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Abstract

This paper investigates the use of Euclidean invariant features in a generalization of iterative
closest point registration of range images. Pointwise correspondences are chosen as the closest
point with respect to a weighted linear combination of positional and feature distances. It
is shown that under ideal noise-free conditions, correspondences formed using this distance
function are correct more often than correspondences formed using the positional distance
alone. In addition, monotonic convergence to at least a local minimum is shown to hold for
this method. When noise is present, a method that automatically sets the optimal relative
contribution of features and positions is described. This method trades o� error in feature
values due to noise against error in positions due to misalignment. Experimental results
show that using invariant features decreases the probability of being trapped in a local
minimum, and is most e�ective for di�cult registration problems where the scene is very
small compared to the model.

1 Introduction

Building 3D models of real world objects for reverse engineering, facility mapping, and
computer graphics applications typically requires three stages: a data capture stage which
samples the 3D world using a range camera, a data registration stage which aligns the various
3D views, and a data merge stage which simpli�es the aligned views into parametric models.
The goal of the registration stage is to �nd the relative position and orientation of each view
with respect to each other view. This paper addresses the use of features for improving the



probability of convergence of a popular solution to the registration problem, the iterative
closest point registration algorithm. We present a theoretical basis for the use of invariant
features, an automatic method for selecting the tradeo� between features and positions, and
an experimental evaluation demonstrating improved convergence.

Range image registration is typically accomplished using a variant of the iterative closest
point algorithm (ICP) [4]. ICP is an asymmetric iterative descent procedure which seeks
to minimize the sum of the squared distances between all points in one of the views (the
scene) and their closest points in the other view (the model). When a scene and a model
can be represented as two point sets with known correspondences, the rigid motion that best
aligns the scene in a least square sense can be solved in closed form according to the method
of Faugeras and Hebert [12] or the method of Horn [15]. Traditional registration methods
construct the correspondence sets by extracting salient features from the scene and model,
and perform a search procedure to match the features. In ICP registration, however, Besl
and McKay solve the correspondence problem by assuming that the scene is approximately
aligned with the model, and therefore that each scene point corresponds with its closest model
point [4]. Zhang extended ICP to include robust statistics and adaptive thresholding to
handle outliers and occlusions [29]. Masuda and Yokoya use ICP with random sampling and
a least median square error measurement that is robust to a partially overlapping scene [19].
Chen and Medioni independently developed an approach similar to ICP, which minimizes
the sum of squared distance between scene points and a local planar approximation of the
model [7]. Correspondences are formed by projecting the scene points onto the model in the
direction of their normal vectors rather than selecting the closest point. Dorai et al. extend
the method of Chen and Medioni to an optimal weighted least squares framework [9]. These
methods have been extended to make simultaneous registration over multiple views possible
[2, 25, 11].

Since ICP is an iterative descent algorithm, it requires a good initial estimate in order
to converge to the global minimum. A fully automated registration algorithm can choose to
use multiple initial conditions sampled randomly or uniformly throughout the search space
in order to ensure that the goal is found [6]. The search space is large, however, requiring
many initial conditions. Therefore several researchers have used features, either alone or
together with positions, in order to improve the registration. Chua and Jarvis use principal
curvatures to constrain a heuristic search for correspondences [8]. Higuchi, et al. build a
spherical map of curvature values called an SAI for each view of an object [14]. The SAI
are registered by rotating the spheres until the curvature values are aligned. Feldmar and
Ayache perform a�ne registration by minimizing the combined distance between positions,
surface normals and curvatures [13]. Thirion uses crest lines to extract extremal points and
their associated Darboux frames, which are matched in an ICP-like fashion [26]. Soucy and
Ferrie locally register surface patches by minimizing the distance between Darboux frames
over an entire neighborhood [24]. Yang and Allen minimize a scaled product of positional
and curvature distances [28]. VandenWyngaerd, et al. match bitangent curve pairs, which
are pairs of curves that share the same tangent plane, between two views for rigid and
a�ne registration [27]. Johnson uses invariants derived from the spin-image, a histogram of
distances and angles to nearby surface points, to perform recognition and registration of 3D
range maps [18, 17].
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Our work investigates a particular instance of the feature-based ICP approach, which
we call Iterative Closest Points using Invariant Features (ICPIF) [23]. This method chooses
nearest neighbor correspondences according to a distance metric which is a scaled sum of
the positional and feature distances. We show that under ideal, noise free conditions, correct
correspondences are chosen at least as often using ICPIF as they would be using traditional
ICP. In addition, we show that ICPIF converges monotonically to a local minimum in the
same manner as traditional ICP. An automatic method for computing the tradeo� between
positions and features is demonstrated. Experimental evidence demonstrates that ICPIF
converges to the goal state in fewer iterations than traditional ICP, and that it converges to
the goal state for more initial transformations.

