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Abstract

Distributed systems are becoming increasingly dependent
onnetwork estimation, the ability to determine performance
along one or more network paths. Producing quality es-
timates is challenging because network observations are
noisy; this is particularly true in wide-area or mobile settings.
Current systems depend on simple exponentially weighted
moving average filters. These filters are either able to detect
true changes quickly or to mask transient changes, but can-
not do both. In this paper, we present four filters designed to
react quickly to persistent changes while tolerating transient
ones. These filters are evaluated in a variety of networking
scenarios through three metrics: agility, stability andaccu-
racy. While no single filter dominates, one based on tech-
niques fromstatistical process controlshows promise rela-
tive to the others.

1 Introduction

Many systems have come to depend on estimates of network
latency and bandwidth. Examples include adaptive multime-
dia systems, mobile applications, load-balancing, prefetch-
ing, and distributed query processing. These all require high-
quality estimates of network performance in order to provide
the best possible service.

Unfortunately, providing such estimates is difficult at
best. Network observations are noisy, particularly over wide-
area [1] or mobile [2] paths. Such networks also suffer
from persistent changes in performance due to vertical hand-
off [3], wireless fading [4], or routing changes [5]. Good
network estimators should ignore transient noise conditions,
but react quickly to persistent changes in performance. We
call the former propertystability, and the latteragility.

Typically, network estimators — in the form of exponen-
tially weighted moving average (EWMA) filters — provide
either of these properties, but not both. This is because they
are constructed with staticgain: the parameter that deter-
mines how aggressively an EWMA filter will track changing
observations. This gain biases the estimator either towards
past history — stability — or current observations — agility.

In this paper, we present the design and evaluation of four
filters that strive to be agile when possible and stable when

necessary. We first outline a simple model for observing net-
work behavior in Section 2. This model depends only on
passive observations made at the end hosts, and requires nei-
ther infrastructural support nor the active insertion of traffic
to test network quality.

Section 3 presents the candidate filters that yield estimates
of end-to-end latency and available bandwidth. Three of
them are based on EWMA filters, but use heuristics to vary
the gain, selecting for agility or stability as circumstances
warrant. The fourth is an application of the commonly-used
Kalman filter [6].

These filters are evaluated in Section 4. This evaluation
subjects the filters to various networking scenarios, and col-
lects three metrics for each. These measure the agility, sta-
bility, and accuracy of the filters. While no single filter is
superior on all counts, we find that theflip-flop filter, which
uses techniques from statistical process control [7], has some
attractive properties and no serious disadvantages.

2 Making Observations

A client estimates the latency and bandwidth between it and
a remote server by observing exchanges between the two.
The client makes these observations only with the cooper-
ation of the server; the intermediate infrastructure need not
be modified. Furthermore, we assume that these observa-
tions are entirely passive; the client injects no traffic specif-
ically for observing the network. This is particularly impor-
tant in mobile networks, which are subject to sudden de-
creases in quality. Using probe traffic to detect decreases
in performance only makes a bad situation worse. This sec-
tion describes how observations are made, and how one can
use them to infer instantaneous measurements of latency and
bandwidth.

Each observation comprises a single request-response pair
between a client and a server. This exchange is illustrated in
Fig. 1. The client measures the elapsed time between issu-
ing the request and receiving a response. The server returns,
in the response, the time spent between receiving the re-
quest and issuing the response: theservice time. This allows
clients to consider networking costs separately from server-
imposed delays. If the server does not report service time,
the client must assume it is negligible.
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Figure 1:Round Trip Time.

Using a simple, single-queue model, the networking costs
can be further decomposed into fixed, per packet costs and
variable costs that depend on the size of the packet. The for-
mer is the latency,lat, imposed on a packet, and the latter is
determined by the available bandwidth,bw along the path1.
Thus, the round trip time is:

rtt = (lat+
sreq
bw

) + service + (lat+
sres
bw

) (1)

wheresreq andsres are the sizes of the request and response,
respectively.

In order to separate latency and bandwidth, we must ob-
serve two separate request-response pairs between the client
and server. This produces a single set of observations, called
thespot values.

