
 1

 THE CHORDAL ANALYSIS OF TONAL MUSIC

BRYAN PARDO
WILLIAM P. BIRMINGHAM

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE DEPARTMENT
THE UNIVERSITY OF MICHIGAN

MARCH 28, 2001

TECHNICAL REPORT
CSE-TR-439-01

 2

KEYWORDS
Heuristic Search, Music Analysis, Segmentation

ABSTRACT
This paper provides a theoretical framework upon which to build a system for chordal
analysis of music. We establish that, in the worst case, the partitioning and labeling of
harmonies in tonal music is O(2N), where N is number of notes in a piece of music. We
show that, when segments of the music can be analyzed locally, and a segment scoring
metric can be found that is both additive and transitive, the problem becomes O(N2).
Under these constraints, the problem is cast as finding the best path through a single-
source directed acyclic graph, which can be solved in O(E + V) time. This translates to a
worst-case time complexity of O(N2) for our problem. We then show that the results of
the O(N2) search can be closely approximated through the use of a heuristic that allows
O(N) time search. The results of the heuristic search are then compared to exhaustive
graph search and the results of analyses by existing systems by Winograd (Winograd
1968), Maxwell (Maxwell 1992), and Temperley and Sleator (Temperley and Sleator
1999).

1 INTRODUCTION

The study of music by AI researchers has received a lot of attention in recent years,
producing systems for automatic composition (Cope 1991; Mozer 1991; Todd 1991;
Ebcioglu 1992; Marsella and Schmidt 1992; Smaill, Wiggins et al. 1993; Zimmermann
1995; Polito, Daida et al. 1997), performance (Johnson 1991; Todd 1992; Katayose and
Inokuchi 1993; Horowitz 1995; Windsor and Clarke 1997; Dannenberg 1998), and
analysis (Winograd 1968; Moorer 1975; Ulrich 1977; Smoliar 1980; Scarborough, Miller
et al. 1991; Linster 1992; Maxwell 1992; Dannenberg 1993; Hoffman and Birmingham
1999). One reason why music is so interesting to study is that listening to music and
performing it, which may involve composition and analysis, is a perceptual task that is
distinct from our other aural communication mechanism, speech (Kraut 1992).

A major E dom 7

Figure 1:Beethoven, Sonata Pathetique, Op 13, Second Movement, measure 1, segmented and labeled
with chord names.

In this paper, we discuss the chordal analysis of tonal music. This analysis requires that a
musical stream be broken into segments that correspond to significant harmonic change.

 3

Specifically, we search for segments that correspond to chords, labeling chords with the
proper name.

We approach this task from the perspective of the listener, meaning we do not have
access to the written score used by the performer in creating the music. Thus, the key
signature, metrical information, and grouping information (e.g., bar lines and beams)
given by the score are not available to us.Further, a performer may introduce notes that
are not in the score, or may remove notes that are in the score (Heijink, Desain et al.
2000). These things, along with performer- induced timing variation, informally describe
the chordal-analysis task.

In chordal analysis, segmentation is roughly analogous to the computer-vision task of
finding lines in an image. We have developed an algorithm for segmentation that makes
minimal commitments to (musical) context, thus gaining flexibility over the types of
music it can process.

Labeling involves giving each segment the proper name, quality, root, and inversion. In
music containing only block chords, the segmentation task is trivial, and labeling is
relatively straightforward. An example of this kind of music is the typical Bach Chorale.
Music, however, is rarely this straightforward (see Figure 1): chords are often arpeggiated
(spread out over time), incompletely stated, and interspersed with myriad non-harmonic
tones (NHTs) in forms such as trills and appoggiaturas. All of these things confound the
task.

Yet, it is essential that we create chordal-analysis algorithms that are fast and generate
high-quality results. The vast majority of Western music uses tonal-chord structures
based on triadic harmonies and their elaborations as a basic structural feature. Central to
the understanding of any tonal piece of music is an understanding of what chords
(harmonies) are used in the piece. Thus, chordal analysis lies at the heart of all computer-
based musical activities, including computer-based composition and computer-based
performance.

Previous work in the area of automated chordal analysis of music (Winograd 1968;
Smoliar 1980; Maxwell 1992; Widmer 1992; Smaill, Wiggins et al. 1993; Fujishima
1999), has either avoided the segmentation task by taking segmented input or has been
unclear in how segmentation has been done. Other researchers reporting on tasks that are
related to chordal analysis, such as harmonizing a piece of music, describe solutions
using complex rule sets (Ebcioglu 1992), without discussion of more general algorithms
or problem characteristics.

In this paper, we show algorithms for chordal analysis: one for segmentation and one for
chord labeling. In addition, we give a heuristic that reduces the segmentation task from
O(n2) (n is number of points of possible harmonic change) to O(n), while giving up very
little solution quality. These algorithms use only the necessary pitch relationships for
labeling, and make no use of other contextual information, such as composer style and
meter variation, and work across the full range of tonal music. In addition, these
algorithms are compact and fast. While the algorithms may make mistakes, they are

 4

reasonable ones, and can be resolved with some musical knowledge. Our intention is that
these algorithms be “general” algorithms from which more specialized algorithms can be
constructed. Moreover, we formally describe the chordal-analysis task.

2 NOTATION AND TERMINOLOGY

In this section, we introduce notation needed for the description of our algorithms.

2.1 THE NOTE

We are interested in analyzing a performance of a piece of music. We work only with
notes, which are pitches on an equal-tempered, chromatic scale that have a well specified
start (onset) and end (off) time. Since we are primarily concerned with tonal structures,
this assumption is innocuous.

In the audio domain, a pitch class represents a set of harmonic sounds whose fundamental
frequencies are related by a power of two. An example is the set of “A”s. Assume a
sound with a fundamental frequency of 440 Hz is an “A.” All harmonic sounds whose
fundamental is (2n)*440, where n is an integer, are also in the pitch class “A.” Thus,
sounds at 110, 220, 440, 880 and 1660 Hz are all members of the pitch class “A.” Each
time the frequency of a pitch has doubled, the octave increases by one. Thus, A 440 is
two octaves above A 110.

Table 1:Pitch Class Names and Numbers

C C#

Db
D D#

Eb
E F F#

Gb
G G#

Ab
A A#

Bb
B

0 1 2 3 4 5 6 7 8 9 10 11

Equal temperament is the most common tuning in modern Western music and the one
that we assume. Equal temperament divides an octave into 12 pitch classes, which are
equally spaced in the log2 of the frequency. Once the frequency has doubled, the pitch-
class label wraps around to the name used one octave below. This repeating 12-step
structure is called the chromatic scale. The mapping of pitch-class names to an integer
representation of pitch class is given in Table 1.

Let a note, n, be a 4-tuple of the form <start, end, pitch class, octave>, where n:

• start is a real number giving the number of seconds between the start of note n
and the start of the first note in the piece.

 5

• end is a real number giving the number of seconds between the end of note n
and the start of the first note in the piece.

• pitch_class is an integer from zero through 11 representing the pitch class of
note n.

• octave is an integer from zero through 11 representing n’s octave.

The first “C” in Figure 1 is a note and is represented by the tuple <0, 1, 0, 4>.

When referring to an element in a note tuple, the field is referred to by name and the
identity of the note is denoted by a subscript. For example, the pitch class of note n is
referred to as pitch_classn. If n is the first “C” in Figure 1, then pitch_classn = 0.

Rests are not explicitly represented in the manner of notes. A rest is a length of time
where no pitch sounds (see Section 2.6).

2.2 THE MUSIC PERFORMANCE

A piece of music, M, is a set of notes ordered by start time. Mx denotes a particular
performance of a piece of music, where x is the label for the performance.

Identical notes are allowed in this definition of a piece. For example, there may be a
unison note between two voices. In this case, there are two identical notes in the set M.

C4

C3

Time in seconds 0 0.5 1 1.5 2

Partition point number P1 P5 P9

Figure 2:Mbeethoven1 in Standard and Piano Roll notation

 6

Consider the Beethoven excerpt in Figure 1. Let the performance Mbeethoven1 be a
realization of this excerpt, assuming a tempo of one quarter note per second (we will use
this as the default tempo for all examples relating to the Sonata Pathetique). We then
have the following:

Mbeethoven1 = {<0, 1, 0, 4> , <0, 0.25, 9, 3> , <0, 1, 9, 2>, <0.25, 0.5, 3, 3> ,
<0.5 ,0.75, 9, 3> , <0.75, 1, 3, 3> , <1, 2, 11, 3> , <1, 2, 1, 3> , <1, 1.25, 7, 3> ,
<1.25, 1.5, 3, 3> , <1.5, 1.75, 7, 3> , <1.75, 2, 3, 3>}

Figure 2 represents Mbeethoven1 in standard and piano-roll notation, where each note is
represented by a line. Vertical position represents the pitch of the note, length represents
the duration and horizontal position represents time since the beginning of the piece of
music. The note <0, 1, 9, 2> is circled in both piano-roll and standard notation to show
the correspondence between them.

