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Abstract

This technical report1 presents a framework for visual servoing that guarantees convergence

to a visible goal from most initially visible configurations while maintaining full view of all the

feature points along the way. The method applies to first and second order fully actuated plant

models. The solution entails three components: a model for the “occlusion-free” workspace;

a change of coordinates from image to model coordinates; and a navigation function for the

model space. We present three example applications of the framework, along with experimental

validation of its practical efficacy.

1A version of this manuscript will appear in IEEE Transactions on Robotics and Automation. This version contains
many details which were omitted from the final paper.
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Figure 1: Simulation results for three different artificial potential function based visual servo con-
trollers: Top: based upon the navigation function proposed in equation (34); Middle: based upon
the potential function in equation (3) resulting in failure due to self occlusion; Bottom: based upon
the potential function in equation (4) resulting in failure due to a spurious local minimum.

1 Introduction

Increasingly, engineers employ computer vision systems as sensors that measure the projection of
features from a rigid body at as it moves in some scene. Such an approach presupposes the availability
of a reliable machine vision system that supplies a controller with the image plane coordinates
of features of the body. The machine vision system must incorporate image processing, feature
extraction and correspondence algorithms suitable to the scene in view.2 For vision-based control,
these features are then used to close a servo loop around some desired visual image. Traditionally,
visual servoing algorithms impose motion upon the actuated configuration space variables, q ∈ Q,
so as to align the image-plane features, y ∈ Y , with a previously stored goal image, y∗. When
the mapping, c : Q → Y , from configuration variables to the image-plane is one-to-one in some
vicinity of the goal then traditional visual servoing generally results in a closed loop system with an
asymptotically stable equilibrium at the unique pre-image q∗ = c−1(y∗). Many algorithms of this
nature have been proposed and implemented with the result of large basins of attraction around the
equilibrium in the presence of large errors in sensor and robot calibration. Hutchinson et. al. [15]
provide a general introduction and extensive bibliography to this approach.

Simple visual position regulation, for which a suitable set of visible features contrast well their
surrondings, leaves few challenges: high performance, dynamic (albeit local) vision-based controllers
which fit neatly into the framework of linear control have existed now for some years [4]. This simple
and complete characterization is owed entirely to the local nature of regulation problems. However,
the creation of a richer set of behaviors whose global (and hence highly nonlinear) properties are
well characterized remains a significant challenge to visual servoing. The perspective projection of
features to a CCD camera does substantial violence to the scene being viewed. In addition to the loss
of depth information of point features, the transient loss of features (due, for example, to occlusions)
can cripple any control system which does not explicitly address the possibility. Moreover, there are
subtle geometric facts that constrain our designs (whether or not we take them into account!). For

2Of course, as is clear from the extensive literature (e.g.[10, 12]), implementing these feature extracting “virtual
sensors” represents a huge challenge and is beyond the scope of the present paper.



example, given the (monocular) image plane projection of a set of three rigidly connected points, it is
well known that there exists up to four poses of a camera which will result in the same projection [35].
On the other hand, simply adding a fourth point over constrains the motion so that the individual
feature point trajectories may not be assigned arbitrarily as they are algebraically constrained.

The classical approach to visual servoing attempts to impose straight-line trajectories on image
feature point locations. For example, suppose the camera projects four feature point on a rigid body
controlled by a 6 DOF robot. The configuration space of the robot – for example, its 6 joint angles
– is given by Q ⊂ R

6, and image space is the four image plane pairs, namely Y ⊂ R
8. Locally, then,

the camera map is then just a map from R
6 to R

8, namely

y =



y1
...
y4


 = c(q), where yi ∈ R

2, i = 1, . . . , 4 (1)

are the image plane feature locations of the four features being observed. The traditional (kinematic)
visual servoing law is then

q̇ = −J†(q)(y − y∗), (2)

where J† = (JT J)−1JT is the pseudo inverse of the camera Jacobian matrix, J(q) = Dc(q).
Traditional visual servoing systems, such as those based on the above approach, have numerous

limitations. First, they result in a local basin of attraction whose extent is poorly or not at all
characterized. For example, the incursion of spurious (attracting) critical points may arise when
y− y∗ aligns with the the null space of J† in (2). Consequently, the local basin of attraction around
q∗ may exclude seemingly reasonable initial conditions [3]. The second failing of the visual servoing
algorithms proposed to date, involves their vulnerability to transient loss of features — either through
self-occlusions or departure from the field of view (FOV). To the best of our knowledge, no prior
work guarantees that these obstacles will be avoided. Usually, the problem of visibility obstacles is
ignored in analysis, and when encountered in practice necessitates human intervention. However, as
we will show, both of these limitations – local convergence and transient loss of features – can be
overcome quite readily.

Another major problem is that most visual servoing algorithms do not specifically address dy-
namics. Of course, given the multitude of successful inverse dynamics based control strategies,
trajectories generated from (2) (or any other kinematic controller) could be tracked very precisely
with a high performance robot control system. However, such control techniques require precise
parametric knowledge of the robot’s kinematics and dynamics, the extra complexity of which seems
superfluous given the simple end-point convergence objective of most visual servoing algorithms. In
other words, the specific reference trajectory generated by kinematic controllers is merely a means
to an end, and tracking that trajectory exactly may not be necessary. By contrast, our approach
generates controllers capable of extremely high performance, which exhibit global convergence to
the end-point goal, without the added complexity involved in precisely tracking a (clearly some-
what arbitrary) reference trajectory. Even though our algorithms do not prescribe specific reference
trajectories, the methodology nevertheless affords certain guarantees on the trajectories that result.
For example, features remain visible throughout the trajectory (even in the presence of Newtonian
dynamics).

methodology also reduces to first-order settings, in which case the more traditional approach in
the robotics literature of tracking reference trajectories applies.
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1.1 Image-based navigation

In a naive attempt to improve (2), note that it may be conceived as a gradient law using the potential
function

ϕ̃(y) =
1

2

4∑

i=1

‖yi − y∗i ‖
2 (3)

and letting q̇ = −(JTJ)−1∇q(ϕ̃ ◦ c). Suppose the four features are coplanar, e.g. they are all on
the same face of a polyhedral body. A self-occlusion occurs when the plane containing the features
intersects the camera pinhole – namely the 4 points project onto the same line on the image plane.
To avoid this scenario, consider a naive improvement of (3) that avoids self-occlusion by “blowing
them up”, namely,

ϕ̃(y) :=

∑4
i=1 ‖yi − y∗i ‖

2

∏
{i,j,k}∈Γ

∣∣∣∣det

[
yi yj yk

1 1 1

]∣∣∣∣
1/2

, (4)

where Γ = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. Because the features are coplanar, the denominator
will go to zero as the features become collinear, and thus the gradient will point away from the self-
occlusion obstacle. However, as can be seen from Figure 1, even though self-occlusions are avoided,
convergence is not necessarily achieved. Other similarly naive approaches suffer the same peril.

Although the naive potential function approach above neither adequately addresses occlusions
nor guarantees convergence, one suspects that some appropriately designed potential might overcome
these serious limitations of traditional visual servoing. Indeed, we will show in this paper that the
obstacles presented by self occlusion and a finite FOV can be obviated by addressing in a methodical
fashion the relationships between the domain and range of c from which they arise.

Specifically, we introduce a framework for visual servoing, depicted in Figure 2, yielding feedback
controllers which are

1. dynamic: applicable to second order (Lagrangian) as well as first order (kinematic) actuation
models;

2. global: guaranteeing a basin of attraction encompassing most initial configurations that main-
tain feature visibility;

3. visibility-obstacle free: avoiding configurations that lose features due to either self occlusion or
departure from the camera FOV.

1.2 Related work

A few researchers have incorporated Lagrangian dynamics into the visual servo loop. Zhang and
Ostrowski [36] developed a controller for an Unpiloted Aerial Vehicle (UAV) equipped with a camera
for which they exhibit a diffeomorphism between the centroid and radius of a circle in the image
plane and the position and orientation of the UAV relative to a sphere in the workspace. Formulating
the dynamics in generalized image-plane coordinates leads to a feedback linearized controller that
accounts for the mechanical system dynamics. This novel contribution does not address the notion
of “visibility” which we find central to visual servoing.

