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Abstract necessary. We first outline a simple model for observing net-
work behavior in Section 2. This model depends only on

Distributed systems are becoming increasingly dependentpassive observations made at the end hosts, and requires nei-

onnetwork estimatioythe ability to determine performance  ther infrastructural support nor the active insertion of traffic

along one or more network paths. Producing quality es- to test network quality.

timates is challenging because network observations are Section 3 presents the candidate filters that yield estimates

noisy; thisis particularly true in wide-area or mobile settings. of end-to-end latency and available bandwidth. Three of

Current systems depend on simple exponentially weightedthem are based on EWMA filters, but use heuristics to vary

moving average filters. These filters are either able to detectthe gain, selecting for agility or stability as circumstances

true changes quickly or to mask transient changes, but can-warrant. The fourth is an application of the commonly-used

not do both. In this paper, we present four filters designed to Kalman filter [6].

react quickly to persistent changes while tolerating transient  These filters are evaluated in Section 4. This evaluation

ones. These filters are evaluated in a variety of networking subjects the filters to various networking scenarios, and col-

scenarios through three metrics: agility, stability amtu- lects three metrics for each. These measure thyagta-

racy. While no single filter dominates, one based on tech- bility, and accuracy of the filters. While no single filter is

niques fromstatistical process contr@hows promise rela-  superior on all counts, we find that tHap-flop filter, which

tive to the others. uses techniques from statistical process control [7], has some
attractive properties and no serious disadvantages.

1 Introduction _ _
2 Making Observations

Many systems have come to depend on estimates of network

latency and bandwidth. Examples include adaptive multime- A client estimates the latency and bandwidth between it and
dia systems, mobile applications, load-balancing, prefetch-a remote server by observing exchanges between the two.
ing, and distributed query processing. These all require high-The client makes these observations only with the cooper-
quality estimates of network performance in order to provide ation of the server; the intermediate infrastructure need not
the best possible service. be modified. Furthermore, we assume that these observa-

Unfortunately, providing such estimates is difficult at tions are entirely passive; the client injects no traffic specif-
best. Network observations are noisy, particularly over wide- ically for observing the network. This is particularly impor-
area [1] or mobile [2] paths. Such networks also suffer tant in mobile networks, which are subject to sudden de-
from persistent changes in performance due to vertical hand-creases in quality. Using probe traffic to detect decreases
off [3], wireless fading [4], or routing changes [5]. Good in performance only makes a bad situation worse. This sec-
network estimators should ignore transient noise conditions, tion describes how observations are made, and how one can
but react quickly to persistent changes in performance. We use them to infer instantaneous measurements of latency and
call the former propertgtability, and the latteagility. bandwidth.

Typically, network estimators — in the form of exponen- Each observation comprises a single request-response pair
tially weighted moving average (EWMA) filters — provide between a client and a server. This exchange is illustrated in
either of these properties, but not both. This is because theyFig. 1. The client measures the elapsed time between issu-
are constructed with statigain: the parameter that deter- ingthe request and receiving apesise. The server returns,
mines how aggressively an EWMA filter will track changing in the response, the time spent betweeneiving the re-
observations. This gain biases the estimator either towardsguest and issuing the response: ¢kevice timeThis allows
past history — stability — or current observations — agility. clients to consider networking costs separately from server-

In this paper, we present the design and evaluation of fourimposed delays. If the server does not report service time,
filters that strive to be agile when possible and stable whenthe client must assume it is negligible.



Figure 1:Round Trip Time.
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Figure 2:Self-Interference Queueing Delay.

This delayg¢, can be written in recursive form:
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where sizes, is sum ofs,., ands;.,.

There are two situations where a pair of observations can-
not be used to generate spot values. The first is when the
total sizes of the two request-response packets are the same.
In this case, we hold the new spot value of either latency
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Using a simple, single-queue model, the networking costs or bandwidth to be the same as the previous spot value; we
can be further decomposed into fixed, per packet costs andchoose the one that has been more stasdently. The sec-
variable costs that depend on the size of the paCket. The for'ond case is when the two request-response pairs are Subject

mer is the latencyat, imposed on a packet, and the latter is
determined by the available bandwiddly along the path
Thus, the round trip time is:
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wheres, ., ands,., are the sizes of the request and response,

respectively.