2.3 TIME AND METER

In this paper, beat usually refers to the written meter of a piece of music (e.g., ¾ time).
Note, however, that there is no explicit reference to beat or metrical information in our
definition of a note: the time element of a note is expressed through start and end times.
Nor is there any explicit reference to metrical information in any structure based on
notes. This allows music without a single metrical pulse to be easily represented and
manipulated. Moreover, we do not represent nor use metrical information in our analysis.

All timing information is defined by the number of seconds since start of the earliest
sounding note of the piece. The minimum value for time is zero, and the maximum value
is the end time of the final note to sound in the piece.

Since real times are used, the definition of a piece of music is tied to a particular
performance (realization) of that piece. Different performances may result in timing
variations that change the definition of the piece.

The choice of continuous rather than discrete time was made to avoid basing our
representation on an arbitrary underlying quantization. This both simplifies things and
eliminates unnecessary artifacts that may be introduced during quantization. The closest
we come to a quantum is the minimal segment (defined in Section 2.6), which has a
duration that varies with the tempo and density of notes.

2.4 STATE OF THE PIECE

Recall that a note is a four tuple of the form <start, end, pitch class, octave>. Let a pitch
be a duple of the form <pitch class, octave>. Thus, the pitch of a note, n, is the final two
elements of the four tuple defining a note. We refer to the pitch of a note, n, as pitchn.

The state of the music at time t, Statet, is the set of pitches derived from the notes of M
sounding at time t :)()()(| tendtstartMnpitchState nnnt >∧<∧∈∀=

 7

Taking Mbeethoven1, from Figure 2, the set of notes sounding at time 0.3 is

{<0, 1, 0, 4>, <0, 1, 9, 2>, <0.25, 0.5, 3, 3>}

Thus, the state for time 0.3 is the following…

State0.3 = {< 0, 4>, < 9, 2>, < 3, 3>}

Our analysis system, HarmAn, uses only the pitch class of the notes sounding at time t.
For this reason, HarmAn, represents state as a 12-element tuple indexed by pitch-class
number (0 through 11). Each element, i, gives the count of notes of pitch class i sounding
at time t. In this representation, State0.3 is represented by the following tuple:

State0.3 = [1,0,0,1,0,0,0,0,0,1,0,0]

2.5 PARTITION POINTS AND PARTITIONS

A change in harmony can only occur when the state changes. The state can change only
when at least one note starts or ends. We call the moment of state change a partition
point.

Partition point number P1 P5 P9

C4

C3

Segment
Partition
Point

Minimal
Segment

Time in seconds 0 0.5 1 1.5 2

Figure 3 : Segments and Partition Points for Mbeethoven1

The set of all partition points, Pall is the set of startn and endn for all notes, n, in a
performance, M, removing all duplicates. Thus, if several notes start or end at time t, only
a single element with value t is entered into Pall. Moreover, the set of all partition points,
Pall, defined over a performance, M, contains all points where the state changes.

For the performance Mbeethoven1, Pall is the following:

Pall = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}

 8

Pall is derived from the start and end times of the notes in M and thus can have no more
than twice the number of elements in M.

 Lemma 2.5.1: ||2 || MPall ≤

 Proof:

1. A partition point, by definition, happens only where at least one note begins or
ends.

2. Each note has exactly one start and one end.

3. Consider the following two cases:

a. If every note in M starts at a unique time, distinct from the start or end
time of all other notes in M, and every note ends at a unique time,
distinct from the start or end of all other notes in M , then

||2 || MPall =

b. If the start or end of any note in M coincides with the start or end of
any other note in M then |Pall| is reduced, since Pall is the set of startn
and endn for all notes in M, removing all duplicates.
Thus, ||2 || MPall <

¦

This means that Pall is finite and countable, as long as M is finite and countable; a
reasonable assumption for a piece of music.

Since each partition point, pi, in Pall is unique (due to duplicate elimination), an ordering
can be imposed on Pall by sorting its elements by value. Let the partition point with the
earliest time be p1 and the point with the latest time be p|Pall|.

For example, if Pall = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}, then p1 is 0, p3 is 0.5 and
p|Pall| is 2.

Mbeethoven1 has partition points every quarter of a second. This is strictly a result of the
even tempo of the performance. If the performance tempo were to vary, then the length
(in time) of the minimal segment would vary as well. This can also occur in a piece with
an even tempo, but with notes of varying length. Consider the Debussy excerpt in Figure
4. Assume both a constant tempo of one quarter note per second and that each note
begins the exact instant the previous note ends. In this case,

Pall = {0, 1.5, 1.75, 2, 2.5, 2.666, 2.833, 3, 3.5, 4, 6.5, 6.75, 7, 8}.

 9

Note in this example, partition points are spaced anywhere from roughly 0.166 to 2.5
seconds apart.

Time in sec. 0 2 4 6 8

partition point
minimal segment

Figure 4 : Debussy, The Little Shepherd, mm 1-2

A partition, P, of a piece of music is a subset of the set of partition points, Pall, including
the first and last elements of Pall, p1 and p|Pall|.

Since the elements of Pall are sorted, a partition may be represented by a binary number
where bit i indicates whether partition point i should be used to partition two segments.
We assign “0” (for “not in partition”) or “1” (for “in partition”) to each bit and the
resulting binary number uniquely identifies a partition of a given performance. Figure 5
shows partitions 100100101 and 100010001 of Mbeethoven1. Thick vertical lines indicate
partition points that divide the music. Dotted lines are partition points that do not divide
the music.

It is important to mention that there are performance gestures that may affect perceived
harmony, such as dynamics and timbre. While the effects of these things are important to
study, they lie outside the scope of this paper.

Every partition includes the first and last elements of Pall. This is necessary for proper
formulation of segments and segmentations (defined in a later section). The first and last
elements of Pall will always have their bits set to “1” and the bits that uniquely identify a
partition are those for partition points p2 through p|Pall|-1. Thus, any partition can be
uniquely identified with |Pall| - 2 bits. That said, we adopt the convention of identifying
partitions using one bit for every partition point, including the first and last.

We now turn to the topic of good partitions. Except for simple cases, we expect that Pall
will not be the final partition. For example, if the notes C,E,G are played in order with no
intervening notes, Pall would have the corresponding binary number 1111. These notes,
however, would be better considered a single harmony (C Major) with the partition 1001.

 10

C4

C3

0 0 0 01 1011

P1 P5 P9

0 0 1 01 1000

P1 P5 P9

Figure 5: Two segmentations/partitions of Mbeethoven1

A good partition consists of only the elements in Pall corresponding to harmonically
significant changes in the state of the music. A harmonically significant change is the
point where the chord name that a trained music analyst would assign to the current state
changes. Partition 100010001 in Figure 5 is a good partition since it divides the measure
into two segments, each of which corresponds to a single chord in the harmony of the
piece. Finding a good partition for a piece of music is the problem of determining
harmonically significant partition points.

2.6 SEGMENTS AND SEGMENTATIONS

We need to introduce a structure over partitions where we can define chords. We call this
a segmentation, which is comprised of segments.

A segment, si,j, is the interval between partition points, pi and pj, i < j. We define si,j as a
duple, < pi, pj>. Correspondingly, a partition P over M yields a set of segments S, called a
segmentation of M.

Partition 100100101 from Figure 5 contains the set of partition points {p1, p4, p7, p9}.
This defines a segmentation {< p1, p4>, < p4, p7>, < p7, p9>}.

A minimal segment is between two adjacent partition points in Pall: pi and pi+1. Figure 3
identifies a minimal segment, as does Figure 4. Since minimal segments go from partition
point pi to pi+1 they may be specified by a subscript indicating only the initial partition
point. For example, segment s3 is the segment from p3 to p4.

 11

Recall that the state of the music at time t, Statet, is the set of pitches derived from the
notes of M sounding at time t.

By definition, the state is constant throughout a minimal segment. Thus, we can speak of
the state of a minimal segment s, which we denote States.

Two minimal segments, sa and sb, are equivalent iff SbSa StateState = . This relation is
expressed as ba ss ≡

The duration of a minimal segment depends only on how long the state remains constant
and may vary between minimal segments in the same piece of music. Figure 4 is an
example of this.