Many implementations in the literature offer strong anecdotal evidence that suggests convergence
for visual servoing systems is robust with respect to large parametric uncertainty, though researchers
rarely establish formally large basins of attraction of visual servoing systems (parametric uncertainty
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Figure 2: Our approach to visual servoing requires a camera map, c : Q → Y , which takes each
configuration q ∈ Q and produces an image plane measurement y = c(q) ∈ Y , as described in Section
2. The image plane is then deformed into a model of the “safe” unoccluded scene Z , through a change
of coordinates g, as described in Section 4. Finally, a navigation function, ϕ̃ : Z → R, which encodes
the goal as the unique global minimum, is used to construct a convergent generalized nonlinear PD
controller, as reviewed in Section 3.

aside). Malis et. al. [22] and Taylor and Ostrowski [32] introduce visual servo controllers incorpo-
rating partial pose reconstruction to guarantee convergence even in the presence of large parametric
uncertainty. However, these contributions do not address second order dynamics nor guarantee
that transients will avoid visibility obstacles. Rizzi et. al. designed a globally convergent nonlin-
ear dynamical observer for a falling point mass viewed by a binocular3 camera pair [29]. Their
observer exploits the property that a pinhole camera projects lines into lines to map the observer
feedback into the image plane. This “pinhole property” can also be applied to binocular quasi-static
visual servoing [16] to yield a controller with a large basin of attraction. Hashimoto, et. al. [13]
use potential functions to increase the domain of attraction for their (quasi-static) visual servoing
system.

In addition to our preliminary results [6, 7, 8], there have been some recent efforts to address
the FOV problem, albeit in a quasi-static setting. Malis et. al. [22] guarantee that a single base
point remains within the FOV while, as noted above, guaranteeing convergence for a large basin
of attraction. Corke and Hutchinson [5] make no formal guarantees, but have designed a clever
“partitioned” visual servo strategy for which simulations suggest a large basin of attraction while
maintaining all features within the FOV boundary. Both of these contributions are in a quasistatic
setting.

3This paper makes the distinction between stereo, wherein a camera pair has nearly the same perspective of a
scene (as is the case for biological systems with stereo vision), and binocular vision in general.
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1.3 Visual sensing of rigid motion

If the features are such that the camera map c is injective, each measurement y “pins down” a
unique location q. Hence a positioning task may be accomplished with image measurements, even
in the presence of parametric uncertainty in the robot and sensor. Injectivity of c implies that the
dimension of the output space is greater than or equal to the dimension of the configuration space,
but, of course, the converse is not true. For example, the perspective projection of three feature
points of a rigid body is a 6-dimensional measurement, from the three image plane (x, y) pairs, but
each image 6-tuple generally corresponds to multiple algebraic solutions for the position of the rigid
body (for a nice geometric interpretation, see Wolfe et. al. [35]). However, the perspective projection
of at least four rigidly constrained points in general position on a body uniquely determines its pose
(see for example [27]) and hence there exists a unique pose which registers with each such projection.

“Natural” coordinates for visual servoing have not yet emerged in any generality. In the example
applications to follow, we identify in each case the underlying model space, construct a solution for
the model, and furnish a change of coordinates that pulls the model solution back into terms of
the physically measured features. However, we are not yet able to characterize in any physically
convenient manner the general properties of the features that would make such constructions possi-
ble. The UAV work described above [36] represents a different attempt to develop natural features
for visual servoing. Another seemingly promising alternative relies on projective kinematics [31],
although it has not been validated empirically and currently lacks the machinery required to lift it
to the second order setting.

1.4 Organization

The central contribution of the paper is found in Section 4 where we propose a novel framework
for dynamic, occlusion-free global visual servoing. We show how to apply this framework using
three illustrative examples that provide insight into the specific geometries of some prototypical
visual servoing systems. In Section 5 we present our empirical results for two of the example setups.
Finally we provide some concluding remarks in Section 6.

Before we can proceed, however, we must introduce our sensor in Section 2, and then review
concepts from robot control in Section 3 to provide a theoretical foundation for the subsequent
material.

2 Sensor Model

To sense a robot’s configuration with a camera, we seek a map, c, from the robot configuration space
Q to an appropriate output space Y , which depends on several factors. We assume that a camera
may be modeled as map, π, from three space to the image plane. The feature space, FS , varies
from problem to problem, but often we just choose point features in Euclidean space, E

3, in which
case FS = E

3×· · ·×E
3 (N times). The features, p ∈ FS, are rigidly attached to the end effector of

the robot. Their position in a body fixed frame, Fb, is known and hence their location in a camera
fixed frame, Fc, is given by the kinematics, h : Q×FS → FS .

Suppose P = {pi}
N
i=1 is our feature set. Then cpi = h(q, bpi) where bpi is the location of the

feature point in the body fixed frame (assuming we are dealing with point features) and cpi is the
same point in the camera fixed coordinate frame. The composition of the camera model with the
kinematics as applied to all of the features generates the camera map cP : Q → Y

cP (q) :=
[
π ◦ h(q, p1) · · · π ◦ h(q, pN )

]
(5)
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parameterized by the (constant) feature locations in body coordinates.4

2.1 Camera models

A well documented family of models mapping elements of projective space, P
3, to the projective

plane, P
2, admit of a matrix representation [23]: orthographic projection; weak perspective projec-

tion; affine projection; and full perspective projection — in order of increasing accuracy. Because
we are interested in potentially large displacements over the camera field of view (FOV), we employ
a full perspective camera model in the present work. Of course, more complex models do exist for
camera projection, e.g. Tsai [33] presents a technique for calibrating a camera to account for radial
lens distortion. However, the physical camera systems used for experiments in the present work are
well modeled without accounting for additional complexities.

Assume that there is a camera fixed coordinate frame, Fc, and that points are expressed with
respect to that frame and that the (x, y)-plane of Fc is parallel to the image plane and coincident
with the optical center or “pinhole.” Projective points, p ∈ P

n, are represented in homogeneous
coordinates as n + 1 vectors where not all elements are zero, and Euclidean points x ∈ E

n are
represented in homogeneous coordinates as n+ 1 vectors [ xT , 1 ]T . Note that while E

n is a subset
of P

n ([2], Chapter 3), the use of the homogeneous matrix representation plays a very different role
in the two cases. Nevertheless, in an abuse of notation, we will use the homogeneous representation
for both situations when the specific space of interest is clear from the context.

A simple pinhole camera with unit focal length, λ = 1, admits a matrix representation relative
to the homogeneous matrix representation of P

n as Π : P
3 → P

2, where

Π =




1 0 0 0
0 1 0 0
0 0 1 0



 . (6)

The restriction of the camera map to E
n ⊂ P

n does not admit of a matrix representation when using
the homogeneous matrix representation for points in E

n. Rather, we must divide the last entry to
normalize so that the pinole camera map from E

3 to E
2 is given by p 7→ γ(Πp), where

γ(p) =
1

p3
p =

[p1

p3

p2

p3

1
]T
. (7)

To account for focal length λ, pixel scale αx, αy, offset sx, sy and a skew factor on the image
plane θ (which is usually π/2), we introduce the projective transformation A : P

2 → P
2

A :=




−αx αx cos θ sx

0 −αy/ sin θ sy

0 0 1



 , αx = λαx

αy = λαy
(8)

The 5 parameter matrix A is the so-called intrinsic parameter matrix. A complete model for a
perspective projection camera, C : P

3 → P
2 is

C := AΠ =
[
A 0

]
(9)

or, in Euclidean coordinates, π : E
3 → E

2

π(p) = γ(AΠ p). (10)

4To simplify the analysis, we assume that the measurements are temporally and spatially continuous, the validity
of which depends heavily on the problem. For the implementations discussed in Section 5 we believe they are accurate
assumptions.
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In the case that the camera frame Fc, is not coincident with a world reference frame Fw, in which
the points are expressed, then we have C := AΠ cHw, where the 6 parameter extrinsic parameter
matrix cHw is the transformation from the world frame coordinates to camera frame coordinates.

The camera map (5) depends on several factors: the type, number and configuration of features
selected; the robot kinematics; the camera model. Section 4.1 considers a planar problem in which
the configuration space is SE(2), and the camera map is defined to be the perspective projection of
three feature points on the body onto a 1D camera, hence FS = E

2×E
2×E

2 and Y = E
1×E

1×E
1.

