
Algebra-based Optimization Strategies for Decentralized Mining�

Viviane Crestana Jensen Nandit Soparkar

Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, MI 48109-2122

fviviane,soparkarg@eecs.umich.edu

Abstract

In previous work [6, 10], we demonstrated the importance of mining of decentralized data (i.e., normalized

tables, possibly residing in several repositories, with several schemas, separate administration etc) in contrast

to current technology which applies to centrally stored data. Our decentralized approach to mining data

computes partial results at the separate tables, and merges them to obtain the �nal one { thereby avoiding

the expensive materialization of joins. We provided approaches to mining multiple tables located in a data

warehouse, and indicated how these may be further extended. Our decentralized algorithms for �nding frequent

itemsets (used in association rules and classi�cation algorithms) across multiple tables were analyzed for their

performance characteristics, and these were validated empirically as well.

In this paper, we detail our approach as extended to general database schema designs, including physically

distributed tables, and we describe our techniques which are similar to standard query optimization and pro-

cessing. We present an algebra (more as an explanatory tool than for rigor) over expressions that denote the

mined information (frequent itemsets, in our case) to describe how our basic decentralized mining approaches

apply to generic database schema designs. To complement our algebra, we provide useful equivalences among

the expressions, and this allows expression re-writing to represent di�erent alternatives possible during the

mining. Each equivalent expression indicates several processing strategies for decentralized and/or distributed

designs. Using cost formulae available from our previous work, we present the choice among the process-

ing strategies as an optimization problem as regards the e�ciency in execution. We discuss the parameters

needed for estimating the cost of di�erent executions and �nally, we describe heuristics to reduce the search

within the space of possible execution plans.

1 Introduction

Data mining (DM) is generally performed on data stored in data warehouses, as opposed to transac-

tional/operational data. Such data is not stored in a single table as is assumed by DM algorithms (e.g., see

[3, 18]). Typical DM algorithms applied to such decentralized data, require that, �rst the join of all the

tables be computed in order to produce a single table. Since the cost of computing the join is overshadowed

by that of DM, this approach may appear acceptable. However, a join results in a table with many more

columns and rows (which normalization is used to avoid), and this signi�cantly increases the cost of DM as

�This research was supported, in part by NSF Grant 9978510.

1

well (e.g., see [6, 10]). While DM is often applied to data warehouses, even in a centralized data warehouse

design, data is stored in a star schema [15], in which information is decentralized into facts and dimension

tables. Facts form the relationships among the dimensions which contain the attributes about the entities

being modeled. Such schema represent vertical partitioning in a database design.

Even though database design1 impacts the e�ciency of DM, few techniques (e.g., see [6, 10]) for mining

general designs in which tables are vertically and/or horizontally partitioned has been examined. Centralized

database designs (i.e., with data stored in one central repository, homogeneous with a central administration,

and in a single schema such as one table) is not typical for most large enterprises. The information may be

placed among di�erent tables, and in some cases, the tables may reside in di�erent physical locations. In

large enterprises, data is often distributed and administered separately even within the same organization.

For such an environment, design decisions involve placement of data and programs across the sites in the

computer network (e.g., see [12]). Design considerations such as data fragmentation, distributions strategies,

and data allocation methods need to be examined. Similar to query processing and optimization ([16]),

the decentralization and distribution dictates di�erent ways in which a decentralized DM approach is to

be e�ected for e�ciency. Therefore, besides techniques for identifying all the di�erent options for DM,

techniques for deciding the best among them is also important.

Our previous work [6, 10] described decentralized algorithms for �nding frequent itemsets (used in as-

sociation rules and classi�cation algorithms) in decentralized schema. We compute partial results at the

separate tables, and merge them to obtain the �nal one. Our approach avoids the expensive materialization

of joins. In this paper, we explain how our approach is extended to more general database schema designs,

including physically distributed tables, and we develop algebraic techniques to describe the processing and

optimization of our approach. Our approach closely resembles the expression re-write techniques in rela-

tional database query processing, and as such, may be suitable to include inside a database system. Note

that others have also suggested an approach which resembles database query optimization techniques (e.g.,

see [9]).

The remainder of this paper is organized as follows. In Section 2, we illustrate the available techniques

for mining decentralized data with an example. In Section 3, we present our algebra (more as a tool than for

mathematical rigor) over expressions and equivalences for expression re-writing. In Section 4, we exemplify

cost formulas to use for the di�erent possible techniques. In Section 5, we describe the choice of processing

strategies as an optimization problem and present heuristics to reduce the search within the space of possible

execution plans. Finally, in Section 6, we discuss relevant related work and present our conclusions.

1Relational databases are designed to contain several inter-related tables, often generated by the process of normalization.
Goals of normalization include generating an appropriate set of table schemas to reduce redundancy, to check e�ciently for
certain constraints on the data values (e.g., functional dependencies), and yet to allow for easy and e�cient data access (e.g.,
see [16]). In general, a relation schema (i.e., for a table) with many attributes is decomposed into several schemas (leading
to several inter-related tables) with fewer attributes. Each such table could reside at a di�erent site, and even when the data
resides at one site, the data is decentralized among di�erent tables.

2

2 Mining Decentralized Tables: Many Choices

Decentralized data schema may involve tables that are horizontally or vertically partitioned, physically

distributed, and even replicated. A simple approach to applying a DM algorithm, such as for �nding

frequent itemsets, is to reconstruct the data into a single central table, thereby requiring to ship information

and perform the joins. Alternatively, the DM algorithms may be modi�ed to run on the individual sites

separately, and thereafter, the results \merged" (e.g., see [6, 10] where the approach is detailed). How

precisely to merge these results requires careful considerations, and there are e�ciency trade-o�s between

the traditional and the decentralized approaches.

We use the problem of discovering association rules (AR), introduced in [2], to develop our ideas. Given

a set of items I, and a set of records (i.e., rows) T , where each row tj is composed of a subset ij of the

set of items I, the problem is to �nd associations among the items such that the presence of some items in

a row will imply the presence of other items in the same row. Discovering AR was decomposed into: (1)

discovering all the frequent itemsets (i.e., which meet a user-de�ned support threshold); and (2) generating

all the AR, based on the support counts found in step 1. In [3], the Apriori algorithm improved upon

the performance of the original algorithm of [2]. The Apriori algorithm performs the counting of itemsets

in an iterative manner, by counting the itemsets that contain k items (k-itemsets) at iteration k. In each

iteration, a candidate set of frequent itemsets is identi�ed and the database is scanned to count the number of

occurrences of each candidate itemset. Thereafter, the frequent (i.e., with a count above the predetermined

threshold) itemsets are found, and re-used to compute the set of candidates for the next iteration. The

�nding of frequent itemsets is expensive in terms of processing, and the research in AR concentrates on

improving its performance as is our focus.

2.1 An Example

We now use an example schema (adapted from [10]) to describe some key problems in decentralized DM.

� Customer(ssn; name; street; area; age; salary)2

� Demographics(area; weather; schoolsystem; avghouseprice)

� Product(pid; description; color; size; price)

� ItemsBought(xact#; ssn; pid; date; qty)

In Figure 1, we show a relevant projection of the tables, and we assume that the quantitative attributes

(i.e., age and monetary amounts) are partitioned using an appropriate algorithm (e.g., see [18]). Also

assume that the ItemsBought table is horizontally partitioned (and physically distributed) into two tables:

ItemsBought1 and ItemsBought2. ItemsBought2 and ItemsBought1 contain the transactions of customers

who live in areas z, and x or y, respectively. This illustrates a case where there are retail stores in areas z

and x, and area y is nearer to area x than to area z.