A rest is a segment where no notes sound. All rests are minimal segments.

The length of a segment is the number of minimal segments into which the segment may
be divided. This can be derived from the number of partition points in the segment. A
segment s defined by <pi, pj> has length j - i + 1.

Any segment between partition points pi and pj in Pall, where abs(j-i) > 1, incorporates at
least one change of state and can be decomposed into minimal segments.

Any partition derived from Pall is defined only for a specific performance, since Pall itself
is defined for a specific performance. Suppose the Sonata Pathetique were played at 60
beats per minute (b.p.m.) in one performance, labeled Ma, and at 66 b.p.m. in another,
labeled Mb. Since the start and end times of the notes in Ma and Mb differ, it may not be
possible to directly compare segmentations or partitions of the two performances. For this
we need to define an equivalence relation between performances.

Let k
is be the ith minimal segment in performance Mk. Let k

allP be the set of all partition
points for performance Mk. Two performances, Ma and Mb are segment equivalent when
the following conditions hold:

1. || || b
all

a
all PP =

2. b
i

a
i

a
all ssPii ≡≤≤∀ , ||1 s.t.

This simply states that two performances are equivalent if they are composed of equal
numbers of minimal segments and that, for all i, the ith minimal segment in performance
a is equivalent to the ith minimal segment in performance b.

Segment equivalence between two performances, Ma and Mb, is expressed as ba MM ≡ .

Note that segment equivalence is achieved by creating two performances with the same
ordering of the same set of notes. Tempos may vary drastically as long as the ordering is

 12

preserved. Segment equivalence is not preserved if Ma contains even one note not found
in Mb, or if the ordering between notes varies between performances.

Segment equivalence may be applied to segments within a particular performance as well
as between performances. For example, in Mbeethoven1 the segments 3,1s and 5,3s are

segment equivalent, since both conditions for segment equivalence hold between 3,1s and

5,3s .

Theorem 2.6.1: If two performances, Ma and Mb are segment equivalent, then an
algorithm for segmentation and labeling that uses only the state information found
in the minimal segments will generate identical analyses for Ma and Mb

Proof:

1. If ba MM ≡ , then the only difference between them is in the absolute
durations of their minimal segments.

2. An algorithm that uses only state information has no access to
information about the durations of minimal segments

3. Thus, Ma and Mb are identical with respect to the algorithm and must
generate identical analyses.

¦

Corollary 2.6.1 : If two performances, Ma and Mb are segment equivalent, then the
chordal analysis for Ma may be applied Mb.

Proof: Follows directly from Theorem 2.6.1

¦

3 The Problem Size

Given a piece of music, M, and its set of partition points, Pall, the segmentation problem
is to find a good partition, Pgood ⊆ Pall, that contains only the partition points
corresponding to harmonically significant changes in the music. We use the terms
“segmentation” and “partition” interchangeably in this discussion, since each unique
partition of a piece defines exactly one unique segmentation.

In monophonic music, no two notes sound at the same time. This can be expressed in
terms of the states of a performance, M, at time t.

Monophonic(M) ⇔ ∀t : |Statet| < 2

 13

An unaccompanied melody is an example of monophonic music. Consider a very simple
melody such as “Happy Birthday.” The first two phrases of Happy Birthday are shown in
Figure 6.This small excerpt contains 12 notes, giving a possible 24 partition points. This
number is greatly reduced if one assumes that note i begins at the exact moment note i-1
ends This lowers the number of partition points to |M|+1, the smallest number any
monophonic piece may have. This situation is shown in Figure 6.

C5

C4

Figure 6 : Happy Birthday

Lemma 3.0.1: For a piece of monophonic music, whose notes are of non-zero
duration, ||)1|(| allPM ≤+ .

Proof: Let M be a monophonic performance whose notes are ordered by start
time.

1) A single-note performance has two partition points. Thus, ||)1|(| allPM =+

2) If each note in M begins at the exact moment the previous note ends (i.e.,for
all notes i >1, start i = endi-1), then each note from 2 to |M| contributes a single
partition point. This is because endi-1 assures the entry of the partition point
corresponding to start i into Pall. The first note contributes two partition points.
Thus, ||)1|(| allPM =+

3) Assume M to be in the state described in Step 2. If the start time of any note
i>1 is advanced, it will start before note i-1 ends, making the piece non-
monophonic.

4) Assume M to be in the state described in Step 2. If the start time of some note
i>1 is delayed, it will start after note i-1 ends. This means that 1−≠ ii endstart
and note i will contribute two partition points to Pall while it adds only one
note to M. Thus, ||)1|(| allPM <+

This accounts for all cases. Thus, ||)1|(| allPM ≤+

¦

 14

In a previous section, we showed that any segmentation for a particular performance can
be uniquely identified by a binary number whose number of bits is equal to the number of
partition points in |Pall|. We now use this result to formally state the size of the search
space.

Theorem 3.0.1: Given a performance M with the set of all partition points Pall,
there are 2|Pall|-2 ways to segment M.

Proof:

1. Each unique partition of a piece defines exactly one unique segmentation.

2. Every partition includes the first and last elements of Pall.

3. Each partition point, pi, where || 1 allPi << , is either included in the partition
(segments the music) or is not. If pi is in the partition, we label it with “1.” If
pi is not in the partition, we label it with “0.”

4. This labeling process creates a unique binary number where bit i is the label
for pi.

5. Since only the partition points 2 through |Pall|-1 may vary, this binary number
is of length |Pall|-2.

6. There are 22 −allP binary numbers of length |Pall|-2.

¦

Corollary 3.0.1: For any monophonic performance, the number of possible
segmentations falls between 2 |M|-1 and 22|M| - 2.

Proof: by Lemma 3.0.1, Lemma 2.5.1 and Theorem 3.0.1

As can be seen from this analysis, there are a prohibitively large number of ways to
segment even a short monophonic melody. For example, there are at least 211 = 2048
ways to segment the 12-note example in Figure 6.

Not all music is monophonic and the number of different ways to segment a non-
monophonic piece of music can be significantly lower than 2|M|-1. This is because the
number of possible ways to segment a piece is not determined by the number of notes,
but by the number of partition points |Pall|. When many notes start or end concurrently,
the number of partition points is reduced. An example is a piece consisting of block
chords; the extreme case is when all notes start and end at the same time. Such a situation
is rare.

The Beethoven fragment Mbeethoven1 is typical: the fragment has 12 notes, but only nine
partition points, due to concurrent start and end times for many notes. This results in

 15

many fewer ways to partition the fragment, but the number of partitions is still 27 for a
single measure.

Of the 2 |Pall| - 2 ways some M can be partitioned, relatively few of these will correspond to
how a well-trained musician would segment the piece on basis of the harmony. We
previously defined a good segmentation as one that divides the music at points where a
human expert would say the harmony changes.

 The size of the segmentation space begs the question: “Does one really need to examine
2|Pall| - 2 segmentations to find a good segmentation?” The size of the problem space can
be greatly reduced by choosing a segment labeling and scoring method that generates
scores that are interval scaled, additive and transitive. If we further constrain the system
to label and score a segment locally, we will show that the segmentation problem can be
solved in O(|Pall|2) steps.

The Roman-numeral notation for chord names labels a chord with respect to a key. Chord
names are Roman numerals indicating the scale degree upon which the chord is built. For
example, a G major triad is a “V” chord in the key of C since its root, G, is the fifth note
in the C scale. The same triad is a “I” chord if the key is G.

The key of a particular segment of music is often impossible to determine without
examining numerous segments. What’s more, Roman numeral-style analysis often
discards certain chords when determining key area, labeling them as non-structurally
important. This makes “classical” harmonic notation inherently “global,” since a final
determination of harmonic label for a particular segment depends on analysis of other,
often non-juxtaposed, segments to determine the key area.

This opens up the possibility that to label a segment, s, one would have to consider all
possible segmentations containing the segment s. There are the 2|Pall| - 2 segmentations of a
given performance. Fixing a segment assures that at most two partition points, in addition
to the initial and final ones, will be included in any segmentation. Thus, there are at least
2|Pall| - 4 segmentations containing segment s that must be considered in determining a
label for s. There is also a grounding issue. If every segment must consider all possible
contexts before being labeled, how is the first segment labeled?

Knuth (Knuth and Plass 1981) formulates breaking a paragraph of words into optimal
length lines in a manner similar to our formulation of the music-segmentation problem,
mentioning that n breakpoints result in 2n ways to segment a paragraph into lines. His
solution depends on the fact that the ideal and maximum allowed line length is known in
advance. This lets him limit the context to a relatively small number of breakpoints
(usually no more than twenty) and thus constrain the combinatorial explosion. The
grounding problem is also taken care of by the maximum allowed line length, forcing an
initial break that allows the algorithm to proceed.