Section 4.2 presents an architecture in which a 3DOF robot moves in a subset of T3, and the camera
map is the projection of the position and orientation of a feature on the end effector, FS = T1E

3,
so that Y ⊆ T1E

2 ≈ E
2 × S1. Finally, in Section 4.3, we present a 6DOF visual servoing algorithm

which uses the projection of a set of coplanar points. In this example we compute the inverse of the
forward camera map and work in a reconstruction of the 3D space for visual servoing, while still
guaranteeing dynamical convergence and occlusion obstacle avoidance.

3 Robot Control via Navigation Functions

Assume we have a holonomically constrained, fully actuated robot with known kinematics, affording
a suitable set of local coordinates, qi, i = 1, . . . , n, and denote the n−dimensional free configuration
space as Q. The system dynamics

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + Fext(q, q̇),

may be found using Lagrange’s equations (see, for example, [1, 9, 11, 25]) where Fext are external
forces (such as friction) which do not arise from Hamilton’s variational principle and τ are the input
torques. The camera plays the role of output map, c : Q → Y . We assume exact knowledge of
the kinematics and link masses5 (hence, the gravitational term G is exactly known) as well as the
external forces Fext. Letting the input torque be τ = u− Fext +G(q), where u is our control input,
the plant equations are, in state-space form,

[
ẋ1

ẋ2

]
=

[
x2

M(x1)
−1 (u− C(x1, x2)x2)

]
,

y = c(x1), (11)

where x = [qT , q̇T ]T .

3.1 Task specification

The state space is constrained by the presence of forbidden configurations, the obstacle set O ⊂ Q.
The free space is defined as the obstacle-free configuration space V = Q−O, and safe configurations
D ⊆ V form a compact connected differentiable manifold with boundary. The positioning objective

is described in terms of a goal set G ⊂
◦

D. The task is to drive q to G asymptotically subject to (11)
by an appropriate choice of u while avoiding obstacles. We restrict our attention to point attractors,
G = {q∗}. Moreover, the basin of attraction E ⊂ TD must include a dense subset of the zero velocity
section of TD, so that we may guarantee convergence from the entire configuration space. Obstacle
avoidance requires that the trajectories avoid crossing the boundary set B = ∂D, i.e. q(t) ∈ D, for
all t ≥ 0.

5Generally these data are supplied by a manufacturer, while the link inertias tensors remain unreported and are
generally difficult to measure exactly. Notice that our “generalized PD” approach to control, below, will not require
the precise form of the mass-inertia matrix M or the Coriolis term C that would necessitate knowledge of these
parameters.
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3.2 Navigation functions

The task of moving to a goal while avoiding obstacles along the way can be achieved via a nonlin-
ear generalization of proportional-derivative (PD) control deriving from Lord Kelvin’s century old
observation that total energy always decreases in damped mechanical systems [19]. Formally, this
entails the introduction of a gradient vector field from a “navigation function,” a refined notion of
an artificial potential function, together with damping to flush out unwanted kinetic energy.6

3.2.1 Gradient Vector Fields

Let D be a compact n−dimensional Riemannian manifold with boundary, with metric 〈· , ·〉, and
ϕ : D → R be a C2 functional. For Lagrangian control systems of the kind introduced above, the
Riemannian metric is specified by the kinetic energy tensor. When the mechanical system is so
heavily damped that kinetic energy is negligible, or is explicitly controlled in “velocity mode” then
the plant equations may be considered first order, and any Riemannian metric may be used. In these
situations, for example as in the case of our RTX robot discussed in 5.3, the convergence properties
of the gradient field alone yield the desired result.

Choose a local coordinate chart ψ : U ⊂ R
n → D. The gradient in local coordinates is given by

the vector of partial derivatives weighted by the inverse of the metric. Suppose q ∈ R
n are the local

coordinates induced by ψ. In an abuse of notation, we write ϕ ◦ ψ(q) = ϕ(q), and hence, in local
coordinates

∇ϕ(q) = M−1(q)DT
q ϕ(q)

where (Dqϕ)i = ∂ϕ
∂qi

, and M is the local representation of the Riemannian metric. Gradient descent
can now be achieved in local coordinates via

q̇ = −M−1(q)DT
q ϕ(q) (12)

A smooth scalar valued function whose Hessian matrix is non-singular at every critical point
is called a Morse function [14]. Artificial potential controllers arising from Morse functions im-
pose global steady state properties that are particularly easy to characterize, as summarized in the
following proposition.

Proposition 1. (Koditschek, [19]) Let ϕ be a twice continuously differentiable Morse function on a
compact Riemannian manifold, D. Suppose that ∇ϕ is transverse and directed away from the interior
of D on any boundary of that set. Then the negative gradient flow has the following properties:

1. D is a positive invariant set;

2. the positive limit set of D consists of the critical points of ϕ

3. there is a dense open set D̃ ⊂ D whose limit set consists of the local minima of ϕ.

For the quasi-static mechanical systems, this observation is sufficient to guide controller design.
However, these first order dynamical convergence results do not apply when a Lagrangian system is
subject to such a potential field. We now briefly review machinery to “lift” the gradient vector field
controller to one appropriate for second order plants of the kind introduced in (11).

6A good survey of potential field methods for robot navigation is given by ([21], Chapter 7). The refinement to
navigation functions, first articulated by Koditschek and Rimon [19, 20, 28], is only very briefly sketched here.
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3.2.2 Second order, damped gradient systems

Introducing a linear damping term, yields a simple “PD” style feedback, in local coordinates,

u = −Dqϕ(q)T −Kd q̇, (13)

that is appropriate for second order plants. Lord Kelvin’s observation is now relevant and it follows
that the total energy,

η = ϕ+ κ where κ = 1
2 q̇

TM(q)q̇, (14)

is non-increasing.
Unfortunately, if the total initial energy is higher than the energy at some point on the boundary

∂D, trajectories may intersect the boundary. Fortunately, further refining the class of potential
functions will enable us to construct controllers for which the basin of attraction contains a dense
subset of the zero velocity section of D. The following definition has been adapted from [19].

Definition 1. Let D be a smooth compact connected manifold with boundary, and q∗ ∈
◦

D be a point
in its interior. A Morse function, ϕ ∈ C2[D, [0, 1]] is called a navigation function (NF) if

1. ϕ takes its unique minimum at ϕ(q∗) = 0;

2. ϕ achieves its maximum of unity uniformly on the boundary, i.e. ∂D = ϕ−1(1).

This notion, together with Lord Kelvin’s observation, now yield the desired convergence result
for the Lagrangian system (11).

Proposition 2. (Koditschek [19]) Given the system described by (11) subject to the control (13),
almost every initial condition q0 within the set

E = {(q, q̇) ∈ TD : η(q, q̇) ≤ 1} (15)

converges to q∗ asymptotically. Furthermore, transients remain within D such that q(t) ∈ D for all
t ≥ 0.

Proposition 2 generalizes the kinematic global convergence of Proposition 1. Note that for the
second order system E imposes a “speed limit” as well as a positional limit, since the total energy
must be initially bounded.

3.2.3 Invariance under diffeomorphism

One last key ingredient in the mix of geometry and dynamics underlying the results we present
revolves around the realization that a navigation function in one coordinate system is a navigation
function in another coordinate system, if the two coordinate systems are diffeomorphic [19]. This
affords the introduction of geometrically simple model spaces and their correspondingly simple model
navigation functions.

4 Navigation Function Based Visual Servoing

We wish to create visual servoing algorithms that are high performance, global and yet safe with
respect to occlusion obstacles O that arise due to the finite FOV and self-occlusions. To achieve our
objective we compute the visible set for a particular problem. This is the set of all configurations
V := Q−O in which all features are visible to the camera and on which c is well defined. We then

9



design a safe, possibly conservative, subset D ⊆ V in which the body is permitted to move. The set
D provides additional safety with respect to obstacles and possibly simplifies the topology. We then
define the image space I = c(D) ⊂ Y . The camera map must be a diffeomorphism c : D ≈ I. For
each problem, D is analyzed to construct a model space Z and a diffeomorphism g : I ≈ Z . For

simplicity, we restrict our attention to point attractors G = {q∗}, q∗ ∈
◦

D from which we define the
goal image y∗ = c(q∗).

We propose a new framework for visual servoing that incorporates three ingredients:

1. a model space, Z , for the “safe” configurations, D;

2. a navigation function ϕ̃ : Z → [0, 1], for the model space;

3. a diffeomorphism, g : I → Z , from the image space to the model space.