Networking costs of an individual packet vary based on
the underlying characteristics of the path as well as the queu-
ing delay it experiences. Such queueing delay can come from
two sources. The first is cross traffic along the networking
path taken by the packet. The second source stems from the
fact that the packet may queue up behind others that are part
of the same conversation. Since our goal is to measure the
overall performance that can be realized by a conversation,
we want to explicitlyaccount for the second source of queue-
ing delay, calledself-interference[1].

Fig. 2 illustrates the queueing delay caused by self inter-
ference. Messagemt arrives at the modeled queue at time
at, and departs the bottleneck queue atdt. The quantityqt
is the self-interference queueing delay thatmt experiences.
bwt�1 is the bandwidth estimation for the time betweent�2
andt � 1, generated att� 2.

1This is an oversimplification, since bandwidth constraints due to con-
gestion are felt only at packet granularity. We make this simplification to
avoid MTU discovery and the attendant complications.

at dt-1

timeqt
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Figure 2:Self-Interference Queueing Delay.

This delay,qt, can be written in recursive form:

qt = max

�
qt�1 +

st�1
bwt�1

� (at � at�1);

0

�
(2)

where size,s, is sum ofsreq andsres.
There are two situations where a pair of observations can-

not be used to generate spot values. The first is when the
total sizes of the two request-response packets are the same.
In this case, we hold the new spot value of either latency
or bandwidth to be the same as the previous spot value; we
choose the one that has been more stable recently. The sec-
ond case is when the two request-response pairs are subject
to substantially different networking conditions. In this case,
one of the computed spot values often is negative. We ignore
such observations. In the event of a less severe difference,
the spot values will be incorrect, and the filter must compen-
sate.

3 Filtering Observations

Typically, systems use EWMA filters to smooth noisy net-
work observations. Such filters take the form:

Et = �Et�1 + (1� �)Ot (3)

whereEt is the newly generated, smoothed estimate,Et�1

is the prior estimate, andOt is the current observation. The
term� is called thegain, and determines the filter’s reactiv-
ity. If the gain is large, old estimates will dominate and the
filter will be slow to change; such filters are biased towards
stability. TCP’s round trip time estimator is an example of
such a filter with a gain of 7/8 [8]. In contrast, filters with
low gain will tend to be agile. For example, the network es-
timator in Odyssey [9] uses filters with gains as low as 1/8 to
detect changes as quickly as possible.

Unfortunately, both of these static filters suffer from their
biases. The RTT estimator in TCP cannot track widely
varying performance adequately, resulting in retransmission
timeouts (RTOs) that are too aggressive. To compensate,
RTOs are increased by a factor that accounts for observed
variance. Odyssey suffers from the opposite problem. It
occasionally is fooled into tracking transient changes in
bandwidth and adapting too aggressively as a result. It is
left to applications to introduce hysteresis to filter transient
changes.
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In the remainder of this section, we present four filters de-
signed to ignore transient changes while quickly following
persistent ones. The first three are variants of the EWMA
filter that use heuristics to vary the filter’s gain based on
prevailing conditions. The fourth is an application of the
commonly-used Kalman filter.

3.1 Flip-Flop Filter

The first filter uses a controller to select between two EWMA
filters, one agile and the other stable. The underlying princi-
ple of this controller is to employ the agile filter when pos-
sible, but fall back to the stable filter when observations are
unusually noisy. It employs acontrol chart[7] to make this
decision.

Control charts are commonly used to provide statistical
process control in manufacturing applications. They plot the
sample mean,x, of a controlled quantity against the desired
population mean,�, over time. The plot includes twocontrol
limits, the upper control limit (UCL), and the lower control
limit (LCL). Usually, the control limits are defined to be��
3�x, where�x is the sample standard deviation; this is just
the population standard deviation over the square root of the
sample size. When a sample exceeds the control limits, the
process is judged to be out of control. This is called the3-
sigma rule[10].

We apply this idea to filter selection, but must make some
allowances for our domain. First, we do not know the true
latency and bandwidth at any point; this is needed to generate
a population mean. Second, those quantities are expected to
change over time. Control charts are primarily used only to
detect such shifts in mean, but we also want to recalibrate
our control to the new mean value. Finally, we do not know
the population standard deviation in advance, but need it to
establish the control limits.