Unfortunately, one does not know the harmonic rhythm of a piece of music beforehand. It
may be that the entire piece consists of a single chord or that it breaks into a thousand
chords. The rate at which chords change may also vary drastically throughout the music.

 16

Thus, we are unable to use a variant of Knuth’s solution to constrain the complexity of
our problem.

One approach to speed segment labeling and scoring is through enforcing the constraint
of locality. The constraint of locality is met when every segment can be labeled without
contextual information, e.g., information about other segments. This means that only a
single segment (possibly composed of multiple minimal segments) need be considered in
the course of generating a label.

One segment in a performance, M, may contain up to |M| notes. Recall that
||2 || MPall ≤ . Assuming each note in a segment is considered in a single operation, it

takes

2
|| allP

O operations to label a segment. This can be reduced to constant number of

operations if the notes in s can be merged into a fixed number of pitch classes.

Note that this savings comes from not having to consider all possible segmentations
containing s, the segment we wish to label. This could also be achieved by considering
any fixed number of segments in the course of labeling s. This would allow some context
consideration in the course of labeling a segment. The choice of how many segments and
what their relationship to s should be is outside of the scope of this paper and we limit
ourselves to labeling segments without context.

“Jazz-style” chordal notation uses absolute labels that do not depend on key area. Chords
are identified by root pitch class and chord quality. Thus, Jazz notation is ideal for local
labeling of segments. If one uses this notation and further assumes that all harmonies in a
piece are important and should be labeled (as opposed to discarding some based on
perceived functional insignificance), then segments may be locally labeled, without
reference to context. This is the key simplifying assumption for the segmentation
problem.

Given the constraint of locality, one need label only the set of all possible segments, Sall,
for a piece of music. All segments associated with any partition are subsets of Sall and
thus no additional segments must be labeled once Sall is labeled.

Sall for M contains every duple <pi, pj>, where i < j, drawn from the set of all partition
points, Pall. The size of this set is given below:

2
||

2
||

 ||
2

allall
all

PP
S <

=

Let c be the number of possible chord labels. Given that
2

||
||

2
all

all
P

S < , labeling all

possible segments involves making no more than
2

|| 2
allP

c comparisons.

 17

Once all possible segments (<pi, pj> where i < j) are labeled and placed in a lookup table,
the size of the space to be searched when generating a labeled good partition is O(|Pall|2)
We use this value as the size of the search space for the problem of finding a good
partition of a piece of music when the constraint of locality applies.

4 MAPPING HARMONIC ANALYSIS TO A DAG

Given segments that can be labeled and scored locally and whose goodness-of- fit scores
are additive and transitive, we can pose the segmentation problem as a search for the
highest-reward path through a directed acyclic graph (DAG). This can be done as
follows:

1. Create one vertex for each partition point.

2. Sort the vertices according to partition-point number.

3. Make an edge between each vertex, i and every other vertex j, where i<j.

4. Make the reward (cost) for each edge i,j equal to the score of the segment from
partition point i to partition point j.

The result of these steps is a DAG, where each vertex represents a partition point and
each edge represents one segment. The source vertex represents the initial partition point
and the terminal vertex is the final partition point. Any path from the first vertex to the
last one represents a segmentation of the piece.

Figure 7 shows a short passage of music represented as a DAG. Partition points (vertices)
are labeled with Greek letters.Two different segmentations are represented on the graph.
The path along the gray edges represents the segmentation whose scores are shown in
gray. The path along the black edges corresponds to the segmentation scored in black.

β δ
ϖ

α χ ε φ

6

32

2

6

 6 + 2 = 8 6 + 2 + 3 = 1 1

α β χ δ ε φ α β χ δ ε φ

Figure 7: Two segmentations expressed as paths through a DAG.

 18

Once the segmentation problem is cast as a search for the best path through a weighted
DAG, standard graph search methods may be applied to find the best segmentation. In
particular, the relaxation algorithm may be applied to find the best path (segmentation) in
O(E) time, where E is the number of edges (Cormen, Leiserson et al. 1990).

Since E is equal to the number of possible segments, |Sall|, and
2

||
||

2
all

all
P

S < this

algorithm finds the optimal solution in O(|Pall|2) steps. Note that this savings is only
possible when segments are scored locally and the scoring metric is transitive and
additive. We believe that these are reasonable assumptions.

5 SEGMENT LABELING AND SCORING

To label segments, we need a way to determine the closest match between the set of
chordal labels and a given set of notes. This label must also be scored in a way that is
additive so that a path through the graph that contains s may add the reward for going
through s to the total path reward in a meaningful way. This section discusses our
labeling and scoring framework.

The chromatic scale and its associated 12 pitch classes form the basic set of items used to
generate the structures for tonal music. Using the integer representations of the pitch
classes and modulo 12 arithmetic, structures such as chords and scales, can be
represented as n-tuples. These tuples are positive displacements in the space of pitch
classes in relation to a root pitch class, and they imply templates that describe musical
structures. The templates are related to atonal set theory (Forte 1973), the chromagram
(Wakefield 1999) and the work of Ulrich (Ulrich 1977).

An example template is the following: Given a root (pitch) class, r, the tuple <0,4,7>
represents the pitch-class relations to r in a major triad. Letting r = 2, this results in a
chord described by mod12(r +0, r+4, r+7) = {2,6,9}. Looking at Table 1, it is easy to
verify that these numbers correspond to {D,F#,A}, the pitch classes in the D Major triad.
Examples of some of the more common tonal structures and their template
representations are given in Table 2. These templates are central to the approach we take
to chord labeling in the work described in this paper.

 19

Table 2 : Common Templates

 Number of Notes Name Preference
 Rating

Template
representation

 zero rest 15 <>

 one single note 14 <0>

 two

 major 3rd / minor 6th
 minor 3rd / major 6th
 tritone
 fifth

 13
 12
 11
 10

 <0 4>
 <0 3>
 <0 6>
 <0 7>

 three major triad
 minor triad
 diminished triad
 augmented triad

 9
 8
 7
 6

 <0 4 7>
 <0 3 7>
 <0 3 6>
 <0 4 8>

 four maj-min (dom)7th
 half diminished
 fully diminished
 major 7th
 minor 7th

 5
 4
 3
 2
 1

 <0 4 7 10>
 <0 3 6 10>
 <0 3 6 9>
 <0 4 7 11>
 <0 3 7 10>

5.1 GENERATING THE MINIMAL SEGMENTS

The first step in processing M is generating Pall and a set, Sm, containing each minimal
segment. Pseudo code for this is given in Figure 8. Note that the pseudo code assumes
“well- formed” MIDI, where each “note on” is followed by a corresponding “note off.”

The variable state is a 12-element array indexed by pitch-class number (0 through 11)
that represents the state of the music. Each element, i, gives the count of notes of pitch
class i currently sounding.

The function GetNextNoteEvent finds the next note event from the input MIDI stream by
reading MIDI events as they occur, returning on the first “note on” or “note off”
encountered. It then returns deltaTime, keyNumber, velocity and eventType for the event.
If no note event is found, getNoteEvent returns “NULL.”

 20

 FOR i = 0 to 11, state[i] := 0, END
 time := 0
 Pall[1] := <time,1>

 i := 1
 deltaTime,keyNumber, eventType := GetNextNoteEvent(MIDIfile)

 WHILE (eventType != NULL)
 pitchClass := mod12(keyNumber)

IF deltaTime > 0 THEN
Sm[i] := <time, time+deltaTime, state>

 time := time+deltaTime
 i := i+1
 Pall[i] := <time,1>

END
 IF eventType = “note on” THEN state[pitchClass] := state[pitchClass] + 1 END
 IF eventType = “note off” THEN state[pitchClass] := state[pitchClass] – 1 END

deltaTime,keyNumber, eventType := GetNextNoteEvent(MIDIfile)
 END
 RETURN Sm, Pall

Figure 8: Generating Sm and Pall

The main while loop updates the state vector with the pitch class of each new note event,
adding one to the appropriate element for a “note on,” subtracting one for a “note off.”
When a non-zero deltaTime is encountered, this signals the start of a new minimal
segment and the state is saved to Sm before updating it with the new note event.

The time required to generate Pall and Sm is linear with respect to the number of MIDI
events in the input file. This can be seen by noting that for any “note on” or “note off”
event, a fixed number of steps are taken in the code. Each of these steps requires a fixed
amount of time. Thus, the bound on the complexity is O(|M|).