In order to separate latency and bandwidth, we must ob-

to substantially different networking conditions. In this case,
one of the computed spot values often is negative. We ignore
such observations. In the event of a less severe difference,
the spot values will be incorrect, and the filter must compen-
sate.

3 Filtering Observations

Typically, systems use EWMA filters to smooth noisy net-

serve two separate request-response pairs between the clieffOrk observations. Such filters take the form:

and server. This produces a single set of observations, called

thespot values
Networking costs of an individual packet vary based on

Et = aEt_]_ + (]. - a)Ot (3)

where E; is the newly generated, smoothed estimdtg,

the underlying characteristics of the path as well as the queu-is the prior estimate, an@; is the current observation. The
ing delay it experiences. Such gueueing delay can come fromterme: is called thegain, and determines the filter’s reactiv-

two sources. The first is cross traffic along the networking

ity. If the gain is large, old estimates will dominate and the

path taken by the packet. The second source stems from thdilter will be slow to change; such filters are biased towards
fact that the packet may queue up behind others that are parstability. TCP’s round trip time estimator is an example of
of the same conversation. Since our goal is to measure thesuch a filter with a gain of 7/8 [8]. In contrast, filters with

overall performance that can be realized by a conversation,

we want to explicitlyaccount for the second source of queue-
ing delay, calledself-interferencél].

Fig. 2 illustrates the queueing delay caused by self inter-
ference. Message:; arrives at the modeled queue at time
a¢, and departs the bottleneck queualat The quantityy,
is the self-interference queueing delay that experiences.
bw;_1 is the bandwidth estimation for the time between2
and¢ — 1, generated at— 2.

1This is an oversimplification, since bandwidth constraints due to con-
gestion are felt only at packet granularity. We make this simplification to
avoid MTU discovery and the attendant complications.

low gain will tend to be agile. For example, the network es-
timator in Odyssey [9] uses filters with gains as low as 1/8 to
detect changes as quickly as possible.

Unfortunately, both of these static filters suffer from their
biases. The RTT estimator in TCP cannot track widely
varying performance adequately, resulting in retransmission
timeouts (RTOs) that are too aggressive. To compensate,
RTOs are increased by a factor that accounts for observed
variance. Odyssey suffers from the opposite problem. It
occasionally is fooled into tracking transient changes in
bandwidth and adapting too aggressively as a result. It is
left to applications to introduce hysteresis to filter transient
changes.



In the remainder of this section, we present four filters de-  Aslong as spot estimates fall within the 3-sigma limits, we
signed to ignore transient changes while quickly following use an agile filter with gain 0.1. If the estimates fall outside
persistent ones. The first three are variants of the EWMA the limits, we adjust the center line and limits on demand,
filter that use heuristics to vary the filter's gain based on and fall back to the stable filter with gain of 0.9. In other
prevailing conditions. The fourth is an application of the words, when spot observations are unusually variable the fil-

commonly-used Kalman filter. ter dampens its estimates.

3.1 Flip-Flop Filter ucL
The first filter uses a controller to select between two EWMA N\_ v
filters, one agile and the other stable. The underlying princi- A AN _/_ — LCL
ple of this controller is to employ the agile filter when pos- B —7 7 V...

sible, but fall back to the stable filter when observations are

unusually noisy. It employs eontrol chart[7] to make this
decision.

Control charts are commonly used to provide statistical
process control in manufacturing applications. They plot the
sample mearng, of a controlled quantity against the desired
population mearny, over time. The plotincludes twapntrol
limits, the upper control limit (UCL), and the lower control
limit (LCL). Usually, the control limits are defined to het
30z, whereoz is the sample standard deviation; this is just . .
the population standard deviation over the square root of the3-2 ~ Stability-Based Filter
sample size. When a sample exceeds the control limits, the ;1o the flip-flop filter, thestability-

process is judged to be out of control. This is called3he  (imates in proportion to the variance of spot observations.

sigma ruIe[lO]: _ _ _ However, rather than using variance to select between static-
We apply this idea to filter selection, but must make some gajn filters, we use a measure of the variance to dynamically

allowances for our domain. First, we do not know the true change the gain.

latency and bandwidth at any point; thisis needed to generate  he goal of the stability filter is to dampen estimates when

a population mean. Second, those quantities are expected tghe network exhibits unstable behavior. As instability in-

change over time. Control charts are primarily used only to ¢reases, so does gain. Our measure of this instability,

detect such shifts in mean, but we also want to recalibrate js similar to the moving rangé R used in the flip flop fil-

our control to the new mean value. Finally, we do not know (er Rather than a simple moving average, we use a second

the population standard deviation in advance, but need it to gywa filter to compute instability:

establish the control limits.

