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Abstract

Effective cache replacement is becoming an increasingly important issue in cache hierarchy
design as large set-associative caches are widely used in high-performance systems. This paper
proposes a novel approach to approximate the decisions made by an optimal replacement algo-
rithm (OPT) using last-touch prediction. The central idea is to identify, via prediction, the final
reference to a cache block before the block would be evicted under OPT—the “ OPT last touch” .
Given perfect prediction, replacing the referenced block immediately after each OPT last touch
would give optimal replacement behavior.

This paper evaluates the feasibility of this approach by studying, at a fundamental level, the
predictability of OPT last-touch references, and the applicability of these predictionsto improving
replacement decisions. We show that trace-based predictors, previously proposed for LRU last-
touch prediction, can predict OPT last touches as well. We enhance these predictors using future
information, but find that their performance degrades significantly as cache size and associativity
increase. WWe introduce a new class of predictors based on last-touch history, which significantly
outperform trace-based predictors on large set-associative secondary caches. Across eight SPEC
CPU2000 benchmarks on a 1MB 16-way associative secondary cache, an idealized history-based
OPT last-touch predictor can potentially eliminate 39% of LRU misses—eliminating 63% of the
gap between LRU and OPT.

1. Introduction

The effectiveness of a cache is strongly influenced by its replacement policy. Although the
common least recently used (LRU) replacement algorithm performs well in many situations, com-
paring its performance with that of optimal replacement (OPT) [2] often indicates significant
room for improvement. For example, computations that cycle through a working set dightly
larger than the cache cause LRU to exhibit notorious worst-case behavior. In addition, LRU is not
guaranteed to provide decreasing miss rates with increasing associativity; in fact, the opposite
behavior—increased associativity leading to increased misses—is not uncommon. As a result,
caches with higher associativities, such as the 16-way set-associative level-two cache on the
AMD Athlon processor [1], provide greater opportunities for improving replacement beyond
LRU. As processor performance continues to outstrip reductions in off-chip memory access
latency, maximizing the effectiveness of these large on-chip cachesis of growing importance.

Unfortunately, optimal replacement is not generally achievable in practice, as it requires
knowledge of future accesses. However, many applications exhibit repetitive reference patterns,
we may be able to exploit this repetition to approach OPT. For example, Figure 1 plots reference
addresses vs. time (in references) for portions of four applications from the SPEC CPU2000 suite.
Repetitive patterns are clearly visible in ammp, art and mcf, while twolf’s access pattern appears



art

S
@ZEE NI
E AN % NEEE e

Figure 1. Memory reference behavior
random. Of the eight benchmarks we study in this paper—those from SPEC CPU2000 having the
largest gap between LRU and OPT behavior—we find that five exhibit clear repetitive patterns
when plotted in this fashion. If we can determine the optimal replacement decisions for one itera-
tion of the repetitive pattern—a feasible task once that iteration completes—we may then apply
those decisions in future iterations to approximate optimal replacement.

A practical implementation of such a scheme must address numerous issues. In this paper, we
focus on one significant and crucial question: Given knowledge of past optimal replacement deci-
sions (i.e., those that can be computed using an off-line algorithm on the references that have
already been observed), can we correlate those past decisions with future references in order to
“replay” those optimal decisions at the appropriate points?

This question has two facets. First, how do we represent past replacement decisions in such a
way that they can be reapplied in the future? Second, how do we correlate the multiple points in
the reference stream at which the same replacement decision should be applied? The second ques-
tion depends on the first, as the particular representation of areplacement decision will determine
the set of points at which that decision should be applied.

We address both these facets using techniques based on last-touch prediction [10]. We record
OPT behavior by identifying the final reference to each cache block before OPT would have
replaced the block from the cache (i.e., the “OPT last touch” reference). We then collect signa-
tures (e.g., program counter and/or address information) for these OPT last-touch references,
which ideally serve to distinguish them from non-last-touch references. If a current reference’s



signature is among the set that correlates with previous OPT last-touch references, we can then
reenact OPT’s previous decision by replacing the referenced block at the first opportunity.

This paper investigates the feasibility of this approach by analyzing the predictability of OPT
last-touch references. This work makes four primary contributions:

First, we find that reference signatures are capable of identifying OPT last-touch references.
Most significantly, signatures can effectively distinguish OPT last touches from references that
are last touches under LRU but are not last touches under OPT. Separation of these two reference
types is crucia to providing improvement over LRU replacement. Previous work [10, 11] indi-
cated only that LRU last touches could be distinguished from LRU non-last-touch references.

Second, we propose a variety of signatures and investigate their effectiveness in correlating
OPT last-touch references across a range of cache configurations. Asin earlier work [10, 11], we
find that trace-based signatures (combining several prior reference PCs and an address) are effec-
tive for small, direct-mapped, first-level caches. However, as cache size and associativity
increase, and/or when the reference stream is filtered (as for a second-level cache), the accuracy
of these signatures degrades significantly. We show that the accuracy of trace-based signatures
can be enhanced by including “future” trace information, i.e., by retroactively identifying a last-
touch reference based on subsequent reference information. This technique is valuablein our con-
text, as much information subsequent to the reference in question is available in advance of the
next replacement decision. We also introduce a more accurate class of signatures based on the his-
torical pattern of last-touch vs. non-last-touch references to the same block, and show that these
signatures correlate most strongly with last-touch references, particularly in large, highly associa-
tive, second-level caches.