4.2 Segment Weight Vectors

Recall that our system represents Statet as a vector of 12 integers representing pitch
class, where the value of each element, e¸ is determined by the number of notes of
pitch-class e¸ sounding at time t. Looking at Mbeethoven1 in Figure 2, the state of the
first minimal segment, <p1, p2> is the following:

0] 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, [1, p2p1, =>< State .

The pitch weight vector of a segment <i, j> is the sum of the state vectors of the minimal
segments that comprise <i, j>.

∑
−

>+<>< =
1j

i
1i,ij,i StateWeight

Thus, for a minimal segment, the weight vector is equal to the state vector.

 21

• 0] 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, [1, State Weight p3p2,p3p2, == ><><

An example non-minimal weight vector is that for the segment <p1, p3>.

•]000300001002[322131 , , , , , , , , , , , State State Weight ,pp,pp,pp =+= ><><><

The weight that results from this addition does not represent the number of notes of each
pitch class sounding in the segment <p1, p3>. The held “C” in the example is represented
by a value of two in Weight<p1,p3>. Similarly, the element for “A flat” has the value three
in Weight<p1,p3> because the “A flat” held across minimal segments < p1, p2> and <p2, p3>
receives a “point” for each of the minimal segments where it is present, and the sixteenth
note “A flat” receives a point for being in <p2, p3>. Note that, although the low “A flat” is
actually held for four minimal segments, it only has a value of two in the weight vector.
This is because the segments under consideration only includes two minimal segments of
the four where the “A flat” sounds.

The generation of the Weight vectors for the elements of Sall, the set of all possible
segments for a piece, may be done in time proportional to |Sall|. This can be done by use
of the algorithm in Figure 9, which assumes the state for each minimal segment has
already been placed in a lookup table.

IF (lookupTable[a,b] != NULL)
 weight = lookupTable[a,b]
ELSE
 weight = GetWeight(a,b-1) + GetWeight(b-1,b)

lookupTable[a,b] = weight
END
RETURN weight

Figure 9: GetWeight(a,b) function

Calculating note weight by the number of minimal segments spanned gives more
importance to held sonorities and ensures that the segment labeling generates higher
scores when notes spanning several minimal segments are present. This method of
calculating note weight, when combined with the right segment-scoring algorithm,
ensures segment scores are additive in a reasonable way.

5.2 SEGMENT SCORING

The rules of tonal harmony are very well developed, but do not cover every conceivable
combination of notes. For example, harmonies spread over time (i.e., non-block chords)
often have melodic notes, ornamentation, notes serving other functions (e.g., leading
tones), or are simply tonally ambiguous (by intent of the composer). Thus, chordal
analysis of any complex piece of music requires tradeoffs among possible labels and
segments. We reflect these tradeoffs in a scoring function used in HarmAn.

The segment’s score is determined by measuring the distance of its weight vector from
the nearest chordal template. HarmAn scores a pitch-class weight vector by comparing it

 22

to all combinations of the root pitch class (0 through 11) and template (there are currently
15 in use), and selecting the highest score. A high score indicates a close match to a
template. A low score indicates a large distance from any template. The highest score is
returned as the score for the weight vector, and the template and root that generate the
highest score determine the label.

The score for a weight vector, given a particular combination of root pitch class and
template is determined as follows:

1. Adjust the template by adding the root pitch class to each element and then taking
mod12 of the result.

2. Sum the weight elements whose index number matches an element of the
template. Call this the positive evidence, E.

3. Sum the weight elements whose index number does not match an element of the
template. Call this the negative evidence, N.

4. Sum the count of template elements that form the index number of a weight
element whose value is 0. Call these the misses, M

The score is calculated by the following equation:

score = E – (N + M)

Consider the pitch-class weight vector for segment <p1, p3> from Mbeethoven1.

]000300001002[322131 , , , , , , , , , , , State State Weight ,pp,pp,pp =+= ><><><

The template for a minor triad is <0, 3, 7>. Let our root pitch class be “F,” or 5. The score
for <p1, p3>, given an “F” minor triad is calculated as follows:

4)(
0)5(since 1.4

1 tosum elements vector remaining thesince 1)(.3

2)0(and 3)8(,0)5(since 5)(.2

}0,8,5{})57 ,53 ,50({12mod.1

=+−=
==

==

=====

=+++=

∑

∑

∉

∈

MNEscore
WeightM

iWeightN

WeightWeightWeightiWeightE

template

templatei

templatei

The label for a segment <i,j> is determined by performing this calculation for each root-
template combination and returning the high-scoring label and root.

)(maxarg)(, MNEWeightScore
Rootsroot

Templatestemplate
ji −−=

∈
∈

><

 23

If two templates generate the same score, they form an equivalence class and the winner
may be selected using any tie-resolution rule.

In our current implementation of HarmAn, we resolve ties between templates by
selecting the template whose root pitch class has a positive value in the weight vector. If
this does not resolve the tie, we use preferences based on prior probability of occurrence
derived from analysis of a large number of Bach chorales.

The tie-braking rules and the scoring method we described here reflect, to some degree,
our preferences. In particular, we are interested in building the simplest possible system
that still returns reasonable harmonic analyses. This simplicity is an advantage in that it
allows the establishment of a baseline against which more complex scoring measures
may be compared. To this end, we use the template, scoring and tie-breaking rules
described above in all the empirical tests described in later sections of this paper. Others
may have different preferences; it is simple to change the preferences and scoring method
to encode different preferences. The only constraints are maintaining additivity and
transitivity.

5.3 COMMENTS ON SEGMENT SCORING

We chose to make the segment-scoring method length-neutral. Consider the following
examples.

Segment scores are additive and are intuitively meaningful. This is because segment
weight is considered in the calculation of segment scores. Consider again the pitch-class
weight vector for segment <p1, p3> from Mbeethoven1 (Figure 2).

]000300001002[322131 , , , , , , , , , , , State State Weight ,pp,pp,pp =+= ><><><

The best scoring template for this segment is A flat major, or {8, 0, 3}, which returns a
score of 6. Now consider the segment <p3, p5>, which has the exact same weight.

><>< = 315,3 ,pppp Weight Weight

Minimal segments <p3, p5> and <p1, p3> are segment equivalent and the segment labeling
algorithm return the label of A flat major and a score of 6 for each of the segments.

Now consider the segment <p1, p5>.

]000600002004[533151 , , , , , , , , , , , Weight Weight Weight ,pp,pp,pp =+= ><><><

The segment-scoring algorithm does as one would expect and returns a label of A flat
major for <p1, p5>. The score returned is 12, exactly the sum of the score of the two sub
segments.

Were weight (i.e., note length) not to factor directly into the scoring algorithm, it would
be possible for the sum of the two sub segments scores to be higher (or lower) than the

 24

score of the longer segment where, as in this case, the label returned is the same. This
would introduce a bias towards search paths composed of more short segments.
Similarly, if weight were given some multiplier, a bias would be introduced for paths
consisting of fewer, longer segments.

6 HARMAN, A FASTER SEARCH ALGORITHM

We have shown how, in principle, it is possible to segment and label a performance with
chord names in)|(| 2

allPO time. This is not, however sufficiently fast for real-time
processing on lengthy pieces of music.

0 500 1000 1500 2000 2500 3000 0

100

200

300

400

500

600
search time vs partition points

se
co

nd
s

number of partition points

(|Pall| 2) / 14000

Figure 10: Segme ntation times on 750 mHz Athlon with 128 mb memory

Figure 10 shows the result of running a relaxation-based search using our segment
scoring method (described earlier). Diamonds represent segmentations done using
relaxation. The computer used was a PC running Windows 98 Revision B with a 750
mHz Athlon processor and 128 megabytes of main memory. As expected, processing
time increases quadratically with the number of partition points.

While time complexity)|(| 2
allPO is much better than)2(|| allPO , the relaxation algorithm

is still not good enough to process music in real-time. For this, we need an approach that
generates good segmentations in at most linear time. We have developed such an
algorithm, which we use in HarmAn.

 25

Figure 11: HarmAn search to find best segmentation

HarmAn uses a greedy approach to decide whether to include each vertex (partition
point) in the path (segmentation). Segment scores and labels are determined as described
in previous sections. HarmAn considers each vertex once, eliminating it if the path
through that vertex does not appear to be a locally good one. If a vertex is eliminated
from the path, all its outgoing edges are removed as well. This results in significant
savings. In cases where the path through the vertex scores the same as the path skipping
the vertex,that vertex is removed. This removes partition points in the music that separate
segments that have the same chord label.