Section 2 of this paper introduces the ICP algorithm and three di�erent invariant values
that may be computed directly from range data. Section 3 introduces ICPIF, an extension of
the ICP algorithm that uses features to improve the correspondence search. In section 4 we
analyze the noise-free properties of ICPIF, and in section 5 we describe the tradeo�s between
position and feature values under a Gaussian noise model. Section 6 presents experimental
results on simulated and real range data, and section 7 presents concluding remarks.

2 Background

2.1 Iterative Closest Point Registration

Iterative closest point registration (ICP) is an accurate and reliable method for the registra-
tion of free form surfaces [4]. The goal of ICP is to �nd the rigid transformation T that
best aligns a cloud of scene points S with a geometric model M. The alignment process
works to minimize the mean squared distance between scene points and their closest model
point. ICP is e�cient, with average case complexity of O(n log n) for n point images, and
it converges monotonically to a local minimum. At each iteration, the algorithm computes
correspondences by �nding closest points, and then minimizes the mean square error in po-
sition between the correspondences [12, 15]. A good initial estimate of the transformation is
required, and all scene points are assumed to have correspondences in the model.

Algorithm 1 (Iterative Closest Point Registration): Let S be a set of Ns points,
fs1; � � � ; sNsg, and let M be the model. Let ks �mk be the distance between point s 2 S
and m 2 M, and let CP(si;M) be the closest point in M to the scene point si.

1. Let T0 be an initial estimate of the transformation.

2. Repeat for k = 1::kmax or until termination criteria is met

(a) Build up the set of correspondences C =
SNs

i=1f(Tk�1(si);CP(Tk�1(si);M))g
(b) Compute the new transformation Tk that minimizes mean square error between

point pairs in C [12, 15].
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2.2 Invariant Features

The ICP algorithm uses the closest model point as a good estimate of a correct correspon-
dence, an assumption that fails when the scene is not approximately aligned with the model.
In these cases, shape descriptors may provide additional information to improve the corre-
spondence search. Shape descriptors are computed directly from two or more sensed views,
and therefore must be invariant to rigid camera motion. We are most interested in Euclidean
invariants, quantities that are invariant to 3-D rigid motion. Neither scale invariance nor
a�ne invariance are needed for rigid registration.

2.2.1 Curvature

Curvature is perhaps the most familiar of all invariants. In contrast to the global invariants
computed from moments and spherical harmonics described below, it is a local attribute
associated with a single surface point. For this study we use the magnitudes of the principle
curvatures, computed by estimating the surface normals at each point and then di�erentiat-
ing. This method for computing discrete curvature is well known for its sensitivity to both
sensor noise and sampling rate. However, it is still useful for its simplicity and e�ciency. A
complete reference for computing curvatures in range images is found in the work of Besl
and Jain [3].

2.2.2 Moment Invariants

Sadjadi and Hall derive the second order moment invariants in three dimensions as

J1 = �200 + �020 + �002

J2 = �200�020 + �200�002 + �020�002 � �2
110

� �2
101

� �2
011

J3 = �200�020�002 + 2�110�101�011 � �002�
2

110 � �020�
2

101 � �200�
2

011;

where the �pqr are the centralized moments. The centralized moments are de�ned as

�pqr =
R1
�1

R1
�1

R1
�1

(x� �x)p(y � �y)q(z � �z)r�(x; y; z)dxdydz;

where �(x; y; z) is a piecewise continuous density function of �nite support, and (�x, �y, �z) is
the centroid of �(x; y; z) [22]. By using centralized moments, the coordinate system center
is �xed at the center of mass and invariance to translation is achieved. The moment forms
provide invariance to orthogonal transformations including 3D rotations.

