
SimSect Hybrid Dynamical
Simulation Environment

User's Manual

Uluc. Saranli

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, MI 48109-2110, USA

ulucs@eecs.umich.edu

Abstract

This report is the user's manual of SimSect, a exible environment for the sim-

ulation of hybrid dynamical systems. Hybrid dynamical systems are systems where

the continuous dynamics undergo discrete changes upon detection of prede�ned state

based events. The simulation of such systems involve accurate detection of events and

handling of the transition between di�erent continuous systems.

This report also includes the details of two example hybrid dynamical systems: A

spring loaded inverted pendulum (SLIP) runner and a compliant hexapod. The former

example illustrates the basic elements of programming models with SimSect, while the

latter implements a much more complicated model, addressing many common issues

arising when de�ning complex dynamical models with SimSect.

1

1 Introduction

1.1 What is SimSect?

SimSect is a general purpose hybrid dynamical system integration environment. It was

mainly built to simulate a hexapod robot with compliant legs. It can. however, be used to

de�ne arbitrary hybrid dynamical system (systems with piecewise continuous dynamics), and

numerically compute their state trajectories from arbitrary initial conditions. It also incorpo-

rates an interface toGeomview, a 3D visualization environment (http://www.geom.umn.edu)

to visualize the state of the dynamical system in a exible manner.

If you have questions or comments about SimSect or this manual you can e-mail them

to ulucs@eecs. umich.edu.

1.2 Authors

SimSect is originally written by Uluc Saranli, together with the Spring-Loaded Inverted

Pendulum(SLIP) and the Compliant Hexapod Model de�nitions.

1.3 Overview

SimSect is designed to be used for integrating a well de�ned hybrid dynamical ow. In doing

so, the user can specify several parameters of the dynamical system, as well as the initial

conditions without having to modify the source or recompile the program. The output of

SimSect is a set of user de�ned functions, evaluated over the entire computed trajectory.

SimSect can either be used as a batch simulation tool or as a real-time visualization

environment for the dynamical system. The former case can proceed without any user

interaction, where the initialization �les are usually created through a scripting language

such as Perl, and the results are obtained in a set of output �les. In the latter scenario,

however, the user modi�es the initialization �le, runs the simulation and observes the results

through the visualization.

The de�nition of a model in SimSect involves writing C code corresponding to various

components of the hybrid dynamical system. These include the de�nition of the vector �eld

on di�erent discrete charts of the system, the chart boundaries in the form of zero level sets

of scalar functions and the transition functions which map the system state on one chart

to the system state on the following chart in the case of a boundary crossing. For a more

detailed discussion on the hybrid system concepts used in SimSect, refer to Section 3.1.

2 Using SimSect

2.1 System Requirements

SimSect currently runs on Intel x86 based Linux platforms. Visualization of the simulation

requires Geomview, available from http://www.geomview.org.

2

2.2 Invocation

SimSect consists of a single executable SimSect. It accepts only one argument, which spec-

i�es the initialization �le, through which most of the system con�guration is done. The

default name for the initialization �le is SimSect.rc.

Usage: SimSect [-c filename]

2.3 Output Files

Upon completion of execution, SimSect creates three output �les. The main output �le

is SimSect.data, which includes an ascii dump of the auxiliary functions de�ned by the

model. By default, the data in this �le is collected at every integration time step. The

sampling period can be rede�ned in the initialization �le to avoid very large data �les. The

SimSect.initial and the SimSect.param �les include the model initial conditions and the

model parameters, respectively. These two �les have the same format as the initialization

�le (see Section 2.4.1).

2.4 The Initialization File

System con�guration and the speci�cation of model parameters as well as the model initial

conditions can be done through the initialization �le. Unless explicitly speci�ed through the

command line parameter, SimSect.rc is the default initialization �le.

2.4.1 File Format

In SimSect, various parameters and variables are de�ned as symbols, whose values can then

be accessed by both the integrator and the model speci�cation to read user speci�ed settings.

The initialization �le consists of assignments to these symbols in the following syntax.

symbol name = value;

The symbol name can be any string starting with a letter and including letters, digits or

the underscore character. The symbols in SimSect can be of type real number or string. The

value �eld hence can be either a real number or a string enclosed in quotes. Finally, lines

starting with the # symbol are considered as comments and are ignored. Figure 1 illustrates

an example init �le.

2.4.2 Summary of Integrator Symbols

This section summarizes the symbols prede�ned by the SimSect integrator subsystem. Model

speci�c symbol de�nitions will be discussed in conjunction with the details of each particular

model (see Sections 4 and 5).

� systemName (default = "hexapod")

The name of the dynamical model to be integrated. Currently valid values are \hexa-

pod", \akh" and \slip". If an invalid value is speci�ed, the model defaults to hexapod.

3

This is a comment

recordPeriod = 0.01;

measurePeriod = 0.1;

dataBaseName = "hexapod";

useGeomview = 1;

framerate = 30;

Integration engine related parameters

�nalTime = 5;

maxChartCount = 128000;

stopPrecision = 1e-10;

maxStopIterations = 128;

tolerance = 1e-5;

maxTimeStep = 1e-3;

minTimeStep = 1e-15;

rkPower = 0.33;

Figure 1: An example initialization �le for SimSect.

� dataBaseName (default = "SimSect")

The base �lename for the output �les. The suÆxes .data, .initial and .param are

appended to this to obtain the output �lenames.

� useGeomview (default = 0

Flag to enable the link to Geomview for the visualization of the simulation. The

model de�nition must provide a visualization mapping function for this option to work

properly.

� stopPrecision (default = 1e-10)

Numerical precision tolerance for the stopping functions. The boundary crossings

between di�erent charts in the hybrid system are detected up to this precision in the

function value.

� maxStopIter (default = 128)

Maximum number of iterations that the stopping iterator will be allowed to go through

before giving up on trying to �nd the boundary crossing. The failure to �nd a cross-

ing within this limit strongly suggests that there is a discontinuity in the boundary

function.

� recordPeriod (default = 0.0)

The time period for the recording of trajectory data which will be saved in the output

�les. Special stopping functions are de�ned to compute the trajectory points at exact

multiples of this value, resulting in accurate recordings of the system trajectory at a

given frequency.

4

� measurePeriod (default = 0.0)

The time period for displaying a user message at particular time intervals. This is a

convenient way of interactively displaying the integration progress. However, a very

small value for this symbol might result in excessive output of messages.

� maxChartCount (default = 128)

The maximum number of times chart transitions can occur. In cases where vector

�elds in neighboring charts point towards each other, chattering may occur, which

usually throws the integrator into a state where chart transitions occur at very high

frequencies. When the number of transitions exceed this value, the integration stops

with an error and the results of the integration up to this point are saved.

� finalTime (default = 1.0)

This is the �nal time for the integration. Upon reaching this point in time, the inte-

gration stops and the computed trajectory is saved in the data �les. The integrator

actually de�nes a speci�c stopping function for this purpose, so the �nal integration

time corresponds to this value up to the stopping precision.

� tolerance (default = 1e-4)

This is the state error tolerance setting of the Runge Kutta integrator.

� maxTimeStep(default = 1e-2)

The maximum time step limit for the integration. The time step is constrained to

be below this value by the Runge Kutta algorithm for numerical stability purposes.

This value, in conjunction with the tolerance determine the accuracy of the integration

algorithm,

� minTimeStep (default = 1e-15)

The minimum allowable time step for integration. The time step used by the integra-

tion algorithm is not allowed to go below this value.

� power (default = 0.33)

The time step adjustment power for the Runge Kutta algorithm.

3 Programming with SimSect

3.1 Hybrid Dynamical Systems

A large number of dynamical systems that we are interested in analyzing, including the

hexapod model that we present in this report, cannot be represented with a single dynamical

ow. They are hybrid dynamical systems, which are mixtures of discrete and continuously

varying events. This section describes a formal de�nition of hybrid dynamical systems, and

is mostly quoted from the formalism described in [1], with some minor modi�cations.

5

We assume that the problem domain is decomposed into the form

V =
[
�2I

V�

where I is a �nite index set and V� is an open, connected subset of Rn. Each

element in this union is called a chart. Each chart has associated with it a vector

�eld, f� : V�� R!Rn. Notice that the charts are not required to be disjoint.

Moreover, on the intersection set V�
T
V�, continuity, or even agreement of the

vector �elds are not required for �; � 2 I. For each � 2 I, the chart V� must

enclose a patch, an open subset U� satisfying U� � V�. The boundary of U� is

assumed piecewise smooth and is referred to as the patch boundary. Together,

the collection of charts and patches is called an atlas.

For each � 2 I there is a �nite set of boundary functions, h�;i : V� ! R,

i 2 Jbf

�
, and real numbers called target values, C�;i, for i 2 J bf

�
that satisfy the

condition: For x 2 V� where � 2 I , we require

x 2 U� if and only if h�;i(x)� C�;i > 0 for all i 2 J bf
�

.

Thus, a patch is to be considered the domain on which a collection of smooth

functions are positive. The boundary of a patch is assumed to lie within the set:

[
i2J bf

�

h�1
�;i

(fC�;ig) for � 2 I :

Conceptually, the evolution of the system is viewed as a sequence of trajectory

segments where the endpoint of one segment is connected to the initial point of

the next by a transformation. It follows that time may be divided into contigu-

ous periods, called epochs, separated by instances where transition functions are

applied at times referred to as events. The transition functions are maps which

send a point on the boundary of one patch to a point in another (not necessarily

di�erent) patch in the atlas.

Within this framework, an orbit in the ow of a hybrid dynamical system

which begins at a time t0 and terminates at tf may be completely described.

A trajectory, hence, is a curve : [t0; tf]! V �I together with an increasing

sequence of real numbers t0 < t1 < � � � < tm = tf that satis�es three properties:

� Each time interval (ti; ti+1) corresponds to an epoch and there exists a des-

ignated � so that (t) lies entirely in U��f�g for all t 2 (ti; ti+1).

� For t 2 [ti; ti+1) and the unique � speci�ed above, t! �1 ((t)) is an integral

curve of the vector �eld f�.

� lim
t!t

�

i+1

�1 ((t)) = y exists, y 2 S� and T�(y) = lim
t!t

+

i+1

(t).

6

3.2 System Architecture

SimSect isolates the integration algorithms from the de�nition of the dynamical system.

Unlike the model implementation, which is di�erent for every system model, the integration

engine is a static component of the system. This abstraction makes the implementation of

additional model de�nitions and the modi�cation of existing models much simpler.

De�ning a dynamical system model consists of providing the hybrid components described

in Section 3.1. The model de�nition is usually programmed by the user and includes functions

corresponding to the following list of tasks.

� Initialize the partition structure, the initial state and the initial chart.

� De�ne the properties of a particular chart, and the boundary functions that will be

used.

� Compute the vector �eld for the individual charts.

� Compute boundary functions, identi�ed by a certain index that the chart initialization

determines for the current chart.

� Perform chart transitions by computing the next system state and chart.

� Validate a chart by checking whether a given trajectory point lies in the chart.

� Compute an auxiliary function, mainly used for data collection purposes.

� Compute the homogeneous transformations for visualization of the system trajectory

using Geomview.

The integration algorthms invoke these functions to compute necessary components of

the computation.

3.3 The Integrator Engine

The overall structure of SimSect is depicted in Figure 2, where the example hexapod model

components is also included. This section describes the the integrator engine and its in-

terface to the model de�nition. The subsections summarize C implementations of various

components. The reader should refer to the actual source code for implementation details.

3.3.1 Iterators

Most numerical algorithms use some form of iteration, where a particular procedure is repet-

itively executed until a certain condition is satis�ed. Several components of the numerical

integration procedures in SimSect have this structure.

