
The Effects of the x86 ISA on the Front End: Where have all
the cycles gone?

Stevan Vlaovic and Edward S. Davidson

Advanced Computer Architecture Lab

The University of Michigan

{vlaovic, davidson}@eecs.umich.edu

ABSTRACT:

Although x86 processors have been around for a long time and are the most ubiq-
uitous processors in the world, the amount of academic research regarding details
of their performance has been minimal. Here, we will introduce x86 simulation
environment, which we call Trace Analysis for X86 Interpretation, or TAXI, and
use it to discuss the differences between current x86 processors and other proces-
sors, and present some performance results of eight Win32 applications. By utiliz-
ing TAXI, we can attribute performance bottlenecks to those components of the
microarchitecture that cause the most performance degradation. We look at 8
aspects of front-end that can contribute to performance loss; then based on this
information, we introduce an improvement that yields 17% speedup in overall exe-
cution time.

1.0 Introduction

Interest in commercial applications has been increasing within the computer architecture
community. In this paper, we present some common desktop applications that run on x86 plat-
forms. Previously, the main problem with x86 results is that detailed performance data could not
be gathered, other than by statistical sampling of high level events[7,8]. Current offerings from
Intel, AMD and others have hardware counters that enable the counting of certain architectural
events, while others use annotated binaries to sample events. Although sampling does provide
insights into performance, the main obstacle to gathering x86 performance data is that current x86
processors decompose the x86 instructions into smaller operations, called µops and hide the µop
level from the user. In order to depict microengine performance at the µop level, this mapping
would have to be implemented anew in the simulator for all the instructions and addressing modes
that appear in the applications of interest. We have developed such a simulator, and have used it in
this paper to illustrate the impact that the x86 instructions have on the front-end of the processor.

All x86 processors that decompose instructions into µops follow the same general algo-
rithm, as seen in [12]. First, instructions are fetched from the instruction cache and put into a
Streaming Buffer which is just a container to hold the cache-line(s) while the processor parses it
into instructions. Next, since the instructions are not aligned, the instruction boundaries need to be
determined. Finally, the instructions are moved to the instruction-to-µop decoders and decoded,
and the µops are put into the decoded instruction queue. Simple x86 instructions produce just a
single µop, while complex x86 instructions produce multiple µops. The potential for performance
1

degradation in this part of the processor is significant. In this paper, we highlight the performance
degradation due to each component of this complex front end.

In Section 2, we show some of the previous work in this area. In Section 3, we present
TAXI, our novel x86 performance infrastructure. The eight target applications are described in
Section 4. Experimental results are presented and discussed in Section 5, and we conclude with
Section 6.

2.0 Related Work

Lee et al. [7] provide some insight into Win32 applications by discussing some of their
results with Etch, a general purpose tool for rewriting arbitrary Win32 binaries on x86 platforms
without requiring modification of the source code. Their study compares some popular desktop
applications to some SPECINT95 benchmarks in terms of application characteristics, cache
behavior, TLB behavior, and branch prediction accuracy. Even though Etch is limited to user level
traces only, some important findings about these applications are outlined. This work and [8]
point to the difference between Win32 environments and the SPEC benchmark suite. Another
study by Vlaovic and Uhlig [14] characterizes the event performance of some commercial “Natu-
ral I/O” applications (handwriting recognition, speech recognition, etc.) that run in the Win32
environment and compares them to the SPEC95 benchmarks. More recently, [13] reveal some
interesting insights into five Win32 applications and their impact on branch target buffer perfor-
mance, but again were limited to high level architectural events.

There have been many other processor performance evaluation studies. As long as we
have had processors, there have been attempts at gathering information about the performance of
applications that run on those processors. Kumar and Davidson[5] found that the major perfor-
mance bottlenecks in the IBM 360/91 were the memory unit and the fixed point unit. Peuto and
Shustek[9] apportioned the time both the IBM 370/168 Model 1 and the Amdahl 470 V6 spent
among the various system components such as the cache, the instruction pipeline, and the individ-
ual instructions. Emer and Clark[3] characterized the VAX 11/780 by breaking into components
related to particular op codes, operand specifiers, system components, and system events. More
recently, there has been much work on characterizing different types of applications (e.g. java
[4,10,11]), on various processors.