2.2.3 Spherical Harmonics Invariants

Burel and Henocq describe a method for deriving rotationally invariant features from the
spherical harmonics coe�cients of a global signal [5]. We consider only the simplest of these
methods, the N series of invariants. First, rank 1 tensors are constructed from the basis
function coe�cients cml , where

cml =
R
2�

0

R �
0
sin(�)Y �

lm(�; �)�(�; �)d�d�;
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Figure 1: The density function � for point pe is 1 within region F and 0 elsewhere.

Ylm(�; �) are the harmonic bases, and �(�; �) is the density function. The coe�cients form
a contravariant tensor cml = (c�ll ; :::cll), and a covariant tensor clm = (cml )

�, for which

N(l) =

lX
m=�l

cml (c
m
l )

�

is invariant to rotation. Translation invariance may be achieved in the same manner as was
done for the moment invariants, by �xing the coordinate system center.

2.2.4 De�ning a Global Density Function

Moment invariants and spherical harmonics invariants are global attributes of a three dimen-
sional signal de�ned over the entire space. In order to use these features to describe a surface
point pe, we must ascribe to that point a global density function determined by the local
geometry of the surface. The given point may serve as the center of its own local coordinate
system, and a local region F may be de�ned to be the space that is both (a) behind the
scanned surface and (b) within a sphere of known radius centered at pe (see �gure 1). The
density � is then de�ned to be one within F, and zero outside of F. Although we are free to
choose the center of mass as the center of the coordinate system, as is done for object recog-
nition, it is more convenient and still translationally invariant to choose pe as the coordinate
center. At the image boundary, special processing is required because it is not possible to
know the entire shape within this sphere. Therefore, invariant value contributions for points
lying outside the image boundary are computed using a locally planar estimate based on the
neighborhood points within the image boundary.

3 ICP using Invariant Features

3.1 Notation

We shall use the term ICP using invariant features (ICPIF) to describe the use of invariant
features in a modi�ed distance function for correspondence selection. The speci�c method
that we use is most similar to the method of Feldmar and Ayache [13], where each data
point is represented as the concatenation of its three positional coordinates with k feature
coordinates. Points are matched using the L2 norm in the k + 3 dimensional space. The
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Figure 2: A range image and eight di�erent invariants.
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positional components shall be denoted pe, and its feature components pf . That is,

pe = (px; py ; pz) 2 R3

pf = (pf1 ; pf2 ; � � � ; pfk ) 2 Rk

p = (pe;pf) 2 R3+k;

where pf1 through pfk are the k invariant features describing point p. When necessary, the
notation (pi)e and (pi)f will be used to refer to the (Euclidean) positional and features
components of point pi. The combined positional and feature distance between p and q
shall be denoted as

d(p;q) = de(p;q) + df (p;q);

where

d(p;q) = kp� qk2
de(p;q) = kpe � qek2
df (p;q) = kpf � qfk2:

The weighted feature distance is de�ned as

d�(p;q) = de(p;q) + �2df (p;q); (1)

where � controls the relative contribution of the positions and features. The closest point
in M to a scene point s according to the distance measure de shall be denoted CP(s;M),
and the closest point according to the distance measure d� shall be denoted CP�(s;M).

3.2 ICPIF Algorithm

The ICPIF algorithm performs ICP using closest point correspondences using CP�(s;M).
At this point, we shall assume that the user has heuristically selected an appropriate value
for �.

Algorithm 2 (Iterative Closest Point Registration using Invariant Features) Let
S be a set of Ns points, fs1; � � � ; sNsg, and let M be the model.

1. Let T0 be an initial estimate of the transformation.

2. Repeat for k = 1::kmax or until termination criteria is met

(a) Build up the set of correspondences C =
S

si2S
f(Tk�1(si);CP�(Tk�1(si);M))g

(b) Compute the new transformation Tk that minimizes mean square error between
point pairs in C.

For scenes that contain occlusions or large changes in the �eld of view, ICPIF may be used
in conjunction with thresholding methods [29] or statistical sampling methods [19] just as is
done with ICP.
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4 Analysis of the ICPIF Metric

While it is di�cult to make de�nitive statements about the ICP registration over all possible
real world scenes, we may gain some insight about how features in
uence the registration.
In this section, ICPIF is compared with traditional ICP under ideal, noise-free conditions
to demonstrate: (1) scene points will be matched with their correct correspondences for a
larger set of transformations, (2) incorrect scene alignments at the global minima will exist
for a smaller set of transformations, and (3) monotonic convergence to a global minima is
preserved.