To address these shortcomings, we periodically change the
center line and limits of the control chart and use themov-
ing rangeto approximate the standard deviation. The center
line is set to a moving average of the estimated value,x, to
account for mean shifts. The control limits use the moving
range as a substitute for the sample standard deviation. The
moving range, orMR, is the average of the difference be-
tween adjacent points,jxi � xi�1j. However, like the mean,
the true value ofMR may also change over time. Therefore,
we keep a moving average of it as well. The control limits
are then:

x� 3
MR

d2
(4)

whered2 estimates the standard deviation of a sample given
its range. When the range is from a sample of two, as it is
for MR, the value ofd2 is approximately 1.128 [7]. In the
process control literature, this type of control chart is called
theindividual-x chart[11].

As long as spot estimates fall within the 3-sigma limits, we
use an agile filter with gain 0.1. If the estimates fall outside
the limits, we adjust the center line and limits on demand,
and fall back to the stable filter with gain of 0.9. In other
words, when spot observations are unusually variable the fil-
ter dampens its estimates.

UCL

LCL

avg

Figure 3:Flip-Flop Filter Example

The behavior of the flip-flop filter is illustrated in Fig. 3.
The dashed lines show the value ofx over time, the dotted
lines show the control limits, and the solid line plots the es-
timate over time. During the shaded region, the controller
selects the stable filter; at other times, the agile filter is used.

3.2 Stability-Based Filter

Like the flip-flop filter, thestability-based filterdampens es-
timates in proportion to the variance of spot observations.
However, rather than using variance to select between static-
gain filters, we use a measure of the variance to dynamically
change the gain.

The goal of the stability filter is to dampen estimates when
the network exhibits unstable behavior. As instability in-
creases, so does gain. Our measure of this instability,U ,
is similar to the moving range,MR used in the flip flop fil-
ter. Rather than a simple moving average, we use a second
EWMA filter to compute instability:

Ut = �Ut�1 + (1� �)jxt � xt�1j (5)

where� is 0.6; this value was chosen empirically to mini-
mize estimation error under varying network performance.

We then set the gain to be:

�t =
Ut

Umax

(6)

whereUmax is the largest instability seen in the ten most
recent observations.

An example of the stability filter is shown in Fig. 4. The
dotted line shows the changing spot values, and the solid line
tracks estimated values. Notice that the filter is relatively
robust against large changes in performance, but tracks small
changes well.

3.3 Error-Based Filter

The error-based filtertakes a different approach from the
first two. Rather than vary gain based on the variance in
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Figure 5:Error Filter Example

network observations, this filter bases gain on the quality of
its estimates. When the error-based filter produces estimates
that match well with reality, these estimates are given more
weight through higher gain. When the filter does notaccu-
rately match observed values, we decrease its gain so that it
can converge more quickly.

The error at an individual observation is the difference be-
tween the past estimate and the current observation:jEt�1�
Otj. Rather than use raw values at each step, we filter these
errors through a secondary EWMA filter; it then plays a role
similar to that ofUt in the stability filter. Estimator error,�t

is:
�t = 
�t�1 + (1� 
)jEt�1 � Otj (7)

where
 is 0.6. This value was chosen empirically in the
same manner as�. We then set the gain of the error filter to
be:

�t = 1�
�t

�max

(8)

where�max is computed the same way asUmax.
An example of the error filter is shown in Fig. 5. The dot-

ted line shows the changing spot values, and the solid line
tracks the estimated value. In contrast to the stability fil-
ter, the error filter tracks large changes quickly, but is robust
against small fluctuations in performance.

3.4 Kalman Filter

The fourth and final filter we have explored is an application
of theKalman filter[6]. Kalman filters, if properly applied

to a linear system, areoptimal in that they minimize mean
squared estimation error. While an optimal Kalman filter
requires significant knowledge of the system — knowledge
that is not available when estimating network performance
— one can employ reasonable guesses that give a good re-
sult.

Kalman filters describe a system in terms ofstate space
notation. For our model, this is:

X(t + 1) = �(t)X(t) +W(t) (9)

whereX is the system state vector,� is a constant matrix
combining the state variables, andW is a matrix represent-
ing system noise. In order to apply a filter to the system state,
one must measure it:

Z(t) = H(t)X(t) +V(t) (10)

Here,Z is a matrix containing the measured state values,H

is a constant matrix combining the system state, andV is a
matrix representing measurement error.

