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Abstract

Data repositories, including warehouses, usually store information in multiple inter-related tables for reasons

of eÆciency in storage space, access time, constraint checks, and even administration. We examine the

relatively unexplored mining of such decentralized data: we compute partial results at the separate tables, and

merge the results - thereby avoiding expensive join materialization prior to mining. In our previous work [18],

our algorithms for �nding frequent itemsets for simple Star schema in data warehouses were analyzed and

validated experimentally.

In this paper, we apply our techniques to general normalized schema designs, including horizontal and/or

vertical partitions, distributed repositories etc. In doing so, the choices available for mining are very large,

and we describe our techniques to enumerate, optimize and evaluate decentralized frequent itemset counting -

in ways similar to query processing in database systems. Our work has less to do with developing speci�c new

mining algorithms; instead, we provide a framework to apply available mining algorithms and tools eÆciently

for decentralized data.

Our approach includes an \algebra" over expressions (more for exposition than rigor) to denote the mined

information in decentralized datasets. We provide rules for establishing equivalences among expressions, and

this allows for expression re-writing to represent alternative mining strategies - each expression reects several

processing techniques. Our framework also provides approaches to optimization which enumerate di�erent

ways, at logical and physical levels, to e�ect the decentralized mining. We describe a cost-based optimization

problem and solution strategies for the choices in mining. As in database query optimization, we provide

heuristics to optimize among the available mining strategies when the estimates of parameters that a�ect

execution costs are unavailable. We perform empirical validation of our decentralized algorithms, and of our

heuristic optimization approach when applied to the TPC-D Benchmark data schema. Our results establish

our problem formulation and the validity of our heuristic optimization techniques. Finally, we consider a

few extensions of our approach such as the use of indices.

�This paper is a longer, extended version of [17].
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1 Introduction

Even though database design impacts the eÆciency of data mining (DM), few techniques (e.g., see [8, 18]) for

mining general designs in which tables are partitioned and decentralized have been examined. Centralized

database designs (i.e., with data stored in one central repository, homogeneous with a central administration,

and in a single schema) are not typical for most large enterprises: information may be placed among di�erent

tables, and in some cases, the tables may reside in di�erent physical locations. In large enterprises, data is

often distributed and administered separately even within the same organization. For such environments,

design decisions involve data fragmentation, distributions strategies, and data allocation considerations.

Even for data warehouses and related data marts, the data is stored in decentralized tables. Similar to query

processing and optimization (e.g., see [25]), eÆciency reasons suggest that decentralized DM must be studied

carefully, and there is need for techniques to choose the best strategy among the numerous possibilities.

For example, consider the current approach of mining data stored in data warehouses. Such data is is

typically stored in a Star schema [27], in which information is decentralized into facts and dimension tables;

such schema represent vertical partitioning due to normalization. Facts form the relationships among the

dimensions which contain the attributes about the modeled entities. Typical DM algorithms applied to

such decentralized data require that the join of all the tables be materialized before any mining is e�ected.

Since the cost of computing the join is overshadowed by that of DM, this approach may appear acceptable.

However, a join results in a table with many more columns and rows (which normalization is used to avoid),

and this signi�cantly increases the cost of DM as well (e.g., see [9, 18]).

Our previous work [18] describes decentralized algorithms for �nding frequent itemsets (used in association

rules and classi�cation algorithms) for Star schema. We compute partial results at the separate tables, and

merge them to obtain the �nal results { thereby avoiding the expensive materialization of joins. In this

paper, we describe how available centralized mining techniques may be e�ectively decentralized to apply to

general database schemas (including physically distributed tables) in a similar manner.

We develop a framework consisting of several aspects. It includes an \algebra" (more for exposition than

rigor) over expressions that denote the mined information in decentralized datasets. We provide equivalences

among expressions, and these are useful in expression re-writing to represent alternative mining strategies {

each expression suggests several appropriate ways of processing. Our framework also provides optimization

techniques which enumerate di�erent ways, at logical and physical levels, to process decentralized mining.

Our approach resembles the re-write techniques for relational query processing (as has been suggested by

others { e.g., see [16]). We describe a cost-based optimization problem and solution strategies for the choices

in mining, and as in database query optimization, we provide heuristics to optimize among the available

mining strategies when the estimates of parameters that a�ect execution costs are unavailable. Also, we

perform empirical validation of our heuristic optimization approach when applied to the TPC-D Benchmark

data schema, thereby establishing our problem formulation and the validity of our heuristic optimization

techniques. We emphasize that our approach is designed to be similar to query processing in order to be

able to integrate, in the future, to similar techniques; this is a strength of our approach.

2 Motivation

Decentralized schemas may involve tables that are horizontally or vertically partitioned, physically dis-

tributed, or even replicated. A simple approach to applying a DM algorithm is to reconstruct the information

into a single central table, thereby requiring shipping of information, and performing joins. Alternatively, the

DM algorithms may be modi�ed to run at individual sites separately, and thereafter, the results \merged."

How precisely to merge these results requires careful consideration, and there are eÆciency trade-o�s between
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the traditional and the decentralized approaches. We assume that data is not replicated; replication is to be

handled outside our framework (e.g., by using query processing techniques).

2.1 A Running Example

We use an example schema1 to illustrate decentralized DM. The schema contains the following tables:

� Customer(cid; name; street; area; age; salary)

� Demographics(area; population; weather; schoolsystem)

� Product(pid; description; color; size; price)

� ItemsBought(xact#; cid; pid; date; qty)

Figure 1 shows a relevant projection of the tables, and we assume that the quantitative attributes (i.e.,

age, and monetary amounts) are discretized using an appropriate algorithm (e.g., see [26]). Assume that the

ItemsBought table is horizontally partitioned (and physically distributed) into two tables, ItemsBought1

and ItemsBought2, which contain the transactions of customers living in areas x or y, and z respectively.

This may illustrate a case where there are retail stores in areas z and x, and area y is nearer to area x than

to area z. Our example illustrates how any inter-relationships based on foreign keys to link the tables (i.e.,

most common database designs) is amenable to our techniques.

Site 3
Demographics

area population weather schools

x 75K hot good
y 100K mild medium
z 50K cold excellent

Site 4
Customer

cid salary area age

100 100000 x 20
200 55000 z 25
300 100000 y 20
400 20000 y 30
500 50000 x 31
600 100000 z 35

Site 1
ItemsBought1

xactid cid pid

1 100 A
2 100 A
3 300 A
4 300 B
5 400 B
6 400 E
7 500 A
8 500 C
9 500 D
10 500 D

Site 2
ItemsBought2

xactid cid pid

11 200 A
12 200 C
13 200 C
14 600 F

Site 5
Product

pid color size price

A white small 30
B blue small 50
C white med. 45
D blue med. 60
E white large 55
F blue large 70

Figure 1: Tables horizontally partitioned and located at di�erent sites.

1Primary keys are underlined; entries in ItemsBought for the same (cid,pid) correspond to di�erent xact#'s.
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3 Background and Related Work

We use the problem of frequent itemset counting { used for of association rules (AR) discovery (e.g., see [3])

to develop our approach. In this section, we �rst introduce the problem of frequent itemset counting and then

review available approaches applied to decentralized data. Decentralized DM techniques serve as alternatives

to handle the ineÆciencies in traditional DM techniques for decentralized datasets. Among the available

techniques for decentralized DM, are those for horizontally partitioned data (e.g., [8]), and in our previous

work involving simple cases of vertical partitioning [9, 18]. We discuss these approaches in the context of

our example given in Section 2.1.

3.1 Frequent Itemset Counting

Given a set of items I , and a set of records (i.e., rows) T , where each row tj is composed of a subset ij of

the set of items I , the problem is to count all the frequent itemsets (i.e., which meet a user-de�ned level of

frequency of occurrence { a support threshold). The datasets e�ectively have categorical attributes with only

the presence or absence of an item being indicated in the tables; such sets constitute market-basket data.

The problem of AR introduced in [3] was decomposed into: (1) �nding the large (i.e., frequent) itemsets (i.e.,

which meet a user-de�ned support threshold); and (2) generating the AR, based on the support counts found

in step 1. In [4], the Apriori algorithm, improving on [3], performs the counting of itemsets in an iterative

manner: in each iteration, a \candidate" set of frequent itemsets is identi�ed, and the table is scanned to

count the number of occurrences of each candidate itemset. A set of candidates are computed for the next

iteration by using frequent itemsets of size k (k-itemsets) at iteration k. The counting of frequent itemsets

is expensive, and research e�orts concentrates on this step (e.g., [4, 22, 24, 6, 1, 15]).

In [26], an algorithm was proposed to run on quantitative data; after adequate discretization, an algorithm

similar to Apriori counts the frequent itemsets. Most algorithms for �nding frequent itemsets in market-

basket data can be adapted to apply to quantitative attributes (e.g., see [6]). Therefore, although our domain

data may also have quantitative attributes (e.g., in data warehouses), we discuss the available algorithms

proposed for market-basket data. Our techniques are easily modi�ed to apply to general attribute types.

3.2 Traditional Centralized Approach

For our example from Section 2.1, traditional approaches to AR discovery using frequent itemset counts

work relatively eÆciently for �nding associations such as (size=large)) (price=high) within table Product.

However, the same approach would be ineÆcient for �nding ARs (weather=hot) ) (color=white), or

(size=large) ) (age=30..35) across multiple tables. The ineÆciencies arise due to the need for the joined

table (Demographics 1 Customer 1 (ItemsBought1 [ ItemsBought2) 1 Product) in which there is sig-

ni�cant redundancy. For example, the itemset f(age=30..39),(area=x)g that occurs four times in the joined

table would be counted four times by traditional algorithms; and yet, it corresponds to just one entry (for

primary key cid = 05) in the Customer table.

3.3 Horizontal Partitioning Approach

There has been some work on parallel/distributed algorithms (e.g., see [8, 33]) for horizontally partitioned

databases. The designs considered are limited to one table horizontally partitioned into di�erent proces-

sors/sites, and therefore, with each partition having the same schema. In such cases, the amount of informa-

tion read and being processed is the same as in centralized algorithms (except for message exchanges), but

the load is shared. Work on handling vertical partitions of a single table for load sharing chooses partitions
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of columns of a single table across multiple processors { such that individual processors count the frequent

itemsets pertaining to a particular partition.

To apply these algorithms to our example, two joins would need to be materialized: T1 = (Demographics 1

Customer 1 ItemsBought1 1 Product) and T2 = (Demographics 1 Customer 1 ItemsBought2 1

Product). Thereafter, the algorithm would count the frequent itemsets for table T = T1[T2 by counting, at

each iteration, the candidate sets supports locally at T1 and T2 { with an exchange of messages with counts

at the end of the iteration. The itemsets from tables Demographics, Customer and Product, that were

centrally located, would now need to be counted across multiple locations. Furthermore, although the load

is distributed, the amount of information read and processed is the same as if the counting was performed

against table T in one location. Therefore, although algorithms such as in [8] is an improvement over the

traditional centralized approach, for cases such as our example, where there are both horizontal and vertical

partitioned tables, the available distributed algorithms that deal only with horizontal partitions do not take

full advantage of the decentralization of tables.

3.4 Decentralized Star Schema Approach

For tables in a Star schema, our decentralized approach [9, 18] �nds frequent itemsets eÆciently { e.g., across

tables Customer, ItemsBought (not horizontally partitioned) and Product. Our approach �nds itemsets

containing items only from Customer and only from Product, and then the itemsets for items across all

three tables. The �nal frequent itemsets from our algorithm are exactly the same as those found with any

traditional algorithm run on the joined table T = Customer 1 ItemsBought 1 Product.

Our technique in [18], as applied to our complete example with all tables considered, needs the join

Demographics 1 Customer, and the union ItemsBought1 [ ItemsBought2 to be computed in advance.

However, �rst obtaining the join of Demographics and Customer loses the advantage of only assessing

itemsets local to Demographics. Similarly, the union of ItemsBought1 and ItemsBought2 loses out in load

distribution, and increases communication by having to ship large tables. Furthermore, if each table is in a

separate location, all but one of them may have to be shipped to a central location.

4 Decentralized Approach for General Schemas

In this section, we review our basic decentralized approach and present our decentralized approach as ex-

tended to more general schemas, and not only the Star schema as described in [18]. We also discuss how

mining tables that are physically distributed can take advantage of our decentralized approach.

4.1 Problem Setting

Let a primary table be a relational table containing some non-key attributes; the attributes could be cat-

egorical, numerical or boolean. Also, let a relationship table be a relational table which does not contain

non-key attributes. A relationship table, besides its primary key, contains foreign keys to other primary

tables. A relationship table is a n-relationship table when it has n foreign keys to n primary tables. Typically,

primary tables refer to entities, and relationship tables correspond to relationships in an entity-relationship

diagram [28]. Primary tables can also contain foreign keys to other primary tables. In this case, the table is

also referred to as a primary-relationship table. In the example presented in Section 2.1, the Demographics

and Product tables are primary tables, Customer is a primary-relationship table, and ItemsBought is a

relationship table.
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4.2 Basic Decentralized Computation

Our decentralized solution [18] �nds frequent itemsets in each primary (or primary-relationship) table indi-

vidually, and then proceeds to �nd frequent itemsets that span multiple tables. We call Phase I the process

of �nding the frequent itemsets that contain items from individual tables, and Phase II the process of �nding

itemsets containing items that span more than one table. We explain our approach for a schema containing

two primary tables and one relationship table.

4.2.1 Phase I

The �nal results of a decentralized algorithm should be exactly the same as the original algorithm run on

the joined table T . As such, the support of itemsets in an individual table should reect the �nal support

that this itemset would have in table T . We achieve this as follows:

1. Compute weight vectors for primary tables. Count the number of occurrences of each record of the

individual tables in the �nal joined table. This number is given by the number of times each value for

the foreign keys is present in the relationship table. If indices are available, this number of occurrences

can be determined by scanning the indices,2 otherwise, the relationship table needs to be scanned once.

The number of occurrences is stored in a weight vector for each primary table.

2. Count frequent itemsets on primary tables. Find the frequent itemsets for each of the primary tables

using any traditional centralized algorithm (e.g., see [26, 6]) with the following modi�cation: instead of

incrementing the support of an itemset present in record r by 1, increment by the number of occurrences

of r in the relationship table (given by the weight vector computed above).

4.2.2 Phase II

We consider two strategies for counting the itemsets that belong to both primary tables.

� Memory Saving

In the traditional approach, T is formed by joining all three tables, and then an Apriori-like algorithm

is run on the joined table. In our approach, all of the itemsets belonging to each individual table have

already been counted in Phase I. In Phase II, we then count the itemsets against table T as in the

traditional centralized approach, except with a smaller set of candidates (only those which contains

items from both tables).

� I/O Saving

Generate candidates from each primary table using a 2-dimensional candidate array, where one dimen-

sion corresponds to the set of frequent itemsets found in each of the primary tables during Phase I. For

each record in the relationship table, identify all frequent itemsets from each primary table that are

present in the corresponding records of the primary tables. These frequent itemsets per record (FIPR)

can be computed \on the y", when a record of the relationship table is read, or can be pre-computed

for each record of the primary tables. Finally, increment 1 in position on the candidate array which

corresponds to all pairs of itemsets: one from each of the FIPRs computed. After the relationship table

is processed in this manner, the candidate array contains the support for all the candidate itemsets for

the joined table T that span more than one table.