4.1 Voronoi Analysis

Proximity problems such as the nearest neighbor search for correspondences of ICP are
traditionally analyzed with the aid of a Voronoi diagram [21]. Given a pointset P containing
N points in Rd, we may subdivide Rd into N Voronoi regions, one for each point p, where
the Voronoi region V R(p) is de�ned to be the locus points in Rd that are closer to p than
they are to any other point in P. Let us assume, for the moment, that the model is a discrete
set of points. In traditional ICP, R3 is subdivided into Voronoi regions of the modelM, and
a query of the Voronoi diagram is performed each time we try to match one of the scene
points with one of the model points. Because the scene is transformed after each iteration,
the scene points are rather free to move around within the diagram, subject to the rigidity
of the scene. For ICPIF, R3+k is subdivided by the model M, and again a query of the
Voronoi diagram is performed to match each scene point with a model point. Again, the
scene points are rather free to move about in the R3 subspace of positions, but their feature
coordinates are �xed.

To make this idea more concrete, suppose that the scene and the model have one posi-
tional dimension (x) and one feature dimension (f). Figure 3(a) shows the one dimensional
Voronoi diagram of the model with respect to the positional dimension x, where the Voronoi
region associated with a point m is denoted V R(m). In traditional ICP, the scene point s is
free to move about within the positional space x, and a correspondence is made between s
and m when s is positioned within V R(m). Figure 3(b) shows the two dimensional Voronoi
diagram with respect to both x and f . In ICPIF, a scene point s is free to move about in the
x direction, but is constrained to lie on the line f = sf . We may construct a new diagram
representing the Voronoi diagram as encountered by point s. An example of this concept is
illustrated in �gure 3(c), where we construct the Voronoi diagram as seen by a scene point s
for which s andm2 have the same feature value. Visual inspection suggests that the Voronoi
region V Rcs(s;m2) for which s matches with m2 in �gure 3(c) is larger than the ordinary
Voronoi region V R(m2) of �gure 3(a).

This simpli�ed analysis is intended to provide insight into why correct matches become
more likely when the invariant values of the scene and model points are similar, a concept
made concrete in the next section.
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Figure 3: (a) The Voronoi diagram of a model in positional space only. (b) The Voronoi
diagram of a model in positional � invariant space. (c) The Voronoi diagram cross-section
in positional space seen by point s where sf = (m2)f .

4.2 Closest Point Selection

Let us assume noise free data, and that invariant values can be computed exactly for each
point in both the scene and in the model. We de�ne a ground truth correspondence as a
correspondence between a scene point si and a model pointmi where si andmi represent the
same point in the real world. In proposition 1 we show that if a ground truth correspondence
exists between si and mi, then for any scene transformation where si is paired up with mi

under CP(si;M), si will be paired up with mi under CP�(si;M) also.

Proposition 1 For a noise-free scene S and modelM, if a scene point si has a ground truth

correspondence with a model point mi, then mi = CP(si;M) implies mi = CP�(si;M).

Proof: Because the two points are ground truth correspondences, �2df (si;mi) = 0. Fur-
thermore, for any m in M,

de(si;mi) � de(si;m);

and therefore

d�(si;mi) = de(si;mi) � de(si;m) � d�(si;m):

�
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Figure 4: Multivariate Gaussian distributions with di�erent means but identical covariance
induce a minimum-Mahalanobis-distance decision boundary. When the feature dimension f
is uncorrelated with respect to the position dimension x, scaling f by �2 = �x

�f
converts the

minimum-Mahalanobis-distance decision into a nearest neighbor decision.

Corollary 1 All transformations that form ground truth correspondences for an entire scene

using CP will do so using CP�.

When the model is a discrete set of points, it is no longer required that the invariant
values be exact, only that the errors in invariant values be su�ciently small. The exact
amount of error that is allowed depends upon the relative positions and invariant values of
the data.

4.3 Global Minima

There is no guarantee that the global minima of the cost function is unique. However, the
use of the d� metric can only decrease the set of false minima in the noise-free case with
perfect correspondences. Let us de�ne an absolute minimization to be a scene transformation
such that d(si;mi) = 0 for all scene points, and a false minimization to be an absolute
minimization such that at least one correspondence is not at ground truth.

Proposition 2 The set of transformations forming false minimizations under d� is a subset

of the transformations forming false minimizations under de.

