, and quantization factors, respectively. A naive
solution to this optimization problem runs in O(NpNfNq).
However, we believe that the monotonic properties of the
cost functions allow for simplification. While Fugue does
not require that the power cost function be a cliff, having
such a cost function further simplifies the optimizationspace.

6 Evaluation

There are three sets of questions that drive the evaluation of
our design:
� What are the computational and space costs of our con-

trollers? Are they amenable to implementation on a
hand-held consumer device?

� How effective is our power control and rate adaptation
scheme at smoothing channel behavior? Can bit error
rate be controlled to suit our encoding scheme? What is
the resulting bit rate?

� Our encoding scheme incrementally constructs frames
based on per-GOB predictions. Alternatively, one could
pre-encode each GOB a number of different ways to
optimize transmission. How much extra computational
overhead does pre-encoding require? How does the
quality of our produced video compare to that of pre-
encoding? How does our scheme compare to simpler
schemes?

In this section we present experiments to answer these
questions. These experiments are based on a simulated phys-
ical channel that incorporates models for multi-path fading
and shadowing. It is used to evaluate our transmission con-
troller’s efficacy in controlling BER. We have added a video
controller and a preference controller to the Telenor/UBC
H.263 encoder [7]. The unmodified encoder is computation-
ally expensive, requiring approximately 210 milliseconds to
encode a single frame on a 300 MHz Pentium II. This per-
formance is similar to that reported for an MPEG-4 software
encoder on contemporary SPARC processors [28]. We also
implement alternate video controllers for comparison over
traces taken from our wireless channel simulator.
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6.1 Computational Burden

Each controller — transmission, video, and preference —
imposes computational and space burdens on the hand-held
device. The transmission controller is computationally sim-
ple. BecausePmax andRav are smooth, monotonic func-
tions, the transmission controller can store tens or hundreds
of pre-computed points, and interpolate between them. The
video controller requires more space, since it must store a
matrix of ratios for variations in frame quality, but needs to
perform at mostQ different multiplications and comparisons
per GOB. Both of these costs are trivial when compared to
the space and time costs of the H.263 encoder.

The preference controller also has modest space costs; it
only needs to store the ratio matrices forF andQ. We
have measured a brute-force implementation of the prefer-
ence controller whereNp = 20, Nf = 30, andNq = 30.
When the values of each cost function are precomputed for
each of these discrete-valued inputs, the total time to solution
is less than 1 millisecond on a 300 MHz Pentium II. Com-
pared to the cost of encoding a frame on the same processor,
this is small. Furthermore, a more sophisticated solver that
takes advantage of known cost-function properties should
perform substantially better.

6.2 Transmission Layer

The two key goals for the transmission layer are to adapt
bandwidth to channel quality in a method that is transparent
to the upper layers, and to meet the battery lifetime speci-
fied by the user or system designer. Of course, one could
transmit at the maximum possible bit rate at all times, but
this can often be counterproductive during periods of poor
channel quality. We have not examined joint source chan-
nel coding, but assume that a reasonable number of errors
can be corrected through channel coding and a limited use of
Automatic Repeat Request (ARQ) [19]. Limiting the num-
ber of errors in the transmission system can save bandwidth
that would otherwise be consumed by unnecessary coding
and ARQ retransmissions, and pays the overhead only when
the channel is actually poor.

In this section, we present the performance of three control
schemes: no adaptation, power adaptation, and power com-
bined with rate adaptation. These schemes are evaluated us-
ing a simulation of the wireless link. We simulate a Rayleigh
fading distribution [22] using Clarke’s model [6]; it assumes
that multiple reflected waves will arrive with arbitrary phase
and angle of arrival. Shadowing is simulated directly from
an autocorrelation of the process, which has been shown to
give results closely matching physical channels [11].

Our Rayleigh fading simulator creates a random process
with power spectral density (PSD) determined by the de-
vice’s speed through the wireless field. Arriving waves at

the receiver suffer from Doppler shift, determined by:

fn =
v

�
cos(�n): (5)

wherev is the velocity of the device with respect to the base
station,� is the wavelength of the carrier and�n is the angle
with respect to the tangent wave. We assume�n = 0, which
is the worst case.