3.0 TAXI

To implement an out-of-order x86 simulator, we made use of two existing software tools,
Bochs[6] and SimpleScalar[1]. In the following section, we introduce our simulation
infrastructure, called Trace Analysis for X86 Interpretation, or TAXI. The primary components of
TAXI are made up of two parts: the functional simulation (Bochs portion), and the cycle-accurate
simulation (SimpleScalar portion).

3.1 Bochs
Rather than starting from scratch, we used Bochs, an open-source Pentium emulator

available from MadrakeSoft. Bochs, developed by Kevin Lawton, runs on most platforms
including Linux/x86 and Linux/PPC. Bochs has been developed in an open “bazaar” style since
its inception in 1994 and has involved some few hundred contributors. Since the purchase of
2

Bochs by MandrakeSoft, it has been committed to Open-Source licensing (LGPL).
The advantage of using Bochs is that much of the hardware modeling is already com-

pleted. Bochs provides emulation for devices such as a keyboard, mouse, hard drive, floppy drive,
and a VGA compatible monitor. In fact, it models not just the CPU, but the entire platform in
enough detail to support the execution (with some debugging) of a complete operating system and
the applications that run on it! Currently, we are using out-of-the-box Windows NT 4.0 (Build
1381, Service Pack 5) as the operating system for our Virtual PC. This portion of TAXI, called the
functional simulator, runs as a user-level process on a standard PC, modeling the platform compo-
nents completely in software.

3.2 x86 Out-of-Order Simulator
Once again, since there already are a few available out-of-order simulators, we chose to

use an existing software package rather than start from scratch. The package that has the most
flexibility and provides open source code, is a simulator called SimpleScalar developed by Austin
and Burger.

SimpleScalar performs fast, flexible, and reasonably accurate simulations of modern
processors that implement the SimpleScalar architecture. Its native instruction set, called Pisa, is a
derivative of the MIPS instruction set, and is relatively easy to extend and modify. The
performance simulator portion of SimpleScalar has been aggressively tuned for speed, making it
easier to run larger, more realistic applications.

Although SimpleScalar is a good starting point, it cannot directly handle x86 applications.
Starting with the Pentium Pro, Intel and most x86 processor manufacturers began dynamically
translating x86 instructions into (computationally) smaller, more RISC-like instructions (µops),
which are not unlike Pisa instructions. For instance, a memory-register add can be decomposed
into the following Pisa instructions:

LW Temp1, addr
ADD addr, REG ADD Temp1, Temp1, REG

SW Temp1, addr
3

Other x86 instructions are decomposed similarly into Pisa instructions. We provide a breakdown
for all addressing modes and for roughly 150 x86 instructions, which are sufficient for all of our
benchmarks.

In addition to creating the µop breakdown, significant changes had to be made to the front
end of the SimpleScalar pipeline as sketched in Figure 1. The output from Bochs is fed into the
fetch stage of the simulator (SimpleScalar). Since x86 instructions are unaligned, a lot of work
goes into determining instruction boundaries and bandwidth utilization.

The combination of the modified Bochs and augmented SimpleScalar are what comprise
the heart of TAXI. However, if one only needs to do simple cache or branch prediction studies,
then running the out-of-order simulator might be overkill. For this reason, the TAXI infrastructure
includes other analysis tools.

For simple cache studies, dinero-IV[2] by Edler and Hill was modified to accept our trace
files. For the instruction cache, the instruction trace is used as an input, with the pertinent
information extracted, namely the effective instruction pointer (EIP) and the instruction length.

FIGURE 1. Functional pipeline for x86-outorder, TAXI portion is the front end of the
pipeline, SimpleScalar is the back end

Instruction
Trace

Memory
Trace

Fetch
I-Cache

Align

Decode

Dispatch

Scheduler

D-CacheExec

Writeback

Commit

I-TLB

D-TLBMemory

SimpleScalar
Portion

TAXI
Portion
4

For the data cache, the address can be selected to be either the virtual address or the physical
address (we ran the experiments with a 32M memory) with the loads corresponding to reads,
stores corresponding to writes.

Another performance aspect that is useful to model without the out-of-order overhead is
branch prediction. To do our branch prediction studies, the branch prediction mechanism of
SimpleScalar was modified to accept an x86 instruction stream. For some of our branch target
buffer (BTB) studies, only the BTB portion of the branch predictor was used. The impact of
architectural changes to these resources can be rapidly discovered with these two simplified,
specialized tools.