Third, we identify and compare two methods of using OPT last-touch prediction to approxi-
mate OPT given a base LRU replacement algorithm. One approach, outlined above, identifies
likely OPT last touches, and evicts the referenced blocks before they reach the LRU position. An
aternate approach predicts LRU last touches that are not OPT last touches (which we refer to as
LRU non-OPT, or LNO, last touches), and attempts to retain the referenced blocks past the point
where they would normally be evicted by LRU. These two schemes correlate with two general
strategies found in the literature: one focusing on early eviction of blocks unlikely to be re-refer-
enced, the other focusing on late retention of blocks likely to be re-referenced. An LNO last-touch
scheme is attractive because the number of LNO last touchesis generally smaller than the number
of OPT last touches, and ideally could be tracked with less state. However, we discover that LNO
last touches are generally less predictable than OPT last touches. In addition, mispredictions in
late-retention schemes (including LNO last-touch prediction) can be more costly than early-evic-
tion mispredictions. The combination of these factors makes a scheme based on LNO last-touch
prediction less effective, and implies that early-eviction schemes in general may be preferable to
|ate-retention schemes.

Finally, we demonstrate that, under idealistic assumptions, OPT last-touch prediction can pro-
vide significant improvements in miss rates—from 5% to 55%, with an average of 39%, on a
1IMB 16-way associative secondary cache—on several of the SPEC CPU2000 benchmarks. These
positive results motivate the pursuit of a practical implementation. We leave the exploration of the
implementation space for future work, but note that off-line, profile-driven identification of OPT
last-touch signatures, coupled with previously proposed last-touch prediction structures [10, 11],
isreadily feasible and could come close to achieving the idealized results presented here.

We begin the rest of the paper by presenting related work. In Section 3, we discuss the early-
eviction and | ate-retention strategies approximating OPT replacement, and how prediction of OPT



or LNO last-touch references can be used in these approaches. Section 4 addresses the predict-
ability of OPT last-touch references, including trace-based analysis of a variety of signature types
on arange of cache configurations. Section 4 also introduces two novel signature schemes, trace-
based signatures with future information and last-touch-history signatures. We estimate the
achievable miss-rate benefits of replacement algorithms driven by OPT last-touch prediction in
Section 5, including a comparison of early-eviction and late-retention strategies. Section 6 pre-
sents our conclusions and future work.

2. Related work

This paper ties together two current research themes: the pursuit of improved cache replace-
ment policies and last-touch prediction. We discuss related work in each of these areasin turn.

Puzak’s thesis [17] explores the difference between LRU and OPT replacement policies for
hardware caches, and served as an inspiration for our work. He found that most references that
were OPT hits but LRU misses in an n-way associative cache were to the top 2n blocks in the
LRU stack. To capture these hits, he proposed a shadow directory, which maintains an additional
n address tags for each set of an n-way cache. These shadow-directory tags, in conjunction with
the n conventional tags, track the 2n least-recently-used blocks mapped to that set. When a miss
matches one of the shadow-directory tags, the referenced block is marked in the cache. The
replacement policy keeps marked blocks in preference to unmarked blocks, even when the
marked block is less recently used. In our terminology, this shadow-directory scheme is a late-
retention approach, using the block address as a signature to identify (a subset of) LRU non-OPT
last touches.

More recently, Wong and Baer [22] note, aswe do, that the increasing capacity and associativ-
ity of on-chip level-two caches, coupled with the increasing performance impact of off-chip
accesses, motivates replacement policies more sophisticated than LRU. They propose a scheme
that, like Puzak’s, marks blocks predicted to exhibit temporal locality, and preferentially retains
these blocks over unmarked blocks regardless of their LRU stack position. A block’s temporal
locality is predicted based on the program counter (PC) of the most recent reference to the block.
PC values are marked as temporal either statically through profiling (using off-line OPT) or
dynamically based on on-line observation of whether blocks referenced from a particular PC are
re-referenced before eviction. In our terminology, their scheme is aso a late-retention scheme,
using the reference PC as a signature to predict which references are not OPT last touches.

Several other cache researchers have proposed schemes for identifying blocks unlikely to
exhibit temporal locality (called “non-temporal” blocks) based on reference PCs or block
addresses. The non-temporal category includes long sequential reference streams and loops much
larger than the cache, patterns that are well known to degrade LRU performance. These efforts
focus on reducing conflicts in small, low-associativity level-one caches by segregating predicted
non-temporal blocks into separate structures [18, 7] or having them bypass the cache completely
[21], rather than on improving replacement in alarge, highly associative level-two cache.