Figure 3:Flip-Flop Filter Example

The behavior of the flip-flop filter is illustrated in Fig. 3.
The dashed lines show the valuembver time, the dotted
lines show the control limits, and the solid line plots the es-
timate over time. During the shaded region, the controller
selects the stable filter; at other times, the agile filter is used.

based filtedampens es-

To address these shortcomings, we periodically change the U = BU_1+ (1 - B)|zs — -] (5)
center line and limits of the control chart and use mhev- whereg is 0.6; this value was chosen empirically to mini-
ing rangeto approximate the standard deviation. The center mize estimation error under varying network performance.
line is set to a moving average of the estimated vafj¢p We then set the gain to be:
account for mean shifts. The control limits use the moving U
range as a substitute for the sample standard deviation. The o = — (6)

moving range, oM R, is the average of the difference be- . _Um‘” - _
tween adjacent point&i — fCi—1|- However, like the mean, WhereUmaz is the |al’gest |nstab|l|ty seen in the ten most
the true value o R may also change over time. Therefore, recentobservations. o

we keep a moving average of it as well. The control limits An example of the stability filter is shown in Fig. 4. The

are then: dotted line shows the changing spot values, and the solid line
MR tracks estimated values. Notice that the filter is relatively
T+ 3d— (4) robust against large changes in performance, but tracks small
2 changes well.

whered, estimates the standard deviation of a sample given
its range. When the range is from a sample of two, as it is 33 E :
, . . rror-Based Filter
for M R, the value ofd; is approximately 1.128 [7]. In the
process control literature, this type of control chart is called The error-based filtertakes a different approach from the
theindividual-x chart[11]. first two. Rather than vary gain based on the variance in



to a linear system, areptimalin that they minimize mean
squared estimation error. While an optimal Kalman filter
requires significant knowledge of the system — knowledge
that is not available when estimating network performance
— one can employ reasonable guesses that give a good re-
sult.

Kalman filters describe a system in termsstédite space
notation For our model, this is:

—— estimate i

X(t+1) = 3(1)X(t) + W(2) 9)

Figure 4:Stability Filter Example whereX is the system state vectdd, is a constant matrix
combining the state variables, aN¥ is a matrix represent-
ing system noise. In order to apply a filter to the system state,
one must measure it:

Z(t) = H(t)X(¢) + V(¢) (10)

Here,Z is a matrix containing the measured state val@Es,

. is a constant matrix combining the system state, ¥nd a

e EEAN I matrix representing measurement error.

o Our filter estimates latency and bandwidth given round
- trip time measurements; latency and bandwidth are the state

Figure 5:Error Filter Example variables. Recall that theund trip time is proportional to

1/bw. Therefore, in order to make the system linear, we use

network observations, this filter bases gain on the quality of 1/bw rather tharbw as the second state variable. So, the

its estimates. When the error-based filter produces estimatesyystem state vector is written as:

that match well with reality, these estimates are given more

weight through higher gain. When the filter does aotu- X — [ T ] _ [ lclzt ] (11)

—— estimate

rately match observed values, we decrease its gain so that it T2
can converge more quickly.

The error at an individual observation is the difference be- The state equations are then written as:
tween the past estimate and the current observatigyn; —
O;|. Rather than use raw values at each step, we filter these zi(t+1) = zat) +wi(t) (12)
errors through a secondary EWMA filter; it then plays a role 2t +1) = za(t) +walt) (13)

similar to that of/; in the stability filter. Estimator erroty, o
is: wherew; andw, are the system noise in latency and band-