4.0 Applications

We have chosen eight popular Windows NT applications: Id’s Doom, FileMaker Pro 5.0,
Microsoft Explorer 5.0, Microsoft Visual Studio 5.0, Netscape 6.0, RealPlayer 8.0, Winamp 2.72,
and Winzip 8.0. Doom is one of the early first-person type combat games and is available as share-
ware. The run of Doom included recording a session of a Doom game, and then replaying it on the
simulator. FileMaker Pro 5.0 is a database application that allows users to easily share their data
over the internet. This run consisted of performing multiple searches and sorts on a 3,000 entry
database. Explorer 5.0 is Microsoft’s web browser; our input is a set of three .htm pages. The
first is the CNN web page, the second is an ESPN web page, and the third is University of Michi-
gan’s EECS homepage. Microsoft Visual Studio 5.0 (MsDev) is a code development environ-
ment, with 5.0 being the previous release. Our run of Visual Studio involved the compilation of go
from the SPEC95 benchmark suite. Netscape 6.0 is another popular web browser; the same web
pages that were loaded on Explorer were also used for Netscape. RealPlayer 8.0 is a video player
that can be used to play a number of different video formats with the second episode of SouthPark
being used as its data input. Winamp 2.72 is the latest release of a popular mp3 player; its input
was “Cool Down Daddy” by Jellyroll. Winzip 8.0 is a compression and decompression engine that
can handle multiple formats. Our run of Winzip entailed compressing the source files from go
(from SPEC95). Table 1 highlights some dynamic characteristics of the applications. In the

Instructions per Branch column, LOOP and REP instructions are considered branches.

Table 1: Application Trace Characteristics

Insts.

(x106)
Uops/Inst

Insts/
Stores

Insts/
Loads

Inst/
Branch

Doom 388 1.52 4.61 2.64 5.40

Explorer 396 1.50 4.53 2.55 4.77

FileMaker 447 1.49 4.61 2.85 5.04

MsDev 469 1.46 4.94 2.63 4.07

Netscape 377 1.52 4.53 2.65 4.33

RealPlayer 522 1.44 5.44 2.76 4.63

Winamp 456 1.47 4.11 2.31 6.88

Winzip 302 1.44 5.74 3.05 5.63

Average 420 1.48 4.81 2.68 5.09
5

5.0 Experiments

The goal of this work is two-fold: first, we want to see the impact of non-aligned, dynamically
interpreted, memory-to-register type instructions on the front-end of a given processor, and sec-
ond, to attribute run time appropriately. In another words, we want to characterize how the behav-
ior of the x86 instruction set affects the front-end of a processor that is similar to the front end of
an Intel Pentium III. In this work, the configuration used is shown in Table 2 below. The number

of architected registers is the standard x86 register definition (8 general purpose registers and 8
floating point stack registers, plus control registers), but the number of physical registers is 64
integer and 64 floating point. The extra registers are used by the µops as temporary storage for
memory operands, control state etc.

The pipeline in these studies is an eleven stage instruction pipeline, similar to that of the
Pentium III, Pentium II, and Pentium Pro, all called the P6 architecture by Intel. A diagram of the
pipeline is shown in Figure 2 above. The first 3 stages involve instruction fetch, while the next
two stages are x86 instruction decode stages. The RAT stage is called the Register Alias Table
stage, and this stage finds the location of operand dependencies. The ROB stage is where the pro-
cessor allocates up to 3 µops to the ReOrder Buffer and/or passes them to the reservation station.
The next two stages are dispatch and execute, respectively, while the last two stages are retire-
ment and commit to x86 state. To assess the impact of this complex front end on the performance
we begin with a configuration, called opt, that has an idealized (“optimal”) front end in which
there is a perfect branch predictor, I-cache, and ITLB thereby keeping the Decoded Instruction
Queue (DIQ) full. Then we successively replace each idealized component with the correspond-

Table 2: Baseline Configuration Parameters

Parameter Value

Physical Registers 64-INT, 64-FP

Streaming Buffer Size 32 bytes (1 cache line)