2The use of indices is examined in detail later in Section 9.
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Discussion

Both merging strategies save processing time since a frequent itemset consisting of items from only one

primary table are counted fewer times than if counted from join table T . This may be veri�ed by simple

counting arguments. A disadvantage of the Memory saving strategy is that the joined table T must be

stored, and the I/O costs could be higher since extra scans may be necessary. Notice however, that the

join can be computed \on the y" for each iteration of our Memory saving approach. This way, instead of

materializing table T and scanning it several times, we only scan the relationship table and build the joined

records on the y. Besides avoiding the materialization of the join, this also reduces the cost of each scan

since they are performed on a smaller table (the relationship table is considerably smaller than the joined

table).

For the I/O saving strategy I/O costs are saved since multiple passes are done on the smaller tables and

not the large table T . A disadvantage is that itemsets spanning more than one table, are not pruned from

pass to pass because all itemsets are counted in one scan. This results in the counting of candidates that

would not be considered if pruning were done at every step. In the remainder of this paper these are referred

to as false candidates. If the FIPRs are large, this step may require considerable memory space due to the

false candidates. This is especially true for more complex schemas involving when more than 2 primary

tables.

4.3 Star Schemas

We consider a schema in which there are n primary tables, the dimension tables, and one central relationship

table, the fact table. Let T1; T2; � � � ; Tn be the dimension tables, and T1n be the fact table.

When the fact table has no extra attributes, other than the foreign keys to the primary tables, the

extension of our basic algorithm is as follows. For Phase I, we compute weight vectors for the n primary

tables, and then count frequent itemsets locally { for each of the n primary tables. For Phase II, the Memory

saving strategy is the same as described above. For the I/O saving strategy, we generate an n-dimensional

array, and compute FIPRs for each of the n tables. The extension of our basic algorithm to such schema is

detailed in [18]. In this section, we examine other situations that arise when mining on a Star schema.

4.3.1 Attributes in the Fact Table

In typical data warehouses, the fact table may contain non-key attributes (i.e., categorical and numerical

attributes). In our example, suppose there are extra attributes in the table ItemsBought, such as date and

qty (indicating how many products were purchased). When it is desired to mine information across primary

tables only, the approach described above suÆces. In situations where the mined information includes

attributes from the fact table (e.g., �nding the association between salary and qty), we adapt our approach

as follows.

1. Treat each attribute of the fact table as though it were from from a di�erent table.

On the �rst scan of the fact table to compute the weight vectors (step 1 of Phase I), verify the frequent

itemsets of size one for the attributes of the fact table. For Phase II, the fact table attributes do

not a�ect the Memory saving strategy, they are considered like any other attribute. For the I/O

saving strategy, we add a dimension to the counting array for each new attribute. A large number of

categorical or numerical attributes in the fact table, could render this solution infeasible due to the

number of dimensions required.
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2. Vertically partition the fact table.

The fact table is vertically partitioned into two tables: one containing all the categorical or numerical

attributes with a new primary key id1n, and one containing id1n together with all other foreign keys

originally present in the fact table. This results in the same schema as before, with one extra table,

allowing our algorithm to run in the same manner.

An example schema that resembles a Star schema with non-key attributes in the fact table is given in

Section 2.1 where the table Customer may be considered as a fact table with respect to table Demographics.

4.3.2 Pairwise I/O saving

Considering a Star schema with many dimension tables, it may not be feasible to complete an I/O saving

merge in one scan of the fact table. The I/O saving strategy avoids storing the joined table at the expense

requiring the memory space to store the n-dimensional array used to count all of the itemsets across tables

in one step, as well as sacri�cing some ability to prune itemsets. If the n-dimensional array does not �t

in memory resorting to the Memory saving algorithm, though allowing the desired pruning, leads to the

expense of storing table T and scanning it multiple times. Instead, we present a compromise between I/O

and Memory saving, referred to as Pairwise I/O saving.

Phase I requires no changes since each table is processed separately. In Phase II, instead of merging

all tables in one step, process them pairwise. For example, considering tables T1; T2; T3; and T13, process

T1 1 T13 1 T2 using I/O saving merge considering the sets F 1 and F 2 as candidates (and likewise for T1; T3,

and T2; T3). This way, pruning is increased considering that the false candidates involving attributes of two

tables will be known. Although there are multiple scans of the fact table, the join need not be materialized,

and the number of candidates is signi�cantly reduced, thereby increasing the eÆciency of the merge step. In

Section 8, we show this technique to be eÆcient in some cases.

4.4 Snow Flake Schemas

We now consider an example involving a primary-relationship table. We revisit our schema shown in Sec-

tion 2.1. that contains two primary tables, one primary-relationship and one relationship table. Our tech-

nique, described thus far requires the join Demographics 1 Customer to be computed �rst. However, this

loses the advantage of only assessing itemsets local to Demographics. Instead, we show how to adapt our

algorithm to count the items from a table that is not directly related to the relationship table (in this case,

the Demographics table), without resorting to pre-computing its join with a table that does (in this case,

the Customer table).

First, let us consider Phase I. To count itemsets in Demographics separately, a weight vector for table

Demographics with respect to ItemsBought must be computed. This weight vector (wvD) is computed

using the table containing the foreign key to Demographics (table Customer) and its weight vector (wvC).

We explain with our example. The weight vector for Customer was (2; 3; 2; 2; 4; 1). The �rst record of

Demographics (area = x) occurs 6 times in the joined table: 2 due to the �rst record of Customer

(cid = 100), and 4 due to the �fth record of Customer (cid = 500). Thus, the value in wvD for (area = x) is

the sum of the values in the wvC for (cid = 100) and (cid = 500). The �nal weight vector for Demographics

is: (2+4; 2+2; 3+1) = (6; 4; 4). In this manner, it is possible to determine the number of times each record

of Demographics appears in the �nal table, and therefore, to e�ect counting in Demographics separately.

Now, consider Phase II. For Memory saving, there are no changes other than considering more than two

primary tables (as in the case of Star schema describe previously) { in this example, three. For an I/O

saving merge, there are more possibilities, and we discuss each of them. The �rst option is to proceed as in

the Star schema case adding one dimension to the array to represent table Demographics. Since area (the
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primary key for Demographics) is not in ItemsBought, we use table Customer to get the corresponding

record of table Demographics for each entry in ItemsBought. Another option is to take advantage of the

fact that Customer is directly related to Demographics. We call this approach Combined I/O saving, since

we combine tables Customer and Demographics without, however, joining them. In this case, we perform

the merge in the following two steps:

1. Compute the itemsets from Customer and Demographics up-front. This counting is performed with-

out obtaining any information from table ItemsBought (other than the weight vectors). Create a

2-dimensional array with frequent itemsets from tables Customer and Demographics. Then, for each

record r of table Customer we identify the FIPR for Customer, IC , and the FIPR for the record of

Demographics related by the foreign key, ID. Then identify all the pairs from IC and ID and add to

the corresponding position in the 2-dimensional array the value in wvC for record r. The reason for

adding this value, instead of one (as in the typical I/O saving merge), is that this weight vector entry

reects how many times these two records would have been merged if we were computing the merge

by reading ItemsBought instead.

2. Process table ItemsBought. Merge tables Product and Customer scanning table ItemsBought as

before, with the di�erence that, for each record of table Customer, the FIPRs include the itemsets

from both tables Customer and Demographics (merged in step 1 above).

In a general Snow Flake schema, there could be more than one table that does not relate to the fact table

directly. Each of these tables would be processed as with table Demographics above.

4.5 Schemas with no Central Relationship Table

We call foreign key based decentralization when the tables are to be joined based on the foreign key rela-

tionships, i.e., the join is a natural join. In general, if two tables, say Ti and Tj , are related by a foreign

key (say idi is a primary key in table Ti and a foreign key in table Tj) it is possible to directly apply our

approach of decentralized counting (as shown in Section 4.4). As an example of a less trivial foreign key

based decentralized schema, consider a series of binary relationships (as opposed to the one n-ary relationship

exhibited in the Star schema). That is, consider n primary tables (T1; T2; � � � ; Tn) and n � 1 relationship

tables (T12; T23; � � � ; T(n�1)n).

Again, the goal is to �nd association rules in the �nal joined table T = T1 1 T12 1 T2 1 � � � 1 Tn�1 1

T(n�1)n 1 Tn. It may seem intuitive, but would be erroneous, in general, to perform a straight-forward

combination application of our approach (i.e., Tt 1 Tt(t+1) 1 Tt+1). This is apparent when the number

of occurrences of records in the individual relationship tables is di�erent as compared to the number of

occurrences in table T .

To count the occurrences in table T of the records in the primary tables, one approach is to �rst join

T12 1 T23 1 � � � 1 T(n�1)n. This joined table is equivalent to the fact table in the Star schema, allowing the

same procedure as for the Star schema. Another option is to take advantage of the smaller binary relationship

tables and run our algorithm in combination, similar to the approach described in Section 4.4. In order to

run the algorithm in combination, count the occurrences of the records from the relationship tables, Tij in

table T in the same manner that occurrences of the records from the dimension tables were counted in the

fact table in Section 4.2. Then, when computing a weight vector from a given relationship table (e.g., T12),

take into account, in addition to the occurrences of the foreign keys (e.g., id1 and id2), the number of times

a record in the relationship table appears in T . Thereafter, run the modi�ed Apriori on the primary tables,

and then in combination (e.g., �nding association rules for T1 1 T12 1 T2). After all the combined counting

is performed, �nd the frequent itemsets for all the tables using table T (or re-calculate T in case the joined
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table T was not stored in the �rst instance). The above exempli�es our possible approaches to more general

foreign key based decentralization.

4.6 Distribution Factors

In all examples above, we considered decentralized data residing in one location. The Star schema tables,

and indeed, any set of decentralized though related tables, may be allocated to reside at several sites in a

distributed environment (as illustrated in Section 2.1).

Our general approach of distributing the mining algorithms potentially provides many performance im-

provements. When the primary tables reside in di�erent locations, ideas from semi-join algorithms[21] may

be applied to e�ect Phase I by sending the information gathered in step 1 to the primary table sites so

step 2 may be performed locally (thereby distributing the load among the di�erent locations). For the I/O

saving merge strategy, the FIPRs would be gathered at an appropriate site (depending on distribution and

according to the semi-join strategy), as opposed to shipping the entire primary table { necessary in the

traditional approach to frequent itemset counting.

Our techniques, as described thus far, applied to our example shown in Section 2.1, require the the union

ItemsBought1 [ ItemsBought2 to be computed �rst. However, doing so decreases load distribution and

increases communication by having to ship large tables. Furthermore, if each table is in a separate location,

all but one of them may have to be shipped to a central location. We adapt our algorithm for disjoint

horizontal partitions as follows (where we assume each table is at a di�erent site). For Phase I, compute

the weight vectors from ItemsBought1 and ItemsBought2, and send them to the sites with Customer

and Product. At each site, the weight vectors from the two ItemsBought partitions are combined by a

simple vector addition. The second part of Phase I proceeds as previously described, i.e., frequent itemsets

are counted locally. For Phase II, FIPRs for Customer and Product (or the tables themselves as would

be needed if using the traditional horizontally distributed approach [8]) are sent to each of the locations

of ItemsBought1 and ItemsBought2. Then, the Phase II counting may proceed concurrently at the sites

for ItemsBought1 and ItemsBought2. Thereafter, messages are exchanged to determine the �nal frequent

itemsets.

5 Algebra Expressions and Equivalences

In [18], we analyzed the costs of a few implementation strategies for the Star schema. However, there are other

options for decentralization that were not considered, such as the ones mentioned in Section 4: Pairwise and

Combined I/O saving. In order to assess which general approach is better, centralized or decentralized, we

need to analyze all of the possible decentralized alternatives. The choices available for mining are numerous,

and we describe our techniques to enumerate, optimize and evaluate decentralized frequent itemset counting

{ similar to what is done for query processing.

5.1 Decentralization: Many Alternatives

Decentralized DM techniques serve as alternatives to handle the ineÆciencies in traditional DM techniques

for decentralized datasets. Among the available techniques for decentralized DM are those for horizontally

distributed data (e.g., see [8]), and for normalized (and even physically distributed or not) data as presented

in Section 4.

There are several alternatives to materializing the joins or unions when dealing with such decentralized

tables. For instance, some subset of tables could be joined or unioned before starting decentralized mining,

thereby providing at least as many alternatives for DM as there are for joins or unions. Furthermore, there
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are additional possibilities for decentralized DM, such as the merge strategy used. Although our example

has relatively few options for decentralized DM, more complex designs could have a large number of options

{ over and above those available for join processing of distributed queries.

To choose among alternatives e�ectively, there is a need to unify the decentralized DM approaches for

horizontally and vertically partitioned tables, and we describe ways to do so. Each strategy involves its

own cost of execution, and in order to choose the best strategy, we need a simple means to enumerate

the possibilities and choose the best alternatives based on cost metrics. Our approach can easily be used

in conjunction with available mining tools and techniques. Furthermore, the optimization and evaluation

techniques exempli�ed below can be applied at a level above the actual mining algorithms: for the most

part, they manipulate the tables that are then provided to the basic algorithms.

We provide an \algebra" over expressions which represent the mined information at a particular stage. In

the expressions, we are primarily interested in itemsets whose items are non-key attributes; the key attributes

inter-relate the tables. Our algebra facilitates enumerating and choosing among alternatives similar to the

way relational algebra is used for standard query processing.

5.2 Algebra Expressions

The basic notation for our algebra is as follows; the purpose of the term W is clari�ed below.

� FI(X;W ): set of frequent itemsets from table X 1W involving only non-key attributes of table X .

� CIm(fX1; X2; � � � ; Xng;W ): set of cross-itemsets, which are the frequent itemsets from table X1 1

X2 1 � � � 1 Xn 1 W involving non-key attributes of table X1 1 X2 1 � � � 1 Xn, and where an itemset

contains items from at least m tables (note: when m > n, CIm is the empty set). For simplicity, when

m = 2 it is omitted from the notation.

In the above, the term W is for the weight table; in FI(X;W ), it denotes the table from which the weight

vector is computed, and in CIm(fX1; X2; � � � ; Xng;W ), it denotes the table that links the Xi tables.

Let I denote the identity operand for the join operator (i.e., I = �keyofT (T ) such that T 1 I = T ).

To illustrate the use of our algebra, consider the case in Section 3.2 where FI(T; I) was to be com-

puted, where T = Demographics 1 Customer 1 (ItemsBought1 [ ItemsBought2) 1 Product. In

Section 4.2, we computed FI(Customer; ItemsBought) and FI(Product; ItemsBought) in Phase I, and

CI(fCustomer; P roductg; ItemsBought) in Phase II.

5.3 Expression Equivalences

Our enumeration approach begins with an expression such as FI(T; I), where T represents the table arising

from joining (or creating the union) of all the decentralized tables. Thereafter, we aim to obtain expressions

that represent decentralized DM that �nds frequent itemsets in separate tables, and merges the partial

results. Using the equivalences below, we obtain alternative expressions that are equivalent, and represent

implementations that are often less expensive than using traditional techniques which materialize T .

Equiv 1

FI(X 1 Y;W ) = FI(X;X 1 Y 1W ) [ FI(Y;X 1 Y 1 W ) [ CI(fX;Y g; X 1 Y 1W )

Proof Sketch: The left expression represents the set of frequent itemsets for table X 1 Y 1 W . The right

expression represents the same set as a union of three subsets: the set of frequent itemsets from X 1 Y 1W

involving only items from X , only items from Y , and from both X and Y . Each term on the right represents

a (usually proper) subset of the expression on the left, and their union evaluates to it as well.
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Equiv 2

CIm(fX;Y; Zg;W ) = CIm(fX;Y 1 Zg;W ) [ CIm(fY; Zg;W )

Proof Sketch: Similar arguments as Equiv 1.