Ap=7A¢—1+ (1= 7)|Ei1— O ) width, respectively. The measurement, RTT, is a scalar, so
. . N _ Z is the scalae, andV is the scalaw. Our network model
where~ is 0.6. This value was chosen empirically in the says thattt = 2lat + s/bw, so the measurement equation
same manner 3. We then set the gain of the error filter to  jg:
be: A, 2(t) = 221 (t) + s(t)z2(t) + v(t) (14)
=1- 8 . .
ot Anmaz (8) wheres(t) is the sum of the sizes of the request and response

whereA .., is computed the same way &5,qz . pair at timet. _ _
An example of the error filter is shown in Fig. 5. The dot- Putting these together, we have the following matrices:

bw

ted line shows the changing spot values, and the solid line 1 0

tracks the estimated value. In contrast to the stability fil- ® = [ 0 1 ] (15)

ter, the error filter tracks large changes quickly, but is robust

against small fluctuations in performance. W - [ Zl ] (16)
2

3.4 Kalman Filter H = [2 s(t)] (17)

The fourth and final filter we have explored is an application ~ To apply a Kalman filter, the covariance matrices Wr
of the Kalman filter[6]. Kalman filters, if properly applied  andV must be known. This is not generally available, so we



assume that the noise in latency and bandwidth is indepen-can precisely quantify the behavior of our estimator. Second,

dent, making their products zero: these changes can be made arbitrarily taxing, stressing the
) adaptive estimators.
Q(t) = [ “’01 02 ] (18) We apply three metrics to the filters in eacltisgy: agility,
w2 stability, andaccuracy. We measure ility with the set-
R(t) = [v7] (19) tle time. Settle time is the time it takes a filter to generate
the first estimate within 10% of the nominal value after that
Here,Q andR are the covariance matrices f#% andV, value changes. Lower settle times are better.
respectively. For stability, we report one of two metrics: coefficient of
Intuitively, Q represents the system noise, the degree of yariation (CV), or mean squared error (MSE). They are ap-
variability in latency and bandwidth. The terms andw: plied in different circumstances. CV — the ratio of standard

describes the degree to which one is more volatile than thegeviation to mean — is used during periods when the net-

other. R describes the measurement uncertainty. If mea- \work is assumed to be stable. Typically, such periods start
surements are uncertain, system state estimates should nQhen a filter settles after a persistent change and end when
change drastically with individual measurements. the next change occurs. Lower CV values are better.

The real impact 0fQ andR on the filter's performance The MSE metric is used to to quantify the degree to which
is determined by the relative magnitudes of each. Unfortu- 3 filter follows a transient. Filters that follow the transient’s
nately, we do not know the relative variances in latency and )| magnitude for a short duration are penalized more by
bandwidth, nor do we have an accurate picture of measure-\|SE than those that do not follow the full magnitude, but are
ment noise. Instead, we assume that the variances are thgjsturbed for a longer time. Lower MSE values are better.
same, and arbitrarily set them to 1. Withfixed, we then To measure accuracy, we compare each filter's average es-
empirically determineR to be[10], much as fo3 andy in timate to the true value. As with stability, we measaoeu-
the stability-based and error-based filters. The resulting ma- racy only between the time a filter settles and the next per-

trices are: sistent change. We include the accuracy metric to identify
1 0 estimators that quickly converge and stabilize to an incorrect
Q) = [ 0 1 ] (20) value.
R(t) = [10] 21) We compare our four filters — flip-fop (FF), stability-

based (SF), error-based (EF), and Kalman (KF) — to two

static-gain EWMA filters. The first is the agile filter used by

4 Evaluating Filters Odyssey (OF) with a gain of 1/8. The second is the stable
filter used in TCP to estimate RTT (TF) with a gain of 7/8.