For this example, note that traditional approaches to discovering AR work relatively e�ciently for �nding

associations such as: < size : large >)< price : high > within table Product. However, the same

2Each table's primary key is underlined; entries in ItemsBought for the same (ssn,pid) correspond to di�erent xact#'s.

3

Demographics

area weather schools

x hot good
y mild medium
z cold excellent

Customer

ssn salary area age

01 100000 x 20
02 55000 z 25
03 100000 y 20
04 20000 y 30
05 50000 x 31
06 100000 z 35

ItemsBought1

ssn pid

01 A
01 A
03 A
03 B
04 B
04 E
05 A
05 A
05 D

ItemsBought2

ssn pid

02 A
02 C
02 C
06 C
06 F

Product

pid color size price

A white small 10
B blue small 40
C green med. 42
D white med. 150
E gray large 100
F green large 110

Figure 1: Relevant projection of the tables.

approach would be ine�cient for �nding < weather : hot >=>< color : white > (i.e., across Demographics,

Customer, Product and ItemsBought tables), or < size : large >=>< age : 30::35 > (i.e., across Product,

Customer and ItemsBought tables). The reason for the ine�ciencies in the traditional techniques arise for

rules involving more than one table, where the tables �rst need to be joined (Demographics 1 Customer 1

(ItemsBought1 [ItemsBought2) 1 Product). There is signi�cant redundancy in such joined tables. For

example, the itemset f< age : 30::39 >;< area : x >g that occurs three times in the joined table would

be counted three times by traditional algorithm; and yet, it corresponds to just one entry in the Customer

table, namely the one for primary key ssn = 05.

As an alternative to the ine�ciencies in traditional DM techniques, we consider available techniques for

decentralized DM. These are decentralized DM techniques for horizontally partitioned data (e.g. [5]), and

in our previous work, we provided approaches for the basic cases involving vertical partitioning [6, 10]. We

describe these approaches below in the context of our example.

2.2 Horizontal Partitioning

Other work (e.g., [5]) has considered horizontal distribution, but not in combination with vertical partitioning

such as the case illustrated by our example in Figure 1. That is, the database designs were limited to

a single table horizontally partitioned among di�erent sites. In order to use the distributed algorithm

in [5], two joins need to be materialized: (Demographics 1 Customer 1 ItemsBought1 1 Product) and

(Demographics 1 Customer 1 ItemsBought2 1 Product). Thereafter, the algorithm, at each iteration,

4

counts the support of candidate sets locally. This requires an exchange of messages with counts after each

iteration of the algorithm. Furthermore, the itemsets from tables Demographics, Customer and Product

that were central in one table and location, now are across multiple locations. Therefore, as an example,

in order to count itemsets that involve only the attributes of table Customer, counts need to be exchanged

after each iteration, and it is best not to have to incur communication costs in doing so.

2.3 Vertical Partitioning

For vertically partitioned tables, our decentralized approach [6, 10] �nds frequent itemsets in separate steps.

This works well for �nding itemsets in a schema such as Customer, ItemsBought (not horizontally parti-

tioned) and Product. The approach is to �nd itemsets containing items from table Customer only; �nd

itemsets containing items from table Product only; and then �nd itemsets containing items from all three

tables. The �nal results from our algorithm (i.e., the frequent itemsets) are exactly the same as with any tra-

ditional itemset counting algorithm run on the joined table T = Customer 1 ItemsBought 1 Product. To

ensure these �nal results, before we count frequent itemsets in the separate tables, we take into account how

many times each row of the table is in the �nal joined table T . For this example (i.e., a single ItemsBought

table, and no Demographics table), our algorithm from [10] proceeds as follows (and resembles a semi-join

based technique common in distributed query processing).

� Phase I: Count itemsets on tables Customer and Product

1. Compute a projection of table ItemsBought

Count the number of occurrences of each value for the foreign keys ssn and pid in table ItemsBought.

Now, the number of rows in ItemsBought is the same as the number of rows in the joined table T ,

and we can determine the number of times each row of Customer and Product will appear in table T .

We store this number of occurrences in a weight vector for each of Customer and Product.

2. Count frequent itemsets on separate tables

Find the frequent itemsets on tables Customer and Product using any traditional centralized algo-

rithms (e.g., see [3, 4]) with the following modi�cation: when incrementing the support of an itemset

present in row i by 1, increment the value of the support by the number of occurrences of idt = i in

ItemsBought (given by the weight vector computed above). In this way, for Customer and Product,

we �nd the sets of frequent itemsets, lCustomer and lProduct respectively.

� Phase II: Count frequent itemsets across the separate tables using the table ItemsBought

This step can be e�ected in di�erent ways, and we present one of the approaches detailed in [6, 10].

{ I/O saving merge: Generate candidates from Customer and Product using a 2-dimensional array,

where one dimension corresponds to lCustomer and the other to lProduct. For each row in table

ItemsBought, identify all frequent itemsets from lCustomer and lProduct, say iCustomer, iProduct

respectively, that are present in the corresponding rows of tables Customer and Product. This

can be done on the y, i.e., after reading each row in table ItemsBought, or can be done by

essentially computing the join of the three tables and processing each row of the joined table as

generated. In the 2-dimensional array, the support of an element I corresponding to the union

5

of one element from iCustomer and one from iProduct, indicating that element I appeared in this

particular row of ItemsBought, is incremented. That is, increment all positions (J; L) such that J

is an element of iCustomer and L is an element of iProduct. After table ItemsBought is processed

in this manner, the 2-dimensional array contains the support for all the candidate itemsets which

can be used to determine which itemsets are frequent. If indices for the entries of ssn and pid

on table ItemsBought are available, instead of processing the entries of ItemsBought, for each

pair of rows from Customer and Product, we can use the indices to determine which entries

in ItemsBought, the rows appear together (in reality, since in this example there are no other

attributes on ItemsBought, all you need is the number of times they appear together, regardless

of where).

This technique applied to our example in Section 2.1, would need the join Demographics 1 Customer,

and the union ItemsBought1 [ItemsBought2 to be computed �rst. However, �rst obtaining the join

of Demographics and Customer loses the advantage of only assessing itemsets local to Demographics.

Similarly, the union of ItemsBought1 and ItemsBought2 loses out in load distribution, and increases com-

munication by having to ship large tables. Furthermore, if each table is in a separate location, all but one

of them may have to be shipped to a central location.

2.4 Optimizing among Alternatives

Our description indicates that there are several alternatives to computing the join and/or union �rst when

dealing with decentralized tables. In order to choose among alternatives freely, there is a need to unify the

decentralized DM approaches for the horizontal and the vertical partitioning, and below, we exemplify some

ways to do so.

We can adapt our algorithm from Section 2.3 for horizontal partitions as follows. Assume each table is at

a di�erent site.3 For Phase I, we compute the weight vectors for ItemsBought1 and ItemsBought2, and ship

them to the sites where Customer and Product are located. At each site, the weight vectors from each of the

partitions of the table ItemsBought are combined (by a simple vector addition operation). Thereafter, the

second part of Phase I proceeds as in the non-distributed case (i.e., frequent itemsets are counted locally).

For Phase II, Customer and Product are shipped to the location of ItemsBought1 and ItemsBought2 (as

would have been needed for joining the tables, if using the approach in [5]), and the information regard-

ing the itemsets found frequent at each one of Customer and Product is also shipped. Thereafter, the

Phase II counting of the cross-table itemsets can proceed concurrently at the sites for ItemsBought1 and

ItemsBought2. There is only one exchange of messages needed at the end of the counting(to determine,

�nally, the frequent itemsets).