The pursuit of improved replacement algorithms has been more active in the area of virtual-
memory systems and file and database buffer caches, likely due to the higher latencies of disk
accesses, the flexibility of software algorithm implementations, and the larger gap between LRU
and OPT due to full associativity. Severa approaches seek to identify blocks (pages) without
exploitable temporal locality for early eviction, paraleling the temporal/non-temporal work in
hardware caches. Specific schemes identify non-temporal blocksin avariety of ways: e.g., by dis-
regarding initial block references in the LRU algorithm [14, 8], or by recognizing sequential



address patterns[6]. Other algorithms attempt to measure a block’stemporal locality along a more
continuous spectrum, by considering its reference frequency [19, 13] or by detecting patterns in
the inter-reference intervals of specific blocks[16].

Unlike other approaches, the EELRU algorithm [20] does not predict the temporal locality of
specific pages. EELRU uses a scheme similar to Puzak’s shadow directory to detect misses to
recently evicted LRU pages. When a number of these references are detected, the algorithm evicts
some pages early to allow others to remain longer, in the expectation that the retained pages will
convert some of these missreferencesto hits. However, the selection of which pagesto evict early
isarbitrary.

Perhaps the most sophisticated algorithm proposed to date is Kim et a.’s UBM [9], which
attempts to detect and characterize specific sequential and looping reference patterns—including
the length and period of individual loops—and applies optimal replacement based on these identi-
fied patterns. This scheme uses aggregate loop size and period information to partition available
space between looping and non-looping references, and can prioritize among loops of similar size
based on their periods. We attempted to mimic UBM in a hardware cache and found that it is dif-
ficult to measure loop parameters accurately, and that the algorithm does not handle loops with
non-constant periods (for example, see the reference plot for art in Figure 1).

Another class of techniques relies on application-level hints regarding future reference pat-
terns [4, 15]. While these techniques are powerful, they require substantial programmer effort or
sophisticated pre-execution support [5].

Last-touch prediction wasfirst proposed by Lai and Falsafi [10] in the context of multiproces-
sor cache coherence protocols. Building on earlier work by Lebeck [12], they use predicted last
touches to identify points at which a processor can proactively “self-invalidate” cached copies of
shared data, avoiding the overhead of later coherence actions. Lai, Fide, and Falsafi [11] subse-
quently applied last-touch prediction under LRU replacement to uniprocessor caches. In this case,
they used early eviction to free up space for prefetched blocks, reducing the potential cache pollu-
tion effect of the prefetches. Both of these earlier works used last-touch prediction only to predict
which blocks would subsequently be evicted in the normal course of execution, gaining efficiency
by moving that eviction earlier in time. However, as will be discussed in the following section,
this style of last-touch prediction cannot directly improve miss rates.

3. Using last-touch information to approximate OPT replacement

In this section, we discuss the application of last-touch information to approximating OPT
replacement. We describe and compare the early-eviction and late-retention approaches to
approximating OPT, then discuss the applicability of last-touch information to these strategies.

Attempts to improve upon LRU generdly fall into two categories. Some seek to identify
blocks likely to be referenced shortly after they reach the LRU eviction point, and attempt to
retain those blocks for an additional amount of time. Others seek to identify blocks that have not
yet reached the LRU eviction point, but are unlikely to be referenced again before that time, and
attempt to evict those blocks in advance. We label these strategies late retention and early evic-
tion, respectively. Although all non-LRU algorithms evict some blocks earlier and retain others
later than LRU, the difference in these strategies liesin which action is performed proactively. A
late-retention strategy identifies potentially useful blocks, and gambles that the other blocks
forced to leave the cache early are not even more useful. An early-eviction strategy identifies
potentially useless blocks, and gambles that the other blocks that are allowed to remain in the
cache longer are not equally useless.



A key practical effect of this distinction involves the miss-rate penalty for making an incorrect
prediction and the potential benefit of a correct prediction. To retain a block marked as useful, a
late-retention strategy must evict one unmarked block prematurely for every miss that occurs
while the block is retained. If the marked block is not re-referenced (i.e., the prediction of utility
was incorrect), then the strategy will incur an additional miss relative to LRU for every evicted
block that would have been re-referenced prior to its LRU eviction point. Even if the prediction of
utility was correct, there will be no gain relative to LRU if one evicted block would have been an
LRU hit, and a loss if more than one. In contrast, an early-eviction strategy suffers at most one
additional miss relative to LRU for every misprediction. This penalty may be erased if the block
that is retained due to the early eviction converts an LRU missinto a hit. If the prediction of (lack
of) utility was correct, then the strategy is guaranteed to do no worse than LRU, and has the
potential to gain one hit. We will show in Section 5 that this effect contributes to making our last-
touch-based late-retention algorithm less effective than a similar early-eviction algorithm.

We now turn our attention to approximating OPT replacement using last-touch information.
We first show that OPT last touches are a strict subset of LRU last touches. As a result, we can
partition al references into three digoint subsets: those that are not last touches under either pol-
icy, those that are last touches under both policies, and LRU non-OPT (LNO) last touches. We
then discuss the use of OPT and LNO last-touch information in approximating OPT replacement.

To show that OPT last touches are a strict subset of LRU last touches, we first note that a ref-
erence can never be ahit under LRU but amiss under OPT [17]. By definition, an LRU hit always
references a block at some depth d in the LRU stack, where d < n, the associativity of the cache.
Thus fewer than n unique blocks were referenced since the previous reference to the same block.
Therefore, at the time of this previous reference, fewer than n other blocks had next reference
times earlier than the block in question. Thus OPT would not have replaced the block after its pre-
vious reference, and the current reference must also be a hit under OFT.