In evaluating the candidate filters, we set out to answer the
following questions: o 4.1 Periodic Variations
e How agile are the filters in the face of idealized, persis-
tent changes in latency and bandwidth? How short can In the first experiment, we subject each filter to two differ-
those changes be and still be detectable? ent square wavesperiodic, ideal variations. In the first, a
e How stable are they in the face of idealized, transient client and server are connected by a network that provides
changes in latency and bandwidth? How long can those a connection with constant latency, but bandwidth that in-
changes be and still be tolerated? stantaneously changes between 1 Mb/s and 10 Mb/s every
e How do they behave in the face of more realistic net- 10 seconds. The second square wave holds bandwidth con-
working conditions, including the presence of cross stant, and varies latency between 20 and 200 milliseconds
traffic and mobile nodes? every 10 seconds. Our goal in this experiment is togash
To answer these questions, we subjected our filters to sev-ilter’s agility; how long does it take each filter to mize
eral synthetic networks that varied latency, bandwidth, cross a change in bandwidth or latency?
traffic, or node topology over time. In order to generate such  Since the filters rely only on passive measurements, their
idealized networking conditions, we used ns [12], a packet agility depends heavily on the arrival rate of the underlying
level network simulator, with extensions for mobile, ad hoc network traffic. To explore this, our traffic generator uses
networking [13]. We further modified ns to implement links a Poisson process with means varying between 2.5 and 320
whose performance can change over time according to a propackets per 10 second period. Note that varying the mean
file we provide. of the arrival process for a given square wave is the dual
For each experiment, we generate a profile that specifiesof varying the period of the square wave for a given arrival
the topology, link characteristics, traffic, and haach of process. Each request packet is small, while eagbtorese
these change over time. This gives us two important benefits.packet is randomly chosen to be either small (512 bytes) or
First, since we know the objective state of the network, we large (8KB) with equal probability; with this distribution, the



fastest Poisson process will saturate the link when it is at low and the other where latency increases from 20 ms to 200 ms.
bandwidth. Five trials of each experiment were taken with In order to fairly compare the filters, we must ensure that the

differing random seeds. same number of packets experience each transient change.
So, unlike the agility experiments, we use a constant trans-
o ‘ 1 ‘ ‘ ‘ ‘ mission rate, and vary the length of the transient from 1 to

5 packets. The sizes of these packets are chosen as before;
since they are random, we perform five trialgath length.
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Figure 6:Agility: Settle Time under Varying Rates

. . . Nurmber of packets
Fig. 6 show the results averaged over the five trials for

each filter at each arrival rate. Fig. 6(a) shows results for
changing bandwidth, and Fig. 6(b) depicts the performance
over the latency square wave.

As expected, the stable filter used by TCP is the least ag- Fig. 7 reports the mean squared error for the filters at each
ile of all. It cannot reliably detect latency changes below transient duration; Fig. 7(a) depicts the results for bandwidth
8 packets per second, or bandwidth changes below 16 ppsdrops, and Fig. 7(b) shows results for latency changes. As
Surprisingly, the Odyssey filter is not the most agile. This is expected, the stable TCP filter is the most resistant to change.
because the other filters are able to select lower gains whenThe flip-flop filter, while more susceptible, is the second-best
they are biased towards agility. The error-based filter is the performer for both latency and bandwidth. The Kalman fil-
most agile with respect to bandwidth changes, followed by ter is eager to follow bandwidth changes, while the stability
the flip-flop, Kalman, and Odyssey filters as a group; the sta- filter is the most sensitive to latency changes. The stability
bility filter is far off. For latency, the results are similar. filter also follows longer transients more aggressively than
shorter ones; as the transient’s duration increases, the stabil-
ity filter judges the new value to be stable, decreasing gain.

(b) latency
Figure 7:Stability: Resistance to Transients

4.2 Transient Changes

The second experiment gauges the filters’ resistance to short—4_3 Congestion

term drops in performance. As with the agility experiment,

we subject each filter to two different networks, one where The third experiment gauges the filters’ ability teact to
the bandwidth drops from 10 Mb/s to 1 Mb/s for a shorttime, changing congestion along a network path. The network



for this experiment contains six nodes, and is illustrated in 12 -
Fig. 8. In this topology, the client and server exchange pack-
ets with two different Poisson processes: one at 140 Kb/s and 10 ~ FF mSF NEF mKF SOF OTF
the other at 1 Mb/s. Each trial lasts 100 seconds. During this
time, the congestion source periodically sends a constant bit
rate stream of 5 Mb/s to the congestion sink. There are two
periods of congestioreach 20 seands long: the first starts

at 20 seconds and the second starts at 60 seconds. During
periods of congestion, the estimated bandwidth should be 5
Mb/s; otherwise, it should be 10 Mb/s.