These three ingredients are assembled with the feedback control strategy (13), which guarantees
that all initial configurations within D dynamically converge to the goal while ensuring occlusion-
free transients with respect to the obstacle set O and hence overcome all of the traditional limitations
of visual servoing systems listed in Section ??.

In 2D NF-based visual servoing, the function g does not contain a copy of the inverse of the
camera map. In 3D NF-based visual servoing, however, g does contain a copy of the inverse camera
map, c−1. In that sense, 2D algorithms are “simpler.” On the other hand, 2D algorithms require
the Jacobian of the camera map c, because the navigation function in the configuration variables is
given by ϕ(q) = ϕ̃ ◦ g ◦ c(q) and hence the gradient is given by

Dqϕ
T = DcT DgT Dϕ̃T .

By recourse to the general framework outlined above we develop controllers for several specific
configurations of a robot and monocular camera in the subsections that follow. In Section 4.1 and
Section 4.2 we present two example systems which incorporate 2D visual servoing, and in Section 4.3
we present a 3D visual servoing algorithm for a 6DOF body. Interestingly, the very different visual
servoing problems of Section 4.2 and Section 4.3 share a common model space Z = [−1, 1]n × S1

for n = 2 and n = 5 respectively, so Appendix A presents a new navigation function for the more
general model space Z = [−1, 1]n × Tm for all n and m in N.

4.1 Example 1: Planar body, planar camera

In this section, we discuss the problem of visually servoing a planar rigid body, viewed by a planar
pinhole camera, as depicted in Figure 3, first presented in [6].

Suppose we have a planar rigid body, Q = SE(2), with three distinguishable collinear feature
points. In this case, we will adopt a representation via homogeneous matrices parameterized in local
coordinates by a position and orientation q = [Tx,Ty, θ]

T , i.e.

H =

[
R T

0T 1

]
= ψ(q) :=




cos θ − sin θ Tx

sin θ cos θ Ty

0 0 1




and interpret H = CHB ∈ SE(2) as the rigid change of coordinates from the body to the camera
frame. We conveniently co-locate the x-axis of the body with the edge containing the feature points,
P , so that in body coordinates

bpi =
[
li 0 1

]T
for i = 1, 2, 3
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Figure 3: The setup for a planar pinhole camera and planar rigid body with collinear feature points
showing three typical configurations of a rigid body with respect to the camera. Left: The features
face the camera, but the leftmost point lies out of view. Center: Although within the camera
workspace, the body occludes the features. Right: The features are all visible.

where l1 < l2 < l3, and in camera coordinates

cpi = H bpi =
[
Tx + li cos θ Ty + li sin θ 1

]T

The body y-axis is oriented “into” the body, as depicted in Figure 3.
The camera is assumed to have a finite FOV, represented by two angles α1, α2 ∈ (−π/2, π/2)

measured with respect to the camera optical axis (y-axis). The FOV angles define a FOV cone which
is the workspace of the camera, Wc ⊂ E

2

Wc =
{
p ∈ E

2 : p2 > 0, arctan (p1/p2) ∈ (α1, α2)
}
.

For simplicity, consider a pinhole camera (10) with unit focal length π : Wc → E
1 is simply

π(p) :=
[p1

p2

1
]T

(16)

where p is a point expressed with respect to the camera frame. The “edge” of the image plane
corresponds to the two points ymin = tanα1 and ymax = tanα2.

4.1.1 The camera map and visible set for planar servoing

The total workspace W ⊂ SE(2) is

W :=
{
H ∈ SE(2) : H bpi ∈ Wc, i = 1 . . . 3

}
.

In other words, to be in the workspace, all features must project to the interval π(Wc) = (ymin, ymax) ⊂
E

1, as depicted in Figure 3.
The set of configurations “facing” the camera is simply

F := {H ∈ SE(2) : v(H) > 0} where

v(H) = (Ty cos θ −Tx sin θ) ,

so the visible set is defined V := F ∩W .
We now define the camera map, c : V → E

1 × E
1 × E

1

c(H) :=
[
π(H bp1) π(H bp2) π(H bp3)

]
. (17)
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In an abuse of notation, we will often write c(q) when using local coordinates, as a stand in for
c ◦ ψ(q).

The points y = [y1, y2, y3] = c(H) are related to the feature positions along the face of the body
by a “homography” (a member of the group of projective transformations of the line, PL(1) [10]),
i.e.

αiyi = Z
[
li 1

]T
, i = 1, 2, 3, where (18)

Z =

[
cos θ Tx

sin θ Ty

]
,

4.1.2 Diffeomorphism to the image plane for planar servoing

We identify the output space Y = E
1 × E

1 × E
1 with E

3 in the natural way. Define

Iρ =
{
y ∈ E

3 : y1 − ymin ≥ ρ0, y2 − y1 ≥ ρ1,

y3 − y2 ≥ ρ2, y
max − y3 ≥ ρ3

}

where ρi ≥ 0, i = 0, . . . , n. When ρ = [ρ0, . . . , ρ3]
T = 0, we write I0, and define

J :=
◦

I0 =
{
y ∈ E

3 : ymin < y1 < y2 < y3 < ymax
}
.

The map c (17) is a diffeomorphism from V to its image c(V) = J , the proof of which follows
from the following three facts: (i) c is onto, i.e. c(V) = J , (ii) c is one-to-one and (iii) c is a local
diffeomorphism – i.e. it is smooth and smoothly invertible – at each point in V .

(i) One readily verifies that for each H ∈ V , y = c(H) ∈ J , i.e. c(V) ⊆ J . Furthermore, for each
three vector y ∈ J , there is a unique (up to scale) nondegenerate homography, Z, which relates the
correspondences via7

αiyi = Z
[
li 1

]T
, i = 1, 2, 3

in homogeneous coordinates. Since Z is full rank, the columns are linearly independent and hence
Z may be parameterized as in (18) for H ∈ V (since if H /∈ V then y /∈ J ).

(ii) Suppose that c is not one-to-one, i.e. y = c(H1) = c(H2), H1, H2 ∈ V , then the matrices

Z1 =

[
cos θ1
sin θ1

T1

]
and Z2 =

[
cos θ2
sin θ2

T2

]

represent the same homography, namely Z1 = αZ2. Since the first column of each matrix has unit
length, then Z1 = ±Z2, but if both T1 and T2 are in front of the camera, then (Ti)y > 0, and hence
H1 = H2 which is a contradiction.

(iii) The pinhole camera π is differentiable everywhere in front of the camera, and hence c is
differentiable on V . Direct computation reveals that

|Dc(q)| =
(l1 − l2) (l2 − l3) (l3 − l1) (Ty cos θ −Tx sin θ)

(Ty + l1 sin θ)
2
(Ty + l2 sin θ)

2
(Ty + l3 sin θ)

2

= v(H)
(l1 − l2) (l2 − l3) (l3 − l1)

(Ty + l1 sin θ)
2
(Ty + l2 sin θ)

2
(Ty + l3 sin θ)

2

which is different from zero at every point in V , and hence c is a local diffeomorphism at every point
in V (inverse function theorem).

7A projective transformation, Z ∈ PL(1) is uniquely determined by the correspondence of three distinct points
[26].
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4.1.3 Model space for planar servoing

We seek a compact manifold with boundary on which to impose a navigation function. Note that V is
an open set. Moreover, V is not compact since there is no bound on the magnitude of translational
component, and hence it is impossible that V ≈ I0. However it is practical to impose impose a
“collar” around the points on the image plane by enforcing ρi > 0 and hence require that they
maintain a minimum distance from one another, as well as maintaining their distance from the edge
of the image plane. Note that Iρ ⊂ J if ρi > 0, and hence

D = c−1(Iρ) ⊂ V (19)

is compact (Munkres [24], Theorem 5.5).
So, we identify a general model space of the form

Z = {z ∈ R
n : zi+1 − zi ≥ ρi, i = 0, . . . , n} (20)

where z0, zn+1 and ρi > 0, i = 0, . . . , n are suitable constants. For planar visual servoing, n = 3.

4.1.4 Navigation function for planar visual servoing

We require a change of coordinates from the image plane to a model space Z for D. In our case, we
choose Z = Iρ, and hence g is the identity mapping. For the model space (20) we refine a class of
navigation functions designed in a separate context by Koditschek [18].