Now consider an OPT last-touch reference. By definition, the next reference to the same block
isamiss under OPT. Asthis next reference cannot be an OPT miss but an LRU hit, the next refer-
ence must also be amiss under LRU. Therefore the current OPT |ast-touch reference must also be
alast-touch reference under LRU. Thus OPT last touches are a subset of LRU last touches.

Of course, the converse does not hold, and it is possible for an LRU last touch to not be an
OPT last touch. In fact, each of these LRU non-OPT (LNO) last touches implies a later reference
that is an OPT hit but an LRU miss; thus the number of LNO last touches is equal to the number
of additional missesincurred by LRU over OPT.

Given complete and accurate last-touch information, we can implement OPT replacement
using either a late-retention or an early-eviction approach. We assume a base LRU policy, which
automatically distinguishes LRU last touches (OPT+LNO) from non-last-touch references—all
we haveto do iswait and seeif LRU replacesthe block. Thus given information identifying either
LNO or OPFT last touches, we can infer the other set. The late-retention strategy requires knowl-
edge of LNO last touches; we retain blocks referenced by LNO last touches until they are re-refer-
enced, regardless of their LRU stack depth. Given perfectly accurate and complete LNO last-
touch information, all of the blocks evicted early as a result must have been referenced by OPT
last touches (i.e., they must be dead under OPT). Conversely, the early-eviction strategy requires
knowledge of OPT last touches, we simply evict a block immediately after each OPT last touch.
Again, given perfectly accurate and complete information, all of the blocks retained past the LRU
eviction point in this fashion must have been referenced by LNO last touches.



In the abstract, prediction of all LRU (OPT+LNO) last touches, as was the goal of previous
last-touch prediction work [10, 11], is not sufficient to derive improved replacement behavior.
Blocks subject to LRU last touches can be evicted early, freeing up space in the cache. However,
given perfect prediction, these evictions will not affect the missrate, as any blocksthat could have
used that space to stay past their LRU eviction point (thus converting an LRU miss to a hit) have
themselves aready been evicted. Any actual miss-rate improvement would be the result of a pre-
dictor inaccuracy that failed to identify an LNO last touch as an LRU last touch.

Thus the first question that must be answered is whether last-touch prediction mechanisms,
having previously shown to distinguish LRU last touches from non-last-touch references, are also
capable of distinguishing OPT last touches from both non-last-touch and LNO last touches. We
address this question in the following section.

4. Analysisof last-touch predictability

Determining the fundamental predictability of OPT last touches is the first step in analyzing
the utility of OPT last-touch prediction for improving replacement. After describing our method-
ology in Section 4.1, we then examine the effectiveness of a variety of trace-based signatures—
I.e., those using reference PCs and/or addresses—for distinguishing OPT last touches. Signatures
of this type have been proposed previously for last-touch prediction [10] and for enhancing
replacement decisions [17, 22]. We show that these trace-based signatures can be improved by
including future trace information. Section 4.3 introduces a more accurate class of signatures
based on historical last-touch patterns. We end this section with an analysis of the relative predict-
ability of OPT vs. LNO last touches.

4.1. Methodology

We examined last-touch predictability by analyzing reference traces from a subset of the
SPEC CPU2000 benchmarks. Because we are interested in exploring fundamental properties of
application reference patterns, the overhead of timing simulation was not justified. We used the
SimpleScalar toolset [3] to collect reference traces from optimized Compag Alpha binaries of
SPEC CPU2000 applications. We skipped the initialization portion of each benchmark, then col-
lected two 50-million-reference traces: one of references to the L1 data cache (i.e., all program
data accesses), and one of references to the unified secondary (L2) cache (i.e., 50 million L1
cache misses) using 64KB 4-way associative L1 data and instruction caches. Throughout the
paper, we use a 64-byte block size, 64KB L1 caches, and 1IMB L2 caches, unless stated otherwise.
For this study, we selected the subset of SPEC CPU2000 benchmarks for which LRU replacement
exhibits more than 15% additional misses over OPT in a IMB, 4-way set-associative L2 cache.
The specific benchmarks, and the number of L2 misses incurred by OPT and LRU on our 50-mil-
lion-reference trace, are shown in Table 1.1

To analyze the effectiveness of a particular signature type on a particular cache configuration,
we simulate the cache under both LRU and OPT replacement. As each reference is processed, we
calculate its signature value. When the simulation progresses to the point where we can determine
whether or not a particular reference was alast touch under LRU or OPT, we look up the signature
value in a hash table and increment an associated counter accordingly. At the end of the simula-

1. In addition to the benchmarks listed, vpr shows a 50% miss-rate difference between OPT and LRU. However, we
encountered simulation problems with this benchmark, so we were forced to excludeit at present. We hope to resolve
these problems and include vpr in our analysisin the future.