Equiv 3

CIm(fX1; : : : ; Xng;W ) = CIm(fX1; : : : ; Xn�1g;W ) [ � � � [

CIm(fX1; : : : ; Xi�1; Xi+1; : : : ; Xng;W ) [ � � � [

CIm(fX2; : : : ; Xng;W ) [ CIn(fX1; : : : ; Xng;W )

Proof Sketch: All CI terms are with respect to the joined table X1 1 X2 1 � � � 1 Xn 1 W . The CI

expression on the left of the equality represents all frequent itemsets where an itemset contains items from

at least m tables. The last CI term (CIn) represents all frequent itemsets where an itemset contains items

from all n tables. The di�erence between this term and the one on the left are the frequent itemsets spanning

from m up to n � 1 tables. The remaining term on the right (i.e., all but the last) represent exactly these

itemsets: including items from m thru n � 1 tables. Some frequent itemsets could be double counted, but

the expression is still correct since we are taking the union. However, no redundancy occurs when m = n�1.

Equiv 4

FI(X;W ) = FI(X; �idx(W ))

where idx is the primary key of X, and � is a modi�ed project operation from relational algebra, such that

duplicates are not removed.

Proof Sketch: Since FI(X;W ) is the set of frequent itemsets involving only non-key attributes of table X ,

all attributes of W other than the primary key of X (i.e., the attribute that inter-relates the two tables) are

not relevant to the computation of FI(X;W ).

Equiv 5

CIm(fX;Y g;W ) = CIm(fX;Y g; �idx;idy(W ))

Proof Sketch: Similar arguments as Equiv 4.

The usual equivalences in relational algebra (e.g., commutativity and associativity of joins) continue to

hold. For example, we have

Equiv 6

FI(X 1 (Y1 [ Y2) 1 Z;W ) = FI((X 1 Y1 1 Z) [ (X 1 Y2 1 Z);W )

Proof Sketch: From relational algebra equivalences { a join distributes over unions.

Equiv 1 and Equiv 2 indicate how increasing degrees of decentralized DM may be introduced into an

expression: the right expressions are more decentralized as compared to the left. The expression in Equiv 3

corresponds to merging tables in a Pairwise manner (Section 4.3). Equiv 4 and Equiv 5 are mainly useful

for the algebraic manipulations, and for indicating how to compute the weight vectors. Equiv 6 is useful in

considering horizontal partitions. Note that, once a join is distributed over a union, local frequent itemsets

for tables X and Z can no longer be computed locally, which may prove to be counter productive. We

re-visit the issue of distributing joins over unions later in Section 7.
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5.4 Expression Re-writing

We illustrate the use of our equivalences for our example from Section 2.1 with horizontal partitions (Fig-

ure 1). Again, we aim to �nd FI(T; I), where T = Demographics 1 Customer 1 (ItemsBought1 [

ItemsBought2) 1 Product, which we shorten to T = D 1 C 1 (B1 [B2) 1 P .

The traditional centralized approach provides a �rst alternative to the computation of FI(T; I):

FI(D 1 C 1 (B1 [ B2) 1 P; I) (1)

Our equivalences help develop a decentralized processing plan. By distributing the join over the union we

get

FI((D 1 C 1 B1 1 P ) [ (D 1 C 1 B2 1 P ); I) (2)

The expression (2) limits processing to algorithms meant solely for horizontally partitioned cases. Instead,

by using the commutativity of joins and Equiv 1 to expression (1) , we have

FI(B1 [ B2; D 1 C 1 (B1 [ B2) 1 P ) [ FI(D 1 C 1 P;D 1 C 1 (B1 [ B2) 1 P ) [

CI(fB1 [ B2; D 1 C 1 Pg; D 1 C 1 (B1 [ B2) 1 P )

Since B1 [ B2 contains only key attributes, FI(B1 [ B2;W ) is empty { irrespective of the elements of W .

Also, CI(fB1 [ B2; Xg;W ) is empty since the frequent itemsets in CI should have at least one non-key

attribute from B1 [ B2. So, the above expression reduces to

FI(D 1 C 1 P;D 1 C 1 (B1 [B2) 1 P ) (3)

Tables D and C do not have common attributes with P , therefore, their join is a Cartesian product. While

this may seem a bad choice, applying more equivalences lead to better expressions. In particular, using

Equiv 1 on the above expression leads to

FI(D;D 1 C 1 (B1 [ B2) 1 P ) [ FI(C 1 P;D 1 C 1 (B1 [ B2) 1 P ) [

CI(fD;C 1 Pg; D 1 C 1 (B1 [ B2) 1 P ) (4)

Since T has the same number of records as B1[B2, which has foreign keys to all tables (except D), we have

�cid(D 1 C 1 (B1 [ B2) 1 P ) = �cid(B1 [ B2)

�pid(D 1 C 1 (B1 [ B2) 1 P ) = �pid(B1 [ B2)

�area(D 1 C 1 (B1 [ B2) 1 P ) = �area(C 1 (B1 [ B2))

And so, using Equiv 4, Equiv 5, and the above equalities we arrive at a new expression

FI(D; (C 1 (B1 [ B2)) [ FI(C 1 P; (B1 [ B2)) [ CI(fD;C 1 Pg; ((B1 [ B2) 1 C)) (5)

Using Equiv 1 in the second term leads to

FI(D; (C 1 (B1 [ B2)) [ FI(C; (B1 [ B2)) [ FI(P; (B1 [B2)) [

CI(fC;Pg; (B1 [ B2)) [ CI(fD;C 1 Pg; ((B1 [ B2) 1 C)) (6)

Using Equiv 2 in the last two terms leads to

FI(D; (C 1 (B1 [ B2)) [ FI(C; (B1 [ B2)) [ FI(P; (B1 [B2)) [

CI(fD;C; Pg; ((B1 [ B2) 1 C)) (7)
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The various expressions, equivalent to FI(T; I), represent ways of mining that avoid the initial materialization

of the join D 1 C 1 (B1 [B2) 1 P . In fact, expression (7) signi�cantly decentralizes the computation, and

avoids the union of the horizontal partitions.

As noted in Section 4, merging the results from many tables simultaneously (i.e., computing CI) may

prove expensive due to memory space requirements, or due to counting of extra \false candidates" in the

I/O saving merge. However, results may be merged over several steps using multiple passes over the weight

table. One way to reduce the number of false candidates is to process the tables pairwise. Applying Equiv 3

in the last term of (7) results in a Pairwise strategy

FI(D; (C 1 (B1 [ B2)) [ FI(C; (B1 [ B2)) [ FI(P; (B1 [B2)) [

CI(fD;Cg; ((B1 [ B2) 1 C) [ CI(fC;Pg; (B1 [B2)) [

CI(fD;Pg; ((B1 [B2) 1 C) [ CI3(fD;C; Pg; ((B1 [ B2) 1 C)) (8)

There are other ways to merge in steps, such as using expression (6), or by materializing the join of a few

tables in advance. For example, we could join D and C early (i.e., by applying Equiv 1 to expression (3))

to get

FI(D 1 C; (B1 [ B2)) [ FI(P; (B1 [ B2)) [ CI(fD 1 C;Pg; (B1 [ B2)) (9)

Then, applying Equiv 1 to the �rst term leads to

FI(D; (C 1 (B1 [ B2)) [ FI(C; (B1 [ B2)) [ FI(P; (B1 [B2)) [

CI(fD;Cg; ((B1 [ B2) 1 C)) [ CI(fD 1 C;Pg; (B1 [ B2)) (10)

Figure 2 depicts the various equivalent expressions that we obtain. We do not explicitly show the weight

table for clarity3. Note that all expressions, except for expression (8) can be depicted as a tree. (expression

(8), Pairwise merging, is similar to (7) in the sense that there are 3 FIs and one 3-way merge { the 2-way

merges are used as pruning steps for the 3-way merge, denoted in the picture by dotted lines).

Our discussion shows that, even for a small problem involving only four tables, there are many possible

strategies to obtain the frequent itemsets. In fact, all possibilities were not enumerated (e.g., we did not

consider the prejoin D 1 P ). By assigning costs to each operation, each expression may be associated with

a processing cost, and an optimization problem arises.

6 Incorporating Cost Estimates

We briey review costs involved in computing FI , CI and [. The join operation is also discussed since

several strategies involve materializing joins prior to computing FI or CI . Detailed cost estimates are not

discussed since they depend on the particular algorithm employed, and our goal is to provide a framework

where such costs can be utilized if needed. An example of detailed cost estimates was provided in [18] for a

n-way merge approach to a Star schema. Also, we discuss how to estimate parameters that a�ect the mining,

and provide cost estimates for our discussed examples.

For our description of costs, we use the following de�nitions and assumptions. Let ri be the number of

records in table Ti; mi be the number of attributes in table Ti; ki be the length of the longest candidate

itemset on table Ti; jc
i
j j be the number of candidates of length j from table Ti; and jlij j be the number of

frequent itemsets of length j from table Ti. For a term such as FI(Ti; Tw), Ti or Tw may have to be computed

in advance (e.g., if Ti = Ti1 1 Ti2 , then the join needs to be computed; or if Ti = Ti1 [Ti2 the union needs to

3In many cases (especially data warehouses), indices are available, so the size of the weight table is less of an issue. The use
of indices is discussed in Section 9.
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Figure 2: Di�erent expressions that arise.
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be computed). We do not include computing costs for Ti and Tw { which are discussed separately. Also, for

cases where the union would not be computed (e.g., FI(Ti1 [ Ti2 ; Tw)), and instead, an algorithm would be

used that works on horizontally distributed data (e.g., from [8]), we leave the union symbol stated explicitly.

We separate the individual operation processing costs into local costs (I/O and CPU), and communication

costs. In several cases, indices may be used e�ectively, and though we briey touch on examples with indices,

we leave the discussion of how indices a�ect the algorithms and costs to Section 9.

6.1 Phase I Costs

6.1.1 FI(Ti; Tw)

The costs depend on the algorithm used. We may compute the weight vector from Tw, and then, apply a

centralized algorithm (e.g., see [4, 6, 24]) with modi�cations as mentioned in Section 4.2. Therefore, the

costs include computing the weight vector (opWV ), and counting of the frequent itemsets of Ti (opFI). For

simplicity, I/O costs are associated with the size of data moved from disk (and not number of disk blocks).

1. opWV : Computing the weight vector from Tw

� Local costs: If an index is not available, the weight vector needs to be computed from Tw, so the

cost is given by rwmw. If an index on Tw is available for each record of Ti, we only need to read

the index; in such cases, the costs are given by the number of entries in the index, rw.

� Communication costs: None, since the weight vector is computed locally (it either scans the index,

or scans Tw).

2. opFI : Computing the frequent itemsets in Ti

� Local costs: These include costs for multiple scans of Ti whose size is miri, and of the weight

vector if it does not �t in main memory. For the Apriori algorithm [4], for example, the number

of scans is given by ki, so the I/O costs are: kimiri + kiri. With decentralized DM, the smaller

tables may �t in main memory, which would reduce I/O substantially. The CPU costs, as in the

traditional centralized approach, depend on jcij j for each iteration, the length mi of the record

that needs to be checked against the candidates, and the data structures used in the counting.

Costs associated with the subset operation will dominate the CPU costs.

� Communication costs: None, if Tw and Ti are co-located. Else, if Tw is remote from Ti, there is

communication cost in shipping the weight vector of size ri to Ti.

6.1.2 FI(Ti; Tw1
[ Tw2

[ � � � [ Twl
)

The union in this term allows using our decentralized approach of Section 4.2 with the modi�cation of

Section 4.6.

1. opWV : Computing the weight vector from Tw1
[ Tw2

[ � � � [ Twl

� Local costs: These are as for FI(Ti; Tw), except that the load is shared by the di�erent locations

of Twq
; q = 1::l; the I/O and CPU costs are given by rwq

.

� Communication costs: None, since the weight vectors are computed locally.

2. opFI : Computing the frequent itemsets in Ti
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� Local costs: Composing the total weight vector from those arising from Tw1
; Tw2

; � � �Twl
involves

a simple vector addition, and its cost depends on the number of horizontal partitions, l, and the

total number of records, ri. Thereafter, the costs are as in opFI for FI(Ti; Tw).

� Communication costs: Since the horizontal partitions are distributed, at most one Twq
is co-

located with Ti. Therefore, there is communication cost in shipping the l (or l�1) weight vectors

of size ri to Ti.

6.1.3 FI(Ti1 [ Ti2 [ � � � [ Tin ; Tw)

The union in this term requires using a distributed algorithm that synchronizes with message exchanges

after each iteration, and we use the algorithm from Cheung et al. [8] as an example.

1. opWV : Computing the weight vector from Tw

As above in Section 6.1.1.

2. opFI : Computing the frequent itemsets in (Ti1 [ Ti2 [ � � � [ Tin)

� Local costs: Let Ti = Ti1 [ Ti2 [ � � � [ Tin . At each pass the amount of local processing across all

sites is approximately the same with Ti computed in advance (since at each site the candidates

are the same as for table Ti). The local costs which are related to the number of records present,

depend on jc
ip
j j; p = 1::n, mip and k, which are the same for all sites. The sum of the records

present across all sites is the same as in Ti, and therefore, the local costs are basically the same

as in Section 6.1.1.

� Communication costs: The computed weight vector is horizontally partitioned, and the appro-

priate vectors are sent to Tiq ; q = 1::n. Therefore, this communication cost depends on n and

ri. The communication cost should also include shipping the candidate set counts after each

pass, and each site must ship this information to every other site { leading to
Pk

j=1(jc
i
j j) � p in

communication costs.

6.2 Phase II Costs

6.2.1 CI(fTi1 ; Ti2 ; � � �Ting; Tw)

These costs depend on the algorithm used on Phase II. In the following discussion, we consider the I/O

saving approach as explained in Section 4.3 as an example.

� Local costs: In the I/O saving approach, each record of Tw is processed once, and if indices are available

(see Section 9), or smaller tables �t into main memory, the I/O costs are the scans of each of the tables.

For the CPU costs, for each record s in Tw, the cost is in determining which frequent itemsets found

in the Tip are present in s. If FIPRs are pre-computed, the subset operation is only applied to smaller

tables, and therefore, negligible: for each record in table Tip ; p = 1::n, we check mip against
Pkip

j=1 jl
ip
j j,

and this check is e�ected rp times. The main CPU costs are for counting the frequent itemsets, which

depends on the sizes of the FIPRs.

� Communication costs: These costs include sending the Tip (accounted for in e�ecting the join) as well

as the frequent itemsets found for each Tip { to the site where opCI is executed. The latter requires

shipping
Pn

p=1(
Pkip

j=1 jl
ip
j j) elements which is the latter's communication costs.
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6.2.2 CI(fTi1 ; Ti2 ; � � �Ting; (Tw1
[ Tw2

[ � � � [ Twl
))

Again, we choose the I/O saving approach to illustrate.

� Local costs: The costs are as in Section 6.2.1, except that the load is distributed. The only extra cost

is for adding the partial counters computed at each location (i.e., a matrix addition operation). The

I/O cost at each partition is the one scan of Twq
and the scan of the smaller tables. For the CPU

costs, again counting dominates (assuming FIPRs are pre-computed). The matrix addition operation

depends on l and the matrix size �np=1
Pkip

j=1 jl
ip
j j.