On several levels, SimSect makes use of an abstract iterator concept. An iterator is a

computational object which consists of an initialization procedure, an iterating function,

a termination condition and a wrap-up procedure. When an iterator is invoked, the ini-

tialization is followed by repeated execution of the iterating function until the termination

condition is met. The wrap-up procedure is then invoked and terminates the iteration.

7

SS_ComputeFlow

(integ_initialize
integ_iterate
integ_wrapup)

SS_Stopping

(stop_initialize
stop_iterate
stop_wrapup)

Trajectory IntegratorModel Definition

hex_ValidateChart

hex_AuxFunc

hex_GetHipTorque

SS_Geomview

(SS_GeomviewSend
SS_GeomviewTransform
SS_GeomviewSendFile)

hex_Geomview
hex_Transform

Initialization

hex_InitPartition

SS_LoadInitFile

SS_SymbolTable

(SS_InitSymbolTable
SS_GetSymbol
SS_PutSymbol)

SimSect.rc

hexaped.oogl

hex_OpenLoopreference

SS_AddStopFunc
SS_GetStopFunc
SS_ClearStopFunc

SS_ComputeTraj

(flow_initialize
flow_iterate
flow_wrapup)

SS_RungeKutta

(RK_initialize
RK_iterate
RK_wrapup)

hex_GetBendTorque

hex_GetradialForce hex_VectorField

SS_FlowMem

(SS_FlowMemAdd)

hex_DefineChart

hex_Boundary

SS_InitSystem

hex_Transition

Figure 2: System architecture of SimSect with an example model instance of the Compliant

Hexapod Model.

The �les SS Iterator.c and SS Iterator.h de�ne functions to initialize and use itera-

tors at a somewhat abstract level. The functions de�ned by this subsystem are summarized

below.

� SS InitIterator(...)

Setup an iterator by de�ning the appropriate initialization, iteration, interruption and

wrapup procedures.

� SS Iterate(...)

Invoke an iterator by �rst calling its initialization procedure, then repeatedly calling

its iteration procedure until the termination ag is set and then calling its wrapup

procedure.

SimSect implements a hierarchy of several iterators implementing di�erent components

of the integration. The following sections describe various iterators in SimSect

8

3.3.2 The Runge Kutta Iterator

This iterator implements the 4th order adaptive time step Runge Kutta integration algorithm

for a single time step. The iteration accomplishes the re�nement of the time step until the

state error falls below a certain tolerance, determining the time step for computing the next

trajectory point.

This module consists of the �les SS RungeKutta.c and SS RungeKutta.h. The list below

summarizes the functions exported by this module.

� SS InitRK(...)

Sets up a Runge Kutta iterator with appropriate system states and parameters.

� SS UpdateRK(...)

Updates the current chart for the trajectory computation.

� SS RunRK(...)

Carries out the iteration and computes the next trajectory point as well as updating

the time step.

� SS RK NextStep(...)

Provides external access to the iteration function, without going through the whole

iteration process with wrapup etc.

3.3.3 The Flow Iterator

The ow iterator is the module which repeatedly calls SS RunRK() to compute the trajectory

inside a particular chart, until a boundary crossing is detected. The functionality of the ow

computation module is detailed in Figure 3. Given an initial condition, this module iterates

through successive trajectory points, using the Runge-Kutta module to advance through

time steps. Upon detection of a boundary crossing, the stopping iterator is invoked, re�ning

the last time step until the boundary crossing time is determined up to the required precision.

This module is implemented by the �les SS ComputeFlow.c and SS ComputeFlow.h. The

following functions provide access to the functionality of this module.

� SS InitFlow(...)

Initializes necessary structures for the ow iterator.

� SS UpdateFlow(...)

Updates the current chart for a ow iterator.

� SS PurgeFlow(...)

Purges memory structures allocated by the InitFlow function for a ow iterator.

9

Clear All
Stopping Functions

Integrate the flow
until the next
boundary crossing
(SS_IntegFlow)

Add Stopping
Function for final
integration time

Did the final time
crossing occur?

did we reach the max
transition count?

Call the model
transition function
(SS_Transition)

Update the state
and the current chart
to their new values

no

yes Notify iterator
that we are done
(ITERATOR_DONE)

Notify iterator
that we are done
(ITERATOR_DONE)

continue

enter

no

yes

continue

enter

Check validity of state
given the current chart

(SS_ValidateChart)

Add the current state
to the state flow memory

Compute and add the
auxiliary functions
to the auxiliary
flow memory

Has it been enough
time since the last

data recording?

Refresh Geomview
(SS_UpdateGeomview)

Compute the
next time step
(SS_RunRK)

Did we cross any
of the boundaries?

Notify iterator
that we are done
(ITERATOR_DONE)

yes

yes

no

no

flow_iterate integ_iterate

continue

enter

Pick the next one
from the currently

active boundary funcitons

Solve for the exact
crossing time
for the current
boundary function

Store the solution
for the current
boundary function.

Are we done with
all the

boundary functions?

Determine the boundary
function whose transition
occurs the earliest in time

Set the current time
step to that particular

 boundary crossing

yes

no

integ_wrapup

continue

enter

Compute the boundary
 function for the left
and right time points

Is the right value 0?

Is the left value
below the precision

and the stopping type is
STOP_TYPE_LEFT

Is the right value
below the precision

and the stopping type is
STOP_TYPE_RIGHT?

Did we reach the
max # of iterations
or the time step

unacceptably small? Estimate a new timestep with
midpoint subdivision algorithm

dt = (dtleft + dtright)/2

Compute the state for
the next time step

compute the boundary
function at the

new state

Is the function
value positive?

Notify iterator
that we are done
(ITERATOR_DONE)

Notify iterator
that we are done
(ITERATOR_DONE)

Notify iterator
that we are done
(ITERATOR_DONE)

Notify iterator
that we are done
(ITERATOR_DONE)

replace the left
value with the newly

computed value

replace the right
value with the newly

computed value

stop_iterate

Figure 3: Flowcharts for major functions in the SS ComputeTraj, SS ComputeFlow and

SS Stopping modules. The flow iterate is the iteration function for the trajectory iterator.

The integ integrate and integ wrapup are the iteration and wrapup functions of the ow

iterator, and stop iterate is the iteration function for the stopping function iterator.

� SS IntegFlow(...)

Integrates the dynamical system model in the current chart, until a boundary crossing

is detected by invoking the ow iterator. Then, it uses the stopping iterator to detect

the exact crossing time and stops the integration at that time instant. Note that this

function also takes care of de�ning and handling the measurement stopping function

introduced in Section 2.4.2 as well as the recording of trajectory points through the

use of the ow memory (see Section 3.4.1).

3.3.4 The Stopping Iterator

This module is responsible from re�ning the last time step of the integration in a chart to

determine the exact boundary crossing time. Figure 3 depicts the algorithm for the iteration

function of this module. This iterator is invoked from within the wrapup function of the

ow iterator, and uses a midpoint subdivision type algorithm to re�ne the time step where

the boundary crossing is detected. It can handle multiple crossings and returns the crossing

which is the earliest in time.

The functions associated with this module are also de�ned in the �les SS ComputeFlow.c

and SS ComputeFlow.h. The stopping iterator is somewhat hidden in the ow computation

module, so it does not have any external functions which provide access to its iteration

functions. The exported function are mainly for de�ning and deleting stopping functions

and are heavily used by both the integrator engine itself (for de�ning �nal time stopping

functions, measurement stopping functions etc.) and by the model de�nition to de�ne and

specify boundary functions.

10

� SS AddStopFunc(...)

Adds a stopping function to the current list of active stopping functions. These are

scalar valued functions whose zero crossings are detected and iteratively identi�ed up

to a certain precision by the stopping iterator. These zero crossings may occur either

when a boundary crossing occurs, or when a system de�ned condition (such as the

�nal integration time) is encountered. The return value is an index which will later be

used to access the state of the added stopping function.

� SS ClearStopFunc(...)

Clears all currently active stopping functions. Usually called at the end of each chart

transition, in which case the model de�nes new boundary functions.

� SS GetStopFunc(...)

Returns the state of the boundary function. The model de�nition frequently uses this

function to check which boundary function initiated the chart transition to decide on

the proper course of action.

3.3.5 The Trajectory Iterator

The trajectory iterator module is one level higher than the ow iterator and is responsible

from iterating through successive charts. Each execution of the iteration corresponds to the

invocation of a complete ow iteration, resulting in the computation of the trajectory from

the current state until the next boundary crossing. Figure 3 gives the owchart for the main

iteration loop for this module.

Note that this module is also responsible from de�ning the �nal time stopping function

as well as calling various components of the model to initialize the new partition structure.

The function associated with this module are located in the �les SS ComputeTraj.c and

SS ComputeTraj.h

� SS InitTraj(...)

Initializes necessary structures for the trajectory iterator.

� SS PurgeTraj(...)

Purges memory structures allocated by the InitTraj function for a trajectory iterator.

� SS IntegTraj(...)

Integrates the dynamical system from an initial condition until either the �nal time or

the maximum chart count is reached. The integration also stops in case of an error.

The integration is accomplished by invoking the ow iterator for each chart, calling

appropriate transition functions for boundary crossings. This is the main entry point

to the integrator and is called right after the initialization, carrying out the integration.

Following the invocation of this function, the trajectory data is saved and the system

exits (see Section 3.3.6 for details).

11

3.3.6 The Top Level

This section describes what happens at the topmost level of SimSect, from within which all

the other modules are invoked.

The �le SimSect.c is the entry point to the system. The main sequence of tasks carried

out by the system from startup to the end are as follows:

� Initialize the symbol table and load the initialization �le.

� Initialize Geomview subsystem.

� Call SS InitSystem. This function chooses the model to be integrated and calls its

initialization function. Note that to add a new model, this function should be modi�ed

to incorporate the new model's initialization system.

� Initialize the ow memory for storing the auxiliary function data.

� Initialize the ow memory for storing the state trajectory data.

� Call the InitPartition function of the model to setup the initial condition for the

integration as well as any other initializations that the model may want to execute.

� Initialize the trajectory integrator.

� Save the initial conditions and the model parameters into appropriate output �les.

� Integrate the model system until the trajectory iterator exits, which is either at the

�nal integration time or some error has occurred.

� Save the trajectory data and auxiliary functions into appropriate output �le, cleanup

and exit.

3.4 Utility Modules

3.4.1 The Flow Memory Utility Module

In SimSect, the data points resulting from the integration of the model (either the auxiliary

functions or the state variables) are stored in a certain data structure called ow memory.

SimSect provides facilities to create, maintain and delete ow memories, making it possible

to collect and save data in a convenient way.

The �les SS FlowMem.c and SS FlowMem.h implement the functions associated with this

utility module. The provided functions and their descriptions are summarized below.

� SS FlowMemInit(...)

Allocates and initializes a ow memory structure to be used by the other utility func-

tions in this module. An uninitialized ow memory object cannot be used by the utility

functions. Note that the number of elements (doubles) in a data entry are speci�ed

with this function at the time of initialization.

12

� SS FlowMemAdd(...)

Adds a data entry to the ow memory. The internal implementation of the ow memory

allocates heap memory in chunks of a prede�ned size and �lls them in with the data

supplied through this function. Hence, the user does not have to worry about space

allocation and memory management.

� SS FlowMemGet(...)

Returns a particular data entry from the ow memory, indexed by an integer. The

data entries are ordered chronologically by the order they are added into the memory

by the SS FlowMemAdd function.

� SS FlowMemDump(...)

Outputs the contents of a ow memory in an ascii �le where each row corresponds to

a single data entry with the appropriate number of elements. This �le can easily be

imported by numerical computation packages such as it Matlab.

� SS FlowMemClear(...)