Settle time (s)

congestion sink

Low/Yes Low/No High/Yes High/No
Traffic Rate/Congestion

router A

(a) Agility: settle times

server 12 -

congestion source

Figure 8:Topology for Congestion Experiments

7

Fig. 9 presents the settle time, average estimate, and coef-
ficient of variation for the filters in each situation; the results
reflect five trials with different random seeds. The situations
are distinguished by whether the client-server traffic has a
high or low rate, and whether or not there is congestion. For

Estimated Bandwidth (Mb/s)
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example, the result fdrow/Yesare for experiments with 140 Low/Yes Low/No High/Yes High/No
Kb/s client-server traffic in the presence of the 5 Mb/s con- Traffic Rate/Congestion
gestion stream. We exclude results from the first period to
avoid startup transients. (b) Accuracy: average estimate
Fig. 9(a) shows the average time each filter needstttese 25

within 10% of the expected value. The TCP filter is clearly
the least agile of any of the filters. The TCP filter is never
able to converge when there is congestion interfering with
low-rate traffic, and often did not settle in other situations
with congestion. Since all of our measurements use the settle
time in some way, we report no results for the TCP filter
under low traffic with congestion.

The stability filter performs poorly compared to the oth-
ers in all but the most favorable conditions: high client-
server traffic with no congestion. In the worst set of cir-
cumstances — low client-server traffic with congestion —
the error-based and Kalman filters hold an advantage over
the flip-flop and Odyssey filters. In all other cases the four
are roughly equal. (c) Stability: coefficient of variation

Fig. 9(b) depicts the average estimate produced by eachFigure 9:Filter Performance under Changing Congestion
filter between the settle time and the next transition. All of
the filters perform similarly; however, none of them are very at the discretion of the router. In particular, in a router with
accurate in detecting bandwidth duringngestion; average  FCFS forwarding, congestion will not perturb observed traf-
estimates range between 6.3 and 6.8 Mb/s. To see why, confic if the observed traffic arrives closely spacedhwitt in-
sider how the client-server traffic interacts with the conges- tervening congestion packets. So, the client-server traffic is
tion traffic. In order to detect the influence congestion has on able to observe the congestion traffic only some of the time.
observed traffic, observed packets must be delayed by con- The fact that observed traffic is not always perturbed by
gestion packets. Unfortunately, whether or not this occurs is congestion also has unfortunate implications for filter stabil-

Coefficient of Variation (%)

7727727227722/
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Traffic Rate/Congestion
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Figure 10:Stability over Real Networks

ity, as shown in Fig. 9(c). While the TCP filter shows modest
variation in situations when it is able to settle, the other filters
are all noisy. The stability filter offers the next best perfor-
mance, followed by the flip-fop filter. The error-based filter
exhibits the worst stability of the adaptive filters. Note that
the TCP filter yields the highest coefficient of variation under
low client-server traffic with no congestion. This is an arti-
fact of long settle times; the filter does not have enough time
to converge, and its gentle rise is mistaken for instability.

4.4 Stability over Real Networks

To gauge whether low stability is endemic to these filters in
the presence of other traffic, we subjected them to two dif-
ferent, real-world networking scenarios. In them, a dummy

client and server exchanged ICMP ECHO request and re-

sponse packets, where the requests and responsesaoére
either 512 bytes or 8 KB with equal probability. These re-

server node A node B
stage 1 stage 2 -y
E sta(je 3
client  qrage s - LY J———

Figure 11:Topology of Mobile Experiment

time were in fact stable. Thus, these numbers may slightly
understate the case.

The stability for all filters is much better when observing
traffic from the local server than from the remote one. Thisis
most likely due to the larger number of hops combined with
the greater likelihood of encountering cross traffic to the lat-
ter. As expected, the TCP filter is very stable across wide-
area observations, but the flip-flop and stability filter also
perform reasonably well compared to their peers. In fact,
flip-flop is somewhat more stable over real networks than in
the artificial environment of Fig. 9. We suspect that the more
bursty congestion in real networks prevents the control lim-
its from growing as large. All of the filters are comparable in
the local-area case.

4.5 Mobility

The final experiment explores how our filters react to chang-
ing topologies in mobile, ad hoc networks. We take full ad-
vantage of the Monarch extensions [13] to ns, which include
near/far propagation models, packet capture, and the com-
plete IEEE 802.11 MAC implementation [14]. The 802.11
MAC layer incorporates collision avoidance and link-level
acknowledgement with retransmission.