� Communication costs: As in Section 6.2.1, except that additional communication is needed for the

�nal addition of matrices (i.e., the local matrix counters must be sent to a central location). Again,

this depends on the size of the matrix.

6.3 Union Costs

We discuss the following situations involving unions which arise in our approach.

1. Composing the set of frequent itemsets (i.e., union of FI 's and CI 's)

� Local costs: Since we assume that FI and CI are disjoint, these costs are negligible.

� Communication costs: The unions compose sets generated by opFI and opCI operations. For

opCI , all generated frequent itemsets from opFI are sent to the site where opCI is executed, and

this communication cost is account for in opCI .

2. Computing the union of tables in advance.

In this case, costs from traditional query processing apply (i.e., shipping the tables).

6.4 Join Costs

As in traditional query processing, there are many ways to perform joins required in decentralized DM.

Choices available in join ordering and strategies lead to di�erent costs. Therefore, the local and communi-

cation costs for the join are the traditional ones from query processing (e.g., see [21]).

6.5 Choosing among Alternatives

Above, we presented cost estimates for our decentralized approach. In this section, we show how to use cost

estimates in optimizing decentralized DM. We consider enumerating expressions in di�erent ways, both at

the logical (i.e., the particular FI 's and/or CI 's) and at the physical (i.e., which algorithm to use) levels.

The steps are summarized as follows.

(a) Enumerate expressions ei; i = 1::n equivalent to FI(T; I);

(b) Compute costs associated with each ei; and

(c) Find the ei with minimal costs.

We show how to enumerate expressions, and to estimate how many unique expressions exist. We then show

an eÆcient way of searching for the minimal cost plan.
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Figure 3: Di�erent mining trees.

6.5.1 Enumerating Expressions

Here, we discuss how to enumerate all expressions at the FI and CI levels, without considering which

particular algorithm will be applied for a CI or FI term, and which particular order the join will be

computed { if the �rst term in FI is a join of tables.

As in query optimization [25], the enumeration process is as follows. Begin with the top level expression

(i.e., FI(T; I)), where T is the table obtained by joining all tables in our schema. Given an expression, if

any sub-expression matches a side of one of the equivalences listed in Section 5.3, the equivalence is applied

and a new expression generated. This process is repeated until no new expressions can be generated.

For a schema with n tables, the number of FIs could be between 1 and n. One FI corresponds to our

original expression: FI(T; I). If there is only one FI , there will be no CI term since there is nothing to

be merged. Therefore, there is only one expression with one FI term. There can be no more than n since

there is one FI per table in the most decentralized computation. If there are n FIs, there are many ways

in which the FIs could be merged.

Unless there is a Pairwise merge, the expression can be depicted as a tree as shown in Section 5.4, Figure 2

{ which we refer to as the mining tree. We use the mining tree to show the di�erent logical expressions { in

the same way that a query tree maps to di�erent logical query evaluation plans.4 Each leaf of the mining tree

corresponds to an FI expression, and each internal node to a CI expression that merges all of its children.

In the case of n FIs, any tree containing n leaves could represent a di�erent merging strategy at the logical

level. For simplicity, in what follows we assume n = 2k for integer k. A few examples are listed here, and

depicted in Figure 3.

4For simplicity, we do not consider Pairwise merges here.
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1. n-way merge { two possible alternatives for merging (I/O or Memory saving).

2. two n=2-way merges and a �nal 2-way combination merge { with a total of

�
n
n=2

�
possible alterna-

tives.

3. n=2� 1 2-way merges forming a balanced binary tree { with a total of n! possible alternatives.

4. a left-deep tree containing 2-way combination merges where a new FI is merged at each step { with a

total of n! possible alternatives.

We notice that the last example in the list resembles a left-deep join tree. In fact, there are as many

logical plans containing n FIs and only 2-way merges as there are possible join orderings for joining n tables.

To see that, consider each FI expression to be a table, and each CI to be a join operation. Each mining tree

corresponds to a di�erent merging strategy of the n FIs, in the same way as each query tree corresponds to a

di�erent join ordering of the n tables. The number of possible join orderings of n tables is (2(n�1))!=(n�1)!

(see Silberschatz et al. [25]). Considering that we could have 3-way merges, 4-way merges etc., the number

of possible mining trees increases, and is considerably larger than the join ordering problem. As in the case

of the join ordering problem, heuristics are best used (in a dynamic setting) to �nd good execution plans.

6.5.2 Obtaining Optimal Plan

Even though the number of join orderings (and therefore, possible 2-way merges) is very large even for small

n (e.g., for n = 10, the number exceeds 176 billion), we do not need to compute the cost for every possible

plans. Since the total cost for an an expression ei is a sum of each sub-expression of ei, by minimizing the

cost of each sub-expression, we �nd the minimal cost for evaluating a particular ei. This \monotonicity"

property may be explored in the same manner as is done in distributed or centralized query optimization by

using dynamic programming. Each sub-expression corresponds to a sub-tree in the mining tree. For example,

for n = 6 the root of the tree (i.e., the last merge step) could be: CI(fT1 1 T2 1 T3; T4 1 T5 1 T6g). The

number of ways to merge the tables T1; T2, and T3 considering only 2-way merges is 12. The number of

ways to merge T4; T5, and T6 is also 12. However, instead of considering all possible 144 (i.e., 12 � 12) plans,

we can limit ourselves to computing 24 (i.e., 12+12) and then pick the most eÆcient sub-plan from each

sub-tree. This is the same strategy as used in query processing.

7 Heuristic Optimization

To assess precise costs, we must estimate parameters such as table size, join selectivity factors, length of

longest candidate itemset, number of frequent itemsets found etc. These parameters are similar to the ones

required in query optimization, and some are easier to determine and maintain (e.g., table size), whereas

others may be assessed only by performing part of the DM itself (e.g., the number of frequent itemsets).

When using cost models, most database systems utilize heuristics to further reduce the number of choices

for which cost estimates are computed. Likewise, we develop heuristics so that the number of choices to be

examined can be reduced. Furthermore, in situations where cost estimates are not available, heuristics can

help decide which plan to use for DM in order ineÆcient plans are avoided.
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7.1 Heuristics for Decentralized Mining

We consider heuristic approaches to �nding frequent itemsets in decentralized DM, which can �nd sub-

optimal, but eÆcient, plans without requiring precise cost estimates.

Weight Table Choice

Computing the weight vector may requires a scan of the weight table. In this case, it is advantageous

if the weight table were to have few attributes. By using Equiv 4, we can reduce the number of attributes

from the weight table as in FI(C; T ) = FI(C; �cid(T )) = FI(C; �cid(B1 [ B2)). The project operation

could incur an undesirable cost; however, since FI(C; �cid(B1[B2)) = FI(C; (B1[B2)), we may compute

the weight vector directly from B1 and B2. Furthermore, by reducing the weight table to one table (or

horizontal partitions of one table), a check can be done to see if indices are available, which would further

reduce costs.

Heuristic 1 Use Equiv 4 to reduce the number of tables for the weight table.

Table with only Key Attributes

Consider Equiv 1 to get: FI(C 1 B1; I) = FI(C;C 1 B1) [ FI(B1; C 1 B1) [ CI(fC;B1g; C 1 B1).

Table B1 has only key attributes, therefore the expression on the right is less expensive to evaluate. The

reason is that the second and third terms on the right will be empty. Therefore, we only compare FI(C 1

B1; I) with FI(C;C 1 B1), and since it is likely that C 1 B1 has more records than C the scan for the left

expression will be more expensive.

Heuristic 2 When a table that contains only key attributes participates in a join comprising the �rst argu-

ment of an FI, convert the expression using Equiv 1.

Cartesian Products

Consider FI(C 1 P;B1) = FI(C;C 1 P 1 B1) [ FI(P;C 1 P 1 B1) [ CI(fC;Pg; C 1 P 1 B1). Since

C and P do not have common attributes and B1 contains foreign keys to both C and P , Equiv 4 and Equiv 5

allows FI(C 1 P;B1) = FI(C;B1) [ FI(P;B1)[CI(fC;Pg; B1). This way, the counting may be separately

processed { which would be cheaper than counting the itemsets on the Cartesian product.

Heuristic 3 When the �rst argument of an FI has joins that result in a cross product, use Equiv 1 to

convert the expression.

Large FI Term

Consider a table State with a primary key stateid. Suppose table Demographics has another attribute,

namely a foreign key to table State. Consider now, FI(S 1 D 1 C;B1). Since the table S 1 D 1 C is

not a Cartesian product (even though S and C do not have any common attributes), the expression on the

right is probably less expensive to realize, considering that there will be a lot of redundancy of the records

of State in the joined table S 1 D 1 C. In this case, it is better to break the 3-table join by using Equiv 1.

Notice that we could either arrive at:

(a) FI(S 1 D;C 1 B1) [ FI(C;B1) [ CI(fS 1 D;Cg; C 1 B1), or

(b) FI(S;D 1 C 1 B1) [ FI(D 1 C;B1) [ CI(fS;D 1 Cg; D 1 C 1 B1)

Since the size of tables S 1 D and C is likely to be smaller when compared to S and D 1 C, we choose

expression (a).

Heuristic 4 When the �rst argument of an FI contains at least 2 tables that are not directly related, use

Equiv 1 to convert the expression, such that the tables that are not directly related are in di�erent FI's, and

the table that links the two is in the same FI as the smaller table.
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Merging CI Expressions

Consider CI(fD;C; Pg; B1) = CI(fD;C 1 Pg; B1) [ CI(fC;Pg; B1). The expression on the right

has two CI 's. As such, the two scans of B1 on the right may be more expensive in terms of I/O. Two full

scans of B1 are necessary because tables C and P do not have any direct relationship, and they are involved

in both CI 's. On the other hand, in some cases the expression on the right is preferable { e.g., when the

multidimensional array needed on the left (3 dimensions) is too large. Therefore, unless there is insuÆcient

memory, the left expression is preferred.

Heuristic 5 When tables do not have a direct relationship, merge multiple CI expressions using Equiv 2

when there is suÆcient memory for the required multidimensional array required for evaluating the merged

CI.

Pre-merging Combinations

One exception to the previous heuristic is when one of the CI 's involve tables that are directly related.

For example, consider CI(fD;C; Pg; B1) = CI(fD 1 C;Pg; B1) [ CI(fD;Cg; B1). Although B1 is the

weight table for all the CI 's, for the right most CI involving tables D and C, B1 does not need to be scanned.

This is because tables D and C have a direct relationship, and therefore, we can use the weight vector for

C and �nd the cross table itemsets for D and C without scanning B1 (as shown in Section 4, Section 4.4).

In this case, we prefer the expression on the right, since we only have 2-way merges (less expensive than

3-way), and B1 is still scanned only once.

Heuristic 6 When tables have a direct relationship, merge them before merging with other tables in the

dataset.

Pairwise Merging

Consider Equiv 3: CI(fD;C; Pg; B1) = CI(fD;Cg; B1) [ CI(fD;Pg; B1) [ CI(fC;Pg; B1) [ CI3((fD;C; Pg; B1).

While the expression on the right contains multiple CI 's, the only 3-way CI (the last term) is considerably

cheaper then the 3-way CI on the left. As shown in Section 4, Section 4.3.2, the Pairwise technique not only

reduces the number of candidates for the 3-way CI (since we only consider candidates involving attributes

of all three tables), but also removes a considerable amount of false candidates, which is inherent in the I/O

saving merge strategy. The larger the number of dimensions, the more false candidates are incurred. So,

when tables are not related so that prejoining or combination is not a good option (above heuristic), we

choose to process them pairwise.

Heuristic 7 When there are three or more unrelated tables in a CI expression, convert the expression to a

Pairwise merge using Equiv 3.

Horizontal Distribution

For our example in Section 2.1, the use of Equivs 1, 2 and 4, provided (7) which is highly decentralized.

On the other hand, we could also use (2), where we limit ourselves to using the algorithm for horizontal

partitioning for the tables involved, and no further decentralization (e.g., computing frequent itemsets locally

at C) is possible. In this case, the weight table is horizontally partitioned (i.e., B = B1 [ B2), whereas the

other tables are not.

A di�erent situation occurs, where Product is horizontally partitioned (i.e., P = P1 [ P2), whereas the

weight table is not. Here, by using Equivs 1, 2 and 4 we obtain FI(D 1 C 1 B 1 (P1[P2); I) = FI(D;C 1

B) [ FI(C;B) [ FI((P1[P2); B) [ CI(fD;C; (P1[P2)g; B). In this case, only Product has horizontal

distribution in the computation (i.e., we would use the algorithm in [8] to compute FI((P1 [ P2); B)); the

counting for Customer and Demographics, and for all tables in Phase II, remain the same. Again, if we

distribute the join over the union, we would no longer decentralize the computation, and the CPU and I/O

costs would be the same as a centralized situation (except that the load would be shared).
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Heuristic 8 Avoid distribution of join over unions, when it prevents further decentralization.

Use of Memsaving

All of the above heuristics deal with rewriting at the logical level. For any of the expressions, we can

choose an I/O saving or Memory saving strategy. Because the I/O saving scans the large table only once, we

should expect that it would perform better than the Memory saving approach. As pointed out in [18], the

Memory saving approach is always cheaper than the centralized approach, while the I/O saving approach is

not guaranteed to be better { especially under situations that cause many false candidates, such as merging

many tables in one step. So, while the I/O saving can provide better savings in certain circumstances, the

Memory saving is a safe bet when we do not know the percentage of false candidates.

Heuristic 9 When no estimates are available, and there are more than 3 primary tables, use n-way Memory

saving merge, instead of I/O saving.

7.2 Developing a Heuristic Plan

The above Heuristics deal mainly with options at the logical plan. Exceptions are Heuristics 1 and 9. One

way of selecting the best heuristic strategy is to enumerate all possible plans (as discussed in Section 6.5.1),

and to use our heuristic rules above to choose in the space of plans. We showed in Section 6.5.1 how the

number of possible plans is large, and therefore, the complete enumeration should be avoided. Instead, we

indicate a way to develop a plan based on our heuristic rules such that the total time to create the plan is on

the order of the number of tables. Our algorithm constructs a mining tree that eÆciently merges only related

tables. We make the simplifying assumption that each primary key is a foreign key in only one table.5

First, we create a tree, called schema tree, with n nodes, where each node corresponds to one table,

and n � 1 edges, where each edge corresponds to a foreign key relationship. Usually, one of these nodes

corresponds to a table whose primary key is not a foreign key in any table (e.g., the fact table in a Star

schema); let this node be the root node.6 We associate two labels to each node of the schema tree:

� table: the table in the schema that the node represents, and

� expression: the join expression that joins all tables in the sub-tree.

We associate two labels to each node of the mining tree:

� expression: the algebra expression generated, and

� link: the sub-tree in the schema tree which corresponds to the expression.

The mining tree is initialized with a root node with expression FI(T; I)s { i.e., the FI expression that

applies to the join of all tables in the database, and link referencing the root node of the schema tree. Then,

applying Equivalences 1 and 2, we decentralize the computation by breaking the FI expression into smaller

FIs and one CI (the CI merges all the sub-expression in the FIs). We use the information in the schema

tree to decentralize the FI expression such that each sub-tree in the schema tree corresponds to one FI .

Then, we recursively decentralize each of the FIs generated; the recursive function Decentralize is depicted

in Figure 7.2.

5If a primary key for table Ti is a foreign key to more than one table, say Tj1 ; : : : Tjn , and if more than one Tjk is in the
natural join, there will be more than one instance of Ti in the join { one instance for each Tjk in the join. Our algorithm would
treat each instance of Ti as a separate table.