_ OPT LRU LRU/

Benchmark Description misses misses OPT

= ammp Computational Chemistry 8965877 13289270 1.48

E art Image Recognition / Neural Networks 10819942 26024370 241

E’ galgel Fortran 90 Computational Fluid Dynamics 3978119 11796704 2.97

E sixtrack Fortran 77 High Energy Nuclear Physics 16282407 35858293 2.20
w Accelerator Design

bzip Compression 5919139 9166266 1.55

g-’, mcf Combinatorial Optimization 25143734 49742535 1.98

E twolf Place and Route Simulator 4020636 7034244 1.75

vortex Object-oriented Database 5343935 7310515 1.37

Table 1: Benchmark characteristics

tion, the hash table indicates, for each signature value that occurred, the number of references of
each type (OPT last touch, LNO last touch, or non-last-touch) for that signature. Because we are
focusing on the fundamental efficacy of various signature types, we do not limit the amount of
signature storage.

4.2. Trace-based signatures

We focus first on trace-based signatures, incorporating program counter and/or address val-
ues, as these have been shown in previous work [10, 11] to be effective for predicting LRU last-
touches in small, direct-mapped L1 caches. Other work on predicting reference behavior for
improving replacement has used PCs or addresses—degenerate forms of trace-based signatures—
to correlate with predicted reference behavior [17, 22].

Table 2 lists the various trace-based signature types we studied. We assume that a reference
PC value has half the storage requirement of a reference address, as the number of memory refer-
ence instructionsin a program is generally far less than the number of datalocations (particularly
for applications that stress a large cache). We found that incorporating more than two reference
addresses in a signature is impractical, as the total number of signature values quickly becomes
unmanageable, even on a machine with more than 1GB of memory. In addition, as the number of
unique signature values increases, we must also increase trace lengths (and thus ssimulation time)
to observe a significant number of references per signature. We thus restrict ourselves to signa-
tures with storage cost no more than 2.5 times a singe address, as shown in the rightmost column
of Table2. In our naming scheme, Puzak [17] used 1Addr and Lai and Falsafi [10] use
1Addr3APC.

We analyze the efficacy of a particular signature by examining the trade-off between accuracy
and coverage provided by that signature type. The accuracy of a particular signature value is the
fraction of all references associated with that signature value that are of the type of interest. We
define the coverage of a signature type at a particular threshold accuracy as the fraction of refer-
ences of the type of interest that are associated with signature values whose accuracy is equal to or
greater than the threshold value. That is, if we choose the set of signature values whose accuracy
Is at or above the threshold to identify a particular type of reference—for example, OPT last
touches—what fraction of those references will we identify?

We begin by examining last-touch predictability in a 64K B, direct-mapped L1 cache, to corre-
late our results with those of previous work [11]. We assume cache bypassing is not allowed, i.e.,
referenced blocks must be loaded into the cache; thus, OPT and LRU policies are indistinguish-
able. We also exclude signatures such as 2SAddr and 1Addr2SPC that use information from mul-



Signature Elements R(Iezlzttli?:tggst
1Addr address of current ref 1
2Addr address of current ref, address of previous ref (any address) 2

2SAddr address of current ref, address of previous ref to the same cache set 2
1Addr1PC | address + PC of current ref 15
1Addr2PC | address + PC of current ref, PC of previous ref (any address)
1Addr2APC | address + PC of current ref, PC of previous ref to same address 2
1Addr2SPC | address + PC of current ref, PC of previous ref to same cache set 2
1Addr3PC | address + PC of current ref, PCs of 2 previous refs (any address) 25
1Addr3APC | address + PC of current ref, PCs of 2 previous refs to same address 25
1Addr3SPC | address + PC of current ref, PCs of 2 previous refs to same cache set 25
1PC2Addr | address + PC of current ref, address of previous ref (any address, any PC) 25
1PC2PAddr | address + PC of current ref, address of previous ref from same PC (any address) 25
1PC2SAddr | address + PC of current ref, address of previous ref to same cache set 25

Table 2: Trace-based signatures

tiple references to the same cache set: for direct-mapped caches, seeing two references to different
blocks in the same cache set guarantees that the first reference is alast touch.

Figure 2 shows the full accuracy/coverage trade-off curves for a 64KB, direct-mapped L1
cache. These curves plot the coverage of each signature type (on the vertical axis) for a given
accuracy threshold (on the horizontal axis). Due to space constraints, we show only a representa-
tive subset of our benchmarks at thislevel of detail. In general, higher curvesimply better predict-
ability. A “perfect” prediction results in a straight flat line at the y-value of 100%, as seen for
severa signature typesin art.

We can draw a number of conclusions from Figure 2. Overall, using only addresses is less
accurate than using PC-address combinations, as indicated in earlier work [10, 11]. However,
once the PC and address of the reference are included, incorporating an additional address is
dlightly more useful than incorporating one or even two additional PCs. The 1PC2PAddr signa-
ture provides the best predictability in some benchmarks (such as twolf), while the 1PC2Addr sig-
nature performs best for the others (not shown). Asin [11], we see very good predictability for
ammp, art, and mcf. However, predictability varies significantly across benchmarks, and is much
worse for some of the benchmarks, such as twolf, not analyzed in [11]. If we choose the best sig-
nature for each benchmark, with accuracy threshold of 80%, coverage varies from 15% to 100%.
In general, floating-point benchmarks appear to have higher predictability than integer bench-
marks, with the exception of mcf and galgel (aswill be shown in Figure 3).