Proof: Since d�(si;mi) = 0 implies de(si;mi) = 0, all absolute minimizations under d� are
absolute minimizations under de. However, there is only one transformation that forms a
ground truth correspondence, which does so under both metrics. �

5 Choosing Feature Weights

The correspondence problem may be viewed as a pattern classi�cation problem, where each
model point de�nes a distinct class and each scene point de�nes a query vector. The nearest
neighbor selection rule used by ICPIF is an optimal minimum error-rate classi�er when the
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Figure 5: Histograms and scatter plots of the moment features values within a 
at surface
of the range image shown in �gure 2.

model points are described by multivariate Gaussian distributions with di�erent means, but
identical covariances of the form � = �I. When the covariance matrix is of a more general
form, the optimal classi�er is the minimum-Mahalanobis-distance classi�er [10]. In ICPIF,
we wish to scale the feature values to provide some tradeo� between our trust in the feature
and positional information. By accepting a Gaussian noise model, we can use the covariance
matrix to tradeo� between feature error caused by sensor noise and positional errors caused
by the misalignment. The following sections describe a method for estimating the covariance
matrix from the positional and feature data in the scene.

5.1 Errors in Feature Values

Errors in the invariant feature values appear to be well approximated by a normal distribu-
tion. To con�rm this, we examine the invariant shape feature values within a large planar
patch. Figure 5 shows the 1D histograms and 2D scatter plots of moment feature values
within a planar surface patch of the range image in �gure 2. Since these distributions are
unimodal and nearly symmetric, we conclude that the multivariate normal distribution is a
reasonable model. The covariance matrix �f is estimated directly from the feature values of

the planar region, and the vector of raw features can be transformed by �
�1=2
f into a vector

of uncorrelated invariant features with unit variance.

5.2 Errors in Positional Values

The distribution of positional errors is largely due to an unknown amount of misalignment of
the scene with respect to the model, which makes estimation of positional error di�cult. It
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Figure 6: The (unknown) positional error dGT is estimated using the (known) distance to
the closest point dCP .

is not well modeled as a normal distribution. However, we accept the Gaussian noise model
because the covariance can be used to rescale the feature values in a principled manner
through the minimum-Mahalanobis-distance classi�er.

Let dGT be the ground truth distance between the scene point and its matching model
point, and let dGTx, dGTy, and dGTz be the distances in the x, y, and z directions. We
shall assume that misalignment error is independent of any feature noise, and we shall
further assume that the variances in each of the three positional dimensions are identical
and independent. By linearity and independence,

E[d2GT ] = E[d2GTx] + E[d2GTy] + E[d2GTz];

and since each dimension is identical,

E[d2GTx] = E[d2GTy] = E[d2GTz] =
1

3
E[d2GT ]:

Therefore, estimating the covariance matrix of the positional error reduces to estimating
�2x = E[d2GTx].

We will use the distance to the closest point on the model, dCP ; to estimate the distance
to the ground truth correspondence dGT (see �gure 6). If we suppose the model is locally
planar near the ground truth correspondence point, and if we further suppose that the scene
point is located with uniform distribution on the surface of a sphere S with radius dGT , we
�nd that

E[d2CP jdGT ] =
1

4�d2GT

Z
S

(dGT cos�)
2d2GT sin�dS

=
1

3
d2GT :

And since

E[d2GT ] = 3E[E[d2CP jdGT ]] = 3E[d2CP ] = 3d2CP ;

the estimate of error variance due to misalignment in the x dimension is �2x � d2CP :

5.3 Determination of � and Implementation Details

Based on our estimates for �2x and �f , we are now able make the proper choice for the

parameter �: Multiplying the feature values by �
�1=2
f will normalize the variance of the
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feature values to 1. A further multiplication of the feature values by �2x will set the variance
of the feature error equal to the variance of the positional error. Hence, the desired scale
factor � after normalization by �

�1=2
f is

�2 = �2x � d2CP �MSE; (2)

where MSE is the mean squared distance from a scene point to its closest model point, a
global estimate of d2CP . Note that this estimate of � changes after each iteration.

In section 5.5 we will show that ICPIF converges monotonically to local minimum of
the cost function when the feature weight � is constant or decreasing. Convergence is not
guaranteed when � is allowed to increase. If the monotonic convergence property is used for
detecting when the algorithm has converged, as is done by tracking the di�erence in MSE
error between iterations, � should be restricted to be monotonically non-increasing.