Our filter estimates latency and bandwidth given round
trip time measurements; latency and bandwidth are the state
variables. Recall that the round trip time is proportional to
1=bw. Therefore, in order to make the system linear, we use
1=bw rather thanbw as the second state variable. So, the
system state vector is written as:

X =

�
x1
x2

�
=

�
lat
1

bw

�
(11)

The state equations are then written as:

x1(t+ 1) = x1(t) +w1(t) (12)

x2(t+ 1) = x2(t) +w2(t) (13)

wherew1 andw2 are the system noise in latency and band-
width, respectively. The measurement, RTT, is a scalar, so
Z is the scalarz, andV is the scalarv. Our network model
says thatrtt = 2lat + s=bw, so the measurement equation
is:

z(t) = 2x1(t) + s(t)x2(t) + v(t) (14)

wheres(t) is the sum of the sizes of the request and response
pair at timet.

Putting these together, we have the following matrices:

� =

�
1 0
0 1

�
(15)

W =

�
w1

w2

�
(16)

H =
�
2 s(t)

�
(17)

To apply a Kalman filter, the covariance matrices forW
andVmust be known. This is not generally available, so we
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assume that the noise in latency and bandwidth is indepen-
dent, making their products zero:

Q(t) =

�
w1

2 0
0 w2

2

�
(18)

R(t) = [v2] (19)

Here,Q andR are the covariance matrices forW andV,
respectively.

Intuitively, Q represents the system noise, the degree of
variability in latency and bandwidth. The termsw1 andw2

describes the degree to which one is more volatile than the
other. R describes the measurement uncertainty. If mea-
surements are uncertain, system state estimates should not
change drastically with individual measurements.

The real impact ofQ andR on the filter’s performance
is determined by the relative magnitudes of each. Unfortu-
nately, we do not know the relative variances in latency and
bandwidth, nor do we have an accurate picture of measure-
ment noise. Instead, we assume that the variances are the
same, and arbitrarily set them to 1. WithQ fixed, we then
empirically determineR to be[10], much as for� and
 in
the stability-based and error-based filters. The resulting ma-
trices are:

Q(t) =

�
1 0
0 1

�
(20)

R(t) = [10] (21)

4 Evaluating Filters

In evaluating the candidate filters, we set out to answer the
following questions:
� How agile are the filters in the face of idealized, persis-

tent changes in latency and bandwidth? How short can
those changes be and still be detectable?

� How stable are they in the face of idealized, transient
changes in latency and bandwidth? How long can those
changes be and still be tolerated?

� How do they behave in the face of more realistic net-
working conditions, including the presence of cross
traffic and mobile nodes?

To answer these questions, we subjected our filters to sev-
eral synthetic networks that varied latency, bandwidth, cross
traffic, or node topology over time. In order to generate such
idealized networking conditions, we used ns [12], a packet
level network simulator, with extensions for mobile, ad hoc
networking [13]. We further modified ns to implement links
whose performance can change over time according to a pro-
file we provide.

For each experiment, we generate a profile that specifies
the topology, link characteristics, traffic, and howeach of
these change over time. This gives us two important benefits.
First, since we know the objective state of the network, we

can precisely quantify the behavior of our estimator. Second,
these changes can be made arbitrarily taxing, stressing the
adaptive estimators.

We apply three metrics to the filters in each setting: agility,
stability, andaccuracy. We measure agility with the set-
tle time. Settle time is the time it takes a filter to generate
the first estimate within 10% of the nominal value after that
value changes. Lower settle times are better.

For stability, we report one of two metrics: coefficient of
variation (CV), or mean squared error (MSE). They are ap-
plied in different circumstances. CV — the ratio of standard
deviation to mean — is used during periods when the net-
work is assumed to be stable. Typically, such periods start
when a filter settles after a persistent change and end when
the next change occurs. Lower CV values are better.

The MSE metric is used to to quantify the degree to which
a filter follows a transient. Filters that follow the transient’s
full magnitude for a short duration are penalized more by
MSE than those that do not follow the full magnitude, but are
disturbed for a longer time. Lower MSE values are better.

To measure accuracy, we compare each filter’s average es-
timate to the true value. As with stability, we measureaccu-
racy only between the time a filter settles and the next per-
sistent change. We include the accuracy metric to identify
estimators that quickly converge and stabilize to an incorrect
value.