Because we focus on improving replacement in large, highly associative, secondary caches,
we are interested in how last-touch predictability changes in this different environment. Figure 3
shows the predictability of OPT last touches for the 1PC2PAddr signature, on average the best
performer in a 64KB direct-mapped L1, as we increase associativity and size and switch to the fil-
tered reference stream seen by an L2 cache. To show these results compactly for all benchmarks,
we sample the accuracy/coverage curves of Figure 2 at 100%, 80%, 50% and 30% and display the
results for each configuration in a stacked bar. We omit bzip here because the 1PC2Paddr signa-
ture generates too many unique values, making simulation impractical.

Significantly, we found that the predictability of OPT last touches in associative cachesisonly
dlightly worse than that of LRU last touches, and follows very similar trends across signature
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Figure 2. Last-touch predictability of trace-based signatures for direct-mapped L1 cache
types and cache configurations. This result is important for the feasibility of last-touch-based
replacement. To conserve space, we show only the OPT results.

Thefirst three bars for each benchmark in Figure 3 show the effect of increasing associativity
to four-way, then increasing size to 1IMB. For four of the seven benchmarks shown, increases in
cache size and associativity both degrade predictability significantly. The same trend is evident in
twolf, but is less pronounced. Vortex's predictability improves slightly at higher associativity, but
degrades with alarger cache. Galgel degrades with associativity, but sees a large boost in predict-
ability in the larger cache. As the cache size increases from 64K to 1M, galgel’s miss rate
improves dramatically, eliminating over 85% of the OPT last touches. Most of these belong to
low-accuracy signatures. In addition, the number of unique signatures increases. As a result, the
predictability improves significantly.

Comparing the third and fourth bars in each plot shows the effect of L1 filtering on predict-
ability. The effects are mixed; four benchmarks see a significant decrease in predictability, while
two (art and vortex) are basically unchanged, and ammp sees a large increase. Increasing the L2
associativity from 4-way to 16-way (the rightmost bar) tends to hurt predictability further, though
again galgel is anotable exception (asis ammp, to alesser extent).

Nevertheless, the cumulative effect of increasing size and associativity and introducing L 1 fil-
tering is a marked decrease in predictability on every benchmark except galgel. If we limit our-
selves to signatures with accuracy of at least 80%, we cannot cover more than 50% of OPT last
touches on any benchmark in a 1M 4-way L2 cache; coverage isless than 5% in all but two of the
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Figure 3. Effects of associativity, cache size, and L1 filtering on predictability (1PC2PAddr)
benchmarks. Unfortunately, trace-based signatures do not provide the desired level of predictabil-
ity in large set-associative caches.

We discovered that the accuracy of trace-based signatures can be enhanced by the inclusion of
“future” information, that is, information regarding program references that occur after the refer-
ence being predicted as alast touch. In contrast, all of the signature types listed in Table 2 include
only information from the current reference and prior references. Although using this future infor-
mation delays the last-touch prediction, the prediction is not needed until the next replacement in
our context. Aslong as the future information that we incorporate is available before then, we can
usefully apply it to our last-touch prediction.

We re-examined all of the signature types listed in Table 2 that incorporate prior information,
modifying them to use future information instead. For example, we atered the 1IPC2Addr signa-
ture to use the address and PC of the current reference plus the address of the subsequent refer-
ence, generating a new signature type we called 1PC2AddrF. In general, modifying a signature in
this fashion improves predictability (i.e., increases coverage at a given accuracy threshold) by 3%
to 10% on most benchmarks. (Detailed results are omitted due to space restrictions.) After exam-
ining this new set of signatures, we identified 1PC2SAddrF—comprising the address and PC of
current reference, plus the address of the subsequent reference to the same cache set—as the best
overall trace-based signature type. The results for 1PC2SAddrF are shown in the leftmost bar of
Figure 4.

4.3. Last-touch-history signatures

Even with the addition of future information, we are still unsatisfied with the predictability of
trace-based signatures is still unimpressive. Apparently, short sequences of PC and address infor-
mation are inadequate to reliably locate a reference within the repetitive access patterns that we
see in Figure 1. In this section, we introduce a new class of signatures that attempt to exploit this
repetitive behavior directly to identify OPT last touches. That is, if these repetitive access patterns
do lead to repetitive replacement behavior—the crux of our motivation to study this topic—then
we should be able to use the past patterns of last-touch references to predict future last touches.

Specifically, we use a bit vector, called last-touch-history (LTH) vector, to record the last-
touch history for each unique cache block address. For each referenceto ablock, a‘1’ or ‘0 bitis
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Figure 4. Last-touch-history signatures vs trace-based sighatures

shifted into the block’s LTH vector, indicating whether the reference was a last touch. Note that
the determination of whether a particular reference is alast touch cannot be made until either the
block is either replaced or re-referenced, so the last-touch bit for a particular reference is not
shifted in until well after the reference occurs. However, at the time that a reference occurs, the
LTH bit for the block’s previous reference is always available. The LTH vector value for ablock’s
previous references, through the immediately preceding reference, is then used as the signature
value for predicting whether the current reference isalast touch.