 Figure 12 shows pseudo code for the search procedure. In this figure, p(i) represents a
partition point in Pall.

Figure 11 shows an example search through the DAG for a passage using the HarmAn
search algorithm. Note that each node requires the system to score a maximum of two
new edges. This allows the search to proceed in linear time with respect to |Pall|. Compare

i ii iii iv v vi

i ii iii iv v vi

2 - 0 - - -
2

Step 1

i ii iii iv v vi
2 - 0 - - -

2

Step 1

i ii iii iv v vi

Step 2

2 - 0 3 - -
2 0

i ii iii iv v vi

3

Step 2

2 - 0 3 - -
2 0

i ii iii iv v vi

3

2 - 0 3 - -
2 0

i ii iii iv v vi

3

6 0 3 - -
3

Step 3
i iii iv v vi

6

2
6 0 3 - -

3

Step 3
i iii iv v vi

6

2

Step 4

6 0 8 -

i iv v vi

6

2

6

Step 4

6 0 8 -

i iv v vi

6

2

6

6 0 8 -

i iv v vi

6

2

6

6 0 8 11
i iv v vi

6

2

3

2

Step 5

6 0 8 11
i iv v vi

6

2

3

2
6 0 8 11

i iv v vi

6

2

3

2

Step 5

6 0 8 11

i iv v vi

6

2

3

Final

6 0 8 11

i iv v vi

6

2

3

Final

 26

this to the relaxation algorithm: the nodes appearing toward the end of the graph (i.e.,
closest to the “destination” node) will have, in the limit, in-degree of |n|2, where n is the
number of nodes in the graph, which in our case is the number of partition points. Thus, it
is because we strictly limit the in-degree to a constant the time complexity of the
HarmAn heuristic search is reduced.

The resulting complexity reduction is illustrated by the graph in Figure 10. Diamonds
represent segmentation times for full search using the relaxation algorithm. All other
markers represent variations on the HarmAn search algorithm. Note that the HarmAn
algorithm never took more than two seconds to complete segmentation of a piece.

 p(1).score = 0
 p(1).prev = null
 p(2).prev = p(1)
 p(2).score = score(GetWeight(1,2))

FOR a = 3 to (|Pall|)
path1score = score(GetWeight(a-1,a)) + p(a-1).score
path2score = score(GetWeight(a-2,a)) + p(a-2).score

IF path1score > path2score
 p(a).prev = p(a-1)
 p(a).score = path1score
ELSE
 p(a).prev = p(a-2)
 p(a).score = path2score
END

 END

Figure 12: HarmAn search

7 VOICE LEADING AND CHORD INVERSION

Once a piece is segmented, the template for each segment label is used to filter the
original music. Notes matching a template element are considered harmonic. Those not
matching the template are considered non-harmonic. HarmAn places harmonic and non-
harmonic notes in separate MIDI tracks.

Harmonic notes, if extended to the length of a segment, may provide information about
the voice leading of the piece of music. For each harmonic note, HarmAn outputs a note
of the same absolute pitch lasting from the beginning to the end of the segment. The
resulting sequence of notes shows voice-leading in a manner similar to a metric
reduction. HarmAn places these in a separate MIDI track. HarmAn determines chord
inversion by simply looking at the lowest note in the voice- leading track and finding the
matching element in the template’s segment.

Figure 13 shows an example of HarmAn's voice- leading output annotated with the
segment chord labels on Bach's Two Part Invention #13 in A minor (chord inversion is
not notated in this example). For this analysis, all templates in Table 2 were used, save

 27

those for major and minor 7th chords. The search method used was the HarmAn heuristic,
processing partition points start-to-finish.

Figure 13: Bach 2 part invention no. 13 in A minor

8 EXPERIMENTAL EVALUATION OF HARMAN
In this section, we show the results of experimental evaluation of HarmAn. We first
present an intrinsic evaluation, where we examine the solution quality of the HarmAn
heuristic search compared with relaxation-based search. Here, we assume that relaxation-
based search yields the optimal answer.

To determine how well HarmAn works, we also performed an extrinsic analysis,
comparing its analysis to analysis in the literature. It is important to note that music
analysis is, at times, open to different interpretations. Thus, while we may have an
optimal algorithm or nearly optimal one and our scoring mechanism may be very good,
different correct analyses may arise.

8.1 EVALUATION OF SEARCH ORDER

HarmAn (using either the heuristic or relax-based algorithm) processes music in a start-
to-finish way with no backtracking. We justify this start-to-finish heuristic in the
following way. Music unfolds in time from start to finish. A composer who wishes to
write pieces that are decipherable by the listener must create structures that can be
understood in a start-to-finish way with limited backtracking to previously heard
passages. The expectation for what comes next is determined by what has just been
heard, and it is reasonable to assume that the set of likely segments under consideration
by a human is greatly constrained by what has already transpired in the music. Thus, a
greedy, start-to-finish approach is reasonable.

 28

If a greedy, start-to-finish approach is reasonable, then the following suppositions should
also be true.

1. Segmentations generated by HarmAn search should generate scores very close
to those generated by relaxation search.

2. The order in which HarmAn considers the partition points (start-to-finish,
finish-to-start, random, etc) should strongly affect the resulting segmentation.

3. Start-to-finish should be the best HarmAn search order through the partition
points, and this should be reflected in higher-scoring segmentations.

In order to test these suppositions, we assembled a corpus of 32 pieces of Western Tonal
piano music. These were Bach’s 15 Three Part Inventions (Sinfonia), Seven Bagatelles
from Beethoven’s Opus 33 and Chopin Nocturnes 10 through 19. Each piece was
segmented 43 times. One segmentation was generated by the relaxation search. One
segmentation was generated by HarmAn processing the partition points in start-to-finish
order. One segmentation was generated by HarmAn processing the partition points in
finish-to-start (reverse) order and 40 segmentations were generated by HarmAn
processing partition points in forty different random orders.

The score of each segmentation of a particular piece was recorded, and all scores for a
particular piece were normalized to the high score on that piece so that comparisons
could be made across different pieces. The results of the individual trials, broken down
by piece and composer are shown in Figure 14 a, b and c. Figure 14 d shows individual
trial normalized scores versus the number of partition points in the piece. In all of Figure
14, a diamond represents the score of relaxation search, a triangle represents HarmAn
start-to-finish search, a square represents HarmAn finish-to-start and a point represents
HarmAn random order search.

Figure 15 contains a box and whisker plot for each type of search. All trials for all 32
pieces in the corpus were included in the data for this figure. Each box has lines at the
lower quartile, median, and upper quartile values. Median values for each search type are
also identified by their numeric value. The whiskers are lines extending from each end of
the box to show the extent of the rest of the data. Outliers are data with values beyond the
ends of the whiskers. Outliers are indicated by the ‘+’ sign.

Recall that since relaxation does a full search of the segmentation graph, its median score
is 100% of the possible score. HarmAn search, when applied to the partition points in a
start-to-finish (forward) manner achieves segmentation scores with a median 98.7% of
the scores generated by relaxation search. Finish-to-start (backward) search achieves a
median 98.2% of the maximal possible score. Neither forward nor backward search ever
achieved a score below 95% of the maximal one. These findings support Supposition 1
and indicate that HarmAn search generates good segmentations when compared to full
search using relaxation.

 29

a) b)

0 2 4 6 8 10 12 14 16 0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

Bach Sinfonia Number

Normalized SegmentationScores

N
or

m
al

iz
ed

 S
co

re

0 1 2 3 4 5 6 7 8 0.7

0.75

0.8

0.85

0.9

0.95

1

Beethoven Bagatelle Number

Normalized Segmentation Scores

N
or

m
al

iz
ed

 S
co

re

c) d)

10 12 14 16 18 20 0.85

0.9

0.95

1

Chopin Nocturne Number

Normalized Segmentation Scores

N
or

m
al

iz
ed

 S
co

re

0 500 1000 1500 2000 2500 3000 0.7

0.75

0.8

0.85

0.9

0.95

1 Normal ized Score vs Partition Points

number of partition points

N
or

m
al

iz
ed

 S
co

re

Figure 14: HarmAn search vs. Relaxation search

Using random-order selection of partition points for the HarmAn method generates
significantly lower scores. Random search had a median score of 90.5% of the maximal.
The lowest score generated by random order selection was on Beethoven Bagatelle no. 3,
getting 72.2% of the maximal score. The distinctly lower scores achieved by random-
order consideration of partition points support Supposition 2. The order in which the
partition points are selected strongly influences the result of the search.