Clears all the data in a ow memory and deallocates the allocated heap memory.

3.4.2 The Symbol Table Utility Module

The symbol table module provides facilities for creating, maintaining and accessing symbol

tables. Its main use in SimSect is to handle the interface between the de�nitions in the

initialization �le and di�erent components of the system including the integrator itself as

well as the model de�nition.

Symbols in SimSect are named variables which can hold either a real number or a string

value. Utility functions to setup symbol tables and to create and access symbols are de�ned

in �les SS SymbolTable.c, SS SymbolTable.h and SS Parameter.c.

� SS InitSymbolTable(...)

Allocates and initializes an empty symbol table structure.

� SS PurgeSymbolTable(...)

Deallocates an initialized symbol table structure. All the symbols in the table are

discarded.

� SS NewSymbol(...)

Creates a named symbol and allocates memory for the data structure.

� SS GetSymbol(...)

Looks up and returns a symbol from a symbol table, indexed by the symbol name.

� SS PutSymbol(...)

Inserts a symbol into a symbol table. The symbol structure must be properly allocated

and initialized. If a symbol of the same name already exists in the table, then it is

replaced by the newly inserted value.

13

� SS PutDoubleSymbol(...)

Creates and initializes a symbol structure with the real number value supplied. This

is a shorter and more convenient way of creating symbols if the user does not want to

do the initialization of the symbol structure. Uses SS PutSymbol() for insertion and

hence checks for duplicates.

� SS PutStringSymbol(...)

Similar to SS PutDoubleSymbol(), inserts a string valued symbol into a symbol table.

3.4.3 Parser and Initialization File Utility Modules

This module handles the parsing of the initialization �le. Normally, the programming of the

model will not �nd this model useful in any way, but we will include a brief description of

its functionality in this section for completeness.

This module consists of the �les SS Tokenizer.c, SS Tokenizer.h, SS SimScript.c,

SS SimScript.h and SS InitFile.c. The exported procedures and their functionality are

as follows.

� SS InitTokenizer(...)

Creates and initializes a tokenizer object.

� SS OpenTokenizer(...)

Starts the tokenizer with a particular �le or string input. This is the �rst step to be

taken before any module can use the tokenizer.

� SS GetNextToken(...)

Identi�es and retrieves the next token from the input stream.

� SS CloseTokenizer(...)

Ends the tokenization from the current stream and closes the stream.

� SS EndOfInput(...)

Checks whether the input stream has reached its end.

� SS RunScript(...)

Opens a speci�ed stream and interprets the script read from the stream. Here, the

script format is the initialization �le format described in 2.4.1.

� SS LoadInitFile(...)

Loads and interprets the initialization �le with the �lename supplied as an argument.

This is the function used by the top level SimSect execution. It is simply a wrap-

per to SimScript facilities, which in turn use the parser and the tokenizer for their

functionality.

14

3.4.4 The Root Finder Utility Module

Some of the controllers used in the example models require the computation of the roots of

a scalar function. Consequently, SimSect now provides a Newton's method root �nder as

a utility module. This module also uses the iterator facilities of SimSect as it relies on an

iterative algorithm. Please refer to the source code for the details of the algorithm, which is

a very simple root �nder.

The �les associated with this module are SS RootFinder.c and SS RootFinder.h. The

function provided by the module are summarized below.

� SS InitRootFinder(...)

Initializes the speci�ed root �nder object.

� SS FindRoot(...)

Finds a zero of the function speci�ed in the arguments, closest to a starting point

supplied in another argument.

3.4.5 Visualization Utility Module

SimSect implements an interface with Geomview, a three dimensional graphics package, for

the visualizing the simulation of the model. This interface is \real-time", in the sense that

the visual is updated as the simulation progresses. Currently, there is no o�-line visualization

option.

SimSect interfaces with Geomview through named Unix pipes, through which it uses

Geomview's command language to control its behavior. If the symbol useGeomview is set to

1 in the initialization �le, SimSect invokes Geomview and establishes a pipe connection for

communication. If the attempt to execute and connect to Geomview fails, the subsystem is

disabled.

SimSect assumes a particular way in which the model state is visualized. The model

de�nition must provide functions to initialize the initial three dimensional geometry, together

with appropriate transformation matrices (see [3] for a detailed account of how to construct

geometries in Geomview). The real time visualization is then accomplished by updating

the transformation matrices associated with the geometry in a way that is particular to the

model and the design choices of the model programmer.

The functions in the �les SS Geomview.c and SS Geomview.h implement the visualization

utilities of SimSect. The following functions are provided by this module.

� SS GeomviewInit(...)

Initializes the visualization subsystem. If the symbol useGeomview is set to 0 in the

initialization �le (the default is 1), then this function returns without doing anything.

Otherwise, it attempts to execute Geomview or establish connection to an existing

Geomview execution. If successful, it resets Geomview and prepares it for the upcoming

visualization tasks. This function is called from the SimSect top level execution.

� SS GeomviewSend(...)

Sends a string to Geomview, which should be in Geomview Command Language (gcl).

15

� SS GeomviewWait(...)

Waits for Geomview to �nish whatever it is currently doing and then returns.

� SS GeomviewTransform(...)

Sends a number of transformation matrices to Geomview, rede�ning existing trans-

formation matrices with names ttt0, ttt1, ttt2, This function is used by

the model de�nition to update the state of the visual image based on the current

state. Essentially, this operation updates the visual, reecting the new positions and

orientations of the geometries which depend on the rede�ned transformation matrices.

� SS GeomviewSendFile(...)

Opens the speci�ed text �le and sends the contents to Geomview. This function is

most commonly used by the model in de�ning the initial geometry of the visualization,

by loading a static oogl �le during initialization.

� SS GeomviewClose(...)

Closes the connection to Geomview.

� SS GeomviewClear(...)

Deletes all the objects in Geomview.

3.4.6 Miscellaneous Utility Functions

The �les SS Util.c and SS Util.h provides several utility functions to the model program-

mer. Among those functions are general purpose matrix and vector manipulation procedures,

special purpose matrix and vector facilities for manipulating vectors in three dimensions and

rotation matrices as well as some other functional tools. Please refer to the source code for

details on these utilities and their usage.

3.5 The Model De�nition

Programming a model in SimSect involves providing several functions de�ning di�erent com-

ponents of the hybrid system formalism as well as functions to interface to the visualization

subsystem. The following list summarizes functions that the programmer must provide in

order to complete the de�nition of the model. The following subsection describes each of

these functions in detail, including their inputs outputs and the requirements on their func-

tionality.

� Setup model structures, de�ne state and parameter symbol names.

� Initialize the partition structure, the initial state and the initial chart.

� Compute the vector �eld for the individual charts.

� De�ne the properties of a particular chart, and determine the boundary functions that

will be used, de�ning stopping functions as necessary.

16

� Compute boundary functions, identi�ed by a certain index that the chart initialization

determines for the current chart.

� Perform chart transitions by computing the next system state and chart.

� Validate a chart by checking whether a given trajectory point lies in the chart.

� Compute an auxiliary function, mainly used for data collection purposes.

� Compute the homogeneous transformations for visualization of the system trajectory

using Geomview.

3.5.1 The State Space Structure

One of the �rst things that the model programmer needs to determine is the structure of the

state space in each of the charts of the system model. In SimSect, there are two di�erent

types of state space variables that are commonly used.

The �rst type corresponds to the usual continuous state variables and by convention

occupy the topmost part of the state space (i.e. states 0, 1, 2, ...). Note that each chart

may have a di�erent number of these continuous states, among which the conversion will be

carried out by the transition function.

The second type of states are all other components of the model that require memory.

These are mainly bookkeeping states, which change with transitions between di�erent charts.

Due to the fact that the vector �eld de�nition is unable to retain any memory, these states

become critical in keeping track of the discrete changes that take place in the system. Exam-

ples of such states are counts of chart transitions, the foot placement location for the SLIP

model, mechanisms to keep track of currently active tripods in the hexapod model etc.

3.5.2 Initializing the Model

This is the �rst component of any model called by SimSect. This function is called from

within SS InitSystem, which looks at the parameter systemName to �gure out which model

is to be integrated. Hence, when a new model is to be de�ned, the programmer needs to

modify SS InitSystem to call the model initialization function. This static way of specifying

the model initialization functions is because SimSect currently does not have any means of

dynamically loading precompiled model de�nitions during execution. Hence, their entry

points must be hard coded in SimSect.

The model initialization function needs to carry out the tasks in the list below.

� Fill in the model function �elds in the global SS Data struct. The �elds that need to

be �lled out are SS Data.ipFunc, SS Data.vfFunc, SS Data.dcFunc, SS Data.trFunc,

SS Data.vcFunc, SS Data.auxFunc and SS Data.geomFunc, each of which correspond-

ing to one of the model functions described in the following sections.

� Call SS SetupSystem, specifying the number of states, the initial state, the names

of state variables, the number of parameters, the default parameters (before loading

the init �le), the parameter symbol names, the number of charts and the number of

17

auxiliary functions. The initial state and the default parameters should be pointers to

arrays of doubles, which are then copied by this function. The state and parameter

names must be pointers to arrays of strings with the corresponding symbols.

� Perform any setup or initialization needed by the model. The initialization �le is pro-

cessed before SS InitSystem is called. Hence, the system parameters, initial conditions

etc. can be accessed by this function to perform the initialization.

3.5.3 Initializing the Partition

The function pointer in SS Data.ipFunc after the model initialization points to this function.

The main purpose of this function is to �nalize the initial conditions and determine which

chart the system will start from, in addition to any modi�cations to the parameters, and/or

model states. It is called after all the system initializations are complete and right before

the integration starts. The prototype for this function is

int InitPartition(double* xnew, int* newChart, double x[],

double p[], int chart);

The �elds indicated by xnew and newChart must be �lled out by the function and they

will be the initial state and the initial chart for the integration to come.

3.5.4 The Vector Field

This is the function pointed to by the variable SS Data.vfFunc. Its main purpose is to

compute the vector �eld for the model at a given state and chart, de�ning the ow. Usually,

this is the most complicated function in a model de�nition because it implements the dy-

namics of the model as well as other components such as controllers etc. Naturally, all the

functionality does not need to be implemented in a single function body. A more modular

approach with multiple procedures is possible and should be considered when possible. The

prototype for this function is

int VectorField(double* xdot, double x[], double p[], int chart);

The array pointed to by the argument xdot must be �lled in by the function with the

computed vector �eld.

One of the major mistakes made in implementing a model is to use the vector �eld

function to incorporate discrete changes in system structures from within the vector �eld.

The calls to the vector �eld function do not occur in chronological order. Hence, even if the

integrator computes the ow at a particular time, this does not necessarily mean that the

integration has reached that point. Consequently, the assumption that the time (which is

one of the states, usually) that the ow is computed at can be used to make discrete decisions

about the structure of the system is wrong. The vector �eld should properly de�ne a (not

necessarily continuous) function of the state space, without any other internally maintained

discrete state. It is up to the hybrid integrator together with the transition functions to

perform those discrete structural changes to the model, which will then reect themselves

back to the vector �eld in the fact that a new chart has been entered.

18

3.5.5 De�ning a Chart

The variable SS Data.dcFunc points to this function after initialization. The main purpose

of this function is to de�ne a chart after each chart transition (which occurs after boundary

crossings). The de�nition of the chart almost always means de�ning the stopping functions

associated with the new chart, based on the new boundary functions which become active fol-

lowing the transition. This function will use the stopping function facilities of the integrator

to create and de�ne the stopping functions.