Further, it is not likely that � will converge to zero unless the scene is a perfect match
for a subset of the model. In this case, the �nal answer given by ICPIF is not the optimal
mean squared error in pointwise distance. Since we believe that the mean squared error in
pointwise distance is the proper error metric for rigid registration, we recommend that � be
forced to go to zero after ICPIF has converged. Failure to do so may yield a registration
that has a higher MSE:

Finally, there are pitfalls in using the popular k-d tree [1] for performing nearest neighbor
search when � is scaled. The cells of a k-d tree are built by recursively splitting the dimension
with the largest absolute spread distance, thereby reducing the required search radius for
queries in that cell. If a dimension is scaled, its spread distance changes and so does the
best split dimension. However, the k-d tree is a static structure. Two methods that may
be used to counteract this e�ect: the tree may be rebuilt at a penalty of O(n log n), or the
search at each ply of the tree must be adjusted to a wider radius, which is less e�cient.
When the rebuilding option is chosen, ICPIF has an average case complexity of O(n log n)
per iteration, but always rebuilding the tree may be wasteful for small changes in �. As a
compromise, the tree may be rebuilt only after a su�cient decrease in �; such as 10 per cent.

5.4 ICPIF Algorithm

We now summarize the �nal version of the ICPIF algorithm.

Algorithm 3 (Iterative Closest Point Registration using Invariant Features, Final
Algorithm): Let S be a set of Ns points, fs1; � � � ; sNsg, and let M be the model.

1. Estimate the feature covariance and decorrelate features.

2. Let T0 be an initial estimate of the transformation.

3. �0 =
p
MSE.

4. Repeat for k = 1::kmax or until termination criteria is met

(a) Build up the set of correspondences C =
S

si2S
f(Tk�1(si);CP�k�1(Tk�1(si);M))g
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(b) Compute the new transformation Tk that minimizes mean square error between
point pairs in C.

(c) �k = min(�k�1;
p
MSE).

(d) Rebuild k-d tree if desired.

5. If �k 6= 0, assign �0 = 0 and goto 4.

5.5 Convergence

In [23], the ICPIF algorithm 2 of section 3.2 was shown to converge to a local minimum for
a �xed value of �. Here we extend this result to the non-increasing values of � of ICPIF
algorithm 3.

Proposition 3 Iterative closest point registration using the distance function d�(s;m) with
monotonically non-increasing values of � will always converge monotonically to a local min-

imum.

Proof: The convergence proof of Besl and McKay is generalized. For any given iteration k,
let Tk be our current estimate of the best scene transformation, let si;k = Tk(si) be the current
location of the scene point si, let �k be the current value of �, and letmi;k = CP�k(Tk(si);M)
be the nearest neighbor correspondence of si;k. We start with iteration k � 1, and �nd the
mean squared error over all correspondences:

ek�1 =
1

Ns

NsX
i=1

[de(si;k�1;mi;k�1) + �2k�1df (si;k�1;mi;k�1)]:

After applying transformation Tk to the scene, the error becomes:

~ek�1 =
1

Ns

NsX
i=1

[de(si;k;mi;k�1) + �2k�1df (si;k;mi;k�1)]:

Because Tk minimizes the positional error between correspondences,

NsX
i=1

de(si;k;mi;k�1) �
NsX
i=1

de(si;k�1;mi;k�1):

Because invariant values do not change as a result of rigid body transformation,

NsX
i=1

�2k�1df (si;k;mi;k�1) =
NsX
i=1

�2k�1df (si;k�1;mi;k�1):

Therefore ~ek�1 � ek�1.

Next, the feature weights are updated to �k, and new correspondences are calculated
using CP�k. The closest point function guarantees that d�k(si;k;mi;k) � d�k(si;k;mi;k�1)
for each point si in S, and since � is non-increasing, d�k(si;k;mi;k�1) � d�k�1(si;k;mi;k�1).
Therefore, ek � ~ek�1. �
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Scene Easy Model Hard Model

Scene Easy Model Hard Model

Figure 7: Cruiser (top) and Odetics (bottom) test sets.