Similarly, we can adapt our algorithm to decentralized computation fromDemographics. After comput-

ing the weight vector for Customer w.r.t. ItemsBought, we compute a weight vector for Demographics

(taking into account ItemsBought). In our example, the weight vector for Customer w.r.t. ItemsBought

is (2; 3; 2; 2; 3;2). The �rst row of Demographics (area = x) occurs 5 times at the joined table: 2 due to

the �rst row of Customer (ssn = 01), and 3 due to the �fth row of Customer (ssn = 05) { these are

the two entries in Customer which have area = x. Therefore, the weight vector for Demographics w.r.t.

3The horizontal partitions are assumed to be disjoint.

6

ItemsBought is (2+ 3; 2+ 2; 3+ 2) = (5; 4; 5). In this manner, we may determine the number of times each

row of Demographics would appear in the �nal table, and therefore, count Demographics separately. At

the merging phase, we would add another dimension for Demographics, or we could �rst merge Customer

with Demographics, and then merge this result with ItemsBought and Product.

Note that for the example in Section 2.1, there are relatively few options to decentralized DM. For more

involved designs, however, there could a large number of options. Similar to query processing, the more

tables that need to be joined, the more options there are in processing of the joins. In a sense, in Section 2.3,

we processed a 3-way join instead of e�ecting the merging in two steps (which would be another alternative).

Each strategy involves its own cost of execution, and in order to choose the best strategy, we need a clear

and simple means to enumerate the possibilities, and then to decide which one is the best based on cost

metrics. We examine these issues in the bulk of this paper.

3 Expression Equivalences

We provide an \algebra" over expressions, where each expression represents the mined information at a

particular stage. When counting frequent itemsets in a particular table, we are primarily interested in

itemsets whose items are non-key attributes; the key attributes are used to inter-relate tables. Therefore,

frequent itemsets of a table X will refer to itemsets involving non-key attributes of X with a support greater

than a pre-speci�ed minimum support threshold. The basic terminology for our algebra is as follows; the

purpose of the term W is clari�ed below.

� FI(X;W): set of frequent itemsets from table X 1W involving only non-key attributes of table X.

� CI(fX1; X2; � � � ; Xng;W): the \cross-itemsets", which are the set of frequent itemsets from table

X1 1 X2 1 � � � 1 Xn 1 W involving non-key attributes of table X1 1 X2 1 � � � 1 Xn, such that an

itemset contains items from at least two tables.

Above, the term W , the weight table, in the FI(X;W) denotes the table from which the weight vector will

be computed, and in CI(fX1; X2; � � � ; Xng;W), it denotes the table that links the Xi tables.

Let I denote the identity operand for the join operator (i.e., I = �keyofT (T) in order that T 1 I = T).

As an example illustrating the use of our algebra, consider the case in Section 2.1 where we were seeking

to �nd FI(T; I), where T = Demographics 1 Customer 1 (ItemsBought1 [ItemsBought2) 1 Product.

Similarly, in Section 2.3, we computed:

� FI(Customer; ItemsBought) and FI(Product; ItemsBought) in Phase I, and

� CI(fCustomer; Productg; ItemsBought) in Phase II.

7

3.1 Equivalences

Our approach to exploiting algebraic manipulations starts with an expression such as FI(T; I), where T

represents the table arising from joining and/or creating the union of all the decentralized tables. Thereafter,

we aim to obtain an expression that involves �nding itemsets in separate tables, and then merging the results.

As mentioned in Sections 1 and 2, table T could be a table that is not materialized, and the tables that form

table T when joined could be decentralized and/or physically distributed. Using the equivalences below,

we can provide alternative expressions that are equivalent, and that may be less expensive to realize, than

using traditional techniques which �rst materialize T . We present the following equivalences to help in this

process:

FI(X 1 Y;W) = FI(X;X 1 Y 1 W) [FI(Y;X 1 Y 1 W) [CI(fX;Y g; X 1 Y 1W) (1)

CI(fX;Y; Zg;W) = CI(fX;Y 1 Zg;W) [CI(fY; Zg;W) (2)

We explain why the above equivalences hold. For equivalence (1), the expression on the left represents

the set of frequent itemsets for table X 1 Y 1 W . The expression on the right, represents the same set as

a union of three subsets: the set of frequent itemsets from X 1 Y 1 W that involve only items from table

X, that involve only items from table Y , and that contain items from both tables X and Y . Each term on

the right represents a (usually proper) subset of the expression on the left, and their union evaluates to it

as well. Similar explanations apply to the other equivalence. It should be clear that the expressions on the

right of both (1) and (2) represent a more decentralized DM approach.

Since FI(X;W) is the set of frequent itemsets involving only non-key attributes of table X, all attributes

of W other than the primary key of X (i.e., the attribute that inter-relates the two tables) are not relevant

to the computation of FI(X;W). This is also true for CI similarly. Therefore, we have

FI(X;W) = FI(X;�idx (W))

CI(fX;Y g;W) = CI(fX;Y g; �idx;idy (W)) (3)

where idx is the primary key of X, and � is a modi�ed project operation from relational algebra, such

that duplicates are not removed. Besides the equivalences listed above, the usual equivalences of relational

algebra expressions (e.g., the commutativity and associativity of joins) continue to hold. In particular, the

join distributes over unions { which is useful in considering horizontal partitions. As an example, we have

FI(X 1 (Y1 [Y2) 1 Z;W) = FI((X 1 Y1 1 Z) [(X 1 Y2 1 Z);W) (4)

However, notice that once we distribute a join over a union, we can no longer compute local fre-

quent itemsets locally at tables X and Z. The reason is, as an instance, if we use our decentralized

approach for vertically partitioned cases for X 1 Y1 1 Z, we would to �nd itemsets for attributes of

X according to the occurrences of X in X 1 Y1 1 Z, and not X 1 (Y1 [Y2) 1 Z (which is what is

needed). By distributing the join over the union, we limit ourselves to using the algorithm for horizon-

tal partitioning for the tables involved. In some cases, this would be the preferred approach, while in

other cases, it may be a bad choice { which would be assessed based on the associated costs for eval-

uating each expression. As an example, in Section 2.2, we wanted to compute FI(T; I), where T =

8

Demographics 1 Customer 1 (ItemsBought1 [ItemsBought2) 1 Product. Distributing the join over

the union, we get: FI(T1 [T2; I), where T1 = Demographics 1 Customer 1 ItemsBought1 1 Product

and T2 = Demographics 1 Customer 1 ItemsBought2 1 Product. We explained in Section 2.2 why

distributing the join was not a good idea in this case, and similar arguments could be constructed for other

situations as well. In Section 5.2, we re-visit the issue of distributing the join over unions.

3.2 Expression Re-writing

We use the example from Section 2.1 and illustrate the use of our equivalences for expression re-writing. Re-

stated, we aim to �nd FI(T; I), where T = Demographics 1 Customer 1 (ItemsBought1[ItemsBought2) 1

Product, which we shorten to T = D 1 C 1 (B1[B2) 1 P . Therefore, the traditional centralized approach

gives us the �rst alternative to the computation

FI(T; I) = FI(D 1 C 1 (B1 [B2) 1 P; I) (1)

Our equivalences help to develop a decentralized processing plan as follows.