Supposition 3 was weakly supported by the data. While forward search did achieve the
highest median score, it was only marginally better than backward search. What is more,
reveals many instances where backward search outscored forward search.

 30

RELAXATIO
N

FORWARD BACKWARD RANDOM

0.75

0.8

0.85

0.9

0.95

1

normalized score vs search type

no
rm

ai
lz

ed
 s

co
re

search type

0.987 0.982

 0.905

1.0

Figure 15 : Boxplot of normalized scores by search type

Start-to-finish search does have one distinct advantage over backward search: it allows a
piece to be processed as it is being read (heard), making it the best choice for real-time
applications, such as performing chordal analysis for the purpose of live accompaniment.
Given this, forward processing remains the best choice when using the HarmAn search
heuristic to do segmentation.

8.2 EXTRINSIC EVALUATION OF HARMAN

If it is true that tonal music was written to be analyzed in a start-to-finish way, our
segment scoring algorithm is a good one, and that segments can be correctly labeled
without regard for large-scale context, then HarmAn start-to-finish, greedy search should
perform well on a variety of pieces. In order to compare our results to existing work on
automated analysis of harmony, we analyzed a set of pieces by Bach, Beethoven, and
Schubert used in other papers. We also analyzed a number of other pieces of various
textures from various periods. What follows are several examples taken from previously
published papers showing our system's analysis along side the published results.

Note that in the results against which we compare HarmAn, much of the analysis is in
Roman-numeral notation. In those cases, we converted to Jazz-style notation by hand
(this is straightforward and unambiguous). Furthermore, while these systems do a
somewhat different analysis than HarmAn, the basic results (segmentation and segment

 31

labeling) are comparable, as Roman-numeral analysis requires both segmentation and
labeling.

8.2.1 WINOGRAD : SCHUBERT. DEUTSCHE TANZE, OP. 33, NO. 7

Winograd (Winograd 1968) approached chordal analysis using generative grammars.
Winograd's work was successful in correctly labeling the harmonies using Roman-
numeral notation in pieces of music composed of block chords, but did not address
segmentation. His segmentation was performed by hand.

Winograd orig
6
4I V7 V I

6
4I I

6
4I VAugV7 I

6
4I I

 jazz Bb/F F7 F Bb Bb/F Bb Bb/F FAugF7 Bb Bb/F Bb
HarmAn Bb/F F7 Bb F7 Bb
Human Bb/F F7 Bb F7 Bb

Figure 16: Schubert, Deutsche Tanze, Op. 33, no. 7

In order to test HarmAn on music with block chord figuration and to compare our results
to Winograd's, the same pieces analyzed in his paper were analyzed by HarmAn. An
example of HarmAn's analysis of the first eight measures of one piece is shown in Figure
16. In this figure, we show analyses by HarmAn, Winograd (in both Jazz and the original
Roman-numeral notation) and a hand-analysis by the first author of this paper. Note that
for all the examples of musical analysis in this paper, a chord name is placed at the
beginning of the time span it covers. Thus, the F7 chord in the second measure continues
through the third measure as well. Also, when a note other than the root of the chord is
found in the bass, the Jazz style chord notation will place the chord name over the bass

note name. Thus,
C

-A
 or A-/C indicates an A minor chord with C in the bass.

The results generated by HarmAn for this passage generally agree with Winograd's
analysis. The major chord changes identified are the same. HarmAn unifies repeated
chords of the same root, Winograd’s system labels each one with its own inversion. This
is a stylistic difference, rather than an actual disagreement. The only major disagreement
is the placement of the dominant “F” chord in the sixth measure. == Ideally, this chord
should begin at the start of the sixth measure, taking the B flat chord outlined on the first

 32

beat of the measure as a suspension of the previous harmony. HarmAn is not designed to
deal with suspensions and simply assumes the harmony of the previous measure continue
until the full F7 is presented. Winograd’s system waits until the start of the next full
measure to label the chord as dominant. Interestingly, the second measure presents a
similar situation and here Winograd’s system agrees with HarmAn.

7.2 Temperley and Sleator : Beethoven Sonata Pathetique,
2nd Movement

Temperley and Sleator's (Temperley and Sleator 1999) analysis begins by first
performing beat finding in a manner strongly reminiscent of Lerdahl and Jackendoff
(Lerdahl and Jackendoff 1983). These beats are then used in partitioning the piece into
time spans, which are labeled as likely chords. The exact method used to determine the
initial partition is not given in the paper, except to say that segments should begin on
subdivisions of the beat and should be “short” (in the range of 100-300 ms). A root is
then chosen for each segment preferring the same root name in successive chords, if
possible, and preferring root names related by a fifth (seven half-steps), otherwise. Their
system is limited to labeling the root of each segment, rather than providing the full
chordal spelling. The full history of preceding root names is used, along with the intervals
present in the current segment, to determine the choice of the root name of each segment.
The system is described as a set of preference rules, and is strongly tied to an explicit
model of functional tonal harmony.

Figure 17 shows the results of analysis of the first eight measures of the second
movement of Beethoven's Sonata Pathetique. (Temperley and Sleator only reported the
analysis of the first five measures in their paper.). In this figure we do not report chord
inversion. As can be seen from the figure, with the exception of the fifth measure,
Temperley’s system successfully captured the correct chord roots, and HarmAn correctly
labeled both root and chord quality.

In measure five, Temperley’s system finds four chord roots, namely G, B flat, E flat and
A flat. HarmAn reports only two. We believe that the two chosen by HarmAn are the
correct ones for this measure.

While HarmAn came closer than the other system to correctly labeling the harmony in
measure five, this measure also illustrates a weakness of the HarmAn approach. The
notes on the start of the second beat of the fifth measure fit equally well in the Gm7(flat
5) chord and the E flat 7 chord. HarmAn processes with no notion of harmonic rhythm
and thus has no way to disambiguate this case in an intelligent manner. It defaults to
continuing the existing chord and places the E flat 7 chord one sixteenth note after the
start of the beat, when the first note not fitting the Gm7(flat 5) chord is encountered. A
more sophisticated system (such as a human analyst) would place the E flat 7 at the start
of the second beat.

 33

Figure 17: Beethoven, Sonata Pathetique, 2nd Movement

An ambiguous situation is encountered in the final measure. In this measure, HarmAn
continues the E flat 7 until the second beat. Some analysts would interpret the entire
measure as an A flat chord with a suspension of the E flat chord over the A flat bass.
HarmAn allows only a single chordal explanation for any given segment and chooses the
one supported by the majority of the notes, namely E flat 7.

8.2.2 MAXWELL : J. S. BACH, 1ST FRENCH SUITE, D MINOR

SARABANDE

Maxwell (Maxwell 1992) built a system that performed chordal analysis using hundreds
of preference rules for analysis of individual notes and intervals between notes. An
example rule is: “RULE 22: If a vertical is unaccented AND it is tertian AND the
previous vertical is tertian AND they both have the same root, THEN the vertical is
subordinate to the previous vertical.”

One strength of Maxwell's work is that it performed segmentation. Another strength is
that it explicitly considers meter in determining chord placement. The metrical placement
of notes is, however, given as input rather than inferred as in the work of Temperley and
Sleator. Unfortunately, the paper describing the work lists only a small subset of the
preference rules, and is unclear on what control structure mediates among these rules.
Maxwell did not explicitly address the issue of the computational complexity of the
segmentation problem, nor what portion of the space was actually searched.

 34

Maxwell orig d: i ii
4
2

∅
 ii

∅

 V6 iv/V4
2 V/iv

 Jazz D- E-7(b5) E-(b5) A D7 D
 D C# C

HarmAn D- G- D E-7(b5) D E-7(b5) Eo A7 D7 C D7
 D D D C# C C

non functional
harmony

non functional
harmony

Maxwell iv6 V7
6
4i iv 6

4II 4
2vii V

 Jazz G- A7 D- G Eb C#o7 A
 D A Bb Bb

HarmAn G- A7 D- Eb C#o7 D- A
 Bb A G Bb A

non-harmonic tone

Figure 18: Bach, 1st French Suite, D minor Sarabande

Maxwell's system analyzed a number of pieces, generating results in Roman numeral-
style notation. One such piece is the D minor Sarabande from J. S. Bach's First French
Suite. Both HarmAn's and Maxwell's analysis of the first eight measures of the Sarabande
is shown in Figure 18. Maxwell analyzed this piece because “it contains an abundance of
non-harmonic activity without complex embellishments or passage-work” and “Its
texture is considerably more complex than that of a chorale, especially with regard to
harmonic rhythm”. This passage contains numerous passing tones that are not
harmonically supported (e.g., they are not consonant to the chord) and other tones that
spell out vertical chords that are a side effect of contrapuntal (melodic) motion and do not

 35

constitute functional harmonies. Maxwell’s system was designed to reject both dissonant
melody notes and non-functional harmonies in its analysis. HarmAn has no notion of
harmonic function and rejects only dissonant notes while still labeling non-functional
harmonies. This can be seen in the analyses generated by the two systems.