Note that the places in which the stopping function are accessed (transition function etc.)

are separate from this function. Consequently, the indices returned by the stopping function

de�nition utilities must either be stored in some place accessible from those other procedures,

or be based on a common indexing mechanism which can later be used to recover the indices

for the stopping functions. These indices are assigned to stopping function in the order they

are de�ned, starting from 1. Hence, if the order of their de�nition is carefully chosen, it

will be possible to know in other parts of the model what these indices will correspond to.

Example systems of later sections will make this clearer.

The prototype for this function is

int DefineChart(SS ComputeFlow* cf, int chart);

Note that the cf argument is necessary to be able to de�ne stopping functions, which

are local to the particular ow iterator they are de�ned in. See Section 3.5.6 for details on

how to de�ne and add stopping functions for a particular chart.

3.5.6 The Boundary Functions

Unlike the other functions provided by the model, the de�nition of the boundary functions

is somewhat transparent to the integrator and is not reported through any of the variables

in the global struct SS Data. Instead, the stopping function de�nitions include the pointers

to the corresponding boundary functions.

SS Stopping.h de�nes the C type for stopping function de�nitions as

typedef struct {

int index; /* Indices for the boundary function */

int type; /* Crossing for the boundary function */

int state; /* The current state of each function */

double value;

double timeStep;

int (*action)(double* val, double x[], double p[],

int chart, int ind);

} SS_StopFunc;

When de�ning boundary functions in, for example, the DefineChart function, the model

programmer needs to �ll in the index, type and action �elds of this struct prior to calling

SS AddStopFunc. The type �eld is either STOP TYPE LEFT or STOP TYPE RIGHT, specifying

whether the boundary function crossing should be detected from the left or right, resulting

a time step either before, or after the crossing, respectively (this is necessary because the

19

crossing is detected only up to a certain precision). The index and action �elds de�ne

what boundary function should be used to evaluate the stopping function. The index �eld

is mainly provided as a convenience for models where it makes most sense to parameterize

certain boundary functions with an index, corresponding, for example, to the current chart.

Consequently, whatever function is assigned to the action �eld of any stopping function

speci�cation must de�ne the corresponding boundary function for all possible indices that

they might be called with. As it can be seen from the prototype, the boundary functions

take the current state, model parameters and the current chart, and return the value of the

boundary function corresponding to the speci�ed index.

In any of the model functions, the programmer might retrieve one of the boundary

functions through SS GetStopFunc and check the function value in the value �eld of the

above struct. This is, for example, the way in which the transition function determines which

boundary function caused the transition and decide on the appropriate course of action.

3.5.7 The Transition Function

The transition function is the function pointed to by the variable SS Data.trFunc after

model initialization. The main purpose of this function is to determine the new state and

chart after a boundary crossing. Any zero of any stopping function encountered during

integration stops the ow iteration and calls the transition function to determine what the

appropriate course of action is. It is then up to this function to decide whether this crossing

corresponds to a boundary function, and if so perform necessary changes to the state (such

as coordinate transformations, discontinuous changes due to impacts etc.) and determine

the new chart. There are also instances where state changes occur even though the current

chart does not change.

The prototype for the transition function is

int Transition(int* trans, int* newChart, double* xnew,

double x[], double p[], int chart);

The arguments trans, newChart and xnew must be �lled out by the function. trans

indicates whether a chart transition has occurred. This is used by the trajectory iterator to

decide whether other function calls such as the DefineChart are required. The newChart

and xnew are the new chart and the new state after the transition and will be computed

according to the particular aspects of the model.

3.5.8 Validating a Chart

This function is used by the integrator to determine whether the current state is valid for

the current chart, mainly for debugging purposes. An invalid state corresponds to such cases

where the partitioning of the state space prescribes a particular chart which is di�erent than

the current chart as imposed by the integrator. This might correspond, for instance, to a

case where the toe of a hopper is underground while the hopper is in the ight chart. The

SS Data.vcFunc variable points to this function after initialization.

The prototype for this function is

20

int ValidateChart(int* inChart, double x[], double p[], int chart);

The inChart argument returns a ag indicating whether the given state is in the speci�ed

chart or not.

3.5.9 The Auxiliary Functions

The auxiliary function mechanism in SimSect is provided for the model programmer to be

able to record arbitrary functions of the system state and output them to a �le. By use of

this mechanism, SimSect can directly output integrated trajectories in the desired coordinate

system, making it more convenient to process the output. This also saves disk space and

memory in cases where the variables of interest are very few compared to the number of

system states.

The auxiliary function is stored in SS Data.auxFunc after model initialization. The

prototype for this function is

int Auxiliary(double *f, double x[], double p[], int chart);

This function �lls in the array supplied in the argument f with all the computed auxiliary

functions given the current state and the chart. Note that the number of auxiliary functions

remains the same throughout the integration and speci�ed during the model initialization.

Exceeding that number in �lling the output will most likely crash the system.

The computed functions can be anything, from things as trivial as the current time, to

complicated coordinate transformations of the current state. There is no restriction on what

the model programmer de�nes as auxiliary functions, as long as the number of functions is

correctly speci�ed.

3.5.10 Geomview Interface and Visualization

The interface of the model to Geomview involves two components: the initialization and the

update functions. Typically, the initialization function is called during the model initializa-

tion and is responsible from setting up the initial geometry. The integrator does not make

any function calls speci�cally for the initialization of Geomview apart from its invocation and

resetting. It is up to the model to initially con�gure Geomview geometry and visualization

options.

The second function is the one pointed to by the variable SS Data.geomFunc after the

model initialization. This is the the function which updates Geomview at a particular fram-

erate by sending the updated transformation matrices to Geomview. The prototype for this

function is

int UpdateGeomview(double x[], double p[], int chart);

This function is called by the ow iterator at every time step. Most often, the model

programmer de�nes a model parameter frameRate, which determines the period with which

the Geomview updates are sent out. Then, this function usually computes the transformation

matrices for various objects in the geometry and send them to Geomview through the use

of the SS GeomviewSend utility function. Moreover, a common practice is to enclose the

update commands in the following form

21

y

x

qrq�

fy
fx

Figure 4: The spring loaded inverted pendulum(SLIP) leg model.

int UpdateGeomview(double *x, double *p, int chart) {

double f[256];

int num;

SS_GeomviewSend(&SS_Data.geomview, "(freeze Camera)");

num = Transform(f, x, p, chart);

SS_GeomviewTransform(&SS_Data.geomview, num, f);

SS_GeomviewSend(&SS_Data.geomview, "(redraw Camera)");

}

This ensures that camera updates are not done during the update, avoiding unnecessary

display updates which would slow down the visualization. Note that this example does not

implement the framerate feature and would be extremely slow due to the very high number

of Geomview updates at every time step.

4 The Spring-Loaded Inverted Pendulum:

An Example Dynamical System

4.1 The Continuous Mathematical Model

The SLIP model considered in this example is shown in Figure 4. The leg is assumed massless

and the body a point mass at the hip joint. During stance the leg is free to rotate around its

toe and the mass is acted upon by a radial spring with potential U(qr). In ight the mass

22

is considered as a projectile acted upon by gravity. We assume there are no losses in either

the stance or ight phases.

Under these assumptions the stance dynamics are given by

�x =
DqrU(k; qr) sin(q�t)

m

�y = �DqrU(k; qr) cos(q�t)

m
� g

where k is the spring constant and m is the body mass.

4.2 The Hybrid Locomotion Model

During steady state locomotion, our model goes through four consecutive charts: ascent,

descent, compression and decompression. Among these, ascent and descent form the ight

phase, whereas compression and decompression form the stance phase. The model allows

transitions between these modes only in the sequential order that is given above.

The transition from ascent to descent occurs when the vertical velocity of the body dur-

ing ight changes sign from positive to negative. The transition from descent to compression

occurs when the tip of the leg during descent touches the ground. Then, the system goes

into decompression when the spring reaches maximal compression and it starts decompres-

sion. Finally, the ascent phase is reentered when the leg reaches maximal extension during

decompression.

The boundary functions associated with each of these transitions are de�ned below.

basc!desc(x; y) = _y

bdesc!comp(x; y) = y � qrt cos(q�t)

bcomp!decomp(x; y) = � _qr

bdecomp!asc(x; y) = qrl � qr

where qrt, qrl and q�t are the touchdown leg length, lifto� leg length and the touchdown

leg angles, respectively. Note that qr and q� can easily be written as functions of x and y

through a polar coordinate transformation.

In our simple model q�t is actually used as a control variable. We assume that during

ight we are able to swing the leg to any desired angle relative to the ground, which then

determines when and at which con�guration the leg touches the ground.

4.3 The SimSect Implementation of SLIP

This section describes the implementation of the SLIP model described above in SimSect.

Most of the example code is included for illustration purposes and should clarify many of

the concepts involved in de�ning a hybrid model in SimSect.

23

4.3.1 The State Space

The state space for the SimSLIP implementation is de�ned as follows

x := [x; y; _x; _y; fx; fy; q�t]

The SimSLIP implementation de�nes the following state names for initialization �le pur-

poses.

xnames := [x; y; xdot; ydot; footx; footx; touchdown angle]

Note that the states fx, fy and q�t are bookkeeping states and are only updated at chart

transitions.

4.3.2 The Model Parameters

The SLIP model makes use of several parameters con�gurable from within the initialization

�le. The parameters and their associated names are de�ned as follows.

p := [m; qrt; qrl; gst; gfl; fps; qr0; i; j; k] (1)

pnames := [body mass; q rt; q rl; g stance; g flight; framerate; q 0; spri; sprj; k]

Note that i, j and qr0 parametrize the spring law in the following form.

U(i;j)(qr; qr0; k) :=
k

ji:jjPi(�sgn(j)[Pj(qr)� Pj(qr0)])

Pl(x) := xl; l 2 N

4.3.3 Some Macro De�nitions

The following macro de�nitions are used in all the function de�nitions and make the model

code much more readable.

/* Parameters */

#define M_BODY p[0]

#define Q_RT p[1]

#define Q_RL p[2]

#define GSTANCE p[3]

#define GFLIGHT p[4]

#define FRAMESPERSEC p[5]

#define SPR_REST p[6]

#define SPR_I p[7]

#define SPR_J p[8]

#define SPR_K p[9]

24

#define NUM_OF_PARAMS (10)

/* Names of charts */

#define ASCENT_CHART 0

#define DESCENT_CHART 1

#define COMPRESSION_CHART 2

#define DECOMPRESSION_CHART 3

4.3.4 Model Initialization

The �rst task of the model initialization function is to de�ne the default initial state and

default parameters for the model as well as their names. This is then followed by informing

the integrator which functions the model de�nition provides and a call to SS SetupSystem

to �nalize the initialization.

int slip_InitSystem(void)

static const double state[] = {

0.0, 0.9, 1.0, 0.0, 0.0, 0.0, 0.0

};

static const char *stateNames[] = {

"x", "y", "xdot", "ydot", "footx", "footy", "touchdown_angle"

};

static const double params[] = {

50.48, 1.0, 1.0, 10, 10, 120, 1.0, 1.0, -2.0, 1000

};

static const char *paramNames[] = {

"body_mass", "q_rt", "q_rl", "g_stance", "g_flight",

"framerate", "q_0", "spri", "sprj", "k"

};

static int numStates = NUM_OF_STATES;

static int numParams = NUM_OF_PARAMS;

static int numPartitions = 4;

static int numAuxFunc = 6;

SS_Data.vfFunc = slip_VectorField;

SS_Data.trFunc = slip_Transition;

SS_Data.vcFunc = slip_ValidateChart;

SS_Data.dcFunc = slip_DefineChart;

SS_Data.ipFunc = slip_InitPartition;

SS_Data.geomFunc = slip_Geomview;

SS_Data.auxFunc = slip_AuxFunc;

return SS_SetupSystem(numStates, state, stateNames, numParams, params,

paramNames, numPartitions, numAuxFunc);

}

25

4.3.5 Initializing the Partition

The initialization of the partition in the SLIP model involves determining which chart the

speci�ed initial con�tions correspond to and then initialize the Geomview component.