By using the commutativity of joins and equivalence 1, we have:

FI(T; I) = FI(B1 [B2; D 1 C 1 (B1 [B2) 1 P) [

FI(D 1 C 1 P;D 1 C 1 (B1 [B2) 1 P) [

CI(fB1 [B2; D 1 C 1 Pg; D 1 C 1 (B1 [B2) 1 P)

Tables D and C do not have common attributes with table P , therefore their join would be their cartesian

product. While this may seem to be a bad choice, by applying more equivalences, we could arrive at a better

expression. Since B1 [B2 has only key attributes, FI(B1 [B2;W) is empty (irrespective of the elements

of W). Also, CI(fB1 [B2; Xg;W) is empty (irrespective of X and W), since by the de�nition of CI, the

frequent itemsets should have at least one non-key attribute from B1 [B2. So, we have

FI(T; I) = FI(D 1 C 1 P;D 1 C 1 (B1 [B2) 1 P) (2)

Now, using equivalences 1 and 3, we get

FI(T; I) = FI(D;D 1 C 1 (B1 [B2) 1 P) [

FI(C 1 P;D 1 C 1 (B1 [B2) 1 P) [

CI(fD;C 1 Pg; D 1 C 1 (B1 [B2) 1 P) (3)

Since table T has the same number of rows as table B1 [B2, and table B1 [B2 has foreign keys to all the

tables (except table D), we have

�ssn(D 1 C 1 (B1 [B2) 1 P) = �ssn(B1 [B2)

�pid(D 1 C 1 (B1 [B2) 1 P) = �pid(B1 [B2)

�area(D 1 C 1 (B1 [B2) 1 P) = �area(C 1 (B1 [B2))

9

And so, we arrive at a new expression

FI(T; I) = FI(D;�area(C 1 (B1 [B2)) [

FI(C 1 P; �ssn;pid(B1 [B2)) [

CI(fD;C 1 Pg; �area;ssn;pid((B1 [B2) 1 C)) (4)

Using equivalence 1 in the second term gets us to

FI(T; I) = FI(D;�area(C 1 (B1 [B2)) [

FI(C; �ssn(B1 [B2)) [FI(P; �pid(B1 [B2)) [CI(fC;Pg; �ssn;pid(B1 [B2)) [

CI(fD;C 1 Pg; �area;ssn;pid((B1 [B2) 1 C)) (5)

Using equivalence 2 in the last two terms:

FI(T; I) = FI(D;�area(C 1 (B1 [B2)) [FI(C; �ssn(B1 [B2)) [FI(P; �pid(B1 [B2)) [

CI(fD;C; Pg; �area;ssn;pid((B1 [B2) 1 C)) (6)

Our algebraic manipulation provides expressions equivalent to the original FI(T; I), and yet, it represents

avoiding having to �rst create the join D 1 C 1 (B1 [B2) 1 P . In fact, expression 5 signi�cantly

decentralizes the computation of frequent itemsets into the individual tables, and avoids the union of the

horizontal partitions. By computing each individual term in the �nal expression, we obtain the set of frequent

itemsets for table T .

As noted in [6, 10], in some cases, merging the results from several tables simultaneously (i.e., computing

CI) may prove to be expensive (due to memory space requirements). If so, we could merge partial results

in several steps (some of which are detailed in [6] { e.g., by multiple passes over weight table, i.e., the table

that relates the various tables). This could be done in di�erent ways, such as by using expression 4, or by

computing the join of a few tables in advance (note that both the join and union operations are commutative

and associative). For example, we could join D and C early, and use

FI(T; I) = FI(D 1 C; �ssn(B1 [B2)) [FI(P; �pid(B1 [B2)) [

CI(fD 1 C;Pg; �ssn;pid(B1 [B2) (7)

Another strategy may be to distribute the join over the union from expression 1 as follows

FI(T; I) = FI((D 1 C 1 B1 1 P) [(D 1 C 1 B2 1 P); I) (8)

However, we again notice that distributing the join over the union, limits processing to algorithms meant

solely for horizontally partitioned cases; and further re-writing is limited as well.

As we can see, even for this small problem involving only four tables, we have many possible strategies to

obtaining the frequent itemsets (note that all possibilities were not enumerated). By associating processing

costs to each operation, each expression may be associated with a cost, and an optimization problem arises.

This problem may be solved to �nd the best strategy to use in terms of e�ciency.

10

4 Incorporating Processing Costs

In this section, we discuss the costs involved in computing FI, CI and [(some basic cases are drawn from

details in [5]). We discuss the join operation since several possible alternative strategies involve the joining

of certain tables prior to computing FI or CI. Also, we discuss how to estimate parameters that a�ect the

cost of execution of a mining strategy, and provide rough cost estimates for our discussed examples.

4.1 Cost Formulas

Let,

� ri be the number of rows in table Ti

� mi be the number of attributes in table Ti

� ki be the length of the longest candidate itemset on table Ti

� jcijj be the number of candidates of length j from table Ti

� jlijj be the number of frequent itemsets of length j from table Ti

When considering a term such as FI(Ti; Tw), Ti and/or Tw may have to be computed ahead of time (e.g.,

if Ti = Ti1 1 Ti2 the join needs to be computed, or if Ti = Ti1 [Ti2 the union needs to be computed the

union. When discussing the costs of FI(Ti; Tw), we do not include the costs of computing Ti and Tw (i.e.,

the join and the union mentioned, are discussed separately). In cases where we do not expect to compute the

union, for example, FI(Ti1 [Ti2 ; Tw), and instead use an algorithm that works on horizontally distributed

data (e.g., from [5]), we will leave the union symbol, [, stated explicitly.

We now describe the individual operation costs. We separate the processing costs into local costs (I/O

and CPU), and communication costs. For the CPU costs, the \subset operation" (checking of a row against

a set of candidates itemsets) is the most expensive CPU operation, and therefore, we only consider this

operation as far as CPU costs are concerned. Note that, in several instances, indices may be used e�ectively,

and we provide a few example cases below.

4.1.1 FI(Ti; Tw)

The costs of �nding the frequent itemsets of a table depend on the algorithm used. We may use an approach

where we compute the weight vector from Tw and then, a centralized algorithm must be chosen (e.g.,

[3, 4, 14]), and modi�ed slightly (as mentioned in Section 2.3). Therefore, the cost will be that of computing

the weight vector, and applying the chosen algorithm to �nd the frequent itemsets of Ti. As an example, we

consider the Apriori algorithm [3] to exemplify the costs (both I/O and CPU cost formulas for the vertical

partitioning case, and their derivations for the centralized case, are discussed in detail in [6]). We regard

this computation to occur in two steps:

1. opWV : Computing the weight vector from Tw:

11

� Local costs: Scan table Tw and compute the weight vector for Ti. The scan cost (I/O cost) is

given by the number of rows, rw, in Tw, and the weight vector size is given by the number of

rows, ri, in Ti. If the weight vector �ts in main memory, the CPU costs are those of projecting

the scanned Tw into ri. If it does not �t in main memory, there will be I/O costs involved in the

computation and writing of the weight vector. Therefore, the I/O and CPU costs are given by

the parameters rw and ri. Now, consider the situation where an index on table Tw is available for

each row of Ti. In that case, we may use the index to determine how many entries a particular

row of Ti has in Tw (note that we do not need to know the speci�c entries, just how many), by

simply reading the index. In such case, the costs are given by ri (and not rw).

� Communication costs: The computation of the weight vector from Tw is local to the site where

Tw is, and therefore, there are no communication costs involved here.

2. opFI: Computing the frequent itemsets in Ti:

� Local costs: These are the usual costs of computing frequent itemsets for one single table (i.e.,

multiple scans of the table Ti whose size is miri, and multiple scans of weight vector if the weight

vector does not �t into main memory). With the length ki of the longest candidate itemset, the

I/O costs are given by: kimiri+kiri. With decentralized computation, the smaller tables may �t

in main memory, which would reduce I/O costs substantially. The CPU costs for computing the

frequent itemsets are the same as for the traditional centralized approach. These costs depend

on the size jcijj of the candidate itemset for each iteration of the algorithm, the length mi of the

row that needs to be checked against the candidates, and the choice of data structures used to

support the counting process.