6When such a table for the root node is not available, we consider the table to be the one where the number of records
corresponds to the number of records in the �nal joined table T . See Section 4.5 for details on schema with such characteristics.

23



Decentralize (node t)

01) if t:link is null
02) return;
03) if t:link is a leaf node
04) return;

05) create c a child of t;
06) c:expression = FI(t:link:table);
07) c:link = null;
08) t:expression = CI(t:link:table);

09) for each i child of t:link do
10) create d child of t;
11) d:link = i;
12) d:expression = FI(i:expression);
13) d:table = i:table;
14) add d:expression to argument of CI in t:expression;
15) endfor

16) for each i child of t do
17) Decentralize(i);
18) endfor

19) return;

Figure 4: Decentralizing computation in the mining tree.

The above algorithm creates a decentralized plan with n FIs: one for each table (or the union of

horizontal partitions of a table). This way, distributing the joins over unions (Heuristic 8), and a large FI

term (Heuristics 4) are avoided. Because no tables are prejoined, Cartesian products (Heuristic 3), and joins

containing a table with only key attributes (Heuristic 2) are also avoided. Only tables that are directly

related by foreign keys are prejoined (Heuristic 6). The mining tree can be further pruned by removing FI

terms in which the �rst argument is a table with only key attributes, since such FIs evaluate to the empty

set; also, such tables should be removed from any CI terms.

The next step is to consider particular implementations at the physical level. As mentioned previously,

the Pairwise merge of n tables can be seen as the same logical plan of an n-way merge, except that extra

pruning is done. By using Heuristic 7, we convert all of the CI terms with more than 2 tables to Pairwise

merges. The other particulars, such as computations of weight vectors (using Heuristic 1) and choice of I/O

saving vs. Memory saving (using Heuristic 9) can be relegated to the phase of mapping the mining tree to

particular algorithms. Furthermore, if cost estimates are available, a given sub-tree could be substituted by

an FI if the join of the leaves in this sub-tree was pre-computed and materialized, if a centralized approach

to this sub-tree was less expensive than the decentralized approach.

7.3 Heuristics Applied

Figure 5(a) shows the schema tree, and Figure 5(b) shows the construction of the mining tree by applying

our heuristic algorithm to our example from Section 2.1.
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Figure 5: Creation of the mining tree.

Since ItemsBought contains only key attributes, we prune the mining tree from Figure 5, and arrive at

the �nal mining tree depicted in Figure 6(a). Notice that we arrive at expression (10) since our transformation

algorithm does not consider any prejoins. As mentioned previously, if a cost analysis suggests that the prejoin

is more eÆcient, the sub-tree rooted by CI(fD 1 Cg) could be changed to one node, FI(D 1 C), as shown

in Figure 6(b).

Our heuristics deal mainly with approaches for reducing I/O (except for Heuristic 9). Heuristic 8 also

deals with communication costs, since by distributing joins over unions, an increase in synchronization needs

(e.g., after every iteration) is likely to occur, and therefore, communication costs increase. Notice that

our heuristics reduce the size of the scanned tables (both in the number of records and columns), therefore

reducing CPU costs associated with the subset operation (which depends on the number of columns). There-

fore, although heuristics could be developed to deal with CPU cost reduction speci�cally, our heuristics are

already helpful in this regard.

8 Empirical Validation

Our primary goal is to provide algorithms that run against decentralized data, thereby avoiding the sometimes

infeasible (or expensive) computation of joins and their mining thereafter. Our intent is not in merely

improving the eÆciency of existing algorithms. Nevertheless, it is desirable for our decentralized approach

to be no worse than the traditional approach to the frequent itemset counting. Bene�ts from our approach
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Figure 6: Final mining trees.

include not only time savings, but also in cases where applying the centralized approach is infeasible (e.g.,

when there is insuÆcient space available to store the joined tables). Since the choices for decentralized

mining are numerous as explained in Section 5, we also assess our heuristic approaches to choosing better

performing plans.

In this section, we evaluate our decentralized approach as compared to a typical centralized approach to

�nding frequent itemsets. Among the centralized algorithms developed for frequent itemset counting, the

Apriori algorithm with its variations have been the most successful and widely used. We chose to compare

empirically our decentralized approach with the typical centralized Apriori approach. We recognize that

other centralized algorithms have been suggested, and in certain situations, they outperform the Apriori.

Therefore, we include a discussion on how several other centralized algorithms compare with our decentralized

approach.

8.1 Experimental Setup

Association rules algorithms for categorical and numerical data (e.g., [26, 6]) have been evaluated using data

such as census data. This data is centralized in one table since most of the algorithms for counting frequent

itemsets deal only with one central table, and therefore is not suited for testing our approach. Instead,

we based our dataset on the TPC-D benchmark [30] which reects the decentralized schemas typical in a

data warehouse. The schema in the TPC-D benchmark7 which is is depicted in Figure 7. A line connecting

two tables indicates a foreign key relationship, with the arrow indicating the direction of the many to one

relationship.

To incorporate customer buying patterns we discarded the LineItem table provided in the benchmark,

and replaced it with the transactions generated by the IBM Almaden synthetic generator [5]. This generator

produces transactions that mimic those in the retailing environment, and assumes that people tend to buy

sets of items together. Transactions sizes, as well as length of frequent itemsets, are clustered around a mean

{ with a few transactions and frequent itemsets having a larger number of items. We performed several

experiments, and we describe the generation of the relationship table in each of the di�erent scenarios we

considered.

7Tables Nation and Region are considerably smaller than the other tables, so we only considered table Nation and left out
Region.
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Figure 7: TPC-D benchmark schema.

Also, consider the data generated for the non-key attributes in the TPC-D Benchmark. For the table

Customer, for example, the original attributes8 were:

� customer id: primary key of table Customer

� customer name: string containing Customer and the customer id.

� address: string with 10 to 40 characters.

� nation key: foreign key to table Nation.

� phone: 10 digits number.

� account balance: real number.

� market segment: categorical value: 1, 2, 3, 4, or 5.

� comment: string with at most 59 words.

To generate more attributes on which to perform the mining, we created new attributes based on those

generated from the TPC-D Benchmark. As an example, the attribute comment from the Customer table

was divided into six attributes. Below, we describe how we generated a few of these attributes, and how

they corresponded to the attributes of the Customer table.

� education level: Given by the ASCII value (modulo 5) of the �rst character in the comment �eld. As

a result, the �eld education level has �ve possible values.

� age: Given by 15 added to the number of words in the comment �eld to obtain customers' age range

from 15 to 74.

8For details on how each of these attributes were generated, refer to the TPC-D Benchmark description document [30].

27



� gender: Given by the ASCII value (modulo 10) of the last character in the comment �eld; the value is

split into two categories: 0..3 corresponding to male, and 5..9 corresponding to female.

To run the frequent itemsets counting algorithms, the attributes were discretized (i.e., transformed into

items). For example, the gender attribute of the Customer table corresponded to 2 items: one representing

\male", and the other representing \female". Quantitative attributes, such as total price in table Orders,

were less trivial to discretize. Note, when dealing with real data, such discretization is done as a �rst pass

of the algorithm (e.g., as described in [26]) without incurring much extra time. Since the discretization of

attributes is not the focus of our work, we pre-discretized all attributes to have the data in an item format

when running our tests.

In Figure 8 we describe the characteristics of the tables after the generation and discretization of all

the necessary attributes. Henceforth, references to tables in the TPC-D Benchmark in this document imply

these �nal tables.

Table key attrs non-key attrs items records size (in Mb)

Customer 2 13 61 150,000 9,000
Nation 2 6 22 25 0.8
Orders 2 13 51 1,500,000 90,000
Part 1 20 94 200,000 16,800
Partsupp 3 8 32 800,000 35,200
Supplier 2 12 56 10,000 560

Figure 8: Characteristics of resulting tables.

Our experiments were performed using a 200 MHz Pentium Pro machine with 256 Mbytes of RAM,

running Linux. We implemented the basic I/O saving and Memory saving approaches, and many of the

variations described in Section 4. We ran extensive evaluations, among which we selected a few representative

experiments. The experiments are described in two sections. The �rst set of experiments show the feasibility

of our decentralized algorithms, and the runtime improvement achieved. The second set of experiments

evaluates our general approach of enumeration, and the selection of best strategies. Thereafter, we discuss

comparisons of our decentralized techniques to mining algorithms other than the Apriori.

8.2 Decentralized Algorithms

We describe here the results of the tests performed on three di�erent schemas. The schemas are in increasing

order of complexity. We also include scalability results for increasing the number of records in the relationship

table.

8.2.1 Two Primary Tables

The data schema (depicted in Figure 9) used in this experiment was composed of three tables:

� Customer: \Customer" table from the TPC-D Benchmark.

� Product: \Part" table from the TPC-D Benchmark.

� ItemsBought: Table containing two attributes: c id (foreign key to Customer table) and p id (foreign

key to Product table).

The ItemsBought table was generated using the Almaden synthetic generator with the following param-

eters:
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Customer Product

ItemsBought

Figure 9: Two primary tables schema.

� number of transactions: 150,000 (corresponding to 150,000 customers)

� transaction length: 40 (each customer purchases, on average, 40 products)

� number of items: 200,000 (corresponding to 200,000 products)

The sizes of the tables Customer and Product were as shown in Figure 8. The table ItemsBought

contained 5,949,147 records and was approximately 40 Mbytes in size. The table obtained by joining all

three tables, therefore, also had 5,949,147 records with 33 non-key attributes, and was approximately 833

Mbytes in size.

We now use our algebra presented in Section 5 to enumerate di�erent processing alternatives. For ease

of exposition, henceforth we use C to refer to table Customer, P to refer to table Product, and B to refer

to table ItemsBought. We omit the project notation for the second argument of FI and CI . Our goal is to

�nd the frequent itemsets in the joined table T = C 1 B 1 P .

Processing alternatives at the logical level:

1. FI(T; I)

2. FI(C;B) [ FI(P;B) [ CI(fC;Pg; B)

For alternative (1) there is only one option at the physical level: compute the joined table T and run

Apriori on T . For alternative (2), we �rst computed the weight vectors and ran modi�ed Apriori on separate

tables Customer and Product. However, there are many ways in which we could implement the merge

physically (see Section 4 for details regarding di�erent merging plans).

For I/O saving with support value 20%, there was suÆcient memory to read in both primary tables,

and to pre-compute all frequent itemsets per record (FIPR) for each primary table. Furthermore, since

ItemsBought is ordered by c id, it was possible to read in the Customer table in blocks, thereby saving

memory without signi�cant overhead in the computation of the FIPR for table Customer. Given that

we wanted to experiment with situations where there is insuÆcient memory to pre-compute all FIPRs, or

enough disk space to save the pre-computed FIPRs, we simulated di�erent scenarios. We tested the following

implementations for I/O saving:
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� io: Customer read in blocks; Product FIPRs stored in memory.

� io-n: Customer FIPRs and Product FIPRs stored in memory.

� io-dC: Customer read on demand; Product FIPRs stored in memory.

� io-dP: Customer read in blocks; Product read on demand (no pre-computation of FIPRs).

� io-dCP: both tables read on demand (no pre-computation of FIPRs).

� io-fC: Customer FIPR computed and read on demand; Product FIPRs stored in memory.

� io-fP: Customer read in blocks; Product FIPRs computed and read on demand.

� io-fCP: both tables' FIPRs computed and read on demand.

We tested the same parameters for Memory Saving, resulting in the following tests: mem, mem-n, mem-

dC, mem-dP, mem-dCP (note that there are no FIPR in the Memory Saving merge). Furthermore, for

Memory Saving, we also considered the situation where the table T is prejoined: mem-j.

In Figure 10, we show the runtime for support level 20%. In the graph, we show separate shades for the

various stages. \Join" is the time taken to pre-compute the join (needed for approach mem-j and apriori).

\Apriori" is the time taken to run the Apriori algorithm on the joined table. \Phase I" is the time to compute

the weight vectors and run the modi�ed Apriori on tables Customer and Product. \Phase II" corresponds

to the time taken for the I/O or Memory saving algorithms.
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Figure 10: Time performance for FI(C 1 B 1 P; I) for support level 20%.

While all decentralized strategies outperformed the centralized approach, the best results were achieved

by the I/O saving strategy. Among the various implementations for the I/O saving strategy, those with FIPRs

computed multiple times for records of table Product (io-dP and io-dCP) presented the worst performance.

While storing pre-computed FIPRs in memory were the best strategies (io, io-n, and io-dC), storing them
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on disk and reading on demand (io-fC, io-fP, and io-fCP) did incur a signi�cant penalty in performance.

Similarly, reading records on demand did not have a large e�ect on the performance of the Memory saving

strategy.

We now examine results for di�erent support values: 30, 20, 15, 10%. Some costs remain the same

regardless of the support: computation of the weight vectors and materialization of the join. In Figure 11,

we compare the runtime for selected scenarios: io, mem, mem-j and apriori. The plot shows the runtime for

each scenario divided by the runtime taken by the Apriori for the same support value. The scenarios we plot

are: io, mem, mem-j and apriori.
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Figure 11: Time performance for FI(C 1 B 1 P; I) for di�erent support levels.

The times for Phase I and the computation of the join decreased as a percentage of the total time for

lower support values. While the relative performance of the Memory saving approach is worse for lower

support values, the I/O saving strategy continued to run at approximately 20% of the time taken by the

centralized approach. The best relative improvement was achieved for support 30%, with the I/O saving

running an order of magnitude faster than the centralized approach. The reason is the small average size of

the FIPRs, since there were fewer frequent itemsets found in Phase I, resulting in fewer false candidates. For

the Memory saving, lower support values resulted in a larger fraction of frequent itemsets that span across

tables, which decreased the relative savings.

8.2.2 Star Schema

The data schema (depicted in Figure 12) used in this experiment was composed of four tables:

� Customer: \Customer" table from the TPC-D Benchmark.

� Product: \Part" table from the TPC-D Benchmark.

� Store: \Supplier" table from the TPC-D Benchmark.
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� ItemsBought: Table containing three attributes: c id (foreign key to Customer table), p id (foreign

key to Product table), and s id (foreign key to Store table).

Product

Store

Customer

ItemsBought

Figure 12: Star schema.

The �rst two attributes of the table ItemsBought were generated using the Almaden synthetic generator

with the same parameters used in Section 8.2.1. An s id was randomly assigned to each (c id; p id) pair. The

table obtained by joining all three tables had 5,949,147 records, 45 non-key attributes, and was approximately

1.1 Gbytes in size.

Again, we use our algebra presented in Section 5 to enumerate di�erent processing alternatives. For ease

of exposition, we use S, C, P , and B to refer to tables Store, Customer, Product and ItemsBought. Our

goal is to �nd the frequent itemsets in the joined table T = S 1 C 1 B 1 P .

Here, we considered the Apriori, 3-way merge, and Pairwise merge strategies:

1. FI(T; I)

2. FI(S;B) [ FI(C;B) [ FI(P;B) [ CI(fS;C; Pg; B)

3. FI(S;B) [ FI(C;B) [ FI(P;B) [ CI(fS;Cg; B) [ CI(fS; Pg; B) [ CI(fC;Pg; B) [ CI3(fS;C; Pg; B)

In Figure 13 we show the runtime for each of the strategies for support value 30%. The time shown in

the graph for each plan is as follows:

1. Apriori. The total time is divided into: computing join T = S 1 C 1 B 1 P , and Apriori (running

original centralized algorithm on T ).