Proposition 3. (Adapted directly [18]) The objective function

ϕ(z) =
‖z − z∗‖2k

∏n
i=0(zi+1 − zi)2 − ρ2

i

is convex on
Z = {z ∈ R

n : zi+1 − zi ≥ ρi, i = 0, . . . , n}

where z0, zn+1 and ρi, i = 0, . . . , n are suitable constants and k > (2n+ 3)/2 in which case

ϕ̃ :=
ϕ1/k

(1 + ϕ)1/k
(21)

is a navigation function on Z.

For planar servoing, n = 3 and so we require k > 9/2, hence

ϕ(y) = ‖y − y∗‖2k/(
[
(y1 − ymin)2 − ρ2

0

] [
(y2 − y1)

2 − ρ2
1

]
[
(y3 − y2)

2 − ρ2
2

] [
(ymax − y3)

2 − ρ2
3

]
)

is convex. Moreover, ϕ̃ given by (21) is a navigation function on Iρ and ϕ := ϕ̃ ◦ c is a navigation
function on D.

4.2 Example 2: Buehgler arm, spatial camera

This example serves two purposes. From a practical standpoint, it has allowed us to explore visual
servoing with a high performance experimental apparatus called the Buehgler arm built previously in
our laboratory [34, 29] which we augmented with two high-speed digital cameras. The experimental
results are shown in Section 5. From a theoretical standpoint, it will allow us to explore servoing on
a different space Z = [−1, 1]n × Tm with n = 2 and m = 1, with a high performance platform that
demands a “tunable” navigation function. Moreover, it will turn out that 6DOF visual servoing
(Section 4.3) can be cast in the same model space (with n = 5 and m = 1).
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Figure 4: Left: The Buehgler arm has been modified with an “arrow” feature on the tip of the arm,
which is observed by a perspective projection camera. The camera image is segmented to extract
the arrow, as depicted. Right: The surface swept out by the tip of the arm for q1 ∈ (−π/2, π/2),
q2 ∈ (−2π/3,−0.1π).

Figure 5: Left: An image of the Buehgler arm taken from the servo camera. The tip of the arm
has been marked with a “pointer.” Right The segmented image showing the extracted feature.

4.2.1 Buehgler arm kinematics

The Buehgler arm, depicted in Figure 4, has three actuated revolute degrees of freedom parameter-
ized in local coordinates by angles q = [ q1, q2, q3 ]T and its configuration space is Q = S1×S1×S1 =
T3. Denote the homogeneous transformation from the gripper frame to the world base frame, given
in [30], as wHb(q). The transformation from the world frame to camera frame is cHw, and hence
H = cHb = cHw

wHb. We let R = [r1, r2, r3] and T denote the rotation and translation, respectively,
effected by H .

We affix a “pointer” to the tip of the arm, which we model as the position and unit orientation
of a vector in three space, namely8 (br, bv) ∈ T1E

3 ≈ E
3 × S2 = FS. The total forward kinematic

map is then defined hδ : Q×FS → FS

hδ(q) :=

[
H(q)br
R(q)bv

]
=:

[
rδ(q)
vδ(q)

]

where (rδ , vδ) are in the camera frame, and the subscript denotes dependence on an important
kinematic parameter, the “shoulder” offset, δ.

We consider a feature point at the tip of the arm (which has length %), oriented in the y-direction
of the gripper frame, namely

(br, bv) = ([ 0, 0, %, 1 ]T , [ 0, 1, 0 ]T ) ∈ FS

8T1X ⊂ TX is the unit tangent bundle of X [14].
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4.2.2 The camera map and visible set for the Buehgler

A perspective projection camera (10), located at the frame Fc, is positioned to view the robot end
effector as depicted in Figure 4. The FOV angles, (α11, α12, α21, α22) ∈ (−π/2, π/2), determine the
workspace of the camera, Wc ⊂ E

3, in a fashion analogous to the planar camera, namely

Wc :=
{
p ∈ E

3 : p3 > 0, arctan (p1/p3) ∈ (α11, α12),

arctan (p2/p3) ∈ (α21, α22)
}
.

The edge of the image plane is defined in terms of the “lower left corner” ymin ∈ E
2 and the “upper

right corner” ymax ∈ E
2, the image plane projections of the FOV edges.

We define the total workspace as

W := {q ∈ Q : rδ(q) ∈ Wc} (22)

The set of configurations facing the camera, those for which the feature is not occluded by the arm,
is defined very similarly as for planar visual servoing. Let bn = [ 0, 0, −1 ]T denote the normal
vector to the tip of the arm, facing “into” the arm. Then

F :=
{
q ∈ Q : rδ(q)

TR(q)bn > 0
}

(23)

And finally, we have V := F ∩W .
The map c, introduced formally below, can be intuitively described as follows. A “pointer” is

attached to the tip of a arm, and a camera sees its position and orientation on the image plane.
Roughly speaking, the waist (q1) moves the feature in the image plane x direction, the shoulder (q2)
moves the feature in the image plane y direction and the wrist (q3) rotates the feature on the image
plane. The camera is positioned so the feature may move freely over the entire image plane and may
be rotated to any orientation on the image plane at any base point.

It turns out [30] that rδ and Rbn depend only on the “base” (first two) configuration variables.
Hence, according to (22) and (23), the visible set decomposes as V = R× S1, i.e. the third configu-
ration variable, q3, is unrestricted at each base point (q1, q2) ∈ R ⊂ T2.

The camera map is given by the projection of the feature, and its orientation on the image plane,
namely

c(q) :=

[
π ◦ rδ(q)

∠ {[Dπ ◦ rδ(q)] vδ(q)}

]
(24)

where ∠ normalizes the vector on the image plane. Hence, the function c yields the position and
orientation of our projected feature on the image plane, i.e. c : V → Y , where Y = T1E

2 ≈ E
2 × S1.

We used the symbolic algebra package Mathematica to generate a relatively simple closed-form
expression for c, and its Jacobian Dqc(q).

In our experiments, we position the camera so that all the rays within the workspace of the camera
intersect the set Mδ = rδ(R) ⊂ E

3 transversely once. This requires the camera be sufficiently close
to enable the robot tip to position the pointer anywhere on the image plane. Morever, we assume
the camer is positioned so that R does not contain the kinematic singularity that occurs when the
second axis is pointing straight up [30]. As a direct consequence we have i) rδ : R ≈ Mδ is an
analytic diffeomorphism and ii) the restriction of π defined by composition with the kinematics,
π |rδ(R) : Mδ → E

2, is an analytic diffeomorphism as well, π ◦ rδ : R ≈ E
2.

15



4.2.3 Diffeomorphism to the image plane for the Buehgler

The image space is defined

Iρ := { (y, θ) ∈ T1E
2 : ymin

i ≤ yi ± ρi ≤ ymax
i , i = 1, 2 }

where ρi, i = 1, 2 are positive constants which impose a “safe” border around the image plane.
When ρ1 = ρ2 = 0, we write I0. Define

J :=
{
y ∈ E

2 : ymin
i < yi < ymax

i , i = 1, 2
}
.

and note that T1J =
◦

I0. In Appendix B, we show that c (24) is a diffeomorphism c : V ≈ T1J in
the case that δ is sufficiently small, which we now simply assume to be true (an assumption validated
by the experiments).

4.2.4 Model space for the Buehgler

As in the planar example (see Section 4.1.3), we seek a compact manifold with boundary D on which
to impose a navigation function. As before, this is done by taking the inverse image under c of a
compact subset of the image plane, namely

D = c−1(Iρ) ⊂ V (25)

which again as before is a compact manifold with boundary.

4.2.5 Navigation function for Buehgler servoing

We require a change of coordinates from the image plane to a model space Z for D. By letting g be
a simple (affine) scaling and translation of the coordinates, the set Iρ is diffeomorphic to the model
space Z in (35) with n = 2 and m = 1. Hence, according to Appendix A,

ϕ = ϕ̃ ◦ c (26)

where ϕ̃ is given by (37), is a navigation function on D.