� Communication costs: If Tw is not located at the same site as Ti, the communication cost is the

cost of shipping the weight vector (of size ri) to the site where Ti is located. If Tw is at the same

site as Ti, there are no communication costs involved.

4.1.2 FI(Ti; Tw1
[Tw2

[� � � [Twl
)

By having a union in the second argument of the FI term, we can still use our decentralized approach of

Section 2.3 with the modi�cation explained in Section 2.4. Again, we chose the Apriori algorithm [3] to

exemplify the costs, and we regard this computation also to occur in two steps:

1. opWV : Computing the weight vector from Tw1
[Tw2

[� � � [Twl
:

� Local costs: The local costs are the same as the previous case, except that the load is shared by

the di�erent locations in which Twq
; q = 1::l are located. Therefore, the I/O and CPU costs are

given by the parameters rwq
and ri.

� Communication costs: The computation of the weight vector from Twq
; q = 1::n is local to the

site where Twq
is, and therefore, there are no communication costs involved here.

2. opFI: Computing the frequent itemsets in Ti:

12

� Local costs: The �rst step is to compose the total weight vector from the l weight vectors computed

from Tw1
; Tw2

; � � �Twl
. This is a simple vector addition operation, and its cost depends on the

number of vectors (i.e., l), and the size of the vector (i.e., ri). Thereafter, the costs are the same

as opFI in the previous case.

� Communication costs: Since the horizontal partitions of the weight table is located in many sites,

at most one of the Twq
is located at the same site as Ti. Therefore, the communication cost is the

cost of shipping the weight vectors (of size ri) to the site where Ti is located.

4.1.3 FI(Ti1 [Ti2 [� � � [Tin ; Tw)

A union in the �rst argument of the FI expression requires us to use a distributed algorithm that synchronizes

and exchanges messages at the end of each pass, and we use [5] as an example.

1. opWV : Computing the weight vector from Tw:

This operation is exactly the same as in 4.1.1.

2. opFI: Computing the frequent itemsets in (Ti1 [Ti2 [� � � [Tin) 1 Tw:

� Local costs: Let Ti = Ti1 [Ti2 [� � � [Tin . After each pass, the individual sites synchronize, but

the amount of information processed locally (taking all sites into account) is the same as though

the union had been computed in advance. The reason is that each site, at each pass, scans the

local database, and counts the candidates, but the candidates are the same as the candidates for

table Ti. The cost in each local site, depends on the parameters jc
ip
j j; p = 1::n, mip and k, which

are the same for all sites, and is proportional to the number of rows present. The sum of the total

number of local rows is the same as the total rows in Ti (i.e., ri =
Pn

p=1 rip), therefore, I/O and

CPU costs are the same as in 4.1.1.

� Communication costs: First consider the shipping of the weight vectors. The original weight vector

is horizontally partitioned, and the respective vectors are sent to the respective Tiq ; q = 1::n. If it

is impossible to determine in advance which partition of the vector should be sent to a particular

site, the entire vector is shipped to all sites involved. Therefore, this cost depends on n, number

of sites, and ri, total number of rows of Ti (where Ti is the union of all Tip ; p = 1::n). The

communication cost should also account for the cost of shipping the candidate set counts at the

end of each pass. Each site ships this information to other sites. Therefore, this part accounts for
Pk

j=1(jc
i
j j) � p in communication costs.

4.1.4 CI(fTi1 ; Ti2 ; � � �Ting; Tw)

The �rst cost is the computation of the join of the tables: Ti1 1 Ti2 1 � � � 1 Tin 1 Tw (see join costs below).

We choose one of the available algorithms from [6, 10], the I/O saving algorithm explained in Section 2.3,

as an example. Let Ti = Ti1 1 Ti2 1 � � � 1 Tin 1 Tw.

13

� Local costs: In the I/O saving approach, we process each row of the joined table as it is created, avoiding

the cost of storing and re-scanning the joined table Ti. Therefore, the I/O cost is just the scanning

of Ti once. For the CPU costs, for each row s in the joined table, the cost is in determining which

frequent itemsets found in the individual tables Tip are present in s, so that the frequent itemsets for

the joined table can be computed. Therefore, for each row in Ti, for each table Tip ; p = 1::n, we need

to check mip against
Pkip

j=1 jl
ip
j j. This check is done ri times. If indices are available, this operation

can be done more e�ciently, as will be discussed in Section 4.2.

� Communication costs: Besides the costs of sending the tables that is already included in the cost of

join, the frequent itemsets found for each of the individual tables Tip need to be sent to the site where

opCI will be executed. This is the cost of shipping
Pn

p=1(
Pkip

j=1 jl
ip
j j) elements.

4.1.5 CI(fTi1 ; Ti2 ; � � �Ting; (Tw1
[Tw2

[� � � [Twl
))

Again, we choose the I/O saving algorithm from Section 2.3, as an example. The �rst cost is the computation

of the join of the tables: Tiq = Ti1 1 Ti2 1 � � � 1 Tin 1 Twq
, for q = 1::l (see join costs below).

� Local costs: The costs are basically the same as in 4.1.4, except that the load is distributed at the

di�erent locations. The only extra cost is the cost of adding the partial counters that were computed

in each location, i.e., a matrix addition operation. Still, the I/O cost is just the scanning of each of

the Tiq 's once. For the CPU costs, for each row s in a joined table, the cost is in determining which

frequent itemsets found in the individual tables Tip are present in s, so that the frequent itemsets for

the joined table can be computed. Therefore, for each row in Tiq , for each table Tip ; p = 1::n, we need

to check mip against
Pkip

j=1 jl
ip
j j. This check is done ri times total (since ri =

Pl

q=i(ril)). Finally, the

matrix addition operation depends on the size of the matrix (given by �np=1
Pkip

j=1 jl
ip
j j) and the number

of horizontal partitions, l.

� Communication costs: Same communications costs as 4.1.4, except that some communication is needed

in order for the �nal addition of matrices to be performed, i.e., the local matrix counters must be sent

to a central location. This again, depends on the size of the matrix.

4.1.6 Union

In our approach, the union operation is required to compose the set of frequent itemsets, i.e., FI[FI[� � �[CI,

or to compute the tables of interest, i.e., the tables that compose the arguments of the operations FI and

CI, e.g., FI(T1[T2; Tw) in case where we chose not to use a horizontal distribution algorithm such as in [5].

We discuss both situations in the following.

1. Composing the set of frequent itemsets.

� Local costs: Usually, the cost of a union operation only involves costs of removal of duplicates. In

our case, since the sets that participate in the union do not contain overlapping frequent itemsets

(i.e., FI and CI are disjoint), the cost for the union in our case is negligible.

14

� Communication costs: The union operation compose sets of frequent itemsets computed by opFI

and opCI operations. Every time an opCI is performed, all frequent itemsets involving items

from the tables for which the opCI is being performed, will be sent to the site where opCI is

executed, and this communication cost is already accounted for in opCI. Furthermore, in every

plan, the last operation to be executed before the union is an opCI that computes the frequent

itemsets involving items from every table. Therefore, all frequent itemsets are already local to

the site where the �nal opCI is performed, and so, no communication costs are involved.

2. Computing the tables in advance.

In this case, traditional union costs from query processing and optimization literature, i.e., shipping of

tables and removal of duplicates.