In this experiment, we simulate the topology shown in
Fig. 11. In it, three wireless nodes — one of them a server

quests were generated by a Poisson process with an average- are arranged in a line. The client moves from the server’s
rate of one packet per second. We took measurements beneighborhood to the vicinity of the far node, and then back.
tween one client and two servers. One server was in the samerhe client completes this circuit in five minutes; we use
subnet, and the other was located twelve hops and roughlyhandoff times as the breakpoints between stages. During
100 ms away. We repeated this for five trials to each server; stage 1, the node can talk directly to the server; at stage 2,

each trial was 200 seads long. The raw RTT observations

it must go through node A tceach the server. The traffic

from each trial were recorded, and each filter was subjectedrate was Poisson, with an average of four packets per sec-

to precisely the same set of observations.

ond; request packets were small and response packets were

Since we did not know the amount of cross traffic or — 512 bytes or 8 KB with equal probability. We took five trials
in the case of the distant server — the congestion-free band-for each filter.

width, we cannot present results faccuracy or dtie time.

Even in this simple topology, there are interesting effects.

Furthermore, without settle time, we cannot measure stabil-First, the effective bandwidth changes as the client moves
ity in the same way as for other experiments. Instead, we through the stagessibause alhodes share the same physical

ignore the first half okach trial, and report results only for

channel. Thus, while the bandwidth of the physical device

the last half. As expected, the filters produced similar aver- is 2 Mb/s, the effective bandwidth between client and server
age bandwidths to each server: 9.3 Mb/s to the local serveris divided by two when routed through node A, and by three

and 5.8 Mb/s to the remote host.
The stability results for this experiment are shown in

through node B.

Nominal latencies between client and server are 1.15 ms

Fig. 10. These numbers should be taken with a grain of salt, directly, 2.5 ms through node A, and 4 ms through node B.
as we do not know that the underlying conditions during this However, the wireless MAC protocol allows collisions even



when the client and server communicate directly; the rate of The results for bandwidth estimation are shown in
collisions goes up with hop count. This leads to substan- Fig. 12(a)-12(c). For brevity, we omit the latency results,
tial variability in RTT observations, increased noise in all of where the relative performance of the filters is similar. How-
the estimators, a higher average latency, and lower averageever, because retransmissions have a much bigger effect on
bandwidth. latency than on bandwidth, the latency estimators are signif-
icantly noisier, yield a wider spread in estimated values, and
take longer to settle. Given the presence of link-level retrans-
missions, these differences may be reasonable.
%FF mSF SEF BKF SOF OTF As shown in Fig. 12(a), all of the filters except for TCP
settle reasonably well, though the error-based and Kalman
filters hold a slight advantage. Interestingly, the stability-
based filter settles rather quickly in this environment, but
was not particularly agile in the congestion experiments.
This is because each individual stage in the iitytexperi-
ments is relatively free of noise, allowing the stability filter to
quickly decrease its gain after handoff. In contrast, the un-
certain interference provided by congestion traffic prevents
% % g % the stability-based filter from quickly detecting the change.
0 All of the adaptive filters are reasonably accurate. All of
the filters except for Odyssey and error-based show compa-
Position of Mobile Client rable stability, though the flip-flop filter has a slight advan-
tage in the worst situation: stage three, where collisions and
link-level retransmissions are most frequent. This is in con-
257 trastto the congestion experiments, where the stability-based
filter held an advantage. The infrequent retransmissions in
the mobile experiment lie outside the flip-flop control limits,
and they are incorporated with the stable filter. However, in
the congestion case, noise is regularly present; this tends to
widen the flip-flop control limits.
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Unfortunately, none of the filters is a clear winner in all sit-
uations. However, all filters except flip-flop can be ruled
out by extremely poor performance in one or more cases.
The stability-based filter is especially resistant to transient
(b) Accuracy: average estimate changes. While it can track persistent changes reasonably
well in the absence of noise, noisy observations force it to-
wards stability. This prevents the stability filter from track-
ing true changes, as shown in Fig. 9. The error-based filter is
especially agile, but it is far too susceptible to noise.