6 Experimental Results

6.1 Methodology

To test the e�cacy of the ICPIF algorithm, we have run experiments on the synthetic and
real data sets shown in �gure 7. The Cruiser data set is a synthetic data set constructed
using the Z bu�er output of the Radiance rendering software, and the Odetics data set
contains range images taken with an Odetics laser range �nder atop a mobile platform.
For the Odetics images, distortion and scaling have been corrected using the default sensor
calibration parameters [16], but no �ltering or noise reduction was performed. From each of
these data sets we have selected both an \easy" test case and a \hard" test case. The easy
test case seeks to register the scene within a model that is only slightly larger than the scene,
while the hard test case uses a model that is considerably larger than the scene. By larger
we mean that the sensor captures a wider �eld of view; there is no change of scale between
the scene and model data. Three moment invariants, three spherical harmonics invariants
and two curvature invariants were computed at each point in both images using the method
described in section 2. A 9� 9� 9 uniform Cartesian sampling of the space centered at the
image point was used to perform the integration. The size of the enclosing sphere was set
to approximately 2% of the size of the model, and was held �xed over all images within a
given set.
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6.2 Convergence

To understand the tradeo� in setting the relative feature weight �, we ran experiments
using both a �xed value of � and also using adaptive weighting as described in algorithm
3. For the adaptive weighting experiment, we assigned weights according the schedule �k =
max(�k�1; �

p
MSE) at step 4(c) of the algorithm. An � or � value of 0 behaves exactly as

the original ICP algorithm, and a � multiplier of 1 behaves exactly as ICPIF algorithm 3
of section 5.4. Higher � multipliers indicate relatively higher feature weight contributions.
For each of these experiments, the ICPIF algorithm was run on each test case and on each
value of � and � for 100 di�erent random initial transformations. The same 100 initial
transformations were used for each feature type and each feature weight value.

The percentage of the 100 initial conditions that converge to the correct transformation
are shown in table 1, and shown graphically in �gure 8. For the highest feature weights,
the algorithm either converges to the goal or does not, depending on the feature type and
scene geometry. There also exists a relationship between convergence rate and model size,
with larger (\hard") models less likely to converge at high feature weights. Small models,
however, appear to perform better at higher feature weights. This is because the relative
cost of making an incorrect correspondence is greater in positional distance. However it is
also likely that within a smaller model the features are more geometrically distinct and are
more spatially clustered, resulting in fewer correspondence errors, signi�cantly reducing the
penalty for the correspondence errors which do exist. Therefore, while setting the feature
weight to � =

p
MSE is close to optimal for large models which induce many local minima,

it may be possible to obtain better performance at higher feature weights for the models
that are similar in size to the scene. This might be performed automatically by measuring
the relative sizes of the model and scene.

6.3 Iterative Behavior

Figure 12 shows the iterative behavior of a single random initial condition from the \easy"
Odetics test set for which ICPIF converge at all feature weights. Each curve displays iterative
behavior for a single value of � or �, while each point on the curve displays the rotation
and translation error for a single iteration. For non-zero weights, only the portion of the
algorithm where features were used are shown; the �nal �t using ICP without features is
not shown. Translation error, shown on the X axis, is measured as the real world distance
between the ground truth camera location and computed camera location. Rotation error,
shown on the Y axis, is measured as the angle in radians between the ground truth camera
orientation and computed camera orientation.

This plot is typical of many initial conditions where traditional ICP performs poorly.
Because the scene is not initially well aligned, incorrect correspondences are formed and the
registration proceeds rather slowly. In contrast, the error declines rapidly when invariants
are used, and higher weights converge more quickly. At high weights, however, the �nal
registration is away from ground truth. This e�ect is due to correspondence mismatches due
to feature value noise.
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Weight Cruiser (easy) Cruiser (hard) Odetics (easy) Odetics (hard)