Decode width 16 bytes

Complex Decoders 1

Simple Decoders 2

Decoded Instruction Queue 8 µops

µop Decode Width 4 µops

µop Issue Width 4 µops

µop Commit Width 4 µops

Functional Units 4 IntALU, 1 IntMult/Div, 4 FP
ALU, 1 FPMult/Div, 2 MemPorts

ROB 40 µop entries

Branch Predictor 2 level, 512 entry

BTB 512 entry 4-way

Return Address Stack 8 entries

Mispredict penalty variable (no wrongpath execution)

L1 D-cache 16KB 4-way

L1 I-cache 16KB 4-way

L2 Unified 256KB 4-way, 6 cycle latency

TLB size 32 Instruction/64 Data

Memory 18 cycle latency
6

ing component in the Baseline (P6) configuration as detailed in Table 2, and assess the perfor-
mance penalty of each replacement. A block diagram of the P6 front end is shown in Figure 3.

The Baseline configuration has three decoders (two simple, one complex). Since our cho-
sen methodology is to work our way back from DIQ, we first restrict the number of complex
decoders to one, have unlimited simple decoders, and leave the remainder of the front end opti-
mal. The performance penalty (increase in cycles per µop) caused by this restriction is called
cmplx dec. Next, we restrict the number of decoders to two simple decoders and one complex
decoder as in the Baseline configuration, and once again leave the remainder of the front end opti-
mal. The resulting additional performance penalty is called decoder. Next, we restrict the decode
width to 16 bytes (the width penalty). The final configurations successively introduce the Baseline
streaming buffer from Table 2 (SB penalty), the branch predictor (Bpred penalty), the pipeline
(increased from 8 back to 11 cycles, pipe penalty) and finally the Baseline I-cache (Icache pen-
alty). This last configuration is in fact the Baseline configuration, as it has all the restrictions.

Figure 4 shows the cycles per µop (CPµ) for the Baseline configuration and the optimal
configuration with a breakdown that shows how the difference in cycles attributed to each of the
various restrictions in the Baseline system. We chose CPµ instead of Cycles per Instruction (CPI)

FIGURE 2. Pentium III Pipeline Structure

IFU1 IFU2 IFU3 DEC1 DEC2 RAT ROB DIS EX RET1 RET2

FIGURE 3. P6 Front-end Processor Block Diagram

Instruction Streaming
Buffer

Icache

ITLB

Instruction Length
Decoder

Decoder Alignment

x86 Decoders
Decoded
Instruction

Queue

IFU1

IFU2

IFU3

DEC1

DEC2
7

since the amount of work per x86 instruction varies widely, whereas µops are more uniform. To
get average CPI, one can multiply CPµ by µops/instruction from Table 1.

Our Win32 applications have an average CPµ of around 0.37. With the optimal front end,
the main limiting factor is the size of the DIQ and the ROB, both of which are at near capacity
during the runs of all the applications. With a maximum commit rate of 4 µops per cycle, an aver-
age CPµ of 0.37 translates into the retirement of 2.7 µops per cycle, making the back end realize
only 67.5% of its maximum bandwidth. The average overall CPµ for the Baseline front end
machine is 0.66 (1.5 µops per cycle), which is only 56% of the performance of the optimal front
end.

Although the seven categories do contribute to this performance degradation, the over-
whelming factors are the branch predictor and the I-cache. An average of 0.149 CPµ, (51% of the
overall Baseline front end penalty, as seen in Figure 5) is added to each application due to imper-
fect branch prediction, and another 0.103 CPµ (36%) is due to the finite I-cache. One might have
suspected that either the decoders, or perhaps the decode width or Streaming Buffer size might
pose a serious bottleneck, but looking at Figure 4 this is obviously not the case.

As seen in the first column of Table 3, the average number of instructions that reside in the
streaming buffer is around 1.78, and clearly 1 cache line in the streaming buffer is sufficient, as is
a 16-byte decode width and 3 decoders. The next column in Table 3 is the average occupancy of
the Decoded Instruction Queue, the third column contains the average number of entries in the

FIGURE 4. Front-end Cycles per µop breakdown for 8 Win32 Applications

Front-end CPµ Breakdown

0

0.2

0.4

0.6

0.8

D
oo

m

E
xp

lo
re

r

F
ile

m
ak

er

M
sD

ev

N
et

sc
ap

e

R
ea

lV
id

eo

W
in

am
p

W
in

zi
p

C
yc

le
s

p
er

 µ
o

p

Icache
Pipe
Bpred

SB
Width

Decoder
Cmplx Dec

Opt
8

Load/Store Queue and the fourth is the average occupancy of the Reorder Buffer. Our baseline