2. 3-way merge. The total time is divided into: Phase I (computing the weight vectors and running

modi�ed Apriori on C, P , and S), and Phase II (merging step). We considered the following merge

strategies: I/O saving, Memory saving, and Memory saving on the joined table T .
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Figure 13: Time performance for Star schema for support level 30%.

3. Pairwise merge. The total time is divided into: Phase I (computing the weight vectors and running

modi�ed Apriori on C, P , and S), and Phase II (merging step). Phase II in this case is divided into

four parts: three 2-way merges: one for each pair of tables, and one 3-way merge of the results. We

considered only the I/O saving strategy for the 2 table merges (since by the previous example, I/O

saving works better for two tables), and all three of the merge strategies for the 3 table merge.

All decentralized strategies outperform the centralized approach. In fact, the Pairwise I/O and Memory

saving strategies perform in less time than the computation and materialization of the join that precedes

the centralized Apriori approach.

In Figure 14, we show the runtime for support value 20%. Most decentralized strategies continue to

outperform the centralized approach. The only decentralized strategy that is worse is the 3-way I/O saving

merge. The reason is, for this support value, the number of FIPRs is high resulting in an expensive counting

step (when we count the Cartesian product of FIPRs). Clearly, the aim would be to avoid choosing such an

approach to e�ect the mining, and accurate data statistics together with our heuristic approach would help

do so (see Section 8.3).

In Figure 15, we show the time taken by each strategy (except 3-way I/O saving) relative to the time taken

by the centralized Apriori approach for support values 30, 20, and 15%. As the support value, decreases, the

length of the FIPRs increases, resulting in a more expensive counting step. The size of the FIPRs a�ect the

relative performance of any I/O saving merge (Pairwise or 3-way). We also notice that, for this data set, like

in the previous section, lower support values increase the percentage of cross-table itemsets, which decreases

the relative performance of the 3-way Memory saving approach. For the Pairwise Memory saving, reducing

the support does not negatively a�ect the relative performance of the Pairwise Memory saving since the

percentage of itemsets across all three tables does not signi�cantly increase.

Finally, we point out the main di�erence between then Memory saving and Memory saving with the table

joined up front: the former composes a join \on the y". While Memory saving is an acceptable strategy

for this data set, it might not be for complex, expensive joins. However, even for complex, expensive joins,
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Figure 14: Time performance for Star schema for support level 20%.
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Figure 15: Time performance for Star schema for di�erent support levels.
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we expect the relative performance of the I/O saving and Memory saving joined to be similar to the one

exhibited for this data set.

8.2.3 Snow Flake Schema

The data schema (depicted in Figure 16) used in this experiment was composed of four tables:

� Customer: \Customer" table from the TPC-D Benchmark, with an added attribute: s id (foreign key

to table Store).

� Product: \Part" table from the TPC-D Benchmark.

� Store: \Supplier" table from the TPC-Benchmark.

� ItemsBought: Table containing two attributes: c id (foreign key to Customer table) and p id (foreign

key to Product table).

Customer
Store

Product

ItemsBought

Figure 16: Snow Flake schema.

The table ItemsBought is the same as used in Section 8.2.1. We assumed that all products are sold

in every store, and that each customer shops at one store only. A store was randomly assigned to each

customer (given by the attribute s id). The table obtained by joining all three tables had 5,949,147 records,

45 non-key attributes, and was approximately 1.1 Gbytes in size.

The main di�erence between this data schema and the previous one in Section 8.2.2, is the direct relation-

ship between the primary tables Customer and Store. In such a scenario, prejoining some primary tables in

a decentralized approach might be a good idea. This schema is similar to the one given in Section 2.1. The

possible decentralized alternatives were listed in Section 5.4, the only di�erences are the table Store instead

of table Demographics, and the table ItemsBought is not horizontally partitioned. Therefore, we have at

least nine di�erent alternatives at the logical level (we do not consider the one where we distributed the join

over the unions, since ItemsBought is not horizontally partitioned).

Processing alternatives at the logical level we examined were:
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1. FI(T; I)

2. FI(S;C 1 B) [ FI(C;B) [ FI(P;B) [ CI(fS;C; Pg; B)

3. FI(S;B) [ FI(C;B) [ FI(P;B) [ CI(fS;Cg; B) [ CI(fS; Pg; B) [ CI(fC;Pg; B) [ CI3(fS;C; Pg; B)

4. FI(S 1 C;B) [ FI(P;B) [ CI(fS 1 C;Pg; B)

5. FI(S;C 1 B) [ FI(C;B) [ CI(fS;Cg; B) [ FI(P;B) [ CI(fS 1 C;Pg; B)

The only prejoin that we consider, plan (4), is the prejoin of tables Customer and Store since the tables

are directly related. Also, the only combination (combined merge strategy), plan (5), combines Customer

and Store, again for the same reason. Prejoins of tables that are not directly related is discussed in the next

section. When computing CI(fS;Cg; B) in plan (5) we make use of the direct relationship between tables

Store and Customer, and use the weight vector computed for Customer.
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Figure 17: Time performance for Snow Flake schema for support level 30%.

In Figures 17 and 18 we show the runtime for each of the strategies for support value 30 and 20%,

respectively. We refer to each one of the plans as: (1) Apriori; (2) 3-way merge; (3) Pairwise merge; (4)

Prejoin merge; and (5) Combined merge. The time shown in the graphs for the �rst three plans is in the

same format as for the previous section. The time for the other two plans is as follows:

4. Prejoin merge. The total time is divided into: computing join S 1 C, Phase I (computing the weight

vectors and running modi�ed Apriori on S 1 C and P ), and Phase II (merging step). Again, we

consider all three merge strategies.

5. Combined merge. The total time is divided into: Phase I (computing the weight vectors and running

modi�ed Apriori on C, P , and S), and Phase II (merging step). We consider only the I/O saving

strategy (since Memsaving is basically the same as in plan (4)).
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Figure 18: Time performance for Snow Flake schema for support level 20%.

As shown in both graphs, the best times are achieved by either prejoining or combining tables Customer

and Store. As in the star schema, the 3-way I/O saving merge does not perform well when the size of FIPRs

increase.

Relative results of selected scenarios with di�erent support values is shown in Figure 19. The relative

performance of the two best strategies, Prejoined and Combined I/O saving (overlapping in the graph),

scales well with the increase in size of the FIPRs (i.e., with lowering of support values). In fact, it presents a

similar scale-up as the case of two primary tables (see Figure 11), which was expected since either prejoining

or combining two tables up-front results in a �nal 2-way merge, as opposed to a 3-way merge.

8.2.4 Results for Scalability with Database Sizes

To determine how the decentralized strategies scale with the size of the database, we ran tests for the schemas

in Section 8.2.1 and Section 8.2.2 for di�erent sizes of ItemsBought. Figures 20 and 21 show the time taken

by the I/O saving, Memory saving, and centralized Apriori strategies for the schema with two primary tables

(Section 8.2.1) for support levels of 30% and 20%, respectively. The Apriori algorithm was already known to

scale linearly with the table size [4]. The graphs show that our decentralized algorithms also scale linearly,

and as indicated by the slopes in the graphs, our decentralized algorithms scale better.

Figures 22 and 23 show the time taken by the 3-way I/O saving merge, 3-way Memory saving merge,

Pairwise I/O saving merge, and centralized Apriori strategies for the schema with 3 primary tables (Sec-

tion 8.2.2) for support levels of 30% and 20%, respectively. Again, our graphs show that our decentralized

algorithms scale linearly with the number of records. For support value 20%, the I/O saving algorithm takes

more time than the Apriori algorithm. This was expected since we observed that, for higher dimensions

(in this case, three), the algorithm is sensitive to the number of candidates, which is inversely related to

minimum support.
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Figure 19: Time performance for Snow Flake schema for di�erent support levels.

8.3 Choosing among Alternatives

In this section, we evaluate our method of enumerating the possibilities and choosing the best alternative.

We look at two examples: the Customer-Product-Store schema discussed in Sections 8.2.2 and 8.2.3, and

the schema based on the TPC-D benchmark shown in Figure 7.

8.3.1 Star and Snow Flake Schemas

For both the Star and Snow Flake schemas given in Sections 8.2.2 and 8.2.3, respectively, the centralized

strategy was FI(T; I), where T = S 1 C 1 B 1 P . When developing decentralized plans in this section, we

refer to the Star schema, but note that the same plans also apply to the Snow Flake schema.

In Section 8.2.2, we used three di�erent plans for the Star schema given: centralized Apriori, decentralized

3-way merging, and decentralized Pairwise merging. As discussed in Section 5, by applying the re-write rules

to the original expression FI(T; I), we could arrive at several di�erent decentralized expressions (more than

the those given in Section 8.2.2). We could have 1, 2, or 3 FIs in our expression, corresponding to Apriori,

Prejoined or Combined merge, and 3-way merge. Therefore, the total number of possibilities, at the logical

level is at least:

1 + 2�

�
3
2

�
+

�
3
3

�
= 8

Furthermore, using equivalence 3 from Section 5, we also have the possibility of a Pairwise merge. At

the logical level nine processing alternatives we arrive at are:

1. FI(T; I)

2. FI(S;B) [ FI(C;B) [ FI(P;B) [ CI(fS;C; Pg; B)

3. FI(S;B) [ FI(C;B) [ FI(P;B) [ CI(fS;Cg; B) [ CI(fS; Pg; B) [ CI(fC;Pg; B) [ CI3(fS;C; Pg; B)

4. FI(S 1 C;B) [ FI(P;B) [ CI(fS 1 C;Pg; B)
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Figure 20: Scalability experiment using two primary tables schema (of Figure 9), and with support 30%.
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Figure 21: Scalability experiment using two primary tables schema (of Figure 9), and with support 20%.
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Figure 22: Scalability experiment using Star schema (of Figure 12), and with support 30%.
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Figure 23: Scalability experiment using Star schema (of Figure 12), and with support 20%.
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5. FI(S 1 P;B) [ FI(C;B) [ CI(fS 1 P;Cg; B)

6. FI(C 1 P;B) [ FI(S;B) [ CI(fS;C 1 Pg; B)

7. FI(S;B) [ FI(C;B) [ CI(fS;Cg; B) [ FI(P;B) [ CI(fS 1 C;Pg; B)

8. FI(S;B) [ FI(P;B) [ CI(fS; Pg; B) [ FI(C;B) [ CI(fS 1 P;Cg; B)

9. FI(C;B) [ FI(P;B) [ CI(fC;Pg; B) [ FI(S;B) [ CI(fC 1 P; Sg; B)

For the physical level, we consider two merging strategies for plans 2 and 3 which are (a) I/O saving,

and (b) Memory saving. For the merge of two tables (plans 4-9, and a few terms in plan 3), we considered

only the I/O saving strategy (else there would arise too many plans: 16 implementations for plan 3 alone).

For the support values used, there was enough memory to store the FIPRs of the inner tables (i.e., tables

whose keys are not ordered in the relationship �le) for I/O saving, as well as to store the inner tables in the

case of Memory saving. Also, when computing the prejoin of two tables (plans 4, 5, and 6), we compute the

join with respect to table ItemsBought, since the Cartesian product of each pair of primary tables would

be larger than the join with respect to ItemsBought.

Figure 24 shows the time taken by each of the plans for support levels 30% and 20% for each of the

schemas. For plans 2 and 3, the times for both the I/O saving and Memory saving merge are shown. Note

that the graph version of results are in Sections 8.2.2 and 8.2.3.

Support 30 Support 20
Plan Star Snow Star Snow

Flake Flake

1 1453 1468 3548 3575
2(a) 560 544 7235 7559
2(b) 642 631 2486 2479
3(a) 276 243 1571 1464
3(b) 278 231 1473 1332
4 817 157 2058 958
5 1235 1255 3227 3270
6 1274 1306 3709 3797
7 257 154 1288 943
8 332 355 1845 1890
9 405 410 1869 1880

Figure 24: Run time (in seconds) for Star schema and Snow Flake schema.

The time taken by di�erent plans varies signi�cantly, and although most (all for support value 30%)

decentralized strategies outperform the centralized Apriori, we would like to choose the optimal plan. For

both schemas, plan 7 was the most eÆcient (I/O saving combination with Customer and Store being

combined), with a pair following close: plan 4 (prejoined Customer and Store) for the Snow Flake schema,

and plan 3 (Pairwise strategy) for the Star schema. Now we compare these results to the plans chosen by

our heuristic algorithm presented in Section 7.2.

First, consider the Snow Flake schema that, as pointed out in Section 8.2.3, is similar to the one given in

Section 2.1, only with table Store instead of table Demographics. In Section 7.3, we applied our heuristic

rules to the schema from Section 2.1 resulting in two plans: (9) computing the prejoin D 1 C, and (10)

merging in two steps by �rst merging D and C. The prejoin and combination of S (in place of D) and C

translate to plans 4 and 7 above, respectively. These two plans had approximately the same runtime and
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turned out to be the best strategies. The plan chosen based on our heuristic rules turned out to be the best

choice.

Now, consider the Star schema were our heuristic algorithm would produce a 3-way merge instead (since

all dimension tables would be a direct child of the fact table in the schema tree). Our heuristic algorithm

would avoid plans 4-6, therefore avoiding any prejoin (these plans are among the most expensive decentralized

plans), and plans 7, 8, and 9. Finally, using Heuristic 7, we modify the �nal mining tree by choosing plan 3

over plan 2. We notice that the �nal plan chosen by our heuristic rules leads us to the second best plan.

For both schemas, our heuristic approach chose eÆcient plans { if fact, the best one for the Snow Flake

schema. For the Star schema, although a second best plan was chosen, it was only about 14% more expensive

than the best plan for support 20%, and only 7% more expensive for support 30%. It is important to note

that, even without any cost estimations, the more expensive plans were avoided: plan 1 based on Heuristic 2,

plan 2(a) based on Heuristic 9, and plans 5 and 6 based on either Heuristic 3, or Heuristic 5.

8.3.2 TPC-D Schema

We now examine a more complex schema, the schema based on the TPC-D benchmark shown in Figure 7,

with a total of seven tables: Orders, Customer, PartSupp, Part, Supplier, and Nation from the TPC-D

Benchmark, and a relationship table that we generate for the purpose of this test, MyLineItem, containing

two attributes: o id (foreign key to Orders table) and ps id (foreign key to PartSupp table). For ease of

exposition, we refer to the tables by their �rst initial (with Ps for PartSupplier).

The MyLineItem table was generated using the Almaden synthetic generator with the following param-

eters:

� number of transactions: 1,500,000 { corresponding to 1,500,000 orders

� transaction length: 10 { each order has on average, 10 products

� number of items: 800,000 { corresponding to 800,000 (product,supplier) pairs

The size of the tables (except for MyLineItem) were given in Figure 8, and the table MyLineItem

contained about 14 million records, and was approximately 120 Mbytes in size. The table obtained by joining

all tables had the same number of records, had 92 non-key attributes, and was approximately 5.3 Gbytes in

size. Table Nation, which is referenced by both tables Customer and Supplier, has its attributes repeated

in the �nal joined table T (not necessarily with the same values). In a sense, it is as though there were two

tables for Nation since, in order to establish an association rule such as C:nation name) S:nation name,

the items referring to C:nation name should be distinguished from the items referring to S:nation name.

In what follows, we refer to table Nation as either Nation c (Nc) or Nation s (Ns) depending on whether

it is referenced by table Customer or Supplier, respectively.