The model assumes that the initial leg length is qrt. Together with the initial leg angle

and body position, this determines whether the tip of the leg is touching the ground or not.

The velocity of the body, in turn, determines which chart in ight or stance the system is

initially in.

int slip_InitPartition(double* xnew, int* new_chart, double x[],

double p[], int chart)

{

double tipy = x[1] - Q_RT*cos(x[6]);

memcpy(xnew, x, NUM_OF_STATES*sizeof(double));

if (tipy < 0) { /* Start at stance */

double tipx = x[0] + x[1]*tan(x[6]);

double qrdot = (x[0] * x[2] + x[1] * x[3])

/ sqrt(x[0] * x[0] + x[1] * x[1]);

xnew[4] = tipx;

xnew[5] = 0.0;

if (qrdot < 0) { /* This is compression */

*new_chart = COMPRESSION_CHART;

SS_Message("Starting in COMPRESSION\n");

} else {

*new_chart = DECOMPRESSION_CHART;

SS_Message("Starting in DECOMPRESSION\n");

}

} else { /* Start at flight */

if (x[3] > 0) { /* This is ascent */

*new_chart = ASCENT_CHART;

SS_Message("Starting in ASCENT\n");

} else {

*new_chart = DESCENT_CHART;

SS_Message("Starting in DESCENT\n");

}

}

slip_GeomviewInit(p);

return NO_ERROR;

}

26

4.3.6 The Vector Field

The ight charts and the stance charts have di�erent vector �eld de�nitions. During as-

cent and descent, the body is acted upon by gravity only. During compression and de-

compression, it also feels the spring force in addition to gravity. Note that the function

spring derivative() de�nes the derivative of the potential function de�ned in (1) and

hence gives the negative of the spring force.

static double spring_derivative(double qr, double qr0, double k,

int i, int j)

{

if (i == 2 && j == 1) return k*(qr-qr0);

return k*i/(fabs(i)*fabs(j))*pow(-(pow(qr,j)-pow(qr0,j))*j/fabs(j),i-1)

*(-fabs(j)*pow(qr,j-1));

}

int slip_VectorField(double* xdot, double x[], double p[], int chart)

{

if (chart == ASCENT_CHART || chart == DESCENT_CHART) {

xdot[0] = x[2];

xdot[1] = x[3];

xdot[2] = 0.0;

xdot[3] = -GFLIGHT;

xdot[4] = xdot[5] = 0.0;

} else if (chart == COMPRESSION_CHART || chart == DECOMPRESSION_CHART) {

double legx = x[0] - x[4];

double legy = x[1] - x[5];

double theta = atan2(legx, legy);

double rho = sqrt(legx*legx + legy*legy);

double force;

force = -spring_derivative(rho, SPR_REST, SPR_K, SPR_I, SPR_J);

xdot[0] = x[2];

xdot[1] = x[3];

xdot[2] = force*sin(theta)/M_BODY;

xdot[3] = force*cos(theta)/M_BODY - GSTANCE;

xdot[4] = xdot[5] = 0.0;

} else {

SS_FatalError("slip_VectorField", INVALID_PARAM_ERROR);

return INVALID_PARAM_ERROR;

}

return NO_ERROR;

}

27

4.3.7 De�ning the Charts

After the partition is initialzed and after each chart transition, the slip DefineChart()

function is called. Depending on what the next chart is, this function creates the necessary

stopping functions. In the SLIP model, each chart has only one associated stopping function

(in addition to the system de�ned �nal time and measurement stopping functions), which

correspond to the boundary functions de�ned in Section 4.2.

int slip_DefineChart(SS_ComputeFlow *cf, int chart)

{

int errno;

SS_StopFunc sf;

sf.type = STOP_TYPE_RIGHT;

sf.action = slip_Boundary;

if (chart == ASCENT_CHART) {

sf.index = 0;

} else if (chart == DESCENT_CHART) {

sf.index = 1;

} else if (chart == COMPRESSION_CHART) {

sf.index = 2;

} else if (chart == DECOMPRESSION_CHART) {

sf.index = 3;

} else {

SS_FatalError("slip_Transition", INVALID_PARAM_ERROR);

return INVALID_PARAM_ERROR;

}

if ((errno = SS_AddStopFunc(cf, &sf)) < 0)

return errno;

return NO_ERROR;

}

Note that the index �eld in the stopping function structure determines which boundary

function is evaluated by that particular stopping function. The boundary function are de�ned

with the following piece of code.

int slip_Boundary(double* val, double x[], double p[], int chart, int index)

{

switch (index) {

case 0:

/* The ascent-descent boundary */

*val = x[3];

break;

28

case 1:

/* The descent-compression boundary */

*val = x[1] - Q_RT*cos(x[6]);

break;

case 2: {

/* The compression-decompression boundary */

double legx = x[0] - x[4], legy = x[1] - x[5];

double xdot = x[2], ydot = x[3];

*val = - (legx * xdot + legy * ydot) / sqrt(legx * legx + legy * legy);

break;

}

case 3: {

/* The decompression-ascent boundary */

double legx = x[0] - x[4], legy = x[1] - x[5];

*val = Q_RL - sqrt(legx*legx + legy*legy);

break;

}

default:

SS_FatalError("slip_Boundary", INVALID_PARAM_ERROR);

return INVALID_PARAM_ERROR;

}

return NO_ERROR;

}

4.3.8 The Transition Function

The transition function determines the new state and chart after a boundary crossing. In the

SLIP model, there is only one possible cyclic chart sequence: ascent ! descent ! compres-

sion ! decompression, which is implemented by the transition function. The state of the

system does not change except during a transition from descent to compression (touchdown

transition) and a transition from decompression into ascent (lifto� transition). The former

transition sets, the states fx and fy to their new values after the foot touches the ground.

The latter transition, however, sets the state q�t to the negative of the lifto� angle to preserve

neutrally stable symmetric SLIP orbits.

int slip_Transition(int* trans, int* newChart, double* xNew, double x[],

double p[], int chart)

{

SS_StopFunc sf;

29

memcpy(xNew, x, NUM_OF_STATES*sizeof(double));

SS_GetStopFunc(&sf, 1);

if (sf.state == STOP_FUNC_CROSSING) {

switch (chart) {

case ASCENT_CHART:

*newChart = DESCENT_CHART;

SS_Message("Transition: ASCENT -> DESCENT\n");

break;

case DESCENT_CHART:

xNew[4] = x[0] + Q_RT*sin(x[6]);

xNew[5] = x[1] - Q_RT*cos(x[6]);

*newChart = COMPRESSION_CHART;

SS_Message("Transition: DESCENT -> COMPRESSION\n");

break;

case COMPRESSION_CHART:

*newChart = DECOMPRESSION_CHART;

SS_Message("Transition: COMPRESSION -> DECOMPRESSION\n");

break;

case DECOMPRESSION_CHART: {

double legx = x[0] - x[4];

double legy = x[1] - x[5];

/* Make the trivial touchdown decision */

xNew[6] = atan2(legx, legy);

*newChart = ASCENT_CHART;

SS_Message("Transition: DECOMPRESSION -> ASCENT\n");

break;

}

default:

SS_FatalError("slip_Transition", INVALID_PARAM_ERROR);

return INVALID_PARAM_ERROR;

}

*trans = SS_TRUE;

30

} else {

*trans = SS_FALSE;

}

return NO_ERROR;

}

Note that the state/chart combination which evaluate to negative boundary function

should also be considered invalid states. In our simple illustrative example, however, we do

not explicitly check for these cases in the chart validation.

4.3.9 The Auxiliary Functions

The data to be recorded is computed by the auxiliary functions. For our SLIP example, we

record the time together with the position and velocity of the body. Note that the number

of auxiliary functions is de�ned in the model initialization function and must be consistent

with the number of variables �lled in by the auxiliary function component.

int slip_AuxFunc(double *f, double x[], double p[], int chart)

{

f[0] = x[TIME];

f[1] = x[0];

f[2] = x[1];

f[3] = x[2];

f[4] = x[3];

return NO_ERROR;

}

4.3.10 Chart Validation

The simple SLIP model has only one potential mode of failure: The hopper toppling over

and the body hitting the ground. In any one of the charts, if y < 0 at any point on the

trajectory, the state-chart combination becomes invalid. The following implementation of

the chart validation function ensures proper detection of this failure mode.

int slip_ValidateChart(int* in_chart, double x[], double p[], int chart)

{

*in_chart = SS_TRUE;

if (x[1] < 0) { /* The body is underground */

SS_Message("Error: Body toppled over\n");

*in_chart = SS_FALSE;

}

31

return NO_ERROR;

}

4.3.11 The Geomview Interface

The �rst component of the Geomview interface is the initialization function. This function

loads the geometry �le slip.oogl into Geomview and then de�nes a 5x100 grid platform that

the runner will be running on. The details of the platform construction are not important.

However, the interested reader might refer to [3] for details of how to create and manipulate

geometries in Geomview.

#define GRID_XSTEPS 5

#define GRID_YSTEPS 100

void slip_GeomviewInit(double p[])

{

int countx, county;

int color_flag;

char str[2048];

double ptx, pty, height;

SS_GeomviewClear(&SS_Data.geomview);

SS_GeomviewSendFile(&SS_Data.geomview, "slip.oogl");

SS_GeomviewSend(&SS_Data.geomview, "(backcolor Camera 0.25 0.21 0.5)");

SS_GeomviewSend(&SS_Data.geomview, "(freeze Camera)\n");

/* Define the platform with the specified number of grid cells */

SS_GeomviewSend(&SS_Data.geomview,

"(read geometry { define platform_geom {CMESH ");

sprintf(str, "%i %i\n", (int)GRID_XSTEPS + 3, (int)GRID_YSTEPS + 3);

SS_GeomviewSend(&SS_Data.geomview, str);

for (county = 0; county < GRID_YSTEPS + 3; county++) {

for (countx = 0; countx < GRID_XSTEPS + 3; countx++) {

color_flag = (((countx+county) % 2) == 1);

height = 0.0;

if (countx % ((int) GRID_XSTEPS + 2) == 0) {

ptx = -0.5 + countx*(1.0 / (GRID_XSTEPS+2));

height = -0.1;

} else {

ptx = -0.5 + (countx-1) * 1.0 / GRID_XSTEPS;

}

32

if (county % ((int) GRID_YSTEPS + 2) == 0) {

pty = -1.0 + county * (25.0 / (GRID_YSTEPS+2));

height = -0.1;

} else {

pty = -1.0 + (county-1) * 25.0 / GRID_YSTEPS;

}

sprintf(str, " %f %f %f %f %f %f %f\n",

ptx, pty, height,

(color_flag)?0.333:0.2352,

(color_flag)?0.4196:0.7019,

(color_flag)?0.1843:0.443,

1.);

SS_GeomviewSend(&SS_Data.geomview, str);

}

}

SS_GeomviewSend(&SS_Data.geomview, "}})");

SS_GeomviewSend(&SS_Data.geomview, "(redraw Camera)\n");

}

The next component of the interface is the function which gets called by the integrator

at every trajectory data point. The main purpose of this function is to implement the

appropriate frame rate by periodically sending updates of the transformation matrices to

Geomview. Note that the actual computation of the transformation matrcies is done in

slip Transform, which is also detailed below. This kind of decomposition of the interface

into initialization, handling of the frame rate and the computation of the transforms is very

typical.

int slip_Geomview(double x[], double p[], int chart)

{

double f[48];

int num;

static double lastTime = 0;

static int frameNo = 0;

if (x[TIME] == 0) {

lastTime = 0;

frameNo = 0;

}

if (x[TIME] >= lastTime) {

SS_GeomviewSend(&SS_Data.geomview, "(freeze Camera)\n");

num = slip_Transform(f, x, p, chart);

33

SS_GeomviewTransform(&SS_Data.geomview, num, f);

SS_GeomviewSend(&SS_Data.geomview, "(redraw Camera)\n");

frameNo++;

lastTime += 1.0 / FRAMESPERSEC;

}

return NO_ERROR;

}

The following function computes the transformation matrices for the SLIP geometry and

the camera to be sent to Geomview. In the exampel SLIP model, the hopper is de�ned

as a single object consisting of a sphere and a vector for the leg. The �rst transformation

matrix rotates and positions this object according to the current system state. The second

transormation matrix sets up the camera such that it follows the hopper from a convenient

angle to provide a nice visual animation of the simulation.

int slip_Transform(double *f, double *x, double *p, int chart)

{

double angle;

double z_angle = 0.9*PI/2, x_angle = 1.8*PI/4;

double camera_x;

memset(f, 0, 2*16*sizeof(double));

/* This section transforms the body object to its current position

and orients the leg based on what the leg angle is. Note that

during stance, the foot position relative to the body position

determines the leg angle. However, during flight, we assume that

the leg immediately goes to its touchdown position because it

has no mass.