DIQ configuration has a DIQ size of 8 µops, which seems to be sufficient since its average occu-
pancy is only 1.72 µops. However, caution must be exercised when forming conclusions based on
averages. The occupancy figures are slightly pessimistic; since we do not currently execute down
the wrong path, and merely stall the front end on a misprediction; the averages in the first four
columns represent only µops on the correct execution path. The exact misprediction mechanism is
described further in Section 5.1. Column five and seven in Table 3 show the number of misses in
the L1 I-cache and the unified L2 cache which form the 36% performance loss due to the finite I-
cache (see Figure 5).

Table 3: Pentium III Baseline Results

Avg. SB
Occ.

(insts)

Average
DIQ
Occ.

(µops)

Avg.
LSQ
Occ.

(µops)

Avg.
ROB
Occ.

(µops)

L1 I-
cache
Misses

(x106)

L1 D-
cache
Misses

(x106)

L2
Cache
Misses

(x106)

Doom 1.78 1.63 3.82 8.75 13.0 2.98 0.46

Explorer 1.70 1.66 4.29 9.80 13.7 6.27 2.19

FileMaker 1.94 1.61 3.47 8.59 11.3 3.87 1.46

MsDev 1.78 1.77 4.54 9.96 8.83 9.54 2.25

Netscape 1.48 1.41 3.41 8.14 16.1 7.15 1.60

RealPlayer 2.40 2.38 6.50 16.0 5.97 11.4 0.30

Winamp 2.17 1.06 6.49 14.1 9.38 5.73 1.17

Winzip 2.04 2.23 4.68 13.8 5.44 6.23 1.59

Average 1.78 1.72 4.65 11.1 10.5 6.65 1.38

FIGURE 5. Percent of Lost Front end Cycles due to Each Restriction

SB
11%

Bpred
51%

Pipe
0%

Icache
36%

Decoder
1%

Cmplx Dec
1%

Width
0%
9

5.1 Better Branch Prediction

Since the previous experiments highlighted the degradation caused by imperfect branch predic-
tion, we chose to explore branch prediction further. The initial branch predictor configuration is a
two-level 512 entry, with a 512 entry branch target buffer (BTB) and an 8 entry return address
stack (RAS). The results for this predictor are shown in Table 3 below and are consistent with
[13].

These results highlight why the branch predictor may have difficulty keeping the Stream-
ing Buffer full. The correct direction column indicates the percentage of time that the predictor
produces the correct direction; likewise, the correct address and correct indirects columns corre-
spond to percentage of time that the Baseline predictor provides the correct address and correct
indirect address, respectively. Since TAXI doesn’t perform wrong path execution (because the
Bochs traces do not include wrong path information), the actual branch penalty is difficult for
TAXI to compute. If there is a misprediction, TAXI holds up the IFU1 stage until the branch that
caused the misprediction is executed. Once the branch’s address is computed, the processor can
start fetching again. Although this method does not capture second-order effects and is a bit opti-
mistic, it is reasonable measure. To compute the branch penalty, we ran the Baseline experiments

again, but with perfect prediction and then subtracted the cycles of this run from the Baseline with
the two-level 512 entry predictor. This difference, divided by the total number of branch mispre-
dictions yields the average branch misprediction penalty and is shown in column four of Table 4.
The 6.13 cycle resulting average penalty is smaller than what is commonly believed for the P6,
but the effects of interrupts and exceptions are optimistically handled here, and other performance
degradations that we have separated out may be lumped by others into the branch mispredict pen-

Table 4: Two-level, 512-entry Branch Predictor (Percent)

Correct
Direction

Correct
Address

Correct
Indirects

Avg.
Mispredict

Penalty
(cycles)

Doom 76.7 61.1 34.1 6.77

Explorer 74.9 62.7 26.4 5.40

FileMaker 82.5 71.2 44.0 6.78

MsDev 81.0 72.5 31.4 5.22

Netscape 73.5 56.8 30.4 6.03

RealPlayer 90.6 83.9 50.6 7.73

Winamp 77.5 66.8 23.8 5.89

Winzip 80.7 72.7 29.0 5.24

Average 79.7 68.5 33.7 6.13
10

alty. Since the Baseline predictor comes up with the correct address nearly the 70% of the time,
30% of the branches in the trace see the 6.13 cycle branch penalty.