Rayleigh fading is combined with the shadowing random
process,s(t) which has an autocorrelation of [11]:

E [u (t1) ; u (t2)] = �2s exp

�
� v

d0
jt1 � t2j

�
(6)

A zero-mean white Gaussian process, with PSD2�2sv=d0,
yields the proper autocorrelated process when filtered by:

h(t) = exp

�
� v

d0
t

�
(7)

Typical values for the constants are�s = 6dB and d0 =
10m [2].

We created traces of the combined Rayleigh and shadow-
ing processes. We then tested each of three control schemes
over those traces, and report the resulting bit error rate on the
channel. The first scheme uses constant transmitter power.
The second scheme adapts the power of the transmitter but
does not adapt the rate once the maximum power limit is
reached. The third scheme adapts both the power and rate.
The BER for each of the three schemes are shown in Fig-
ure 10. Simulation parameters are given in Figure 9; they
were chosen to be representative of a typical cellular wire-
less network.

Simulation Parameter Value
Velocity 10 km/hr
�t 500�s
Carrier Frequency 900 MHz
�s 6 dB
Pb;max (goal) 1E-5
NL 1.0517E-5
Tmin 3.1250E-5 s
Pav (goal) 3.56 W
Pmax 5.33 W
Warmup period 10 sec.

Figure 9: Simulation Parameters

Figures 10(a), 10(b), and 10(c) show the channel bit error
rates for the flat power control, truncated power control and
the power and rate control cases, respectively. The first two
cases show a BER as high as -0.4 dB. A BER this large will
exceed the error correcting capabilities of the code and ARQ
retransmissions will consume a large amount of bandwidth
on the channel. However, Figure 10(c) shows that the rate
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Figure 10: BER for Transmission Layer Control Schemes

adaptation system has a much lower BER. Rate and power
adaptation are helpful in maintaining a usable channel for
the video encoder. Figure 11 depicts the achieved bit rate
of the rate-adaptive scheme. In effect, this scheme converts
uncertain bit errors into known short-term rates.
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This figure plots the changes in instantaneous bit rate for
the truncated power, rate-adaptive scheme used by Fugue’s
transmission controller.

Figure 11: Bit Rate During Rate Adaptation

To be a fair comparison, all three schemes must meet
the average power constraint given by the preference con-
troller. The flat power scheme automatically meets the av-
erage power since it is fixed. The other two schemes meet
the average power constraint over time since thePmax value
is set according to the computational method described in
Section 5.1.

6.3 Video Layer

The final set of experiments explores the quality of the
video produced by Fugue, compared to a number of alternate
schemes. There are three different schemes against which
we compare: staticQ selection, per-frameQ prediction, and
speculative pre-encoding. In static schemes, the video con-
troller simply encodes every GOB at the same pre-selected
Q. The per-frame scheme uses prediction of encoded sizes
to select a singleQ for all GOBs in a frame. While both
these approaches are simpler than our own, the low overhead
of our controller is not significant in comparison.

In contrast, the speculative scheme is more computation-
ally demanding than the others. In it, the video controller
pre-encodes each GOB in the frame usingk different quan-
tization values, and computes the resulting distortion ofeach
encoded version [14]. The distortion metric is the signal-to-
noise ratio in the luminance plane (YSNR). It can then com-
pute the set of GOBs to send such that the bit rate constraint
is satisfied while total YSNR is minimized. For interactive
video streams, this optimization can take place only within a
frame, not across them. This produces a per-frame encoding
with the lowest possible YSNR, subject to the constraint that
each GOB is encoded with one of thek values ofQ.

The choice of which specificQ values to pre-encode has
an impact on the effectiveness of this scheme. The scheme
against which we are comparing considers four values: 12,
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14, 20, and 30. Exploring more encodings allows better op-
timization within the given constraints. However, each addi-
tionalQ considered increases computational overhead sub-
stantially. One encoding is required, the remainingk � 1
are overhead. Profiling the H.263 encoder reveals that each
additionalQ value adds 22% to the base cost of encoding a
frame; this is approximately 46 ms on our hardware.

We compare seven different video controllers using the
physical channel simulation. The first four, which are the
least expensive to compute, encode all GOBs at a single,
staticQ. Each of the four uses one of the levels suggested by
the speculative scheme. The fifth controller predicts the best
Q for a frame, and encodes each GOB in the frame with that
Q. The sixth is our per-GOB prediction scheme with default
cost functions. The seventh, and most expensive to compute,
is the speculative encoder.