In the previous example, with three primary tables there were 9 alternatives at the logical level. In

this case, with 7 tables there are many more possible alternatives and we examine a few representative

ones. In the following, we omit the second argument of the FI and CI notations (the weight table) for

clarity. We start by considering the centralized Apriori and a few decentralized plans resulting from applying

Equivalences 1, 2, and 3 to FI(T; I):

1. FI(T )

2. FI(O) [ FI(C) [ FI(Nc) [ FI(Ps) [ FI(P ) [ FI(S) [ FI(Ns) [ CI(fO;C;Nc; Ps; P; S;Nsg)

3. FI(O 1 C 1 Nc) [ FI(Ps 1 P 1 S 1 Ns) [ CI(fO 1 C 1 Nc; Ps 1 P 1 S 1 Nsg)
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4. FI(O 1 C 1 Nc) [ FI(Ps 1 P ) [ FI(S 1 Ns) [ CI(fO 1 C 1 Nc; Ps 1 Pg) [ CI(fO 1 C 1

Nc; S 1 Nsg) [ CI(fPs 1 P; S 1 Nsg) [ CI3(fO 1 C 1 Nc; Ps 1 P; S 1 Nsg)

5. FI(C 1 Nc) [ FI(O 1 L 1 Ps) [ FI(P ) [ FI(S 1 Ns) CI(fC 1 Nc;O 1 L 1 Ps; P; S 1 Nsg)

Many other plans could be generated, but for simplicity, we only consider the above �ve. We examine

possible implementations with their respective runtime for each of the plans.

Plan 1

The only option is to join the tables and execute the centralized algorithm. The runtime is shown in

Figure 25.

Plan Support 30 Support 20

1 14024 108776

Figure 25: Run time (in seconds) for plan 1.

Plan 2

For the 7-way merge, the I/O saving algorithm was impractical due to the size of the 7-dimensional array,

so we chose only the Memory saving approach, which had the runtime shown in Figure 26.

Plan Support 30 Support 20

2 11853 103232

Figure 26: Run time (in seconds) for plan 2.

Plan 3

There are many ways in which we could further split Plan 3, and we examine a few options. For the �rst

term, FI(O 1 C 1 Nc), we considered the following sub-plans:

(a) FI(O 1 C 1 Nc)

(b) FI(O) [ FI(C) [ FI(Nc) [ CI(fO;C;Ncg)

(c) FI(O) [ FI(C 1 Nc) [ CI(fO;C 1 Ncg)

(d) FI(O) [ FI(C) [ FI(Nc) [ CI(fC;Ncg) [ CI(fO; (C 1 Nc)g)

Similarly, for the second term, FI(Ps 1 P 1 S 1 Ns;L), we considered the following sub-plans:

(a) FI(Ps 1 P 1 S 1 Ns)

(b) FI(Ps) [ FI(P ) [ FI(S) [ FI(Ns) [ CI(fPs; P; S;Nsg)

(c) FI(Ps) [ FI(P ) [ FI(S 1 Ns) [ CI(fPs; P; S 1 Nsg)

(d) FI(Ps) [ FI(P ) [ FI(S) [ FI(Ns) [ CI(fS;Nsg) [ CI(fPs; P; S 1 Nsg)

(e) FI(Ps) [ FI(P ) [ FI(S 1 Ns) [ CI(fPs; Pg) [ CI(fPs; S 1 Nsg) [ CI(fP; S 1

Nsg) [ CI3(fPs; P; S 1 Nsg)

(f) FI(Ps) [ FI(P ) [ FI(S) [ FI(Ns) [ CI(fS;Nsg) [ CI(fPs; Pg) [ CI(fPs; S 1

Nsg) [ CI(fP; S 1 Nsg) [ CI3(fPs; P; S 1 Nsg)
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The third term, CI(fO 1 C 1 Nc; Ps 1 P 1 S 1 Nsg), can be implemented in di�erent ways, among

which we considered the following:

(a) I/O saving merge of 2 prejoined tables O 1 C 1 Nc and Ps 1 P 1 S 1 Ns

(b) Combined I/O saving merge, considering two prejoins: C 1 Nc and S 1 Ns

(c) Combined I/O saving merge with no prejoins.

The runtime for each of the above sub-plans is summarized in Figure 27. For the (b) plans of the �rst

two terms we considered both I/O and Memory saving implementations. For the others, we considered only

I/O saving.

FI(O 1 C 1 Nc)
Plan Support 30 Support 20

(a) 213 463
(b).io 169 1208
(b).mem 152 377
(c) 80 211
(d) 82 211

FI(Ps 1 P 1 S 1 Ns)
Plan Support 30 Support 20

(a) 204 801
(b).io 795 17279
(b).mem 232 810
(c) 160 2670
(d) 161 2297
(e) 85 379
(f) 88 382

CI(fO 1 C 1 Nc; Ps 1 P 1 S 1 Nsg)
Plan Support 30 Support 20

(a) 4554 43010
(b) 2935 46626
(c) 2933 43148

Figure 27: Run time (in seconds) for sub-plans of plan 3.

We call plan 3ijk the plan corresponding to sub-expression (i) of FI(O 1 C 1 Nc), sub-expression (j) of

FI(Ps 1 P 1 S 1 Ns), and sub-expression (k) of CI(fO 1 C 1 Nc; Ps 1 P 1 S 1 Nsg). For simplicity,

assume that the particular sub-plans dictate the implementation of the �nal CI . For example, when both

FI 's correspond to fully prejoined tables, CI will be a merge of two prejoined tables, but the �nal CI for

the plan composed of (d) and (f) will be a combined merge (since no tables were prejoined). By combining

all the sub-plans listed, we have a total of 24 (=4*6) alternatives for plan 3. Instead of showing the time to

all 24 possible logical combinations, we list a few in Figure 28.

Plan Support 30 Support 20

3aaa 4971 44274
3bbc.io 3897 61635
3bbc.mem 3317 44335
3ccb 3175 49507
3ceb 3100 47216
3ddc 3175 45655
3dfc 3103 43741

Figure 28: Run time (in seconds) for plan 3.

Plan 4
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This plan contains 3 FI 's merged pairwise. We considered a few strategies for implementing the �rst

three terms, the FI 's. The �rst term is the same as the �rst term in Plan 3, so we can have any of the

4 sub-plans listed above for the �rst FI in Plan 3. For the second and third terms, we considered: (a)

prejoin the tables, and (b) perform I/O saving merge. For the CI terms, we only considered the I/O saving

merge. By combining all sub-plans, we have a total of 16 (=4*2*2) logical plans, and we list a few of them

in Figure 29.

Plan Support 30 Support 20

4aaa 3474 79069
4bbb 3382 78917
4cba 3310 78750
4dbb 3312 78750

Figure 29: Run time (in seconds) for plan 4.

Plan 5

For the FI terms in this plan, we considered only two possibilities: (a) tables in each FI are prejoined,

and (b) tables in each FI are merged with the I/O saving strategy (excluding the third FI which has only

one table). For the CI term, we considered:

(a) 4-way I/O saving merge strategy, and

(b) 3-way I/O saving merge with the combination of tables P and S 1 Ns, i.e., CI(fP; S 1 Nsg) [

CI(fC 1 Nc;O 1 L 1 Ps; P 1 S 1 Nsg).

A selection of possible plans for Plan 5 with their runtime is listed in Figure 30 (for the 4-way merge we

only list the runtime for support 30%).

Plan Support 30 Support 20

5aa 267635 -
5ab 25881 948886
5ba 266624 -
5bb 24870 947270

Figure 30: Run time (in seconds) for plan 5.

This is by far the less eÆcient of all the plans presented. The main reasons for this are:

1. High dimensionality: 4-way merge (the most expensive), and

2. Computing FI(O 1 L 1 Ps) is expensive because O and Ps do not have common attributes other

than through the fact table L, resulting in an expensive FI term, and a CI term that merges very

long tables (since O 1 L 1 Ps has as many records as the �nal joined table T ).

Heuristic algorithm

We now revisit our heuristic algorithm presented in Section 7.2. Figure 31(a) shows the schema tree for

the TPC-D schema and Figure 31(b) shows the resulting mining tree after applying the algorithm. For the

3-way merge, the expression is converted using heuristic 7 arriving at a Pairwise merge. In the absence of

particular heuristics to decide the implementation of each of the merges, the way in which the FI 's were

computed dictate the merging process. In this case, the plan did not have any prejoins, therefore, we used

a combined merge.
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Figure 31: Schema and mining tree for TPC-D schema.

The heuristic plan corresponds to plan 3dfc which was the best plan for support 20%, and the second

best plan (within 1%) for support 30%. If cost estimates are available, they can be used in places where our

heuristics do not help: e.g., deciding whether to prejoin any of the sub-trees. Notice that the optimal plan

for support 30% has 2 prejoins: C 1 Nc and S 1 Ns.

8.4 Other Centralized Algorithms

Many suggested algorithms for frequent itemset counting use the Apriori idea (e.g., see [22, 24, 6, 35]). The

improvements fall into two categories: I/O related, where the number of scans can be reduced depending on

the distribution of data values, or computation related, where a di�erent internal data structure is suggested

to improve the checking of candidates. In either case, the improvement of the algorithm corresponds to the

reduction in the number of candidates.

Note that our Memory saving merge strategy can use the same algorithm, or data structure, as used

in any Apriori-like centralized approach { with the added advantage accrued from decentralized counting,

whereby the number of candidates are further reduced. Therefore, any Apriori-like centralized algorithm has

an equivalent Memory saving merge strategy, with expected savings comparable to the ones shown in this

section.

While the Apriori algorithm (and its many variations) has been very successful and performs well for

various datasets, a few algorithms that are not simple extensions on the Apriori approach have been proposed.

Below, discuss a few of these algorithms, and how they compare to a decentralized approach in the following.

8.4.1 Column-wise

A column-wise approach for �nding frequent itemsets [10, 35] has been examined, which is similar to the

Apriori approach in that the candidate set is generated and then checked against the database. However, it

di�ers signi�cantly in the way the data is accessed and processed since the database is processed one column

at a time, instead of one record at a time. Dunkel and Soparkar [10] have shown this approach to work

signi�cantly better than a record-wise approach when the data has a considerably large number of columns

as compared to the number of records. In this case, even if the data is originally stored in a record-wise

format, it could be better to transform the data into a column-wise format and then run the column-wise

algorithm.
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When the number of records is signi�cantly greater than the number of columns, the advantage of a

column-wise algorithm no longer holds. While it is typical to have a signi�cantly larger number of records

than columns in a data warehouse, if the data is already in a column-wise format (for reasons other than

data mining, for example), it could still be advantageous to perform column-wise mining.

8.4.2 FP-growth

The FP-growth approach proposed by Han et al. [15] avoids the general Apriori-like candidate set generation-

and-test approach. The FP-growth approach was shown to outperform the Apriori algorithm for very low

support values. The main idea behind this approach is a highly compressed data structure which holds the

database in memory: the FP-tree. For all the datasets tested, the FP-tree structure �ts into main memory:

while an acceptable assumption for some datasets, it is not realistic for typical data warehouses with large

decentralized tables since the entire joined table would need to be stored in an FP-tree structure. Therefore,

multiple scans could be necessary, and the advantage of the FP-growth approach would no longer hold.

Although discussions on how to implement a disk-resident FP-tree when the entire dataset does not �t into

main memory are presented, an in-depth study and experimental validation is needed for large datasets.

Where the FP-tree �ts in memory, we suggest a decentralized approach for FP-tree construction that could

provide savings when compared to a centralized FP-tree approach.

In the centralized FP-growth approach, the joined table T is scanned twice: �rst to determine the frequent

items, and second to construct the FP-tree. While the �rst scan could be combined with the creation of T ,

the joined table will still need to be scanned a second time to construct the FP-tree. The �rst scan, i.e.,

determining the frequent items, can easily be done in a decentralized way: individually at each table, as it is

done in our decentralized approach. The actual FP-tree construction takes O(r �m), where r is the number

of records, and m, the number of attributes [15]. If an FP-tree is constructed against a joined table T ,

both the number of records and number of attributes can be quite large. Instead, we can construct smaller

FP-trees for each individual table and then merge them, saving time for the construction of the FP-tree.

As an example, let us consider our schema from Section 2.1. Suppose we want to construct an FP-tree for

Customer 1 ItemsBought 1 Product. An FP-tree would be inexpensive to construct for the Customer

table since the number of records in Customer would typically be much less than the number of records in a

joined table. The records of Customer are inserted in the FP-tree the same way it is done in the centralized

case, except that every time a record is inserted, the end position in the tree is stored for that particular

record. After the FP-tree for Customer is built, the FP-growth algorithm is used to determine all frequent

itemsets that contain items from table Customer only. Next, the table ItemsBought is processed similarly

to our I/O saving merge strategy: one record of ItemsBought at a time. For each record in ItemsBought,

the record of Product is inserted at the position in the tree where the corresponding record of Customer

ends (the extra book-keeping that added to our FP-tree construction). By building the tree this way, the

cost of insertion is about half when compared to the centralized approach. I/O costs are also reduced since

the scan of the joined table can be much more expensive than scanning the ItemsBought and Product table

(especially if Product �ts into memory). Furthermore, when running the FP-growth algorithm to determine

the frequent itemsets, itemsets local to table Customer need not be considered since they have already been

counted.
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8.4.3 Sampling Techniques

Sampling techniques have been examined for the problem of computing frequent itemsets [29, 34] where

the database is considered to be one table, and a sample of the records in the table is selected and mined.

Typically, after the frequent itemsets have been computed for the sample, a scan of the entire dataset is

performed to validate the results. The sample is chosen to �t in main memory, an therefore, the algorithms

run eÆciently on the sample. It is advantageous to have a large enough sample to provide accurate results,

and yet small enough to �t in main memory. As shown by our experiments, counting itemsets in the in-

memory resident smaller dimension tables is fast when compared to counting itemsets against the large

joined table. It has been noted [34] that a small sample size may generate many false frequent itemsets (and

rules), and thus degrading the performance. Therefore, it would be advantageous to have a large enough

sample to provide accurate results, and yet small enough to �t into main memory.

Storing samples in a decentralized manner, as opposed to storing sample records of the joined table,

provides for a more compact representation of the same information. Consider a Star schema example.

Instead of sampling on the join of the fact table with the dimension tables (and therefore causing expensive

computation and storage requirements), a sample could be taken directly from the fact table. Depending on

the records in the sample, the corresponding records of the dimension tables would be retrieved, and also

stored in memory. By storing the tables decentralized in memory, we are able to store more records of the

fact table than records of the joined table. We can then apply our decentralized algorithms that do not

require the join to be computed. In this manner, we are able to increase the sample size, without penalizing

performance, to improve the accuracy of the �nal results. After the sample is mined, a scan of the entire

dataset is performed. As shown in our experiments, scanning a decentralized dataset provides for further

performance improvement.

In the case of decentralized data, sampling can also be used as a tool to estimate costs of di�erent

merging strategies. The merging strategy that performed best in the sample data can be used against the

entire dataset.

9 Decentralized Mining Extensions

There are several possible database designs, and other factors, that inuence our basic decentralized ap-

proach. We described various schema in which data was stored in typical tabular formats, and the tables

were joined via foreign key relationships (i.e., all joins considered were natural joins). In this section, we

examine di�erent join conditions (i.e., not natural joins). Furthermore, we consider use of indices (when

primary indices are unavailable), and also, utilizing pre-computed data cubes (summary data) in data ware-

houses. In our discussions below, we refer back to our example from Section 2.1.