4.3 Example 3: Spatial body, spatial camera

Consider a free convex polygonal rigid body, with configuration space Q = SE(3), and let P =
[ p1, · · · , pN ], pi ∈ E

3, be a set of coplanar distinguishable points on a face of the body. Because
the points are coplanar, they are in a 2-dimensional subspace of E

3. Attach the body-fixed frame
Fb such that the (x, y)-plane contains the feature points, and the z-axis is normal and oriented
toward the interior of body. Hence the z-component of the points in body coordinates is zero, so for
convenience let

bB = Λ bP =
[
bb1 · · · bb1

]
, bbi =




bpi1
bpi2

1


 ∈ E

2

Λ =




1 0 0 0
0 1 0 0
0 0 0 1



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denote the “reduced” homogeneous body coordinates, where bpi1 and bpi2 are the x and y components,
respectively, of bP . Note that bP = ΛT bB. Let

pc = argmin
p∈E2

max
i∈Γ

‖pi − p‖, ρ = max
i∈Γ

‖pi − pc‖,

Γ = {1, . . . , N}

denote the center and radius of the smallest sphere containing all the points.9 Now, assume without
loss of generality that Fb is located at pc, i.e. bpc = [ 0, 0, 0, 1 ]T . Finally, we let the homogenous
matrix H = CHB ∈ SE(2) denote the rigid change of coordinates from the body to the camera frame.
Once again R = [r1, r2, r3] and T denote the rotation and translation, respectively, effected by H .

4.3.1 The camera map and visible set for spatial servoing

The visible set is defined analogously for the spatial case as it was in the planar case in Section 4.1.
The visible set is the set of all poses in SE(3) such that the feature points are within the FOV, and
the body is facing the camera. The set of configurations facing the camera is defined

F := {H ∈ SE(3) : v(H) > 0} where v(H) := rT
3 T.

The FOV angles α11, α12, α21, α22 determine the workspace of the camera Wc ⊂ E
3

Wc := { p ∈ E
3 : p3 > 0, arctan (p1/p3) ∈ (α11, α12),

arctan (p2/p3) ∈ (α21, α22) }.

depicted in Figure 6. The total workspace W ⊂ SE(3) is then

W :=
{
H ∈ SE(3) : H bpi ∈ Wc, i ∈ Γ

}

and the visible set is defined as for the planar case V := F ∩W .
To simplify the geometry, we restrict the visible set to a conservative subset V ′ ⊂ V with respect

to the FOV. In particular, we consider all translations which keep the point pc within the so-called
“admissible cone,” Wρ

Wρ :=
{
p ∈ E

3 : Bρ(p) ⊂ Wc

}

depicted in Figure 6. In other words, Wρ is all translations that keep a sphere of radius ρ completely
within the FOV. If we restrict the translation of our rigid body to be within this set, then all
the feature points will stay in the FOV regardless of the body orientation. Hence, the restricted
workspace

W ′ := {H ∈ SE(3) : T ∈ Wρ} (27)

is combined with the facing set, to yield the conservative visible set V ′ := F ∩W ′ ⊂ SE(3)
The centroid is confined to move in an open solid cylinder, i.e. R

+ × D2 where Dn is an n-
dimensional open disk. Recall that the body coordinate frame, Fb is attached such that the z-axis
is orthogonal to the face (facing into the body) and the (x, y)-plane contains the feature points.
Consider the fact that SO(3) is an SO(2) bundle over S2, and identify the orientation of the z-axis
with the base point in S2. The requirement that the body faces the camera is a constraint on the
the z-axis, namely that it always has a positive projection of onto the line-of-site. This yields an

9Note that simply computing the centroid of all the points does not necessarily give the center of the smallest
sphere containing all the points, and so this somewhat more awkward definition is needed.
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Figure 6: The camera workspace,Wc ⊂ E
3, is the set of all positions that are within the field of view.

It is parameterized relative the camera frame by the angles {αi}
4
i=1 of the four FOV bounding planes.

The admissible cone, Wρ ⊂ Wc, refers to all positions that keep a sphere of radius ρ completely
within the camera workspace.

open hemisphere; i.e. a diffeomorphic copy of R
2. An SO(2) bundle over R

2 is diffeomorphic to
R

2 × SO(2). Therefore
V ′ ≈ R

+ ×D2 × SO(2)× R
2 ≈ R

5 × S1.

A perspective projection camera (9), located at the frame Fc, observes the rigid body feature
points, Y = P

2 × · · · × P
2 (N times). In homogeneous coordinates, we may write

Y = c(H) = C H bP = AΠH ΛT bB

where C,A,Π are given in (9) and note that

Z(H) := ΠH ΛT = Π

[
r1 r2 r3 T

0 0 0 1

]
ΛT =

[
r1 r2 T

]

Denote the columns Y = [ y1, · · · , yN ] where yi = C H bbi and note that Y and bB are related by
the matrix AZ(H), namely

Y = AZ(H) bB (28)

This fact will provide a convenient way to compute c−1

4.3.2 Computing c−1 for spatial servoing

Because we will work in a reconstructed three dimensional space to perform 6DOF visual servoing,
we need an inverse for the camera map. Computing the inverse requires that a map be injective
onto its image which is true of c as we show so long as P contains at least four points in general
position (i.e., having the property that no three are collinear).

We must first show that c is well defined on V . Assume H ∈ V ⊂ F , i.e. that v(H) 6= 0, which
implies that Z(H) is nonsingular. Since Z(H) is nonsingular, AZ(H) is a homography, and hence
c(H) is well defined.
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Second, we must show that each H yields a unique Y . Assume H1, H2 ∈ V and H1 6= H2. Using
a contrapositive argument, assume that Y = c(H1) = c(H2). Since bB has the property there are
four points such that no three of the four points are collinear then we know that Y has the same
property.10 Hence c(H1) = c(H2) iff AZ(H1) and AZ(H2) the are the same up to a scale. This
implies that Z(H1) and Z(H2) are the same up to a scale, i.e.

[
r11 r12 T1

]
= β

[
r21 r22 T2

]

where rij denotes the jth column of the ith rotation matrix. But β = 1 since ‖rij‖ = 1 and (Ti)3 > 0.
Hence Z(H1) = Z(H2), which is true iff H1 = H2. This is a contradiction, so c is injective.

In practice, computing the inverse of c is very straight forward. There must be at least four
point correspondences such that no three points are collinear as discussed above. Using the possibly
redundant and noisy data, Y , one simply computes the “best” (in a linear sense) homography, M ,
between bB and Y [10]. Subsequently, using an approximation for the camera parameter matrix,
compute Ĝ = Â−1M . With noiseless measurements and perfect calibration

H = Z−1(Ĝ) =

[
Ĝ1

‖Ĝ1‖

Ĝ2

‖Ĝ1‖

Ĝ1×Ĝ2

‖Ĝ1‖2
Ĝ3

‖Ĝ1‖

0 0 0 1

]
,

however, due to calibration errors in Â and noise in Y , Ĝ will not be exactly in the form of Z(H).
In our experiments we use a simple heuristic pseudo-inverse Ĥ = Z†(Ĝ) which is computed by
projecting the above expression, conceived as a matrix in R

4×4, down to the space of homogeneous
transformation matrices, so that Z(Ĥ)−1Ĝ− I is “small.”

4.3.3 Model space for spatial servoing

To apply the machinery in Section 3, we restrict D to be a compact subset of V ′. Consider the two
planes parallel to the image plane given by z = δmin and z = δmax such that they each intersect Wρ

as depicted in Figure 7. The bounded workspace is defined simply to be the compact set

Wδ,ρ :=
{
p ∈ E

3 : p ⊂ Wρ, δmin ≤ p3 ≤ δmax

}
(29)

We will limit the translation to this compact subset. Selection of δmax,min is arbitrary provided that
Wδ,ρ is well defined. Practically, one chooses them to limit the range of depth of the robot: too far
away and it becomes more difficult to sense the features; too close and we risk hitting the camera
with the body. The safe workspace is now

W ′′ := {H ∈ SE(3) : T ∈ Wδ,ρ} (30)

To parameterize the safe set, D, we use the translation T and Euler angles (φ, ψ, θ), in a manner
which avoids singularities. In particular the Euler angles (0, 0, θ) have the z-axis of the body parallel
to the translation, i.e.

h(T, φ, ψ, θ) = h1(T)h2(φ, ψ, θ) (31)

where

h1(T) :=

[
e2×T

‖e2×T‖
T×(e2×T)
‖T×(e2×T)‖

T

‖T‖ T

0 0 0 1

]
,

h2(φ, ψ, θ) :=

[
Rx(φ)Ry(ψ)Rz(θ) 0

0T 1

]