We compare our four filters — flip-fop (FF), stability-
based (SF), error-based (EF), and Kalman (KF) — to two
static-gain EWMA filters. The first is the agile filter used by
Odyssey (OF) with a gain of 1/8. The second is the stable
filter used in TCP to estimate RTT (TF) with a gain of 7/8.

4.1 Periodic Variations

In the first experiment, we subject each filter to two differ-
ent square waves, periodic, ideal variations. In the first, a
client and server are connected by a network that provides
a connection with constant latency, but bandwidth that in-
stantaneously changes between 1 Mb/s and 10 Mb/s every
10 seconds. The second square wave holds bandwidth con-
stant, and varies latency between 20 and 200 milliseconds
every 10 seconds. Our goal in this experiment is to testeach
filter’s agility; how long does it take each filter to recognize
a change in bandwidth or latency?

Since the filters rely only on passive measurements, their
agility depends heavily on the arrival rate of the underlying
network traffic. To explore this, our traffic generator uses
a Poisson process with means varying between 2.5 and 320
packets per 10 second period. Note that varying the mean
of the arrival process for a given square wave is the dual
of varying the period of the square wave for a given arrival
process. Each request packet is small, while each response
packet is randomly chosen to be either small (512 bytes) or
large (8KB) with equal probability; with this distribution, the
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fastest Poisson process will saturate the link when it is at low
bandwidth. Five trials of each experiment were taken with
differing random seeds.
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Figure 6:Agility: Settle Time under Varying Rates

Fig. 6 show the results averaged over the five trials for
each filter at each arrival rate. Fig. 6(a) shows results for
changing bandwidth, and Fig. 6(b) depicts the performance
over the latency square wave.

As expected, the stable filter used by TCP is the least ag-
ile of all. It cannot reliably detect latency changes below
8 packets per second, or bandwidth changes below 16 pps.
Surprisingly, the Odyssey filter is not the most agile. This is
because the other filters are able to select lower gains when
they are biased towards agility. The error-based filter is the
most agile with respect to bandwidth changes, followed by
the flip-flop, Kalman, and Odyssey filters as a group; the sta-
bility filter is far off. For latency, the results are similar.

4.2 Transient Changes

The second experiment gauges the filters’ resistance to short-
term drops in performance. As with the agility experiment,
we subject each filter to two different networks, one where
the bandwidth drops from 10 Mb/s to 1 Mb/s for a short time,

and the other where latency increases from 20 ms to 200 ms.
In order to fairly compare the filters, we must ensure that the
same number of packets experience each transient change.
So, unlike the agility experiments, we use a constant trans-
mission rate, and vary the length of the transient from 1 to
5 packets. The sizes of these packets are chosen as before;
since they are random, we perform five trials ateach length.
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Figure 7:Stability: Resistance to Transients

Fig. 7 reports the mean squared error for the filters at each
transient duration; Fig. 7(a) depicts the results for bandwidth
drops, and Fig. 7(b) shows results for latency changes. As
expected, the stable TCP filter is the most resistant to change.
The flip-flop filter, while more susceptible, is the second-best
performer for both latency and bandwidth. The Kalman fil-
ter is eager to follow bandwidth changes, while the stability
filter is the most sensitive to latency changes. The stability
filter also follows longer transients more aggressively than
shorter ones; as the transient’s duration increases, the stabil-
ity filter judges the new value to be stable, decreasing gain.

4.3 Congestion

The third experiment gauges the filters’ ability to react to
changing congestion along a network path. The network
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for this experiment contains six nodes, and is illustrated in
Fig. 8. In this topology, the client and server exchange pack-
ets with two different Poisson processes: one at 140 Kb/s and
the other at 1 Mb/s. Each trial lasts 100 seconds. During this
time, the congestion source periodically sends a constant bit
rate stream of 5 Mb/s to the congestion sink. There are two
periods of congestion,each 20 seconds long: the first starts
at 20 seconds and the second starts at 60 seconds. During
periods of congestion, the estimated bandwidth should be 5
Mb/s; otherwise, it should be 10 Mb/s.

client server

congestion source

congestion sink

router A

router B

Figure 8:Topology for Congestion Experiments

Fig. 9 presents the settle time, average estimate, and coef-
ficient of variation for the filters in each situation; the results
reflect five trials with different random seeds. The situations
are distinguished by whether the client-server traffic has a
high or low rate, and whether or not there is congestion. For
example, the result forLow/Yesare for experiments with 140
Kb/s client-server traffic in the presence of the 5 Mb/s con-
gestion stream. We exclude results from the first period to
avoid startup transients.