The predictability of last-touch-history signatures is a function of the LTH vector length. To
capture the last-touch behavior in one iteration of a repetitive reference pattern, the LTH vector
must have as many bits as there are references to each cache block within an iteration. However,
we have found empirically that the number of references to a cache block in an iteration often
exceeds 32 or even 64. One technique to reduce the number of bits consumed by a given reference
pattern is to filter out MRU hits before recording bits in the LTH vector. A significant fraction of
references are MRU hits, and the first n—1 references in a sequence of n consecutive MRU hits are
certainly not last touches. If we predict whether a reference was a last touch only after a block
leaves MRU position, we need to record the last-touch history for only the last reference in a
sequence of MRU hits. Ideally, we do not lose any last-touch information, while alot of redundant
data—non-last-touch MRU hits—isfiltered out of the LTH vector.

Figure 4 shows results for 32-bit LTH signatures with and without MRU-hit filtering (LTH-32
and LTHF-32, respectively) and 16-bit LTH signatures with MRU-hit filtering (LTHF-16) on a
1IMB 4-way associative L2 cache. For comparison, the first bar shows the coverage for the best
trace-based signature using future information (1PC2SAddrF). LTH-32 outperforms
1PC2SAddrF for al benchmarks. Even in galgel, where the coverage at 100% accuracy declines
relative to 1PC2SAddrF, the coverage at 80% accuracy is nearly twice as great. (We will show in
Section 5 that 80% accuracy is more than adequate to achieve real gainsin replacement.) In fact,
the LTH predictor provides higher accuracy and coverage while generating fewer unique signa-
tures than 1PC2SAddrF. The MRU-hit filtering of LTHF-32 further improves predictability, par-
ticularly on ammp and twolf. The LTHF-16 results show that, even with MRU-hit filtering, 16 bits
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Figure 5. OPT vs. LNO last touches
are not enough to accommodate sufficient last-touch history. LTHF-16 is less effective than
1PC2SAddrF in most cases. We use LTHF-32 signatures for the rest of the paper.

4.4, Comparing the predictability of OPT and LNO last touches

The results presented so far have indicated the predictability of OPT last touches. As dis-
cussed in Section 3, prediction of either OPT or LRU non-OPT (LNO) last touches can be used to
approximate OPT replacement. As mentioned above, we examined the predictability of LNO and
LRU last touches for all the signatures discussed previously, and found similar predictability
trends; i.e., 1PC2SAddrF and LTHF-32 are the best overall trace-based and history-based signa-
tures, respectively, for predicting any of these categories of last touches. Nevertheless, an interest-
Ing question remains: which class of last touches, OPT or LNO, is more predictable? The answer
isworth pursuing because, as discussed in Section 3, it partially determines the relative effective-
ness of early-eviction vs. late-retention approaches to approximating OPT.

Figure 5 compares the predictability of OPT and LNO last touches using LTHF-32 signatures,
again on a IMB 4-way associative L2 cache. Most benchmarks exhibit higher predictability of
OPT last touches, with art being a notable exception. In particular, the less regular integer bench-
marks (twolf and vortex) show significantly higher predictability for OPT. From these results, we
might guess that early-eviction approaches are more effective than late-retention approaches.
However, the evidence is not conclusive. In the next section, we measure the miss-rate reduction
achievable under idealized circumstances for early-eviction and late-retention replacement poli-
cies, using OPT and LNO last-touch prediction respectively.

5. Estimating potential miss-rate improvement

The preceding analysis of OPT last-touch predictability indicates potential for improving
replacement using last-touch prediction. With LTHF-32 signatures, even in the worst case (twolf),
about 70% of the OPT last touches can be captured by signatures with accuracy higher than 80%.
To provide a more concrete indication of the possible miss-rate improvement achievable through
this approach, we simulated the performance of two last-touch-driven replacement policies on our
traces. Although this study is still idealized—it assumes we have full knowledge of the |last-touch/
non-last-touch bias of every signature value, and unlimited storage for signatures—it does repre-
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Figure 6. OPTLT vs. LNOLT replacements, 4-way 1MB L2 cache

sent a feasible on-line replacement algorithm, given the ability to identify signature biases via
profiling. Other practical issues, such as the applicability of signature information collected on a
small profiling run to varying input data, and the effect of finite signature storage, are left for
future work.

We propose two replacement algorithms, OPTLT and LNOLT, based on prediction of OPT and
LNO last touches, respectively. Both algorithms replace only non-MRU blocks to compensate for
the MRU-hit filtering of the LTHF-32 signature. OPTLT is an early-eviction algorithm: on amiss,
it searches for the first non-MRU block whose last reference was predicted to be an OPT last
touch. The searchis performed in MRU order, to quickly evict the block with the most recent OPT
last touch. LNOLT uses late retention: on amiss, it will not evict ablock whose |ast reference was
predicted to be an LNO last touch if there are any non-MRU blocks whose last reference was pre-
dicted not to be an LNO last touch. Both algorithms fall back on LRU if there are no non-MRU
blocks with predicted last-touch references (or, in the case of LNOLT, if all non-MRU blocks
were predicted to have last-touch references).