4.1.7 Join

Join operations could be required in CI given above. Furthermore, join operations could be required in

situations where tables are joined prior to counting frequent itemsets. For example, in Section 3, FI(T; I)

requires the computation of table T which is a join of all the original tables. As in traditional query pro-

cessing, there are many ways to perform a join. Choices are available in the ordering of the joins as well

as in the use of particular join strategies; each plan leads to a di�erent cost. Similarly, when the tables to

be joined are physically distributed, semi-join strategies may be considered. Therefore, the local costs and

communication costs for the join (or semi-join) are the typical costs as available in the query processing

literature (e.g., see [12]).

4.1.8 Estimating the Parameters

In order to assess a more precise cost for a particular execution, parameters such as the table size, join

selectivity factors, length of longest candidate itemset, and number of frequent itemsets found etc. need

to be estimated. Most of the parameters needed are similar to the ones required in query processing and

optimization. Also, the techniques used for estimating are similar; the cost and size of a joined table (e.g.,

by using a join selectivity factor) can be used in our context. While some parameters are easier to determine

and maintain (e.g., table size), others may be assessed only by performing part of the DM itself (e.g., number

of frequent itemsets found in a table). Another approach would be to use sampling techniques.

A major consideration is to decide whether the tables should be joined early, or be processed separately

(i.e., traditional vs. decentralized mining). Also, in decentralized DM, the best strategy to merge results

requires an estimate of the number of frequent itemsets. The costs, and the estimate of parameters of the

tables, may be used in the same manner as used in cost-based query optimization. Note that this is applicable

whether or not DM is e�ected on the tables as stored in a database, or loaded into a �le system.

15

4.2 Our Example

We now illustrate how to use our cost formulas for our example in Section 2.1. Figure 2 shows some

parameters for the tables. Table T represents the �nal table (i.e., D 1 C 1 (B1 [B2) 1 P). We also

consider partial joins (e.g., D 1 C), since we want to assess the cost of the various di�erent strategies. Also

note that C 1 P is essentially a cartesian product since the two tables do not have any attributes in common.

However, the cartesian product may have a smaller number of rows than the �nal table T (this is typically

the case in data warehouses, where a central fact table is several orders of magnitude larger than the smaller

dimension tables).

Parameters for Tables

Table X rX mX kX

D 10K 25 7
C 50K 10 4
P 5K 15 6
B1 1.5G 2 -
B2 1G 2 -
D 1 C 50K 34 6
D 1 P 50M 40 5
C 1 P 250M 25 7
D 1 C 1 P 250M 49 12
T 2.5G 49 12

Figure 2: Parameters for tables.

We restrict our attention, for simplicity, to the I/O costs, but similar assessment could be done for the

CPU and communication costs. Also, we only consider only the FI and CI operations, and do not compute

explicitly the costs of join and union which are normally involved in �nding the frequent itemsets. We

assume that there are bitmap indices for the tables C and P . Such an index would be log(2:5G) = 32 bits.

Considering that the attributes of each table are 4 bytes long, each row of tables C and P will have an extra

byte for holding the bitmap index. For simplicity, we can construct a bitmap index for table D, by scanning

table C, and adding the bitmaps for the entries in C that correspond to the same entry in D. The cost

of building this index is of the order of the size of C, and therefore, is negligible when compared to other

costs. With these bitmap indices available, the operation opWV only needs a scan of the index, unless there

is a explicit join on the weight table. The only exception is when the weight table is C 1 (B1 [B2) for

computing D, in which case we will use this precomputed bitmap index for D. The use of bitmap indices,

greatly simpli�es the computation of the weight vector (opWV); for each row of the individual tables (e.g.,

D, C, or P) the number of \on" bits on the index needs to be counted. The cross-itemsets counting is

also simpli�ed, since a join (even though non-materialized) need not be computed. In fact, tables B1 and

B2 do not need to be scanned at all. This is true for our particular example because there are no non-key

attributes in tables B1 and B2.4 For each pair of rows, take the bitwise and of the two bitmap indices to

obtain the rows of B1 and B2 where the pair occurs together. By taking the number of \on" entries in

the new index (i.e., after computing the bitwise and), we know how much to increment the support of the

candidate itemsets.

4In [6], we show how to deal with non-key attributes in the weight table.

16

We now compute the I/O costs (in some appropriate cost units) for each of the expressions (1 { 8) found

in Section 3.2.

1. FI(T; I)

� opWV : since the weight table is I (i.e., there is no weight vector to be computed), there are no

I/O costs for opWV .

� opFI: 2:5G � 49 � 12 = 1; 470G

total cost: 1; 470G

2. FI(D 1 C 1 P;D 1 C 1 (B1 [B2) 1 P)

� opWV : since the weight table involves joining of tables, we do not use the bitmap indices; instead,

the table is scanned to count occurrences.

2:5G � 49 = 122:5G

� opFI: 250M � 49 � 12 = 147G

total cost: 269M

3. Note that expressions 3 and 4 have the same costs as far as I/O. The di�erence is that the weight

table requires computation of the join (which for simplicity, we do not include here). Therefore, we

only describe costs for expression 4.

4. (a) FI(D; (C 1 (B1 [B2))

� opWV : 10K

� opFI: 10K � 25 � 7 = 1:75M

(b) FI(C 1 P; (B1 [B2))

� opWV : when joining tables C and P , for each new entry of C 1 P , a new bitmap is generated

by computing the bitwise and of the two indices for each corresponding row from C and P .

This new bitmap index will be of the size of the new joined table: 250M .

� opFI: 250M � 25 � 7 = 43:75G

(c) CI(fD;C 1 Pg; ((B1[B2) 1 C))

using a nested loop for the entries of D and C 1 P , the cost would be: (10K � (25 + 1)) + 10K �

(250M � (25 + 1)) = 260K + 10K � 6:5G = 65; 000G

since table D is probably small enough to �t into main memory, the cost is actually: (10K � (25+

1)) + (250M � (25 + 1)) = 260K + 6:5G = 6:5G

total cost: 50:25G

5. (a) FI(D; (C 1 (B1 [B2)) from above: 1:82M

(b) FI(C; (B1 [B2))

� opWV : 50K

17

� opFI: 50K � 10 � 4 = 2M

(c) FI(P; (B1 [B2))

� opWV : 5K

� opFI: 5K � 15 � 6 = 450K

(d) CI(fC;Pg; (B1[B2))

if P �ts in memory: (5K � (15 + 1)) + (50K � (10 + 1)) = 80K + 550K = 630K

(e) CI(fD;C 1 Pg; ((B1[B2) 1 C))

from above: 6:5G

total cost: 6:5G

6. (a) FI(D; (C 1 (B1 [B2)) from above: 1:82M

(b) FI(C; (B1 [B2)) from above: 2:05M

(c) FI(P; (B1 [B2)) from above: 455K

(d) CI(fD;C; Pg; ((B1[B2) 1 C))

if P andD �t in memory: (5K�(15+1))+(10K�(25+1))+(50K�(10+1)) = 80K+260K+550K =

890K

total cost: 5:125M

7. (a) FI(D 1 C; (B1[B2))

� opWV : 50K

� opFI: 50K � 34 � 6 = 10:2M

(b) FI(P; (B1 [B2)) from above: 455K

(c) CI(fD 1 C;Pg; (B1[B2)

if P �ts in memory: (5K � (15 + 1)) + (50K � (34 + 1)) = 80K + 1750K = 1:83M

Therefore, total cost is: 12:485M

8. FI((D 1 C 1 B1 1 P)[(D 1 C 1 B2 1 P); I)

� opWV : no cost, since the weight table is I.

� opFI: (1:5G � 49 � 12) + (1G � 49 � 12) = 1; 470G

total cost: 1; 470G

In our calculations above, notice that the di�erent techniques di�er signi�cantly in (I/O) cost { by several

orders of magnitude. This exempli�es the importance of applying optimization strategies in arriving at the

best DM plan.