Fig. 9(a) shows the average time each filter needs to settle
within 10% of the expected value. The TCP filter is clearly
the least agile of any of the filters. The TCP filter is never
able to converge when there is congestion interfering with
low-rate traffic, and often did not settle in other situations
with congestion. Since all of our measurements use the settle
time in some way, we report no results for the TCP filter
under low traffic with congestion.

The stability filter performs poorly compared to the oth-
ers in all but the most favorable conditions: high client-
server traffic with no congestion. In the worst set of cir-
cumstances — low client-server traffic with congestion —
the error-based and Kalman filters hold an advantage over
the flip-flop and Odyssey filters. In all other cases the four
are roughly equal.

Fig. 9(b) depicts the average estimate produced by each
filter between the settle time and the next transition. All of
the filters perform similarly; however, none of them are very
accurate in detecting bandwidth during congestion; average
estimates range between 6.3 and 6.8 Mb/s. To see why, con-
sider how the client-server traffic interacts with the conges-
tion traffic. In order to detect the influence congestion has on
observed traffic, observed packets must be delayed by con-
gestion packets. Unfortunately, whether or not this occurs is
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Figure 9:Filter Performance under Changing Congestion

at the discretion of the router. In particular, in a router with
FCFS forwarding, congestion will not perturb observed traf-
fic if the observed traffic arrives closely spaced without in-
tervening congestion packets. So, the client-server traffic is
able to observe the congestion traffic only some of the time.

The fact that observed traffic is not always perturbed by
congestion also has unfortunate implications for filter stabil-
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Figure 10:Stability over Real Networks

ity, as shown in Fig. 9(c). While the TCP filter shows modest
variation in situations when it is able to settle, the other filters
are all noisy. The stability filter offers the next best perfor-
mance, followed by the flip-fop filter. The error-based filter
exhibits the worst stability of the adaptive filters. Note that
the TCP filter yields the highest coefficient of variation under
low client-server traffic with no congestion. This is an arti-
fact of long settle times; the filter does not have enough time
to converge, and its gentle rise is mistaken for instability.

4.4 Stability over Real Networks

To gauge whether low stability is endemic to these filters in
the presence of other traffic, we subjected them to two dif-
ferent, real-world networking scenarios. In them, a dummy
client and server exchanged ICMP ECHO request and re-
sponse packets, where the requests and responses wereeach
either 512 bytes or 8 KB with equal probability. These re-
quests were generated by a Poisson process with an average
rate of one packet per second. We took measurements be-
tween one client and two servers. One server was in the same
subnet, and the other was located twelve hops and roughly
100 ms away. We repeated this for five trials to each server;
each trial was 200 seconds long. The raw RTT observations
from each trial were recorded, and each filter was subjected
to precisely the same set of observations.

Since we did not know the amount of cross traffic or —
in the case of the distant server — the congestion-free band-
width, we cannot present results foraccuracy or settle time.
Furthermore, without settle time, we cannot measure stabil-
ity in the same way as for other experiments. Instead, we
ignore the first half ofeach trial, and report results only for
the last half. As expected, the filters produced similar aver-
age bandwidths to each server: 9.3 Mb/s to the local server
and 5.8 Mb/s to the remote host.

The stability results for this experiment are shown in
Fig. 10. These numbers should be taken with a grain of salt,
as we do not know that the underlying conditions during this

server node A node B

client
stage 4stage 5

stage 3

stage 2stage 1

Figure 11:Topology of Mobile Experiment

time were in fact stable. Thus, these numbers may slightly
understate the case.

The stability for all filters is much better when observing
traffic from the local server than from the remote one. This is
most likely due to the larger number of hops combined with
the greater likelihood of encountering cross traffic to the lat-
ter. As expected, the TCP filter is very stable across wide-
area observations, but the flip-flop and stability filter also
perform reasonably well compared to their peers. In fact,
flip-flop is somewhat more stable over real networks than in
the artificial environment of Fig. 9. We suspect that the more
bursty congestion in real networks prevents the control lim-
its from growing as large. All of the filters are comparable in
the local-area case.