9.1 Condition Based Joins

In contrast to natural joins, we now examine joins based on condition on attribute values in the tables; the

joining condition could be arbitrary (i.e., a �-join). There are important situations where the mining needs

to be e�ected on such joins (as exempli�ed below). When the join condition involves only a few attributes

from each table, we can apply algorithms that are similar to our semi-join based algorithms.
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9.1.1 An Example �-Join

As an example of condition based joins, consider a table created by the following SQL query:

SELECT P1.* P2.*

FROM Product P1, Product P2

WHERE P1.price > 2*P2.price

Each record in the above table was formed by two records of the table Product such that the price of one of

the products is more than twice the price of the other. Suppose we want to determine the frequent itemsets

in this table so that we can establish associations between attributes of products where the above condition

holds (i.e., one is twice the price of the other). Since there is no relationship table in this case, materializing

the join and applying the centralized Apriori algorithm may appear to be the best choice. On the other

hand, decentralized algorithms could be modi�ed to handle such joins. Note that when the join result is

small, a centralized approach may well be better for reasons of storage, etc. In the following discussion, we

assume that the join produced is large, thereby suggesting the use of decentralized approaches.

In computing the above join, available indices will be used. Assume that the table Product is ordered by

p id, and that there is a B-tree index on the attribute price. At the leaves of the B-tree index, we would have

the record id, p id.9 When materializing the join, whenever a pair of records match (i.e., two p ids satisfy

the join condition), both records in their entirety are read into memory, and the joined record is saved.

9.1.2 Decentralized Computation on Condition Joins

Instead, when a pair of records match, the approach could be just to save the matched pair of p ids. By

doing so, we essentially generate the relationship table, and thereafter, we could apply our decentralized

approach directly. In fact, weight vectors could be computed during this creation of the relationship table

(i.e., step 1 of Phase I). The computation and materialization of this relationship table is less expensive than

the computation and materialization of the join, and savings are also achieved by executing a decentralized

computation of frequent itemsets. In case indices are not available, we could take the relevant projections of

the tables (i.e., p id and price) in order to create the relationship table, similar to semi-join strategies [21]

{ whereas in the centralized approach, entire records need to be accessed.

When many attributes are involved in an arbitrary join condition, it could be diÆcult to apply an

algorithm based on semi-joins, due to the number of attributes involved (and the fact that indices might

not be available). In such cases, the savings in the computation of the relationship table might not be

much greater than computing the entire join. However, we still save in materialization costs, and this would

provide the option of running decentralized algorithms.

For both the cases (few or many attributes involved), other options may be considered. For example,

instead of generating a relationship table, to keep a list (for each record of a given table) which identi�es

matching records of the other table. This is a more compact form for the relationship table. This would

help in storage costs.

9In reality, the position of the record on disk could be stored at the leaves, but we assume in this case that the p id is stored,
and a further mapping from p id to physical location is available.
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9.2 Indices

Availability of indices does not especially inuence the choice between centralized and decentralized DM

approaches. One advantage that indices o�er for centralized approaches is in the computation of the joins [25].

Whenever an index helps in the computation of a join, the same index will help in the computation of a

relationship table, as shown in Section 9.1. In this section, we explore possibilities for uses of indices in the

decentralized approach when a relationship table is available (i.e., foreign key based decentralization). We

briey review some available indices, and explain how to take advantage of them.

9.2.1 Using Indices

We discuss the use of indices in three situations: (1) indices on the primary key of the primary table; (2)

indices on the foreign keys of the relationship table; and (3) indices on non-key attributes. In the following

discussions, we use the data schema presented in Section 2.1 as an example.

The savings achieved during the computation of joins in the centralized approach through the use of

available indices on primary or foreign keys, are usually also achieved in a decentralized approach. In some

cases, a decentralized approach can use the indices in multiple steps of the computation, providing additional

opportunity for savings. Our discussion is by no means comprehensive, and where warranted, we could resort

to computing the join table (therefore accruing the savings as in a centralized case) and use our Memory

saving strategy with the table prejoined.

9.2.2 Index on a Primary Key

Assume there is an index on the primary key values of a primary table, such as an index on p id for table

Product. This helps with joins, and as an example, an index-join [25] could be computed where, for each

record of ItemsBought, the corresponding records of tables Customer and Product are fetched. If both

tables Customer and ItemsBought were ordered by c id, then only one index for p id is needed since the

join of ItemsBought with Customer could be done by a merge-sort-join technique. As in the example of

Section 9.1, such an index is helpful when building the joined table for the centralized approach.

In our decentralized approach, indices are utilized at several points. In Section 9.1 we used the index

in the decentralized approach to compute the relationship table. We can also use an index in Phase II of

our approach where, when processing a record of the relationship table we need to access the corresponding

records of the primary tables. In a sense, we build a join of the tables without materializing it.

For the I/O saving merging technique, in some cases we pre-compute the frequent itemsets per record

(FIPR) for the primary tables (as pointed out in Section 4). In such cases, when processing a record of

the relationship table, we need to access the corresponding pre-computed FIPR, and not the record itself.

When pre-computing the FIPRs, we essentially build an index such that, given a record id, we can eÆciently

retrieve the corresponding FIPR. In this case, we use an index which has a similar e�ect as the originally

available index. Situations in which computing the FIPR index is impractical (e.g., when the primary table

is large, or we do not have enough space to store the index), we would resort to computing FIPRs on the

y, using the available index on the primary key.

50



9.2.3 Index on a Foreign Key

An index on foreign keys for a relationship table, such as on table ItemsBought for the search keys c id

andp id can also be used to speed up join computation. Such an index can be used both in the centralized

case, and in Phase II of the decentralized case. Here, we show how an index on the foreign keys can be used

in Phase I of the decentralized approach.

Computation of weight vectors, as explained in Section 4, requires a scan of the relationship table in

order to count the occurrences of each foreign key value. With a B-tree secondary index, say, on foreign

keys, the number of pointers (or record ids) for a given foreign key value equals the number of occurrences

of this foreign key value in the relationship table. Therefore, the weight vector for the primary table can be

computed by reading the information in this index instead of scanning the relationship table. This may be

especially useful in computing weight vectors for foreign keys which are not the ones on which a relationship

table is ordered. For a foreign key that is not the primary ordering for the relationship table, the computation

may access any position of the weight vector leading to blocks of the weight vector being brought in and out

of memory many times. In this situation, computing the weight vectors based on the index avoids such I/O

overhead.

The availability of indices on the relationship table can also provide further savings during Phase II.

For the I/O saving merge strategy, instead of processing each record of the relationship table, we could

use the indices on the relationship table to compute the cross table itemsets as follows. Suppose we are

counting frequent itemsets across tables Customer and Product. For each pair of (c id; p id), we retrieve

the corresponding index entries to determine the number of records of the relationship table where the pair

(c id; p id) occurs. This can be e�ected by computing the size of the intersection of the two sets of pointers

(or record ids). In a sense, we are computing a Cartesian product of the primary tables, and therefore, this

technique will work for data sets where the relationship table is substantially larger than the primary tables.

9.2.4 Non-key Attribute Indices

Various indices are used on non-key attributes to speed up computation of queries such as select queries.

Suppose, in our example, that we have an index on salary for table Customer, with two entries: one for

salary � 6000 and one for salary > 6000. When computing the frequent itemset on table Customer (step

2 of Phase I), we can determine the count of the items corresponding to the attribute salary by counting

the number of entries in each of the intervals (assuming that these intervals were found by a discretizer

algorithm). Note that each entire record still needs to be retrieved in order to count the other items in

the table. Therefore, indices may help if they are available for all attributes of interest: we are essentially

looking at the data \vertically" (i.e., for each item, we �nd a list of record ids where the item is present).

This is similar to a column-wise approach to mining [10]. In cases where we could bene�t for a column-wise

approach, indices on non-key attributes (assuming the data is in a record-wise format originally) would be

useful to transform the data into a column-wise format.

9.3 Data Warehouses

A data warehouse environment has data that is not updated frequently (although data may be periodically

added to the repository), and most of the activity relates to the computation of complex queries. It is possible

to use complex indices to speed up complex queries, and a few traditional index schemes have been suitably

adapted, as well as new index schemes have been proposed (e.g., see [20, 14, 32, 23, 7, 19]). In this section,

we review a few of these approaches and discuss how to utilize them in our decentralized computation.
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9.3.1 Value-List Index

A Value-List index for an attribute has, for each value of the attribute, a list of records (either pointers or

record ids) that contain the given attribute value. The index could be a B-tree or di�erent; these are covered

in Section 9.2.

9.3.2 Bitmap Index

A Bitmap index is similar to the Value-List index, except that for each attribute value, there is a bit string

length equal to the number of records. For each record that has the speci�c value for which the index was

built, the corresponding bit in the bit string is set to 1. Bitmap indices perform well when the range of values

for the attribute is small (i.e., search key with low cardinality). A separate bit string is required for each

attribute value, and in the case of natural joins, where the attribute of interest is the primary key (typically

with high cardinality), a straight bitmap index would be prohibitively expensive. In such cases, other types

of bitmap indices have been proposed such as encoded bitmap indices and bit-sliced indices [20]. Bit-sliced

indexing was shown to perform well for a certain class of queries, such as summation. We are interested

in count queries (in Phase I) and identifying a list of record ids for each attribute value (in Phase II), and

therefore, encoded bitmaps and bit-sliced indexing have only limited use in our decentralized computation:

they could simply be used in the same way as a value-list index.

9.3.3 Projection Index

A projection index [20] on an attribute of a table is the vertical partition of this attribute from the table (with

no duplicate removal). If a projection index is available for a foreign key in the relationship table, weight

vectors in Phase I could be easily computed by scanning each of the projection indices { each scan of an index

leading to one weight vector. If projection indices are available for non-key attributes of primary tables,

count of attributes could be performed directly by accessing the index. This is similar to the column-wise

approach [10].

9.3.4 Join Index

Join indices provide an index on one table for a quantity that involves a column value of a di�erent table

for commonly encountered joins [31]. For example, a Star Join index on the foreign key values contains, for

each value, a list of records (e.g., by record id) in each of the attribute tables which contain the value. In

fact, the relationship table in a Star schema is, e�ectively, a Star join index. Our approach as described in

Section 4 utilizes such an \index" (or foreign keys in the relationship table) during the merge phase.

9.3.5 Hierarchical Index

An indexing method, such as the hierarchically split cube forests [19], has an index tree built on one dimension

(say Product), and summary data stored at the Product level. Each Product value (i.e., p id in our case)

contains a separate index for the Customer dimension, and summaries at the Product � Customer level

are stored. The context for this index is summary data computation, and the summary data is typically

the summation of the values of an attribute. In our data schema, if we want summary information on qty

(quantity) of table ItemsBought, a query for \the total quantity of white shirts purchased by customers

living in area x" is eÆciently answered by an index look-up. This index is very similar to a pre-computed

data cube (in fact, it is an implementation of a data cube), and is discussed below.
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9.3.6 Data Cubes

OLAP applications rely on pre-computed aggregates across many dimensions (e.g., see [2]). The CUBE

operator [13] supports such multiple aggregates in data warehouses in order that OLAP queries are answered

eÆciently. The operator computes group-bys corresponding to all possible combinations of a list of attributes.

An example data cube for our data schema from Section 2.1 is as follows:

SELECT c_id, p_id, count(*)

FROM ItemsBought

CUBE-BY c_id, p_id

The above query results in the computation of three group-bys. Let us now examine what each of these

group-bys mean in our example. A group-by on c id indicates the number of entries in the table ItemsBought

for each speci�c value of c id. Referring to Section 4.2, observe that this is the de�nition of a weight vector

for table Customer. Similarly, the group-by on p id for table Product describes a weight vector. A group-by

on c id; p id indicates the number of entries in table ItemsBought for each speci�c combination of values

c id; p id.

Now, in our decentralized approach, Phase II processes each record of table ItemsBought. Considering

the �rst two entries of table ItemsBougth in Figure 1, both are seen to have c id = 100 and p id = A. By

having the described cube pre-computed, we would know that the pair (100; A) has a count of two. For

both merging strategies (I/O saving and Memory saving), we can exploit this information by counting each

candidate corresponding to the pair (100; A) once by an increment of two, instead of counting twice. This is

similar to the adapted merging scheme used for Snow Flake schemas presented in Section 4.4. Also, assuming

that the average count value for this particular group-by on c id; p id is 10, we have the CPU processing costs

reduced by a factor of 10 as compared to the merging strategy used to process the entire table ItemsBought.

For I/O costs, similar savings accrue since, instead of scanning the entire table ItemsBought, we only need

to scan the computed cube. The cost savings using a data cube are even better than our basic decentralized

approach.

For a data schema with more than two foreign keys in the relationship table, a similar approach can be

used. As an example, let our original data schema from Section 2.1 have one additional attribute on the

ItemsBought table as follows: area (foreign key to table Demographics). In such a situation, the following

data cube could be computed:

SELECT c_id, p_id, area, count(*)

FROM ItemsBought

CUBE-BY c_id, p_id, area

The above query would result in the computation of 7 (i.e., 23 � 1) group-bys corresponding to all possible

non-empty combinations of the three attributes.

In the above case, for Phase I, we would use the group-bys on individual attributes for the computation

of weight vectors. During Phase II, we could use the pre-computed group-bys depending on the execution

plan chosen. For 3-way merging, we would use the group-by on c id; p id; area in the same manner that

we computed the 2-way merging above. For a Pairwise merge, for each pair considered (e.g., Product and

Demographics), we would use the relevant group-by (e.g., group-by on p id; area). The savings we achieve

by using such pre-computed information depend on the average count values.

53



10 Conclusions and Future Work

In this paper, we examined the problem of mining decentralized datasets, and used the frequent itemset

counting as an example. We provided simple algebraic means to represent and manipulate expressions

that represent the mined information (which, in our case, are frequent itemsets). Our \algebra" allows

enumerating the many di�erent decentralized mining strategies { each with di�erent processing costs. When

cost estimates are available for the basic operations involved in our approach, there is an opportunity to

optimize for the best strategy in a manner similar to query processing. As such, our approach may be suitably

integrated with available algorithms for large-scale decentralized data mining. We describe and exemplify

heuristics to reduce the overall computation, I/O and communication costs, when cost estimates are not

available. Our empirical results establish the eÆciency of our decentralized techniques and the validity of

our heuristic optimization.

Other mining techniques also consider the data of interest to be local to one table. Both the RainForest

approach [12] to classi�cation, as well as the CACTUS system [11] used for clustering, compute summary

data against a single large table. While these techniques provide signi�cant improvements over previous

ones, if the dataset contains multiple tables, our decentralized counting techniques could be used to avoid

scans of the full datasets (by replacing them with scans of smaller tables). As an example, for classi�cation,

the class label distribution could be counted in a decentralized way. Consider a Star schema where class

labels are associated with each record in the fact table. In order to compute a class label distribution for

a particular attribute value, the occurrences of records in the fact table with respect to each speci�c class

need to be known. Therefore, weight vectors need to be computed for each class label (for each dimension

table). By using such weight vectors, the distribution of a class label for attributes of a dimension table

can be computed locally at the dimension table. This approach avoids the expensive computation and

materialization of joins, as well as provides savings by scanning smaller tables during computations. When

entire database partitions need to be written out, we could write out just the partition of the fact table.

Note that as focus shifts from improving the performance of basic algorithms for small centralized tables to

decentralized, real-life datasets, we believe that approaches such as ours will become increasingly important.
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