The Kalman filter's main drawback is its willingness to
follow transient bandwidth changes — both in the synthetic
network of Fig. 7 and the real networks depicted in Fig. 10.
This could be due to a poorly-tunéd, since the relative
variances were chosen arbitrarily. While it seems plausible
that one could tune the Kalman filter for particular scenarios,
it is doubtful that it could be tuned to handle all situations
well. This is becaus€) fixes the relative variance of latency
and bandwidth, but they are likely to change at different rates
Position of Mobile Client as circumstances Change_

The flip-flop filter, in contrast, only suffers during peri-
ods of excessive noise, but no filter other than the overly-
conservative TCP performs well in that situation. While itis
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(c) Stability: coefficient of variation
Figure 12:Filter Performance in Mobile Environment



rarely the best performer, it handles bad cases relatively well.rate spot measurements. He focuses on determining bottle-
We conclude from these observations that the flip-flop filter neck bandwidth along a path — ignoring cross traffic — by
is the best choice for good network performance estimates.determining the minimum delay along that path. However,
We expect that the control limits in the flip-flop filter can our filters could be used with this model to determine avail-
be refined through a more sophisticated set of control rules.able bandwidth.
For example, by differentiating between noise — situations  Finally, Balakrishnan’s congestion manager [21] allows
where individual observations fall both above and below the multiple conversations — including those of protocols that
mean — and shifts in the observed mean, the flip-flop filter normally do not provide congestion control — to effectively
can reduce its instability under congestion. Exploring these share bandwidth. It is based on an underlying layer that dis-
sensitizing rules for control charf{g] remains an area of im-  covers network characteristics using a traditional EWMA fil-
portant future work. ter. We believe that the filters presented here can be used in
this system to improve the agility of applications without un-
duly sacrificing stability.

5 Related Work

The work most closely related to our own is Keshav's 6 Conclusion
work on flow control [15]. He proposed theacket pair

technique: the use of two closely spaced packets to elicit
self-interference queueing delay and hence bottleneck band
width. Keshav discussed the use of Kalman filters for
network estimation, but rejected them becauselittie is . . ol
known about the network stateage. Instead, he employed stable or too agl!e, depending on their gain. : '

a fuzzy logic estimator based on the same heuristic used by To address this problem, we present four candidate filters,

our error-based filter, but with an added mechanism to resisteach _Of which strives .to Qeterm|qe Whethe_rht)ald be ag-
transient spikes. This mechanism would be helpful in the gressive or conservative in following changing observations.

mobile networking environment, but not in the presence of Thetfhpl);flop:‘llt(irt;slptplles technlqlueé\j\r/('zﬂn;sf?ﬁ\tlstlczzl protc%sls
congestion-induced noise. In fact, this estimator was explic- C0"'r0! t0 Select between an agiie "terand a stab'e

itly designed forate-allocation servershat are less severely ~ °N€: The stability-based and error-based filters use heuristics

affected by cross traffic noise. Unfortunately, the current in- Fo dynam|cal!y set the gain on an EWMA filter; the former
frastructure is based on ECES routers: a domain this work INcreases gain when network observations are stable and the

latter increases gain in response tadourate estimates. The

explicitly excludes. fourth filter i ractical lication of the commonly-used
There have been several approaches to estimating netio- er'is a practical app y

work performance through active probing. For example, Kalman filter.

Bolot [16] uses pairs of UDP packets to explore network Each of these filters is subjected to a variety of idealized
state, but requires substantial amounts of bandwidth to doand realistic networking conditions to evaluate their efficacy.

so. Downey’s application opathchar [17] uses ICMP There are three metrics by which these filters are compared:

packets with varying time-to-live fields, but also suffers from ggllle, stab|l|ty, andaccurac_:y. Commpn to all 0 fthese met-

: . rics is the notion of settle time, the time required for a filter
heavy bandwidth consumption. Carter and Crovella presenttO roduce an estimate within 10% of the true value. None
tools to measure bottleneck and available bandwidth [18]. ftF;\ ndidate filters dominat ir: I ircumstanceé How-
These tools rely on bursts of ICMP packets, sent in several ©' (N€ candidate filters dominates in af cir SO

ever, the flip-flop filter has some attractive properties with

phases; they assume that network conditions do not changeno serious drawbacks. and mav be amenable to further re-
during this process, limiting the granularity of changes that ! y

finement. With these improvements, the flip-flop filter can
they can detect, be used in a variety of adaptive systems to improve their per-
Several variations on packet pair improve its ability to gen- y P y P P

erate spot observations of network performance. Paxson mformance.

presents receiver-based packet pair, which takes observations
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