*/

if (chart == COMPRESSION_CHART || chart == DECOMPRESSION_CHART) {

angle = atan2(-(x[0]-x[4]), x[1]);

f[0] = 1.0;

f[5] = f[10] = cos(angle);

f[9] = -(f[6] = sin(angle));

camera_x = f[13] = x[0];

f[14] = x[1];

f[15] = 1.0;

} else {

f[0] = 1.0;

f[5] = f[10] = cos(x[6]);

34

f[9] = -(f[6] = sin(x[6]));

camera_x = f[13] = x[0];

f[14] = x[1];

f[15] = 1.0;

}

/* This transformation matrix follows the hopper from a nice angle. */

f[16 + 0] = cos(z_angle);

f[16 + 1] = sin(z_angle);

f[16 + 2] = 0;

f[16 + 4] = -cos(x_angle) * sin(z_angle);

f[16 + 5] = cos(x_angle) * cos(z_angle);

f[16 + 6] = sin(x_angle);

f[16 + 8] = sin(x_angle) * sin(z_angle);

f[16 + 9] = -sin(x_angle) * cos(z_angle);

f[16 + 10] = cos(x_angle);

f[16 + 12] = 3.8;

f[16 + 13] = camera_x;

f[16 + 14] = 1.4;

f[16 + 15] = 1.0;

return 2;

}

5 The Compliant Hexapod: A More Complicated Ex-

ample

This section describes the details of the Compliant Hexapod Model de�nition in SimSect.

The hexapod model originally motivated the SimSect project and is one of the example

model de�nitions.

5.1 The Continuous Mathematical Model

In this section, we derive the continous dynamics of the hexapod within a particular chart.

The de�nition of the hybrid model is completed in Section 5.3, with a speci�cation of the

chart transitions.

Section 5.1.1 describes the derivation of the physical model and assumptions followed

by Section 5.1.2 and 5.1.3, where the force and torque vectors acting on the hexapod body

are computed. Finally, Section 5.1.4 gives the equations of motion for the hexapod followed

by Section 5.1.8 where several coordinate transformations involved in the computations are

given.

35

� �
i

i

B
x

y

z

W

�
i f

i

a
i

r
b

z

y
xi

i

i

Figure 5: The compliant hexapod model.

5.1.1 The System Structure

Figure 5 shows the structure of the hexapod model. The system consists of a rigid body

with six degrees of freedom, whose position and orientation are described by rb and Rb,

respectively. Two coordinate frames, B and W are de�ned, the former attached to the

hexapod body and the latter an inertial frame where the dynamics are formulated.

The legs are attached to the rigid body at �xed points ai, in the body frame. Each leg

has complete spherical freedom. Each leg ha a very small mass mt at the toe, useful in

modeling the ight behavior of the legs as well as a simple friction model during stance.

Note that (rb;Rb), vi and fi are related through a simple coordinate transformation (see

Section 5.1.8).

Associated with each leg, there is a radial and a torsional spring on the � direction, as

well as torque control on the � degree of freedom. These springs and the hip actuation result

in forces and torques being applied to the rigid body. In Section 5.1.2, we derive these forces

and torques for a single generalized leg, leading to the formulation of the system dynamics

in Section 5.1.4.

5.1.2 Analysis of a Single Leg

Our formulation of the equations of motion for the hexapod model individually computes

the ground reaction forces for each leg. To this end, it suÆces to analyze a generic leg

parametrized by its attachment and touchdown points, ai and fi, respectively (see Figure 6).

The force and torque balance on the massless leg result in the following equalities.

36

Coordinate Frames

W inertial world frame

B body frame

Leg states and parameters

ai leg attachment point in B

fi toe position in W

vi := [�i; �i; �i]
T current leg state in spherical body coordinates

vi := [vxi ; vyi ; vzi]
T current leg state in Cartesian body coordinates

legi stance ag for leg i

�td leg length at touchdown

�lo leg length at lifto�

kri , dri Radial leg spring and damping constants

k�i , d�i Angular leg spring and damping constants

�0i , �0i Radial and angular spring rest positions

K Exponential saturation coeÆcient for the radial leg spring

States

rb body position

Rb body orientation

_rb translational velocity of body

wb angular velocity of body

x := [Rb;wb; rb; _rb; fi; _fi] Lumped state vector used in the implementation

Forces and Torques

Fri radial leg spring force

��i leg bending torque in �i direction

��i leg hip torque in �i direction

System Parameters

M0 body inertia matrix in body coordinates

M body inertia matrix in world coordinates

mb body mass

mt toe mass

ht(x; y) Height of the terrain at cartesian coordinates (x,y)

nt(x; y) Normal vector to terrain surface at coordinates (x,y)

Controller Parameters

tc Period of rotation for a single leg

�s Slice of leg sweep for the slow phase

Actuator Model

Kw, K� Motor speed and torque constants

iai , vai Motor armature current and voltage

kg Motor gear ratio

wsi
Motor shaft speed

�si Motor shaft torque

Table 1: Notation used for the Compliant Hexapod model.

37

�i �i

F1

F2

F3

x

Figure 6: Analysis of a single leg in the plane de�ned by the leg and the z-axis of B.

F1 = Fri

F2 =
��i
�i

F3 =
��i

�i cos �i

The body experiences the negative of the ground reaction force on the leg, yielding

e�ective force and torque vectors acting on the center of mass. Projection of these on B for

each leg i = 1; :::; 6 yields,

Fi =

2
4 � sin �i � cos �i 0

� cos �i sin�i sin �i sin�i � cos�i
cos �i cos �i � sin �i cos�i � sin�i

3
5 :

2
4 Fri

��i=�i
��i=(�i cos �i)

3
5

�i = (vi + ai)� Fi

Note that in the equations above, one also needs to specify the spring and damper

models for the radial and lateral angular degrees of freedom for each leg. In the compliant

hexapod model, we chose to have linear springs and viscous dampers for both degrees of

freedom. Moreover, the radial spring saturates with an exponential force past a certain

length, modeling the limited extension range of actual leg implementations.

Fri
:=

�
�kri(�i � �0i)� dri _�i �i < �li
�K exp(�i � �0i)� kri(�i � �0i)� dri _�i otherwise:

(2)

��i := �k�i(�i � �0i)� d�i
_�i

5.1.3 Total Force and Torque on the Body

The cumulative e�ect of all the legs on the body is simply the sum of the individual contri-

butions, together with the gravitational force. Expressed in W, the force and torque vectors

are given by

38

FT =

2
4 0

0

�mbg

3
5 +Rb

6X
i=1

legiFi (3)

�T = Rb

6X
i=1

legi�i (4)

where we de�ne

legi :=

�
0 leg i is in ight

1 leg i is in stance

5.1.4 Rigid Body Dynamics

The dynamics of a rigid body under external force and torque actuation is governed by the

following equations [2].

�rb =
FT

mb

M _wb = �J(wb)Mwb + �T
_Rb = J(wb)Rb

where we have

J(
�
wx wy wz

�T
) :=

2
4 0 �wz wy

wz 0 �wx

�wy wx 0

3
5

M := RbM0Rb

�1

5.1.5 Feet Dynamics

If a leg is in ight, then its toe experiences the negative of the force computed in Section

5.1.2 for that particular leg. Hence, the associated vector �eld takes the following form.

�
fi
_fi

�
=

�
_fi

�Fi=mt

�

If, on the other hand, a leg is in stance, then the vector �eld incorporates a �rst order

friction model to model the motion of the toe.

_fi =

(
0 if k Ft k< kf k Fn k
kFtk�kfkFnk

kFtk
otherwise

�fi = 0

39

−1 −0.5 0 0.5 1

x 10
4

−200

−100

0

100

200

Shaft speed (rev/min)

S
h
af
t
to
rq
u
e
(m
N
m
)

(a)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

i = Discharge Current (A)

f
(
i)
=

D
is
c
h
a
r
g
e
t
im

e

(
s
)

(b)

Figure 7: (a) Torque-speed curve for the Maxon RE118751 20W DC motor. (b) Battery

discharge curve for the Panasonic 12V-2.2A battery.

where Ft and Fn are the components of Fi tangent and normal to the terrain surface,

respectively and kf is the surface friction coeÆcient.

Using these equations, the vector �eld for each toe is de�ned based on the mode of the

corresponding leg.

5.1.6 Actuator Model

In the compliant hexapod, we also incorporate a simple model of the hip actuation. This

model imposes realistic limitations on the torque capabilities of the actuators. Figure 7(a)

portrays the torque-speed curve for a Maxon RE118751 DC motor. This curve characterizes

the maximum torque deliverable by the motor as a function of shaft speed.

In addition to these torque limits, the model also incorporates an estimation scheme for

motor voltages vai and currents iai using the commanded leg torques, under the assump-

tion that the electrical dynamics are negligible relative to the mechanical dynamics. In

consequence, we have

iai = ��i=(K�kg)

vai = iaira +Kww�i
=kg

where K� and Kw are motor constants, kg is the gear reduction ratio of 33:1 at the motor

shaft and ra is the motor armature resistance. Note that in this simple formulation, the

only inuence of the actuator model on the mechanical dynamics is through the limits on

the maximum available torque. In fact, vai and iai , are not computed by SimSect, but are

extracted later from the simulation data.

40

5.1.7 Battery Model

The discharge characteristics of o�-the-shelf small batteries are usually given by plots of

discharge time vs constant discharge current. Figure 7(b) is such a discharge curve for the

Panasonic 12V 2.2Ah lead-acid battery used. In our discharge model, we use this curve,

together with an approximation of the PWM electronics driving the DC motors to estimate

the duration of autonomous operation.

First, we derive a method for estimating battery discharge in terms of a continuous time

function of varying discharge current. This can be accomplished with

dC(t)

dt
= � 1

f(ia(t))

where C(t) is the percent \energy" left in the battery, and f(i) is the battery discharge

curve in functional form. During the hexapod operation, all six motors draw current and

contribute to the battery discharge together. Due to the H-bridge output stages of the motor

drives, the motor currents add up, yielding the battery lifetime equation

1�
tZ

0

d�

f(
6P

i=1

jii(�)j)
= 0:

Our battery model detects in simulation the zero crossing of this function, which yields

the e�ective lifetime of the battery. Note that this model does not take into account more

elaborate components such as the battery voltage drop as a function of current and discharge

time or the e�ects of ambient temperature. Similar to the electrical motor model, the battery

model is implemented outside the SimSect simulation environment.