Measures two and four in Figure 18 show examples of harmonic by-products of
contrapuntal motion in two voices. In both cases, HarmAn labels the harmony, correctly,
and Maxwell’s system refrains from labeling them. This is also the case in the more
ambiguous situation found in the first measure. Here, the passing chord is a G minor (G-)
and happens on the beat. The G- has a fifth relation to the D- chord on beat one. Both
these things make the chord a much better candidate for a structural harmony than the D
chord HarmAn labels in the second measure.

Measure six has passing notes in the top voice which are not made consonant by any
passing notes in a lower voice and both systems correctly ignore these non-harmonic
tones to label the entire measure as an A7 chord.

Overall, it seems the Maxwell system does slightly better than HarmAn in that it refrains
from labeling non-functional chords arising from passing motion in several voices.
However, Maxwell’s system is significantly more complex and has metric (beat)
information provided to the system as input. Taken in this light, HarmAn performs quite
well.

9 CONCLUSIONS

The work described in this paper provides a framework upon which to build a system for
chordal analysis of music. We established that, in the worst case, the partitioning and
labeling of harmonies in tonal music is O(2N), where N is number of partition points in a
piece. When the “constraint of locality” applies, and a segment scoring metric can be
found that is both additive and transitive, the problem becomes O(N2).

Under these constraints, the problem can be cast as finding the best path through a single-
source DAG, which can be solved in O(E + V) time. This translates to a worst-case time
complexity of O(N2) for our problem, where N is the number of partition points. We then
showed that the results of the O(N2) search can be closely approximated through the use
of a heuristic, the “HarmAn heuristic,” which allows O(N) time search.

HarmAn is a software system based upon this framework, and it provides a good analysis
of the harmonic structures in a typical piece of tonal music. HarmAn does this by
exploiting the constraint of locality and a scoring function that is additive and transitive,
and a relatively small set of rules for breaking ties. HarmAn does not require an
understanding of tonal context nor any metrical information. The results achieved by this
system compare well to those achieved by far more complex systems reported in the
literature.

In those areas where HarmAn generates suspect results, it appears that additional context
information could be used to improve the system’s performance. For example,

 36

information about meter and dynamics may give better hints for segmentation. In
addition, knowledge about the harmonic structure of a piece of music, such as the types
of scales used, would help improve the performance of the scoring algorithm.

10 REFERENCES

1. Cope, D. (1991). “Recombinant Music: Using the Computer to Explore Musical
Style.” Computer(July 1991).

2. Cormen, T., C. Leiserson, et al. (1990). Introduction to Algorithms. Cambridge,
Massachusetts, MIT Press.

3. Dannenberg, R. B. (1993). Music Understanding By Computer. IAKTA/LIST
International Workshop on Knowledge Technology in the Arts Proceedings,
Osaka, Japan: Laboratories of Image Information Science and Technology.

4. Dannenberg, R. B. (1998). New Techniques for Enhanced Quality of Computer
Accompaniment. Proceedings of the Interna tional Computer Music Conference,
Ann Arbor, MI.

5. Ebcioglu, K. (1992). An Expert System for Harmonizing Chorales in the Style of
J. S. Bach. Understanding Music With AI:Perspectives on Music Cognition. M.
Balaban, K. Ebcioglu and O. Laske. Cambridge, Mass, MIT Press: 294-333.

6. Forte, A. (1973). The Structure of Atonal Music, Yale University Press.

7. Fujishima, T. (1999). Realtime Chord Recognition of Musical Sound: A System
Using Common Lisp Music. International Computer Music Conference, Beijing.

8. Heijink, H., P. Desain, et al. (2000). “Make Me a Match: An Evaluation of
Different Approaches to Score-Performance Matching.” Computer Music Journal
24(1): 43-46.

9. Hoffman, T. and W. Birmingham (1999). Samuel Scheidt goes MAD: a Multi-
Attribute Domain CSP Approach to Harmonic Analysis. Ann Arbor, University of
Michigan.

10. Horowitz, D. (1995). Representing Musical Knowledge in a Jazz Improvisation
System. IJCAI-95 Workshop on Artificial Intelligence and Music.

11. Johnson, M. (1991). “Toward an Expert System for Expressive Musical
Performance.” Computer(July 1991).

12. Katayose, H. and S. Inokuchi (1993). “Learning Performance Rules in a Music
Interpretation System.” Computers and the Humanities 27: 31-40.

13. Knuth, D. and M. Plass (1981). “Breaking Paragraphs into Lines.” Software
Practice and Experience 11: 1119-1184.

 37

14. Kraut, R. (1992). On the Possibility of a Determinate Semantics for Music.
Cognitive Bases of Musical Communication. M. R. Jones and S. Holleran,
American Psychological Association.

15. Lerdahl, F. and R. Jackendoff (1983). A Generative Theory of Tonal Music.
Cambridge, Mass, MIT Press.

16. Linster, C. (1992). On Analyzing and Representing Musical Rhythm.
Understanding Music With AI:Perspectives on Music Cognition. M. Balaban, K.
Ebcioglu and O. Laske. Cambridge, Mass, MIT Press.

17. Marsella, S. and C. Schmidt (1992). On the Use of Problem Reduction Search for
Automated Music Composition. Understanding Music With AI:Perspectives on
Music Cognition. M. Balaban, K. Ebcioglu and O. Laske. Cambridge, Mass, MIT
Press: 238-256.

18. Maxwell, J. H. (1992). An Expert System for Harmonizing Analysis of Tonal
Music. Understanding Music with AI: Perspectives on Music Cognition: 335-353.

19. Moorer, J. A. (1975). On the Segmentation and Analysis of Continuous Musical
Sound by Digital Computer. Computer Science. Stanford, CA, Stanford
University.

20. Mozer, M. C. (1991). Connectionist Music Composition Based on Melodic,
Stylistic, and Psychophysical Constraints. D. Gareth Loy. P. M. Todd.
Cambridge, Mass, MIT Press.

21. Polito, J., J. M. Daida, et al. (1997). Musica ex Machina: Composing 16th-
Century Counter-point with Genetic Programming and Symbiosis. Evolutionary
Programming VI: Proceedings of the Sixth Annual Conference on Evolutionary
Programming, 1997.

22. Scarborough, D. L., B. O. Miller, et al. (1991). Connectionist Models for Tonal
Analysis. D. Gareth Loy. P. M. Todd. Cambridge, Mass, MIT Press.

23. Smaill, A., G. Wiggins, et al. (1993). “Hierarchical Music Representation for
Composition and Analysis.” Computers and the Humanties 27: 7-17.

24. Smoliar, S. (1980). “A Computer Aid for Schenkerian Analysis.” Computer
Music Journal 4(2).

25. Temperley, D. and D. Sleator (1999). “Modeling Meter and Harmony: A
Preference-Rule Approach.” Computer Music Journal 23(1): 10-27.

26. Todd, N. P. M. (1992). “The dynamics of dynamics: A model of musical
expression.” Journal of the Acoustical Society of America 91(6): 3540-3550.

 38

27. Todd, P. M. (1991). A Connectionist Approach to Algorithmic Composition. D.
Gareth Loy. P. M. Todd. Cambridge, Mass, MIT Press.

28. Ulrich, J. W. (1977). The Analysis and Synthesis of Jazz by Computer.
Proceedings from the 5th IJCAI.

29. Wakefield, G. H. (1999). Mathematical Representation of Joint Time-Chroma
Distributions. The Intl. Symp. on Opt. Sci., Eng., and Instr., SPIE'99, Denver,
Colorado, USA.

30. Widmer, G. (1992). “Perception Modeling and Intelligent Musical Learning.”
Computer Music Journal 16(2).

31. Windsor, W. L. and E. F. Clarke (1997). “Expressive Timing and Dynamics in
Real and Artificial Musical Performances: Using an Algorithm as an Analytical
Tool.” Music Perception 15(2): 127-152.

32. Winograd, T. (1968). “Linguistics and the Computer Analysis of Tonal
Harmony.” The Journal of Music Theory 12: 2-49.

33. Zimmermann, D. (1995). Exploiting Models of Musical Structure for Automatic
Intention-Based Composition of Background Music. IJCAI-95 Workshop on
Artificial Intelligence and Music.