For both algorithms, the last-touch predictor is ssimply a static table of signature values; any
reference whose signature is found in the table is predicted to be alast touch. The table is gener-
ated by making an initial pass through the trace, as in the Section 4, and recording all signature
values with accuracy above a predetermined threshold. We ran each algorithm with a variety of
thresholds; the impact of the threshold value on algorithm performance is discussed further below.

Figure 6 shows miss rates for LRU, OPTLT, and LNOLT, normalized to OPT, for a 1IMB 4-
way associative L2 cache. For the proposed algorithms, results are shown for signature thresholds
of 20% and 80%. LRU'’s relative miss rate varies from 1.36 to 2.96 with an average of 1.96.
OPTLT with athreshold of 20% is the best performer on average, and the best or close to the best
performance on each individual benchmark as well. Overall, it eliminates nearly 30% of LRU
misses, closing 58% of the gap between LRU and OPT. OPTLT with an 80% threshold is nearly as
good; art is the only benchmark that exhibits a noticeable degradation at the higher threshold.
LNOLT also improves miss rates significantly, but is sightly inferior to OPTLT overal. The
choice of threshold for LNOLT has a dramatic effect on galgel, but is not significant otherwise.

Figure 7 shows the equivalent results for a 16-way cache. The higher associativity increases
the LRU/OPT ratio to 2.67. Again, OPTLT at 20% threshold is the best performer, now by awider
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Figure 7. OPTLT vs. LNOLT replacements, 16-way 1MB L2 cache
margin. It eliminates 39% of LRU misses and closes 63% of the OPT-LRU gap. Although LNOLT
at 80% threshold is competitive with OPTLT on many benchmarks, it performs very poorly on
galgel, actualy increasing misses over LRU by 20%. LNOLT-20% aso performs worse than
LRU on bzip. LNOLT underperforms OPTLT on twolf, regardless of threshold.

These resultsindicate that OPTLT is more effective than LNOLT, especially when the associa-
tivity increases. The reason is two-fold. First, as we have showed, OPT last touches have better
predictability than LNO last touches. Second, as discussed in Section 3, the misprediction penalty
of LNOLT ishigher than that of OPTLT. Apparently the latter factor is dominant; note that galgel,
the worst case for LNOLT, actualy exhibits slightly higher predictability for LNO over OPT last
touchesin Figure 5.

Although we show resultsfor only 20% and 80% threshold values, we simulated the full range
of thresholds from 20% to 100% in 20% increments. For OPTLT, most benchmarks have an opti-
mal (minimum miss-rate) threshold of 20% (or lower); the exception, vortex, reaches the mini-
mum at 40%. However, for LNOLT, the optimal threshold aways resides at 80% (or higher) for
the 16-way cache, and for most benchmarks on the 4-way cache as well. These results indicate
that LNOLT’s high misprediction penalty is a significant factor, and thus LNO last-touch predic-
tion accuracy must be higher than OPT last-touch accuracy to provide similar benefits. In addi-
tion, LNOLT is much more susceptible then OPTLT to degrading replacement performance below
that of LRU. We believe these resultsimply that early-eviction strategies are in general preferable
to late-retention strategies for improving replacement beyond LRU.

6. Conclusions and future work

We have shown that repetitive reference patterns can be exploited to improve replacement by
tracking what optimal replacement (OPT) would have done at specific program points, and
replaying these replacement decisions when the corresponding situation arises again. Last-touch
prediction provides a useful framework for recording OPT decisions and identifying where and
when they should be replayed.

Previous last-touch predictors focused on predicting LRU last touches; however, to improve
replacement, predictors must distinguish OPT from LRU non-OPT last touches. We have shown
that last-touch predictors are quite capable of making this distinction. Unfortunately, previously
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proposed trace-based predictors, which perform well on small, direct-mapped, primary caches, do
not fare as well on large, highly associative, secondary caches, even when extended to include
future reference information. We introduced a new class of last-touch predictors based on last-
touch history vectors that significantly outperform trace-based predictors, and provide reasonable
accuracy and coverage even on large secondary caches.

We aso identified and contrasted two general approaches to improving LRU replacement:
early eviction and late retention. We proposed and evaluated two replacement algorithms based
on last-touch prediction, one using early eviction and one late retention. Under idealized condi-
tions, on a 16-way associative IMB L2 cache, the early-eviction algorithm eliminates 39% of
LRU misses and closes 63% of the gap between LRU and OPT, on average across 8 SPEC
CPU2000 benchmarks. Our results show that, although the late-retention algorithm is competitive
with early eviction on some benchmarks, its higher misprediction penalty can produce dramatic
worst-case performance scenarios in which the algorithm underperforms LRU by a significant
margin.

We have shown that last-touch prediction has significant potential for improving replacement.
However, many implementation issues need to be addressed for last-touch prediction to become
an effective approach in practice. Our future work includes practical signature classification using
both profile-based and approximate on-line algorithms, as well as efficient hardware schemes for
storing and managing signature/prediction information. Although this paper focused on replace-
ment in hardware caches, we believe the concepts presented here are likely to be applicable to vir-
tual memory and file-system buffer management as well.
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