10A projective transformation, A ∈ PL(2) is uniquely determined by the correspondence of four points in general
position – that is, no three points may be collinear. Furthermore, given four points with the property that no three
are collinear, their image under A has the same property [26].
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Figure 7: The workspace Wc is constrained by the FOV angles {αi}
4
i=1 Left: An orthographic

projection of the workspace, illustrating the admissible cone, Wρ, and the bounded workspace, Wδ,ρ.
Right: A perspective view of the admissible cone and the bounded workspace.

where Rx, Ry and Rz are the standard x− y− z Euler angle rotation matrices. Consider a compact
subset F ′ ⊂ F

F ′ := {H ∈ SE(3) : − ϑmax ≤ φ, ψ ≤ ϑmax} (32)

where H is parameterized by (31) and ϑmax < π/2. We then have D := F ′ ∩W ′′. Note that D ⊂ V ′

is compact.
We need a mapping fromD to Z . We will now build up the inverse of that mapping f−1 : [−1, 1]5 × S1 →

D. The first piece is given by f−1
1 : [−1, 1]3 →Wδ,ρ

f−1
1 (x) = b+ x3v + x1e1(m1x3 + d1) + x2e2(m2x3 + d2)

where we choose the parameters b, v ∈ R
3, m1,m2, d1, d2 ∈ R so that f−1

1 is a diffeomorphism from
[−1, 1]3 to Wδ,ρ, as follows. The point b is on the midpoint of the line segment down the center of
Wδ,ρ, as shown in Figure 7, and v is a vector which points along this centerline. To find b, intersect
the four planes of Wρ with a plane parallel to the image plane at z = (δmin + δmax)/2, and take
the midpoint of the rectangle that results. The vector v is found by subtracting b from the center
of the rectangle which results from the intersection of the plane z = δmax and Wρ. Note that b± v
corresponds to the center points of the rectangles at the intersection of z = δmax,min, respectively,
and Wρ. The constants m1, m2, d1 and d2 are all selected so that for each x3 ∈ [−1, 1], then
(x1, x2) ∈ [−1, 1]2 parameterizes a planar cross section of Wδ,ρ parallel to the image plane. To select
these constants, observe the (x, z)-orthographic projection of the workspace in Figure 7. The value
of d1 is shown and is computed by intersecting the plane z = (δmin + δmax)/2 with Wρ and taking
1/2 of the x-dimension of the resulting rectangle, whereas d2 is 1/2 the y-dimension. The value of
m1 is found by observing that x1 = 1 and x2 = 0 corresponds to the top edge of Wρ. Likewise for
m2. We then have

f−1(x, θ) = h1(f
−1
1 (x1, x2, x3))h2(x4ϑmax, x5ϑmax, θ) (33)

Note that computing f is a very straightforward, albeit somewhat tedious, computation.
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The topology of D is borne out by this change of coordinates: the translation, T, is free to
move in a diffeomorphic copy of [−1, 1]3, and the first two Euler angles are constrained to a copy of
[−1, 1]2, while the last is free to move in the entire circle, S1. Moreover, the parameterization was
carefully designed to have no singularities. In essence, we have shown that the model space (35) for
n = 5 and m = 1, namely Z = [−1, 1]5 × S1 is diffeomorphic to D via the mapping f : D ≈ Z (33).

4.3.4 Navigation function for spatial visual servoing

Let g = f ◦ c−1 : I → Z . Then
ϕ = ϕ̃ ◦ g ◦ c (34)

where ϕ̃ is given by (37) for n = 5, m = 1, is a navigation function for spatial visual servoing.

5 Empirical Validation

In order to test the framework proposed in Section 4 we experimented with two robotic systems
that implement the latter two imaging models introduced in the previous section. The first system
is the custom 3DOF direct drive Buehgler Arm described in Section 4.2 to test a fully dynamical
controller (13) based on the NF given by (26). Our second set of experiments employ an industrial
6DOF RTX robot from Universal Machine Intelligence to test a kinematic controller (12) using the
spatial 6DOF NF (34).

5.1 Calibration

Although the visual servoing methodolgy confers robustness against parameter mismatch in practice,
all such methods, including the one presented in the paper, require at least coarse calibration of
the robot and the camera. For the RTX, we used the manufacturer specified Denavit-Hartenberg
parameters and a linear method ([10], Section 3) that requires a set of point correspondences between
points in space and their respective image to simultaneously estimate both intrinsic and extrinsic
camera parameters. To obtain the correspondences, a feature affixed to the robot end effector was
moved to a grid of positions in view of the vision system which extracted an image plane location
for each feature position in space. For the Buehgler setup we measured the paddle length % and
the shoulder offset δ by hand and proceeded as for the RTX to obtain a rough estimate of the
camera parameters. A gradient algorithm based on a simple pixel disparity cost function refined our
parameter estimates for the 11 camera and two robot parameters.

5.2 The Buehgler Arm

The Buehgler Arm is controlled by a network of two Pentium II class PCs running LynxOS (http://www.-
lynx.com/), a commercial real-time operating system. The two nodes communicate on a private
ethernet using the User Datagram Protocol (UDP). The first captures 8bit 528x512 pixel images
at 100Hz using an Epix (http://www.epixinc.com/) Pixci D frame grabber connected to a DALSA
(http://www.dalsa.com/) CAD6 high-speed digital camera. The images are processed to extract
the location (position and orientation) of the feature point at the end of the paddle. The second
node implements servo control using the Trellis (http://www.trellissoftware.com/) motion controller
with a servo rate of 1kHz, based on the dynamical controller in (13), wherein the damping term is
computed from encoder data using finite differencing to estimate the joint velocities.

Two sets of experiments were conducted using the appropriate NF (26), implemented with two
different gain settings (i.e., assignments for the parameter array K in (36) and Kd in (13)) chosen
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to contrast performance resulting from a locally well tuned critically damped closed loop using
relatively high gains, as against a “detuned” low gain and underdamped circumstance. Each trial
consisted of driving the feature position and orientation to a goal (z∗, ζ∗) from some initial condition
in joint space (q0, q̇0). For the “tuned” gain experiments, a set of 8 goal locations with and 40 initial
conditions were chosen in an effort to “defeat” the controller. In particular, initial configurations
were chosen near the edge of the FOV, with initial velocity vectors chosen so as to drive the robot
out of the FOV. The initial conditions were prepared with a simple joint-space trajectory planner
and joint-space PD controller that drove the robot to the starting state at which time the control
switched to the NF based controller. In other words, we forced the robot to literally “fling” itself
toward an obstacle before turning on our visual servoing controller. Both the goal positions and
initial conditions where chosen to span the visible robot workspace. The control law gains were
hand-tuned to provide nearly critically damped performance, and settling times on the order of a
second.11 For the “detuned” gain experiments, a smaller set of more aggressive initial conditions and
goal locations was used, and the damping gain was reduced to provide “underdamped” performance.
There were 4 goals and 8 initial conditions. Figure 8 shows the the error coordinates of a typical
run for both “tuned” and “detuned” gains.

Table 1: Summary of results for Buehgler arm.
Normalized Path Length

Goal Succ. Jnt. Space Pix. Space Gains
# Rate Mean (dev) Mean (dev) Tuned?
1 40/40 1.75 (0.12) 1.63 (0.19) Yes
2 40/40 2.38 (0.34) 1.85 (0.35) Yes
3 36/40 2.02 (0.87) 1.65 (0.22) Yes
4 40/40 2.07 (0.36) 1.94 (0.50) Yes
5 40/40 1.79 (0.36) 1.64 (0.23) Yes
6 37/40 2.15 (0.41) 2.00 (0.62) Yes
7 36/40 1.96 (0.85) 1.63 (0.19) Yes
8 40/40 2.05 (0.65) 2.02 (0.75) Yes
1 6/8 3.01 (1.93) 3.59 (1.94) No
2 6/8 1.64 (0.40) 2.41 (0.53) No
3 5/8 2.54 (1.86) 3.91 (2.40) No
4 7/8 2.97 (0.46) 3.30 (0.65) No

To quantify the results we examine similar measures as for the RTX. Table 1 summarizes the
results of the our experiments. With well tuned gains the controller consistently drove the feature
to the goal location with a rate of success of 97%. Of the 11 errors one was due to exceeding the
robot’s maximum velocity, one to a software driver error, and one to a feature leaving the FOV of the
camera during initialization. The remaining 8 failures were caused by not allowing enough time for
convergence as each experiment lasted 6 seconds. These errors generally arose when the robot was
close to a saddle of the NF so the controller was slow to overcome the robot’s unmodeled friction.
However, with “detuned” gains and high initial velocity the feature left the FOV 25% of the time.
These failures are due to the fact that the initial energy of the robot arm caused the arm to escape the

11Of course, the allusion to linear notions of damping is merely an intuitive designer’s convenience. We chose
gains to ensure the local linearized system was critically damped at the eight equilibrium states, and then tuned up
the “boundary” gains to force reasonably snappy descent into the domain wherein the linearized approximation was
dominant.
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potential well – by using a lower “detuned” gain on the potential energy feedback term, the potential
barrier is reduced. (It would not be difficult to compute the invariant domain, as in [17] - these
experiments give some sense of the relatively graceful performance degradation consequent upon
imperfectly tuned gains.) Figure 8 shows image-based error plots and the image-plane trajectory
for two typical runs.