We use these schemes to encode two different video clips,
calledrebaandlab. These videos are not used in the ratio ex-
periments of Section 5.2, and were generated independently.
Encoded at 30 frames per second, with a quantization factor
of 14, they require a long-term average bit rates of approxi-
mately 42 Kb/s. However, the instantaneous bit rate is very
bursty.

We simulate transmission of these videos over three dif-
ferent wireless networks. These networks differ only in the
maximum rate they support: 32, 64, and 128 Kb/s. Other
simulation parameters for these networks appear in Figure 9.
The resulting videos are compared across two metrics. The
first is perceptual grade point, as presented in Section 5.2.
The second is YSNR. We report YSNR results for two rea-
sons. First, it is the metric that the pre-encoding scheme is
attempting to optimize. Second, while it does not directly
model perceptual quality, it is the metric most commonly
used to compare wireless video systems.

The results are shown in Figure 12. Each bar represents
the average of 12 trials. For clarity, we do not present the
standard deviations for these results. For the grade point met-
ric they range up to 0.33, and for YSNR, they can be as large
as 0.55. However, standard deviations are smaller at higher
bit rates, lending more faith to those results. For example, at
128 Kb/s, the largest standard deviations are 0.15 for grade
point, and 0.25 for YSNR.

These experiments yield four interesting results. First,
the per-frame predictive scheme never compares well to any
other scheme along the perceptual quality metric, as shown
in Figures 12(a) and 12(c). This is due to the substantial un-
certainty in predicting the sizes of encoded GOBs. Frames
with significant motion result in very high bit rates, stealing
from later frames and potentially reducing the frame rate.
This has a very high penalty in the perceptual cost functions.
Frames with very little motion leave gaps in the transmission
schedule that could have been used to produce better GOBs
for that frame.

Second, in very low bit rate environments where the

choice of encoding is over-constrained, both the speculative
encoder and the static encoders withQ values 20 and 30 out-
perform our per-GOB predictive scheme in the perceptual
quality metric. This is also due to the uncertainty in the pre-
dictive model. When the budget is tight, large errors cannot
be corrected before the end of the frame time. Therefore, in
constrained bit rate environments, one should use a conser-
vative static encoder if processing power is a concern, and
the speculative encoder otherwise.

Third, at higher bit rates, our per-GOB predictive scheme
equals or exceeds the speculative scheme along both metrics,
but at substantially reduced processing costs. This is some-
what surprising, since the speculative encoder explicitly at-
tempts to optimize for distortion. This discrepancy occurs
because the predictive scheme has all potential values ofQ
at its disposal, while the speculative scheme only has a small
number available. If these values are chosen poorly, the spec-
ulative scheme cannot adapt over the full useful range ofQ.

The final and most surprising result is the disagreement
by the two metrics over the ranking of each scheme. The
YSNR results imply that it is never correct to use the con-
servative scheme and always encode at a quantization factor
of 30. However, at very low data rates, a user is quite likely
to disagree with this conclusion. Distortion is not the right
metric to use in comparing video quality if the goal is to de-
liver the best quality as measured by the human user. This is
because itunder-values the importance of smooth, frequent
motion in overall perceptual quality.

7 Conclusion

Providing interactive video on hand-held mobile devices is
an extremely difficult problem. There are a number of chal-
lenges inherent to the device, its wireless network, and the
application itself. While the system can control a number
of parameters to address these challenges, it must be struc-
tured carefully to avoid unnecessary complexity. Our sys-
tem,Fugue, is structured by separating adaptive capabilities
based on thetime scalesover which they are effective. This
leads to a three-controller design: transmission, video, and
preference.

Fugue’s three controllers have modest space and time re-
quirements compared to the basic task of video encoding.
Simulations show that Fugue’s transmission layer — a trun-
cated power, rate adaptive scheme — effectively controls bit
error rates and provides the abstraction of a more stable chan-
nel to higher-layer controllers. Experiments with Fugue’s
video controller show that, in situations where adaptation
is useful, it provides the best perceived quality of video at
the lowest computational cost. Furthermore, the traditional
metric used to evaluate compressed video, distortion, under-
values the contribution of motion to perceived video quality.
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These figures show a simulation comparison of seven different control schemes. Two different videos are compared under the
grade point and YSNR metrics.