� mult M S C M S C M S C M S C
0 0.05 0.05 0.05 0.02 0.02 0.02 0.13 0.13 0.13 0.04 0.04 0.04
1 0.05 0.05 0.05 0.02 0.03 0.02 0.13 0.13 0.13 0.04 0.04 0.04
3 0.04 0.04 0.05 0.03 0.03 0.03 0.14 0.13 0.13 0.02 0.02 0.04
10 0.06 0.07 0.05 0.02 0.03 0.03 0.11 0.11 0.13 0.02 0.02 0.02
30 0.19 0.15 0.08 0.02 0.08 0.03 0.15 0.11 0.13 0.05 0.05 0.02
100 0.21 0.24 0.20 0.02 0.14 0.00 0.18 0.16 0.26 0.05 0.08 0.06
300 0.26 0.38 0.18 0.05 0.27 0.00 0.21 0.17 0.41 0.09 0.11 0.00
1,000 0.32 0.52 0.27 0.39 0.09 0.00 0.39 0.31 0.46 0.13 0.26 0.00
3,000 0.35 0.63 0.31 0.00 0.00 0.00 0.53 0.62 0.48 0.04 0.57 0.00
10,000 0.44 0.66 0.45 0.00 0.00 0.00 0.90 0.89 0.59 0.00 1.00 0.03
30,000 0.00 0.68 0.47 0.00 0.00 0.00 1.00 1.00 0.81 0.00 1.00 0.00
100,000 0.00 1.00 0.46 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00
300,000 0.00 1.00 0.65 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00
1,000,000 0.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00

� mult M S C M S C M S C M S C
0 0.05 0.05 0.05 0.02 0.02 0.02 0.13 0.13 0.13 0.04 0.04 0.04
0.1 0.08 0.33 0.18 0.03 0.21 0.00 0.16 0.16 0.24 0.09 0.10 0.05
0.2 0.15 0.36 0.24 0.05 0.27 0.00 0.19 0.20 0.34 0.08 0.14 0.03
0.3 0.16 0.45 0.25 0.03 0.27 0.00 0.24 0.28 0.46 0.09 0.15 0.02
0.5 0.24 0.50 0.29 0.05 0.18 0.00 0.31 0.38 0.46 0.11 0.27 0.01
0.7 0.25 0.54 0.30 0.17 0.08 0.00 0.37 0.49 0.49 0.14 0.44 0.00
1 0.28 0.53 0.34 0.21 0.06 0.00 0.44 0.59 0.51 0.27 0.58 0.00
2 0.31 0.61 0.39 0.04 0.01 0.00 0.56 0.76 0.51 0.13 0.78 0.00
3 0.39 0.65 0.42 0.04 0.00 0.00 0.60 0.84 0.50 0.09 0.92 0.00
5 0.49 0.68 0.46 0.04 0.00 0.00 0.76 0.91 0.57 0.00 0.97 0.00
10 0.41 0.73 0.47 0.01 0.00 0.00 0.95 0.98 0.64 0.00 1.00 0.06
20 0.14 0.86 0.48 0.00 0.00 0.00 1.00 1.00 0.80 0.00 1.00 0.05
30 0.03 0.95 0.49 0.00 0.00 0.00 1.00 1.00 0.94 0.00 1.00 0.02
50 0.00 1.00 0.54 0.00 0.00 0.00 1.00 1.00 0.98 0.00 1.00 0.03
100 0.00 1.00 0.68 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00

Table 1: Probability of converging to correct solution for di�erent feature weight values.
Invariants features are based on moments (M), spherical harmonics (S), and curvature (C).
These results are displayed graphically in �gures 8 through 11
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Figure 8: Probability of converging to correct solution from a random initial condition for
the cruiser (easy) test set. The top plot shows global convergence rates for increasing values
of alpha, while the plots on the right show convergence for increasing beta. The predicted
best value of � = 1 is demarked with a vertical line.
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Figure 9: Convergence results for cruiser (hard) test set.
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Figure 10: Convergence results for Odetics (easy) test set.
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Figure 11: Convergence results for Odetics (hard) test set.
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Figure 12: Error from ground truth measured against each iteration for several invariant
weight values. These plots are taken from a single run of the \easy" Odetics test case using
moment (M) invariants.

7 Summary

This paper presents ICPIF, a fully automatic range image registration method that uses
shape features in conjunction with point positions to register range images without the
need for a user supplied initial estimate. Theoretical results show that under noise-free
conditions, ICPIF chooses the correct pointwise correspondences at least as well as ICP, and
that monotonic convergence to a local minimum is preserved. Convergence to the ground
truth registration occurs more often and in fewer iterations than traditional ICP. The relative
weights of the feature and positional components can be controlled by trading o� error in
feature values caused by noise against error in positions caused by misalignment. This is
accomplished using a calibration-time estimation of feature noise and fully automatic run-
time estimation of misalignment. Experimental results on real and synthetic images suggest
that for some alignment problems, matching can be performed using features alone, while
for larger alignment problems, a blend of position and features may be better.
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