4.5 Mobility

The final experiment explores how our filters react to chang-
ing topologies in mobile, ad hoc networks. We take full ad-
vantage of the Monarch extensions [13] to ns, which include
near/far propagation models, packet capture, and the com-
plete IEEE 802.11 MAC implementation [14]. The 802.11
MAC layer incorporates collision avoidance and link-level
acknowledgement with retransmission.

In this experiment, we simulate the topology shown in
Fig. 11. In it, three wireless nodes — one of them a server
— are arranged in a line. The client moves from the server’s
neighborhood to the vicinity of the far node, and then back.
The client completes this circuit in five minutes; we use
handoff times as the breakpoints between stages. During
stage 1, the node can talk directly to the server; at stage 2,
it must go through node A to reach the server. The traffic
rate was Poisson, with an average of four packets per sec-
ond; request packets were small and response packets were
512 bytes or 8 KB with equal probability. We took five trials
for each filter.

Even in this simple topology, there are interesting effects.
First, the effective bandwidth changes as the client moves
through the stages because allnodes share the same physical
channel. Thus, while the bandwidth of the physical device
is 2 Mb/s, the effective bandwidth between client and server
is divided by two when routed through node A, and by three
through node B.

Nominal latencies between client and server are 1.15 ms
directly, 2.5 ms through node A, and 4 ms through node B.
However, the wireless MAC protocol allows collisions even
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when the client and server communicate directly; the rate of
collisions goes up with hop count. This leads to substan-
tial variability in RTT observations, increased noise in all of
the estimators, a higher average latency, and lower average
bandwidth.
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Figure 12:Filter Performance in Mobile Environment

The results for bandwidth estimation are shown in
Fig. 12(a)–12(c). For brevity, we omit the latency results,
where the relative performance of the filters is similar. How-
ever, because retransmissions have a much bigger effect on
latency than on bandwidth, the latency estimators are signif-
icantly noisier, yield a wider spread in estimated values, and
take longer to settle. Given the presence of link-level retrans-
missions, these differences may be reasonable.

As shown in Fig. 12(a), all of the filters except for TCP
settle reasonably well, though the error-based and Kalman
filters hold a slight advantage. Interestingly, the stability-
based filter settles rather quickly in this environment, but
was not particularly agile in the congestion experiments.
This is because each individual stage in the mobility experi-
ments is relatively free of noise, allowing the stability filter to
quickly decrease its gain after handoff. In contrast, the un-
certain interference provided by congestion traffic prevents
the stability-based filter from quickly detecting the change.

All of the adaptive filters are reasonably accurate. All of
the filters except for Odyssey and error-based show compa-
rable stability, though the flip-flop filter has a slight advan-
tage in the worst situation: stage three, where collisions and
link-level retransmissions are most frequent. This is in con-
trast to the congestion experiments, where the stability-based
filter held an advantage. The infrequent retransmissions in
the mobile experiment lie outside the flip-flop control limits,
and they are incorporated with the stable filter. However, in
the congestion case, noise is regularly present; this tends to
widen the flip-flop control limits.

4.6 Summary and Discussion

Unfortunately, none of the filters is a clear winner in all sit-
uations. However, all filters except flip-flop can be ruled
out by extremely poor performance in one or more cases.
The stability-based filter is especially resistant to transient
changes. While it can track persistent changes reasonably
well in the absence of noise, noisy observations force it to-
wards stability. This prevents the stability filter from track-
ing true changes, as shown in Fig. 9. The error-based filter is
especially agile, but it is far too susceptible to noise.

The Kalman filter’s main drawback is its willingness to
follow transient bandwidth changes — both in the synthetic
network of Fig. 7 and the real networks depicted in Fig. 10.
This could be due to a poorly-tunedQ, since the relative
variances were chosen arbitrarily. While it seems plausible
that one could tune the Kalman filter for particular scenarios,
it is doubtful that it could be tuned to handle all situations
well. This is becauseQ fixes the relative variance of latency
and bandwidth, but they are likely to change at different rates
as circumstances change.