18

5 Computation Optimization

As in query optimization and processing, there are many equivalent expressions for decentralized DM, and

the exhaustive enumeration and cost assessment for all possible execution plans would be prohibitively

expensive. Note that the choices for DM become a multiplicative factor on the choices for evaluating

the relational algebra expressions. In this section, we discuss the optimization problem and some heuristic

approaches to help reduce the execution costs { in a manner similar to those used in typical query processing.

5.1 Optimization Problem

In Section 3, we provided a way of representing the mined information at particular stages. By using the

equivalences from Section 3.1, we showed how to rewrite expressions in Section 3.2, and thereby provide

alternative equivalent expressions. In Section 4, we detailed cost formulas which help to assess the cost of

each of the mining tasks (e.g., FI, CI etc.). In order to �nd the best strategy, we need to enumerate di�erent

ways of mining the desired information, both at the logical level (i.e., the particular FI's and/or CI's) and

at the physical level (i.e., which particular mining algorithm to use in each case). The steps involved in

optimizing the task of �nding frequent itemsets for a table T (where T could be a join and/or union of

multiple tables) are summarized as follows:

1. Enumerate expressions equivalent to FI(T; I), and let ei; i = 1::n denote them.

2. Compute the costs associated with each expression.

3. Find the expression ei with the minimum execution costs.

Now, enumerating all possible equivalent expressions results in a large search space. Also, computing

each expression ei is an optimization problem in itself: each expression ei is composed of a union of one or

more subexpressions, and each subexpression (e.g., FI(C; �ssn(B1[B2)) in Section 3.2) would have di�erent

costs associated with it, depending on the mining strategy employed (e.g., Apriori [3], DIC [4]). Furthermore,

each subexpression could involve a join of tables, in which case the decision of how to join these tables, and

which join strategy to use, is also an aspect of optimization. However, since the total cost of expression ei is

a sum of each subexpression, by minimizing the cost of each subexpression, we �nd the least cost for ei. As

such, each of the subexpressions could be minimized separately, and this \monotonicity" property may be

exploited in the same manner as is done in query optimization. Nonetheless, the large search space suggests

a need for heuristic approaches.

Of note is the similarity to query processing and optimization. If the itemset counting is made part of

the database engine, it could be associated with the usual query optimization strategies (including joins,

etc), and may result in highly e�cient executions. Alternatively, the DM optimization may be e�ected

outside the database engine as an application-level issue. Even so, having some knowledge regarding the

parameters would assist in allowing for higher-level optimization (i.e., the database query optimizers would

be complemented by the DM level optimization). This is also the case in a distributed environment, where

the distributed database level query optimizers would be augmented with our approach.

19

5.2 Heuristics

Besides the typical rules available in query optimization, such as performing selects early, we present some

heuristics that pertain to our problem of �nding frequent itemsets. In most cases, the heuristics are design

to provide more e�cient DM plans. For example, in some cases, it is clear that the number of frequent

itemsets in one table is smaller than the number of frequent itemsets in another table (e.g., Customer as

compared to T in Section 4, since the set of frequent itemsets in table T includes the set of frequent itemsets

of Customer). Such information would help decide which approach is better without knowing the speci�c

values of the parameters.

5.2.1 Weight Table Choice

Consider the equivalence presented in Section 3, FI(X;W) = FI(X;�idx(W)). As discussed in Section 4,

the computation of the weight vector from the weight table (in this case, either W or �idx (W)) might require

a scan of the weight table. Therefore, it is advantageous if the weight table were to have fewer attributes.

This rule is important in cases such as our example in Section 3.2 where:

FI(C;D 1 C 1 (B1 [B2) 1 P) = FI(C; �ssn(D 1 C 1 (B1 [B2) 1 P))

= FI(C; �ssn(B1 [B2))

The additional project operation could incur an undesirable extra cost; however, since we notice that

FI(C; �ssn(B1 [B2)) = FI(C; (B1 [B2)), we may compute the weight vector directly from B1 and B2

without having to perform the join and project operations.

Heuristic 5.1 Use fewest number of tables for the weight table to compute the FI's.

5.2.2 Table with only Key Attributes

We have the following equivalence:

FI(X 1 Y;W) = FI(X;X 1 Y 1 W) [FI(Y;X 1 Y 1 W) [CI(fX;Y g; X 1 Y 1W)

If table Y has only key attributes (i.e., attributes that are foreign keys to other tables), we argue that the

expression on the right will be less expensive to evaluate. The reason is that the second and third terms on

the expression on the right do not need to be evaluated because Y has only key attributes (i.e., because of

the de�nition of the terms FI and CI, the two terms will evaluate to the empty set). Therefore, we only

need to compare FI(X 1 Y;W) with FI(X;X 1 Y 1 W) to identify the less expensive approach. It is very

likely that X 1 Y will have a greater number of rows than X, in which case, the computation costs will be

higher for the expression on the left due to the size of the table that needs to be scanned during the counting

of itemsets.

Heuristic 5.2 When a table that contains only key attributes participates in a join comprising the �rst

argument of an FI, convert the expression using equivalence 2.

20

5.2.3 Cartesian Products

Consider the following example:

FI(X 1 Y;W) = FI(X;X 1 Y 1 W) [FI(Y;X 1 Y 1 W) [CI(fX;Y g; X 1 Y 1W)

Assume that tables X and Y do not have any attributes in common, and table W contains the foreign keys

to both X and Y . In this case, using equivalence 3, the expression is further reduced to:

FI(X 1 Y;W) = FI(X;W) [FI(Y;W) [CI(fX;Y g;W)

We note that when computing opWV (i.e., computing the weight vector) for FI(X;W), we can also compute

the weight vector for FI(Y;W) without additional disk accesses for W . And thereafter, the tables may

process opFI separately, which would be cheaper than computing opFI on the cartesian product. A situation

where we may need to process a large table would be when computing CI which, as indicated above, could

be reduced considerably if indices are available (which is usually the case for a table W that contains only

foreign keys).

Heuristic 5.3 When the �rst argument of an FI has joins that result in a cross product, use equivalence 3

to convert the expression.

5.2.4 Merging CI Expressions

Equivalence 2 provided in Section 3.1 is:

CI(fX;Y; Zg;W) = CI(fX;Y 1 Zg;W) [CI(fY; Zg;W) (2)

Since the expression on the right has two CI's, generally it will be more expensive in terms of I/O than the

one on the left, since the table W may potentially be accessed for each CI operation. Only in some cases is

the expression on the right to be preferred over the expression on the left { e.g., when the multidimensional

array needed for the expression on the left (3 dimensions) is much larger than the 2-dimensional arrays needed

for the expression on the right. Therefore, unless there is not enough memory for the higher dimensional

array, we the expression on the left is to be preferred.

Heuristic 5.4 Merge multiple CI expressions using equivalence 2 when there is su�cient memory for the

required multidimensional array required for evaluating the merged CI.

5.2.5 Horizontal Distribution

We re-consider our example in Section 2.1, and the operations manipulations on it by expression rewriting in

Section 3.2. By using equivalences 1, 2 and 3, we arrived at expression 6 which had a highly decentralized

computation of frequent itemsets. On the other hand, by distributing the join over the union, we arrived

at expression 8, where we could no longer decentralize the computation on the individual tables. As we

indicated in Section 4, the case with expression 6 is far more e�cient.