Figure 12: Video Simulation Results
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[7] G. Côté, B. Erol, M. Gallant, and F. Kossentini.
H.263+: Video coding at low bit rates.IEEE Trans-
actions on Circuits and Systems for Video Technology,
8(7), 1998 1998.

[8] J. Flinn and M. Satyanarayanan. Energy-aware adapta-
tion for mobile applications. InProceedings of the 17th
ACM Symposium on Operating Systems and Principles,
Kiawah Island, SC, December1999.

12



[9] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir.
Adapting to network and client variability via on-
demand dynamic distillation. InProceedings of the
Seventh International ACM Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, Cambridge, MA, October 1996.

[10] A. J. Goldsmith. The capacity of downlink fading
channels with variable rate and power.IEEE Transac-
tions on Vehicular Technology, 46(3):569–580, August
1997.

[11] M. Gudmundson. Correlation model for shadow fad-
ing in mobile radio systems. Electronic Letters,
27(23):2145–6, November 1991.

[12] ITU-T Recommendation H.261. Video codec for au-
diovisual services at 64 kbit/s, March 1993.

[13] ITU-T Recommendation H.263. Video coding for low
bitrate communication, March 1996.

[14] C.-Y Hsu, A. Ortega, and M. Khansari. Rate control
for robust video transmission over burst-error wireless
channels.IEEE Journal on Selected Areas in Commu-
nications, 17(5):756–773, May 1999.

[15] ISO/IEC JTC1/SC29/WG11. Overview of the MPEG-4
standard. MPEG, International Standard, ISO N3342.

[16] R. H. Katz. Adaptation and mobility in wireless infor-
mation systems.IEEE Personal Communications, 1(1),
1994.

[17] R. H. Katz and E. A. Brewer. The case for wireless
overlay networks. InSPIE Multimedia and Networking
Conference, January 1996.

[18] S. W. Kim and Y. H. Lee. Combined rate and power
adaptation in DS/CDMA communications over Nak-
agami fading channels.IEEE Transactions on Com-
munications, 48(1):162–168, January 2000.

[19] H. Liu and M. El Zarki. Performance of H.263 video
transmission over wireless channels using hybrid ARQ.
IEEE Journal on Selected Areas in Communications,
15(9):1775–1786, December1997.

[20] M. Margaritidis and G.C. Polyzos. MobiWeb: En-
abling adaptive continuous media applications over
wireless links. InIEEE International Conference on
Third Generation Wireless Communications, Silicon
Valley, San Francisco, California, June 2000.

[21] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, and K. R. Walker. Agile application-
aware adaptation for mobility. InProceedings of the
Sixteenth ACM Symposium on Operating Systems Prin-
ciples, St. Malo, France, October 1997.

[22] T. S. Rappaport.Wireless Communications:Principles
and Practice. Upper Saddle River, New Jersey:Prentice
Hall, 1996.

[23] K. Rijkse. ITU standardization of very low bitrate
video coding algorithms.Signal Processing: Image
Communication, 7(4-6):553–65, November 1995.

[24] M. Satyanarayanan. Mobile information access.IEEE
Personal Communications, 3(1), February 1996.

[25] H. Song and C.-C Jay Kuo. H.263+ rate control via
variable frame rates and global bit allocation. InVi-
sual Communications and Image Processing ’98, pages
372–382, San Jose, CA, January 1998.

[26] A. A. Webster, C. T. Jones, M. H. Pinson, S. D. Voran,
and S. Wolf. An objective video quality assessment
system based on human perception. InHuman Vision,
Visual Processing, and Digital Display IV., pages 15–
26, San Jose, CA, February 1993.

[27] T. Wiegand, M. Lightstone, D. Mukherjeee, T. G.
Campbell, and S. K. Mitra. Rate-distortion optimized
mode selection for very low bit rate video coding and
the emerging H.263 standard.IEEE Transactions on
Circuits and Systems for Video Technology, 6(2):182–
190, April 1996.

[28] H. Yong, I. Ahmad, and M. L. Liou. Real-time interac-
tive MPEG-4 system encoder using a cluster of work-
stations.IEEE Transactions on Multimedia, 1(2):217–
33, June 1999.