To assess branch prediction further, we changed the predictor in the Baseline system to a
16 K-entry GAg, a 4 K-entry BTB, and a 32 entry RAS. The performance improvement is shown
in Figure 6. The average improvement over the Baseline scheme in table 2 is 7% less overall exe-

FIGURE 6. Front-end Cycles per µop breakdown for 8 Win32 Applications with a
Combinational 16 K-entry GAg and 4 K-entry BTB

Front-end CPµ Breakdown

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
oo

m

E
xp

lo
re

r

F
ile

m
ak

er

M
sD

ev

N
et

sc
ap

e

R
ea

lV
id

eo

W
in

am
p

W
in

zi
p

C
yc

le
s

p
er

 µ
o

p

Icache
Pipe
Bpred

SB
Width
Decoder
Cmplx Dec

Opt
11

cution time. With this new predictor, the processor utilization characteristics are shown in Table 5.

In Figure 7, the contribution to overall CPu by the branch predictor falls to 44%, while the other
categories increase by a small percentage. In particular, the I-cache now comprises 41% of the
perfromance penalty for the front end.

5.2 Better Predictor and Instruction Cache

After branch prediction, the next target is to improve the instruction cache. In this section,
in addition to the improved branch predictor, the size of the I-cache was increased from 16

Table 5: Pentium III GAg Predictor Results

Avg. SB
Occ.

(insts)

Average
DIQ
Occ.

(µops)

Avg.
LSQ
Occ.

(µops)

Avg.
ROB
Occ.

(µops)

Correct
Direction

(%)

Correct
Address

(%)

Correct
Indirect

(%)

Doom 2.00 1.83 4.41 10.1 88.6 79.9 47.5

Explorer 1.87 1.83 4.80 11.0 84.9 77.1 35.9

FileMaker 2.13 1.75 3.88 9.58 91.5 84.6 53.9

MsDev 1.91 1.89 4.92 10.8 87.6 81.3 39.0

Netscape 1.70 1.62 4.01 9.54 86.3 76.6 44.3

RealPlayer 2.56 2.54 7.05 17.3 95.2 90.7 61.7

Winamp 2.34 2.22 7.05 15.3 87.1 81.6 35.6

Winzip 2.20 2.41 5.16 15.1 88.7 83.9 38.5

Average 2.09 2.01 5.16 12.3 88.7 82.0 44.6

FIGURE 7. Percent of Lost Front end Cycles due to Each Restriction with GAg predictor

SB
13%

Bpred
44%

Pipe
0%

Icache
41%

Width
0%

Cmplx Dec
1%

Decoder
1%
12

KBytes to 64 KBytes, maintaining 4-way associativity. This modification increased performance
by 17% over the original Baseline system in Table 2.

In Figure 8, the CPµ category breakdown for each application is shown left to right,
respectively, for the baseline configuration, the GAg predictor configuration, and finally, the GAg
predictor with an increased I-cache. The pie chart in Figure 9 shows the new contributions to CPµ
across all categories. Branch prediction once again becomes the number one degradation factor in

FIGURE 8. Front-end Cycles per µop breakdown for 8 Win32 Applications Comparison

Performance Improvement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
yc

le
s

P
er

 µ
o

p

Opt Cmplx Dec Decoder Width SB Bpred Pipe Icache

Doom Explorer FileMaker MsDev Netscape RealPlayer Winamp Winzip

FIGURE 9. Percent of Lost Front end Cycles due to Each Restriction with GAg predictor and
64 KB I-cache

SB
17%

Bpred
58%

Pipe
0%

Icache
23%

Decoder
1%

Cmplx Dec
1% Width

0%
13

front-end performance. The branch predictor now causes 58% of the front-end performance deg-
radation. With the reduction in overall CPµ caused by both the improved branch predictor and the
larger I-cache, the Streaming Buffer has jumped from 11% to 17% contribution to front-end per-
formance loss.