21

As another example, if the table Product had been horizontally distributed (i.e., P = P1[P2), we may

have arrived at

FI(T; I) = FI(D 1 C 1 B 1 (P1[P2); I)

= FI(D;C 1 B) [FI(C;B) [FI((P1 [P2); B) [CI(fD;C; (P1[P2)g; B)

In this case, only table Product enjoys distributed computation. The counting for tables Customer and

Demographics, and the counting for all tables in Phase II, do not change. Again, if we distribute the join

over the union, we would no longer decentralize the computation of the individual tables, and therefore, the

CPU and I/O costs would be the same as compared to a situation with the entire table being in a central

location (except that the load would be distributed).

Heuristic 5.5 Avoid distribution of join over unions.

5.3 Rules Applied

We now illustrate how we could apply our heuristics to the expressions from Section 3.2. Using Heuristic 5.2,

we eliminate expression 1 and 8, since B1 and B2 do not have any non-key attributes. Using Heuristic 5.5,

we eliminate expression 8 (note that it is just a coincidence that the table that is horizontally partitioned

happens to have only key attributes). Using Heuristic 5.1, we choose expression 4 over 3. Using Heuristic 5.3,

we choose expression 5 over 4, since tables C and P do not have any attributes in common, and tables B1

and B2 have key attributes to both tables. Finally, we notice that for expression 5, the weight tables for

both CI operations are essentially the same (with an extra column on the second one), and therefore, if we

consider have enough memory for the 3-dimensional array, using Heuristic 5.4 we choose expression 6 over

expression 5. Our heuristics do not help in choosing between expressions 6 and 7; therefore, after applying

the heuristics, we are left with expressions 6 and 7:

FI(T; I) = FI(D;�area(C 1 (B1 [B2)) [FI(C; �ssn(B1 [B2)) [FI(P; �pid(B1 [B2)) [

CI(fD;C; Pg; �area;ssn;pid((B1 [B2) 1 C)) (6)

FI(T; I) = FI(D 1 C; �ssn(B1 [B2)) [FI(P; �pid(B1 [B2)) [

CI(fD 1 C;Pg; �ssn;pid(B1 [B2) (7)

These two expressions happen to be the ones with the lowest I/O costs involved (as shown in Section 4.2).

Now, most of our heuristics dealt with approaches for reducing I/O. Heuristic 5.5, also deals with commu-

nication costs, since by distributing joins over unions, an increase in synchronization needs (e.g., after every

iteration) is likely to occur, and therefore, communication costs will also increase. Finally, notice that,

reducing I/O also reduces the size of tables that are scanned (both in the number of rows, as well as in

the number of columns). This I/O reduction also reduces CPU costs because the CPU costs are a�ected

by the check required for each row against the candidate set (which depends on the number of columns).

Therefore, although more heuristics could be developed to deal speci�cally with CPU costs reduction, most

of our heuristics provide reduction on CPU cost measures as well.

22

6 Related Work and Conclusions

The problem of AR was introduced by [2]. In [3], the Apriori algorithm improved on the performance of the

original algorithm. Since then, a number of algorithms based on [3] have been presented (e.g., [13, 14, 4, 1]).

Some algorithms have been considered for new kinds of AR (e.g., [17, 8, 18]).

There has been some work on distributing the Apriori algorithm (e.g., [5]) when the database is horizon-

tally but not vertically partitioned. That is, the database design considered is limited to one table that is

horizontally partitioned in di�erent sites, and therefore each site has the exactly the same schema. In that

sense, the amount of information read and being processed is the same as in a sequential algorithm (other

than the message exchanges) except that the load is distributed. However, more general types of distribution

are common, and have not been examined in that work. In our previous work [10], we provided an approach

that only applies to vertically partitioned tables.

Database design is an area which is likely to impact the task of data mining, considering the decentralized

approach discussed in this paper. Important aspects include the way in which the data is stored, partitioned,

distributed, how it relates. Work in normalization theory (e.g., see [11, 16]) as well as partitioning/allocation

(e.g., see [19]) is relevant to decentralized mining of data.

There is signi�cant work done in query processing that is related to our goal of optimizing decentralized

DM. For instance, in distributed query processing, the semi-join algorithms ([12]) greatly bene�t our approach

when applied to physically distributed tables. In fact, as noted above, our approach of using a weight vector,

is similar a semi-join based approach. General sorting and joining algorithms ([16, 7, 20]), available in the

literature are also important in the stage of combining the data, either prior, as well as during di�erent

stages of the decentralized algorithms. Also, note that query processing techniques have been suggested for

DM in earlier work (e.g., see [9]).

To summarize, based on our previous work [10] in basic decentralized approaches to mining data residing

in multiple tables, we extended our approach to general database designs. Our approach applies to tables that

are vertically and/or horizontally partitioned (as a result of normalization and data allocation strategies),

and may reside in physically distributed sites. We provided a simple algebraic approach to represent and

manipulate expressions that denote the mined information (which, in our case, are the frequent itemsets).

Together with the cost formulae for our basic operations, our algebra provides a means to describe di�erent

processing strategies { each with a di�erent processing cost. Therefore, our approach provides an important

optimization problem, similar to those encountered in query processing, and based on our algebra, we are

able to describe and exemplify heuristics to reduce the overall computation, I/O and communication costs.

References

[1] R. C. Agarwal, C. C. Aggarwal, V. V. V. Prasad, and V. Crestana. A tree projection algorithm for

generation of large itemsets for association rules. IBM Research Report: RJ 21246. IBM Research

Division, T.J. Watson Research Center, Yorktown Heights, New York, 1998.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large

databases. In Proceedings of ACM SIGMOD Int'l Conference on Management of Data, 1993.

23

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proceedings

of the 20th Int'l Conference on Very Large Data Bases, 1994.

[4] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for

market basket data. In Proceedings of ACM SIGMOD Int'l Conference on Management of Data, 1997.

[5] D. Cheung, V. Ng, A. Fu, and Y. Fu. E�cient mining of association rules in distributed databases.

IEEE Transactions on Knowledge and Data Engineering, 1996.

[6] V. Crestana and N. Soparkar. Mining decentralized data repositories. Technical Report: CSE-TR-385-

99. The University of Michigan, EECS Dept. Ann Arbor, USA. February 1999.

[7] R. Elmasri and S. Navathe. Fundamentals of Database Systems. The Benjamin/Cummings Publishing

Company, Inc., 1989.

[8] J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. In Proceedings of

the 21th Int'l Conference on Very Large Data Bases, 1995.

[9] T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communications of the

ACM, 39(11):58{64, November 1996.

[10] V. Crestana Jensen and N. Soparkar. Frequent itemset counting across multiple tables. In Proceedings

of the 4rd Paci�c-Asia Conference on Knowledge Discovery and Data Mining, 2000. To appear.

[11] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[12] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, 1991.

[13] J. S. Park, M-S Chen, and P. S. Yu. An e�ective hash-based algorithm for mining association rules. In

Proceedings of ACM SIGMOD Int'l Conference on Management of Data, 1995.

[14] A. Savasere, E. Omiecinski, and S. Navathe. An e�cient algorithm for mining association rules in large

databases. In Proceedings of the 21th Int'l Conference on Very Large Data Bases, 1995.

[15] Star Schemas and Starjoin Technology. A Red Brick systems white paper. 1995.

[16] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database Systems Concepts. Mc Graw Hill, third

edition, 1996.

[17] R. Srikant and R. Agrawal. Mining generalized association rules. In Proceedings of the 21th Int'l

Conference on Very Large Data Bases, 1995.

[18] R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. In Proceedings

of ACM SIGMOD Int'l Conference on Management of Data, 1996.

[19] T. Teorey. Database Modeling & Design. Morgan Kaufmann Publishers, Inc., third edition, 1998.

[20] J. Ullman. Principle of Database Systems and Knowledge-Based Systems, volume I. Computer Science

Press, 1988.

24