Appendix: Power and Bit Duration

In a communications system, the ratio of energy per bit,Eb,
to noise power,N is

Eb

N
=

PT

NL
g(t); (8)

whereP is the power of the transmitted signal,T is the dura-
tion of a bit,N is the noise power,L is a factor that accounts
for all other constant gain factors2, andg(t) is the gain due
to fading;L is scaled so thatE[g(t)=L] = 1.

A pilot tone is sent by the mobile and the channel gain
is measured by the base station. This value is sent to the
mobile for power control. These measurements are delayed
by a round trip,�t. The best measurement of the current
fade state is this delayed measurement,g(t ��t).

If the bit energy-to-noise ratio of a bit is known then we
can find the probability of the bit being received incorrectly

2Including distance loss, antenna gain, and waveform roll-off.
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for different types of modulation. We have assumed DPSK,
so the probability of bit error is:

Pb

�
Eb

N

�
=

e(�
Eb
N

)

2
: (9)

If the system is to ensure a maximum BER,Pb;max, either
the power level must be adjusted to match the fade, or the
bit duration must be adjusted. The required instantaneous
transmitter power to maintain a maximum BER is obtained
from (8) and (9):

P 0(t) =
�NL ln(2Pb;max)

g(t��t)T
=

E(Pb;max)

g(t��t)T
; (10)

whereE(Pb;max) is the energy per bit needed to meet the
limit on the bit error rate.

If the required instantaneous power,P 0(t) exceeds some
maximum,Pmax then the instantaneous power is capped:

P (t) =

�
P 0(t) : P 0(t) � Pmax
Pmax : P 0(t) � Pmax:

(11)

BeyondPmax, we employ rate adaptation to limit the
BER. When the instantaneous power is set to its maximum
then the bit rate is reduced to maintain the BER. To do so, fix
P (t) = Pmax in (11) and combine with (10) to solve for T:

T (t) =

(
Tmin : P 0(t) � Pmax
�NL ln(2Pb;max)
g(t��t)Pmax

: P 0(t) � Pmax:
(12)

Rather than explicitly use a power as the truncation level,
we define a fading level at which the power is truncated:

E(Pb;max)

PmaxTmin
: (13)

The expectedP 0(t), with respect to the pdf of the fad-
ing, is equivalent to the average power. To solve for it,
we must find the probability density function (PDF) for the
channel fading state. We assume that the channel state is
determined by a combination of shadowing and Rayleigh-
distributed multi-path fading.

Let fR(R) be the well-known Rayleigh PDF with a mean
of one, not in dB:

fR(R) = Re
�R2

2 ; R � 0: (14)

Let s(t) denote the log normal shadowing process in dB
andfs(s) denote the PDF of the process:

fs(s) =
1p
2��2

e
�

s2

2�2s : (15)

Converting out of dB tofS (S):

fS(S) =
10

ln(10)

1

S
p

2��2s
e
�(10 log10(S))

2

2�2 : (16)

The overall fading in dB is the sum of the shadowing pro-
cess and the Rayleigh process:

g(t) = s(t) + r(t): (17)

We needfG(G), which is the product of the shadowing
and Rayleigh fading processes:

G(t) = S(t)R(t): (18)

SinceS(t) andR(t) are assumed to be stationary ergodic
processes, we combine (14), (16) and (18) to find the PDF of
G:

fG(G) =

Z
1

0

1

jY jfS
�
G

Y
jY j
�
fR(Y ) dY: (19)

With fG(G), we can now solve for the average power,
which isE(P 0(t)):

Pav =
E(Pb;max)

Tmin

Z
1

E(Pb;max)

PmaxTmin

fG(G)

G
dG+

Pmax

Z E(Pb;max)

PmaxTmin

0

fG(G) dG: (20)

With this equation, we can obtain the maximum power
limit for a given average power constraint. It is not possible
to analytically solve forPmax, but we can compute it numer-
ically.

Simulation Parameter Value
�s 6 dB
Pb;max (goal) 1E-5
NL 1.0517E-5
Tmin 3.1250E-5 s

Figure 13: Parameters for computing maximum power

The transmission controller also provides rate estimates to
the preference controller. We estimate the long-term average
rate of the channel as a function of the average transmitter
power:

Rav =
Pmax

E(Pb;max)

Z E(Pb;max)

Pmax

0
GfG(G) dG+

1

Tmin

Z
1

E(Pb;max)

Pmax

E(Pb;max)

PmaxTmin
fG(G) dG: (21)
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