The flip-flop filter, in contrast, only suffers during peri-
ods of excessive noise, but no filter other than the overly-
conservative TCP performs well in that situation. While it is
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rarely the best performer, it handles bad cases relatively well.
We conclude from these observations that the flip-flop filter
is the best choice for good network performance estimates.
We expect that the control limits in the flip-flop filter can
be refined through a more sophisticated set of control rules.
For example, by differentiating between noise — situations
where individual observations fall both above and below the
mean — and shifts in the observed mean, the flip-flop filter
can reduce its instability under congestion. Exploring these
sensitizing rules for control charts[7] remains an area of im-
portant future work.

5 Related Work

The work most closely related to our own is Keshav’s
work on flow control [15]. He proposed thepacket pair
technique: the use of two closely spaced packets to elicit
self-interference queueing delay and hence bottleneck band-
width. Keshav discussed the use of Kalman filters for
network estimation, but rejected them because toolittle is
known about the network state space. Instead, he employed
a fuzzy logic estimator based on the same heuristic used by
our error-based filter, but with an added mechanism to resist
transient spikes. This mechanism would be helpful in the
mobile networking environment, but not in the presence of
congestion-induced noise. In fact, this estimator was explic-
itly designed forrate-allocation serversthat are less severely
affected by cross traffic noise. Unfortunately, the current in-
frastructure is based on FCFS routers; a domain this work
explicitly excludes.

There have been several approaches to estimating net-
work performance through active probing. For example,
Bolot [16] uses pairs of UDP packets to explore network
state, but requires substantial amounts of bandwidth to do
so. Downey’s application ofpathchar [17] uses ICMP
packets with varying time-to-live fields, but also suffers from
heavy bandwidth consumption. Carter and Crovella present
tools to measure bottleneck and available bandwidth [18].
These tools rely on bursts of ICMP packets, sent in several
phases; they assume that network conditions do not change
during this process, limiting the granularity of changes that
they can detect.

Several variations on packet pair improve its ability to gen-
erate spot observations of network performance. Paxson [1]
presents receiver-based packet pair, which takes observations
at the receiver that incorporate timing information from the
sender for more accurate measurements. Lai [19] presents
a further refinement, called receiver only packet pair. It de-
pends only on timing information taken at the receiver and
incorporates a mechanism calledpacket windowsthat in-
creases the agility of measurements, but leaves them suscep-
tible to transient noise. Lai’s subsequent work develops a
more sophisticated network model [20] that generatesaccu-

rate spot measurements. He focuses on determining bottle-
neck bandwidth along a path — ignoring cross traffic — by
determining the minimum delay along that path. However,
our filters could be used with this model to determine avail-
able bandwidth.

Finally, Balakrishnan’s congestion manager [21] allows
multiple conversations — including those of protocols that
normally do not provide congestion control — to effectively
share bandwidth. It is based on an underlying layer that dis-
covers network characteristics using a traditional EWMA fil-
ter. We believe that the filters presented here can be used in
this system to improve the agility of applications without un-
duly sacrificing stability.

6 Conclusion

Good-quality estimates of network performance are indis-
pensable for a number of applications. Most systems use
simple, exponentially weighted moving average filters to
provide estimates. Unfortunately these filters are either too
stable or too agile, depending on their gain.

To address this problem, we present four candidate filters,
each of which strives to determine whether it should be ag-
gressive or conservative in following changing observations.
The flip-flop filter applies techniques from statistical process
control to select between an agile EWMA filter and a stable
one. The stability-based and error-based filters use heuristics
to dynamically set the gain on an EWMA filter; the former
increases gain when network observations are stable and the
latter increases gain in response to inaccurate estimates. The
fourth filter is a practical application of the commonly-used
Kalman filter.

Each of these filters is subjected to a variety of idealized
and realistic networking conditions to evaluate their efficacy.
There are three metrics by which these filters are compared:
agility, stability, andaccuracy. Common to all of these met-
rics is the notion of settle time, the time required for a filter
to produce an estimate within 10% of the true value. None
of the candidate filters dominates in all circumstances. How-
ever, the flip-flop filter has some attractive properties with
no serious drawbacks, and may be amenable to further re-
finement. With these improvements, the flip-flop filter can
be used in a variety of adaptive systems to improve their per-
formance.
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