5.1.8 Relevant Coordinate Transformations

� Positional leg states in the body frame

vi = [vxi ; vyi; vzi]
T = Rb

�1 (fi � rb)� ai

vi = [�i; �i; �i]
T =

2
4 arctan(xi=

p
y2
i
+ z2

i
)

arctan 2(yi;�zi)p
x2
i
+ y2

i
+ z2

i

3
5

� Leg velocities in the body frame

_vi = [_vxi ; _vyi; _vzi]
T = Rb

�1
�
_fi � _rb � _Rb(vi + ai)

�

_vi = [_�i; _�i; _�i]
T =

2
4 (D + Avzi)=(

p
CF)

(�vzi _vyi + vyi _vzi)=C

E=
p
F

3
5

41

� Leg accelerations in the body frame

�vi = [�vxi ; �vyi; �vzi]
T = Rb

�1
�
�fi � �rb � �Rb(vi + ai)� 2 _Rb

_vi

�
�vi = [��i; ��i; ��i]

T

=

2
64

�2vxi (Avzi+D)2+(C+v2xi
)(3B2vxi

�2BC _vxi+C
2�vxi�Cvxi(_v

2
yi
+_v2zi

+vyi�vyi+vzi �vzi))

C3=2(C+v2xi
)2

2B(vzi _vyi � vyi _vzi)� C(vzi�vyi � vyi�vzi)=C
2

�(4E2 + 4F (_v2
xi
+ _v2

yi
+ _v2

zi
+ vxi�vxi + vyi�vyi + vzi�vzi))=(4F

3=2)

3
75

where

A := vzi _vxi � vxi _vzi

B := vyi _vyi + vzi _vzi

C := v2
yi
+ v2

zi

D := v2
yi
_vxi � vxivyi _vyi

E := vxi _vxi + vyi _vyi + vzi _vzi

F := v2
xi
+ v2

yi
+ v2

zi

and

�rb =
FT

mb

_wb = M�1(�J(wb)Mwb + �T)

_Rb = J(wb)Rb

�Rb = J(_wb)Rb + J(wb) _Rb

� Toe coordinates in the world frame

vi =

2
4 �i sin �i

�i cos �i sin�i
��i cos �i cos�i

3
5

fi = Rb (vi + ai) + rb

5.2 The Open-Loop Control of Locomotion

In this section, we describe a four-parameter family of open-loop controllers for the hexapod

model, which achieves forward and backward running as well as in-place and di�erential

turning in the abscence of any sensory feedback of the rigid body and leg states. The

only feedback occurs locally at the actuators to implement a PD controller for each hip,

tracking certain periodic reference trajectories. The algorithms that we describe in this

section are tailored to demonstrate the intrinsic stability properties of the compliant hexapod

morphology and emphasize its ability to operate without a sensor-rich environment.

An alternating tripod pattern governs both the running and turning controllers, where

the legs forming the left and right tripods are synchronized with each other and are 180o out

of phase with the opposite tripod, as shown in Figure 8.

42

ts
2

tc

2

�

�s

2

�s

2

�

��

�

ts
2

�

tc

2

td

�s

ts

�� �o

t

left tripod
right tripod

Figure 8: The motion pro�les for left and right tripods.

5.2.1 Running

The running controller's target trajectories for each tripod are periodic functions of time,

parametrized by four variables: tc, ts, �s and �o. The period of both pro�les is tc. In

conjunction with ts, it determines the duty factor of each tripod. In a single cycle, both

tripods go through their slow and fast swing phases, covering �s and 2���s of the complete

rotation, respectively. The duration of double support td (where all six legs are in contact

with the ground) is determined by the duty factors of both tripods. Finally, the �o parameter

o�sets the motion pro�le with respect to the vertical (see Figure 8). Note that both pro�les

are monotonically increasing in time; but they can be negated to obtain backward running.

Control of running behavior is achieved by modifying these parameters for a particular

desired behavior during locomotion.

5.2.2 Turning

We have developed two di�erent controllers for two qualitatively di�erent turning modes:

turning in place and di�erential turning during running.

The controller for turning in place employs the same leg pro�les as for running except that

contralateral sets of legs rotate in opposite directions. This results in the hexapod turning in

place in the direction determined by the rotational polarity of the left and right sets of legs.

Note that the tripods are still synchronized internally, maintaining three supporting legs

on the ground. Similar to the control of the forward locomotion speed, the rate of turning

43

depends on the choice of the particular motion parameters, mainly tc and �s.

In contrast, we achieve turning during forward locomotion by introducing di�erential

perturbations to the forward running controller parameters for contralateral legs. In this

scheme, tc is still constrained to be identical for all legs, which admits di�erentials in the

remaining pro�le parameters, �o and ts, while �s remains unchanged. Two new gain param-

eters, �ts and ��o are introduced. Consequently, turning in +x(right) direction is achieved

by using ul = [tc; ts +�ts; �s; �o +��o] and ur = [tc; ts ��ts; �s; �o ���o] for the legs on

the left and right sides, respectively.

5.3 The Hybrid Hexapod Model

5.3.1 The State Space

The state space of the hybrid hexapod model is more than just the state of the rigid body.

The states of each leg are also needed in order to be able to compute the vector �eld of the

previous section. Consequently, the following lumped vector de�nes the state space for the

hybrid model.

x := [Rb;wb; rb; _rb; fi; _fi]

5.3.2 The Partition Structure

The mathematical model of the previous section does not address any of the discrete tran-

sitions that take place during locomotion. Discrete events in the model come from the

collisions of the feet with the ground, changing the states of the ags in (3).

Each leg can be in one of two modes, stance or ight. Hence, the compliant hexapod

model has a total of 26 = 64 discrete charts capturing all the possible structural con�gu-

rations of the hexapod. Note that this structure does not take into account the possible

collision of neither the rigid body nor the legs themselves with the ground. It is assumed

that collisions occur only between the toes and the ground surface.

In each of these 64 charts, the model obeys the continuous dynamics of the previous

section, with the appropriate leg ags legi.

5.3.3 Chart Transitions

When the rigid body and the legs are moving, each of the legs can transition from stance

to ight and vice versa independently. Consequently, it is possible to transition from each

of the 64 charts de�ned in the previous section, to the remaining 63. In this section, we de-

scribe a structured way of de�ning these transition conditions together with their associated

boundary functions.

In a particular chart, we de�ne transition conditions associated with each leg, depending

on their current mode. There are two types of boundary functions, \lifto�" and \touchdown"

associated with each leg which is either in stance or ight, respectively.

� Lifto� condition

44

The lifto� boundary function is the component of the ground reaction force acting on

the toe, normal to the ground surface. When this force becomes positive, the leg is

forced to lift o�. This function takes the following form.

bl
i
(x) := �hnt(fxi; fyi)jFii

This condition alone, however, is not adequate to ensure proper de�nition of the lifto�

model. The exponential component in the radial spring de�nition of (2) is critical in

proper functioning of the lifto� condition.

� Touchdown condition

During ight, a leg touches down when its toe reaches the ground. The boundary

function associated with this condition takes the following form.

bt
i
(x) :=

D�
0 0 1

�T jfiE� ht(fxi; fyi)

Upon detection of this boundary crossing, the veocity of the toe _fi is set to zero.

The model then checks the normal omponent of the ground reaction force. The chart

transition does not occur if this force is positive, to avoid an invalid chart-state pair.

The main reason why such an exception is handled by the model is the damping in

the leg. Due to the plastic collision and the toe velocity being set to zero, there is a

step change in the derivatives of the spherical leg states at every touchdown. This in

turn results in discontinuities in the ground reaction force as a result of damping in

the leg, yielding this exception. Note that because the normal toe force is positive, the

toe starts traveling away from the surface, validating the skipping of the touchdown

transition.

5.4 Implementation of the Model

5.4.1 Con�guration Parameters

Table 2 summarizes the con�guration parameter symbol names for the compliant hexapod

model, together with their default values.

45

Table 2: Compliant hexapod model con�guration parameters.

Parameter Default Description

Hexapod platform parameters

body mass 6 Body mass (kg)

leg mass 0.01 Toe mass (kg)

friction coeff 0.5 Surface friction coeÆcient

q rt 0.18 Touchdown leg length (m)

q rl 0.181 Lifto� leg length (m)

g 10 Gravitational acceleration (m=s2)

max torque 3 Maximum leg torque output(Nm)

max speed 10000 No load motor rotation speed (rpm)

speed constant 61.261056 Kw (rad=V s)

torque constant 16.3e-3 K� (Nm=A)

armature resist 1.34 ra (ohm)

gear ratio 0.0333 kg
torque loss .5 Actuator eÆciency (unused)

rho0 k...rho5 k 500, 1000, 500,

500, 1000, 500

Radial leg spring constants (N=m)

rho0 d...rho5 d 10, 20, 10, 10,

20, 10

Radial leg damping constants (Ns=m)

rho0 r0...rho5 r0 0.2, 0.2, 0.2,

0.2, 0.2, 0.2

Radial leg spring rest lengths (m)

theta0 k...theta5 k 100, 200, 100,

100, 200, 100

Angular leg spring constants (Nm=rad)

theta0 d...theta5 d 0.4, 0.8, 0.4,

0.4, 0.8, 0.4

Angular leg damping constants

(Nms=rad)

theta0 r0...theta5 r0 0.2, 0.2, 0.2, -

0.2, -0.2, -0.2

Angular leg spring rest lengths (rad)

attach0 x, attach0 y,

attach0 z

0.1, -0.2, 0 Leg 0 attachment point coordinates (m)

attach1 x, attach1 y,

attach1 z

0.1, 0, 0 Leg 1 attachment point coordinates (m)

attach2 x, attach2 y,

attach2 z

0.1, 0.2, 0 Leg 2 attachment point coordinates (m)

attach3 x, attach3 y,

attach3 z

-0.1, -0.2, 0 Leg 3 attachment point coordinates (m)

attach4 x, attach4 y,

attach4 z

-0.1, 0.2, 0 Leg 4 attachment point coordinates (m)

attach5 x, attach5 y,

attach5 z

-0.1, 0.2, 0 Leg 5 attachment point coordinates (m)

continued on next page

46

terrain type Height function

\flat" h(x; y) := 0

\sinusoid" h(x; y) := a1 sin(a2x) cos(a3y)

\sloped" h(x; y) :=

�
a1x+ a2y + a3 y > 0

a3 otherwise

Table 3: Height functions for di�erent types of terrain. a1, a2 and a3 correspond to

terrain arg1, terrain arg2 and terrain arg3, respectively.

continued from previous page

Parameter Default Description

J 11, J 12, J 13 0.2, 0, 0 Body intertia matrix �rst row

J 21, J 22, J 23 0, 0.08 0 Body intertia matrix second row

J 31, J 32, J 33 0, 0.,0.4 Body intertia matrix third row

terrain type \at" Terrain type

terrain arg1 0.03 First argument for terrain function

terrain arg2 15 Second argument for terrain function

terrain arg3 15 Third argument for terrain function

Controller related parameters

control type \open-loop" Controller type

KP 10 Proportional control gain

KD 0.5 Derivative control gain

Open-loop controller parameters

cycle time 1 tc (s)

sweep angle 0.75 �s (rad)

flight time 0.4 tf (s)

leg offset 0 �o (rad)

Visualization related parameters

grid xsize 5.0 X-axis size of the terrain grid

grid ysize 5.0 Y-axis size of the terrain grid

grid xsteps 50 Number of X-steps for the terrain grid

grid ysteps 50 Number of Y-steps for the terrain grid

framerate 120 Visualization frame rate

frame width 640 Width of the frame for save to disk.

frame height 480 Height of the frame for save to disk

5.4.2 Terrain Surface

The hexapod model implementation currently supports three types of terrain. The con�gu-

ration parameter terrain type selects the surface to be used in the simulation. There are

also three other parameters modulating the way the currently selected terran is generated.