6.0 Conclusions

We have introduced a new software tool for obtaining performance information for x86
processors running real workloads with real applications. With this simulation environment,
called TAXI, we have been able to determine how the front-end performance bottleneck of a Pen-
tium III-like processor is distributed. Although it has been suggested that this bottleneck might be
primarily due to the decoders, the decode width, or even the streaming buffer, we have found that
the vast majority of the penalty can be attributed to the branch prediction unit and the I-cache. By
only targeting the branch prediction mechanism and doubling the size of the instruction cache, we
were able to reduce overall run time in the eight Win32 applications by 17%.

The x86 instruction set architecture is much different than more RISC ISAs . Its variable
length instructions, numerous addressing modes, and restricted architecture state make the imple-
mentation much more complex than for other processors, especially where high performance is
important. With the information provided by TAXI, we were able to determine the number of
cycles that each front end component has on overall performance and focus processor improve-
ment efforts on those components that contribute the most to CPµ. We look forward to exploiting
this new TAXI infrastructure to carry out further studies on x86 architectures, applications, and
innovations.

7.0 References

[1] D. Burger, T. M. Austin and S. Bennett. “Evaluating Future Microprocessors: The SimpleSca-
lar ToolSet,” University of Wisconsin-Madison. Computer Sciences Department. Technical
Report CS-TR-1308, July 1996

[2]J. Edler and M. D. Hill, “Dinero IV Trace-Driven Uniprocessor Cache Simulator,” http://
www.neci.nj.nec.com/homepages/edler/d4

[3] J. S. Emer and D. W. Clark, “A Characterization of Processor Performance in the VAX-11/
780,” Proceedings of the Eleventh International Symposium on Computer Architecture, pp. 310-
310, June 1984.

[4] C.A. Hsieh, M. T. Conte, T. L. Johnson, J. C. Gyllenhaal, and W. W. Hwu, “A study of the
Cache and Branch Performance Issues with Running Java on Current Hardware Platforms,” Pro-
ceedings of COMPCON, pp.211-216, February 1997.

[5] B. Kumar and E. S. Davidson, “Computer system design using a hierarchal approach to per-
formance evaluation,” Communications ACM, vol. 23, pp. 511--521, Sept. 1980
14

[6] K. Lawton, “Welcome to the Bochs x86 PC Emulation Software Home Page!” http://
www.bochs.com.

[7] D. C. Lee, P. J. Crowley, J-L Baer, T. E. Anderson, and B. N. Bershad, “Execution Character-
istics of Desktop Applications on Windows NT,” Proceedings of the 24th International Sympo-
sium on Computer Architecture, pp. 27-38, IEEE, 1997.

[8] S.E. Perl and R.L. Sites, “Studies of Windows NT Performance Using Dynamic Execution
Traces,” Digital Systems Research Center Research Report, RR-146, April 1997.

[9] B. L. Peuto and L. Shustek, “An Instruction Timing Model of CPU Performance,” Proceed-
ings of the International Symposium on Computer Architecture, pp. 165-178, March 1977.

[10] R. Radhakrishnan, D. Talla, L. John, “Allowing for ILP in an Embedded Java Processor,”
Proceedings of the International Symposium on Computer Architecture, pp. 294-305, June 2000,
Vancouver, Canada

[11] R. Radhakrishnan, N. Vijaykrishnan, L. K. John and A. Sivasubramaniam, “Architectural
Issues in Java Runtime Systems” Proceedings of the IEEE International Symposium on High Per-
formance Computer Architecture, pp. 387-398, Toulouse, France, January 2000

[12] T. Shanley, Pentium Pro and Pentium II System Architecture, Addison-Wesley, September
1999.

[13] S. Vlaovic, E. S. Davidson, G. S. Tyson, “Improving BTB Performance in the Presence of
DLLs,” Proceedings of the 33rd Annual International Symposium on Microarchitecture. October
1999.

[14] S. Vlaovic, R. Uhlig. “Performance of Natural I/O Applications,” 2nd Workshop on Work-
load Characterization. October 1999.
15

	1.0 Introduction
	2.0 Related Work
	3.0 TAXI
	3.1 Bochs
	3.2 x86 Out-of-Order Simulator

	4.0 Applications
	5.0 Experiments
	5.1 Better Branch Prediction
	5.2 Better Predictor and Instruction Cache

	6.0 Conclusions
	7.0 References