The functions terrain height() and terrain normal() in SS HexTerrain.c de�nes

the height and surface normal functions for di�erent types of terrain.

47

5.4.3 Initializing the Partition

The function hex InitPartition is called during system initialization and sets up the initial

state of the model. In the hexapod model, its main function is to determine which legs are

in stance and which legs are in ight, based on the state of the body and assuming an

alternating tripod posture as the initial conditions. This is accomplished by looking at the

rest states of the legs at an alternate tripod posture and determining which legs should be

touching the ground based on their toe positions.

The initialization also involves the setting up of the visualization subsystem by load-

ing the appropriate geometry �le into Geomview and sending the necessary initialialization

commands.

5.4.4 De�ning the Chart

The function hex DefineChart performs the de�nition of a new chart. Following a transition,

the trajectory iterator removes all the previously de�ned stopping functions. Consequently,

the de�nition of the chart involves rede�ning all the stopping functions to be used in the

new chart.

The hex Boundary de�nes all the boundary functions associated with the lifto� and

touchdown conditions. The indices corresponding to each of these functions are as follows.

Lifto�: 2*leg no

Touchdown: 2*leg no+1

The chart de�nition then adds stopping functions with the lifto� boundary functions for

legs in stance and with the touchdown boundary functions for legs in ight.

5.4.5 Chart Validation

In the hexapod model, there are many cases where the state may be inconsistent with the

current chart that the system is in. The following list summarizes these cases and gives

the action taken by the hex ValidateChart function. Essentially, most of these conditions

invalidate cases where one or more of the boundary functions associated with a chart have

negative values corresponding to anomalous cases.

� For all charts, if rbz < ht(rbx; rby), then the body toppled over and is underground.

Return an error state to stop integration.

� For a leg in stance, if �i > �0i , the leg length exceeded the lifto� length. Display a

warning and continue integration.

� For a leg in stance, if hnt(fxi; fyi)jFii > 0, the normal leg force is positive. Return an

error state to stop integration.

� For a leg in ight, if
D�

0 0 1
�T jfiE�ht(fxi; fyi) < 0, the leg is underground. Return

an error state to stop the integration.

48

5.4.6 The Vector Field

The function hex VectorField de�nes the vector �eld for the compliant hexapod model, on

the state space de�ned in Section 5.3.1. Its de�nition is included in SS HexVectorField.c.

However, SS HexForces.c and SS HexTransform de�ne many of the coordinate transforma-

tions and computations of the components for the vector �eld. Please refer to the source

code for the details.

The vector �eld associated with the �rst half of the state space, speci�cally [Rb;wb; rb; _rb],

is that of rigid body dynamics and was derived in Section 5.1.4. Note that the computation

of the leg forces uses all the state variables including the foot locations.

The second half of the state space consists of the positions and velocities of the toes. The

vector �elds associated with these are de�ned in Section 5.1.5.

5.4.7 Visualization

The hexapod model exploits the interconnection of SimSect to Geomview. When the sub-

system is on, it visualizes a three dimensional model of the hexapod as it is locomoting over

the speci�ed terrain.

The �le hexaped.oogl includes the initial de�nition of the hexapod geometry, together

with the rigid body, a at ground, all six legs, the feet and all the associated transformation

matrices. This �le is loaded into Geomview during initialization for the creation of all objects

necessary for the real-time update of the scene.

The �le SS HexGeomview.c implements the required functions for the visualization inter-

face. The main two functions are hex GeomviewInit and hex Transform. The �rst function

handles the initialization of the scene by loading the hexaped.oogl �le into Geomview and

by creating and de�ning the terrain object using the terrain height function

The second function computes the transformation matrices for all the objects in the

scene that need to be relocated. Normally, those are the rigid body, the legs and the feet.

Consequently, this function computes 13 transformation matrices as functions of the system

state. These matrices are then sent to Geomview by the wrapper function hex Geomview

function, resulting in the update of the visualized scene.

Note that the wrapper function also implements a frame rate feature to avoid excessive

update of the display which would unacceptably slow the integration.

5.4.8 Support Functions

The �les SS HexForces and SS HexTransform implements several functions to support the

implementations of the functions described above.

One of the most important support functions is hex syncStates. It computes several

values used in the vector �eld as well as the controller. Starting from the main state variables

x, it �lls in all the required �elds in SS HexapedData in the correct order, making sure that at

the end, the struct contains consistent values for the current data point. Hence, this function

is to be called �rst by any function that use the associated data, to ensure consistency. Note

that this function �rst compares the current time to the last time it has been called and

therefore does not carry out the same computation more than once.

49

This synchronization function uses many of the other support functions for its function-

ality. Below is a list of those functions summarizing their functionality. Moreover, the order

that they are listed in reects the order that they should be called in to ensure that the value

returned is up to date and consistent. The reason for this requirement is that most of these

functions use each other to compute certain things and to avoid redundant computations,

imposing an order is necessary.

� hex BodyPos(...)

Returns the position of the rigid body in W.

� hex BodyVel(...)

Returns the velocity of the rigid body in W.

� hex BodyR(...)

Return the rotation matrix for the rigid body.

� hex Bodyw(...)

Returns the angular velocity of the rigid body in W.

� hex BodyRd(...)

Returns the derivative of the body rotation matrix.

� hex FootPos(...)

Returns the position of a particular toe in W.

� hex FootVel(...)

Returns the velocity of a particular toe in W.

� hex LegStateCart(...)

Returns the cartesian vector state vi for a particular leg.

� hex LegVelCart(...)

Returns the cartesian vector velocity _vi for a particular leg.

� hex LegAngles(...)

Returns the leg state in polar coordinates.

� hex LegVel(...)

Returns the leg velocity in polar coordinates.

� hex ComputeLegForceTorque(...)

Compute and return the forces and torques produced by a particular leg.

� hex FootAccel(...)

Compute and return the acceleration of a toe in W.

50

� hex ComputeForceTorque(...)

Compute and return the total force and torque on the rigid body in W.

� hex BodyAccel(...)

Returns the acceleration of the rigid body in W.

� hex Bodywd(...)

Computes and returns the derivative of the body angular velocity vector in W.

� hex BodyRdd(...)

Computes and returns the second derivative of the body rotation matrix.

� hex LegAccelCart(...)

Computes and returns the second derivative of the cartesian leg state vector vi

� hex LegAccel(...)

Computes and returns the second derivative of the polar leg state vector vi

Note that the functions speci�c to individual legs must be called for all the legs before

proceeding with the hex ComputeForceTorque() function. Please refer to the source code

for the particulars of the SimSect implementation.

5.4.9 De�ning Controllers

In the hexapod model, the controllers also have their own hybrid structures with vector �elds

and transition functions. The �le SS HexControl.c implements the interface to possible

di�erent controllers supported by the model. The con�guration parameter control type

selects the active controller for the simulation.

The functions in SS Control.c route the hybrid simulation system calls to the appropri-

ate controller. When de�ning a new controller, the user must provide functions for each of

these components and modify SS HexControl.c accordingly.

This structure gives the user the exibility to de�ne separate charts and vector �elds

for the controller itself, independent of the structure of the hexapod. However, the current

implementation of the integration engine requires the state space and the chart structure to

be unique for the overall system, which necessitates some care in the controller implementa-

tion. The bit �elds in the chart number associated with the hexapod model and the vector

�eld elements of the hexapod should not be modi�ed in the controller functions, unless it is

explicitly required for controller functionality.

Currently, the only controller that is implemented is the open-loop controller described in

Section 5.2 (control type = "open-loop"). Its implementation is done in SS OpenLoop.c.

51

5.5 The Implementation of the Open-Loop Controller

5.5.1 Controller Vector Field

The SimSect implementation of the open-loop controller introduces six new states, corre-

sponding to the reference trajectories for each leg. The vector �elds associated with each

of these states are determined based on the current controller chart, which, for each leg,

encodes the current phase of the motion pro�le of Figure 8.

The �elds SS OL.legSpeed[leg no] hold the vector �elds for each of the legs, and are

computed at each controller chart transition based on the upcoming parameter set and phase

of the leg. The function hex OpenLoopVectorField() implements the controller vector �eld.

5.5.2 Controller Partition Structure

Throughout the open loop reference trajectory generation, each leg goes through four phases:

the two halves of the slow phase and the two halves of the fast phase (T0 := [0; ts=2]; T1 =

[ts=2; tc=2]; T2 = [�tc=2;�ts=2]; T3 = [�ts=2; 0]. See Figure 8). Consequently, there are 46

di�erent possible combinations of leg phases, yielding 4096 di�erent controller charts. The

de�nition of the controller partition assigns two bits to each leg in the chart value of the

simulation. Bits 17-6 encode the phases for all 6 legs, while bits 5-0 encode the current

touchdown states for the legs.

Note that the transition associated with these chart components are purely time depen-

dent. This underlines the open-loop nature of the controller, where the hexapod state does

not a�ect the controller state in any way except the PD controller which implements local

feedback at each leg.

5.5.3 Controller Transitions

The transition function associated with the controller is where the vector �eld of the corre-

sponding leg is updated. Moreover, changes in controller parameter values take place during

transitions from leg phase 3->0 and leg phase 1->2, where all the legs are assumed to undergo

the transition at the same time.

The SimSect implementation of the hexapod model incorporates only two of the con-

troller parameters, tc and �s. These parameters are enforced by SS OpenLoopVectorField,

which computes the derivatives of the reference trajectories. The vector �eld for each of the

reference trajectory states is given below.

Two functions, openLoopBoundary and halfCycleBoundary implement the four bound-

ary functions for each leg. While openLoopBoundary detects the transition from the slow to

fast leg swing, halfCycleBoundary detects the middle of slow and fast phases. The tran-

sitions initiated by openLoopBoundary only update the controller vector �eld, whereas the

transitions of halfCycleBoundary are also responsible from changing the controller param-

eters tc, ts, �s and �o. See the function hex OpenLoopTransition for details.

5.5.4 The PD controller

The function hex OpenLoopControl implements six simple PD controllers around the refer-

ence trajectory encoded by the states associated with the controller. This is where the hip

52

torques for each leg are computed as a function of the current leg position and the desired

reference position.

5.6 Future Work on the Hexapod Model

The current hexapod model has many aws. The �rst and the most problematic one is the

chattering between di�erent leg modes. Chattering in hybrid dynamical systems occurs when

the vector �elds of two neighboring charts point toward their common boundary, and the

trajectory has to slide along the boundary. The SimSect integrator currenty cannot handle

such situations, and ends up switching between two charts at very short time intervals.

Another possible modi�cation to the current model is incorporating a di�erent ground

contact model. Currently, collisions with the ground are plastic and cause the small foot

mass to lose all its energy. This in turn, results in step changes in the leg damping forces,

which sometimes puts the system in an invalid state-chart combination. In consequence, the

integrator fails to compute the trajectory. Di�erent ground models include high damping,

high sti�ness ground contact models, where the feet can penetrate the ground and loses

its energy in a continuous fashion. However, this approach might lead to a more compli-

cated model which is undesirable for analysis purposes. Moreover, the high damping and

sti�ness coeÆcients for the ground may unacceptably slow down the numerical integration.

Modi�cations to the integration engine may be required.

References

[1] J. G. A. Back and M. Myers. A Dynamical Simulation Facility for Hybrid Systems.

DsTool documentation.

[2] P. C. Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, New York, 1986.

[3] M. Phillips. Geomview Software Manual. The Geometry Center.

53