To determine the accuracy with which the feature reached the goal, the mean pixel error is given
by

256
√

(zfinal − z∗)T (zfinal − z∗) + ( 1
π )2(ζfinal − ζ∗)2

so the model coordinates are scaled to be commensurate with pixel error. As can by seen in Figure 8
(bottom right) the mean errors are in the neighborhood of 1 to 2 pixels over each of the eight goal
positions.

Table 1 shows the path length taken by the robot compared to the straight line path length
in both joint and pixel space. The results indicate that in joint space our navigation function
produced results within a factor of 2.5 of the straight line distance. We attribute a large portion
of this additional path length to the fact that the large initial velocities caused “curviness” to the
trajectories.

Finally, we designed our controller to have a very rapid and dextrous response. The Buehgler
arm has a mass in excess of 100Kg making precise, quick and efficient movement quite challenging.
Figure 8 (top right) shows our navigation based controller produced a one second or less five percent
settle time for seven of the eight primary goal positions.

5.3 The RTX Arm

The RTX is commanded through the serial port of a single Pentium PC running a Linux 2.0 kernel
(hard real-time is not required, hence the standard Linux kernel was adequate). The PC is equipped
with a Data Translations12 DT3155 frame grabber connected to a standard 30Hz NTSC video
camera. Using MATLAB’s C-language API, we created a simple interface to the camera and robot
accessible from within the MATLAB programming language.

The theory presented in Section 4.3 presumes the configuration space to be Q = SE(3). However,
Q is parameterized (locally) by the robot joint angles q ∈ R

6 through the forward kinematics, namely
h : R

6 → Q. Of course, inevitably, all such kinematic parameterizations introduce singularities that
may, in turn, inject spurious critical points to the gradient fields, necessarily actuated in the robot’s
joint space rather than in the task space, as our theory presumes. Similarly, since our formal
theory “knows” only about visibility bounds, the robot’s unmodeled joint space angles limits are
not in principle protected against.13 However, the weight of experimental evidence we present below
suggests that these discrepancies between presumed model and physical reality do not seriously
imperil the practicability of this scheme. Regarding the first discrepancy, the absence of stalled
initial conditions suggests that any critical points so introduced were not attractors. Regarding the
second, we found that choosing initial and goal locations away from the joint space boundaries was
sufficient to avoid running into the end-stops.

The RTX controller employs first order gradient descent on the navigation function in (34).
Because the RTX arm accepts only position commands, given goal and current images with feature
points extracted, the gradient update was implemented iteratively, as follows:

12http://www.datax.com/
13Addressing the further practical realities of kinematic singularities and robot joint space limitations falls outside

the scope of the present paper (and, indeed, is not even addressed at all in the traditional visual servoing literature).
In principle, the NF framework would be relevant to these problems as well: joint space limits are analogous to the
FOV obstacles, while the kinematic singularities are akin to self-occlusion.
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uk ⇐ −DT
q ϕ = −DT

q (f ◦ h)(qk)DT
z ϕ̃z∗(zk),

qk+1 ⇐ qk + αuk (where α is the step size).

Note that the Jacobian matrix Dq(f ◦ h) can be decomposed into the product of Df , which maps
from the body screw axis to the model space, and the manipulator Jacobian Dh, which maps from
the robot joint space to the body screw axis. Indeed, such a decomposition implies the extrinsic
parameters are not needed and hence one may move the camera without recalibrating.

To explore our algorithm, we conducted a set of experiments in which 58 initial conditions were
tested for four goal locations, giving 232 candidate experiments. Both the initial conditions and
goal locations were chosen randomly from a grid of 4096 points in model space (configurations near
kinematic singularities and not within the robot workspace were removed). We chose many initial and
goal configurations near the boundaries of the workspace, hence of the 232 candidate experiments,
an additional 29 experiments where removed as the features began outside of the robot’s workspace
due to “sloppiness” in the joints of the robot i.e. there is a lot of play in the joints so a specific initial
condition in the joint space may not be the same place in SE(3) in subsequent trials, and therefore
some initial conditions were out of the visible workspace at the start. Initially, the robot was moved
to each goal location to capture an image of the robot, respecting which the vision system stored
the desired location of feature points, y∗. Figure 9 shows the pixel errors feature trajectories of two
typical runs. As shown, we used four coplanar feature points for the camera map, c : Q → Y .

Table 2: Summary of results for RTX arm
Normalized Path Length

Goal Success Jnt. Space Pix. Space
# Rate Mean (dev) Mean (dev)
1 49/51 1.35 (0.39) 1.33 (0.49)
2 47/47 1.36 (0.29) 1.27 (0.37)
3 55/57 1.32 (0.23) 1.27 (0.32)
4 47/48 1.42 (0.36) 1.32 (0.25)

To ascertain the performance of our controller, we employed several metrics described below:
success and failures, efficiency of motion, mean pixel error and setting time.

Table 2 shows the success rate of the various goal positions. Of 203 trial runs, 5 were found to
have failed. All 5 failures are due to the robot not converging in our limit of 30 iterations (though
after inspecting the data by hand, it appears that the robot would have converged if given a few
more iterations).

We also measured the “efficiency” of motion relative to the straight line distance in both image
and cartesian space. The metric used for measuring distances in the configuration space was the
sum of the angular displacement, scaled by body length, and the translational displacements. For
all of the runs, both image and cartesian measures indicated that the path length was around 1.4
times that of straight line distance. See Table 2.

Using the root mean squared average pixel error measurement given by
√

1
4

∑4
i=1(yi − y∗i )2 we

found an average final pixel error on the order of 1-2 pixels upon convergence. Figure 9 (upper right)
shows the mean pixel error and standard deviation for each of the four unique goal positions.

The average five percent setting time, shown in Figure 9 (lower right), was approximately 10-14
iterations for each of the four goal locations, averaged over all successful runs.
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6 Conclusions

This paper addresses the problem of driving image plane features to some goal constellation while
guaranteeing their visibility at all times along the way. We cast the problem as an instance of
generalized dynamical obstacle avoidance, thereby affording the use of navigation functions in a
nonlinear PD-style feedback controller.

We demonstrate the applicability of this framework in three different examples, including exten-
sive empirical results in the two more complex cases. The two experimental systems confirmed the
practicability of theoretical framework: the custom 3DOF Buehgler Arm and the 6DOF commercial
RTX arm. For the Buehgler, our experiments suggest that the navigation function based controller
indeed drives the feature to within a few pixels of the goal in all cases where the initial energy did
not overwhelm the potential energy well. The kinematic experiments with the RTX validated our
6DOF task-space servo architecture. In both cases our results show systems with large basins of
attraction that both avoid self occlusion and respect FOV constraints.

The efficacy of this approach depends upon the explicit construction of a model space together
with a coordinate transformation back to the image plane respecting which the visibility obstacles
such as self occlusions and the FOV can be represented as the boundary of a compact manifold.
Finding a good general image-based coordinate system seems challenging, hence we have had to
resort to similar but distinct constructions in the examples discussed. Ideally, one creates an image
based coordinate system using direct feature information as in the planar setting of Section 4.1 and
the dynamical setting of Section 4.2. In many cases, it may be helpful to “enlarge” the obstacles to
simplify the topology as in the spatial setting of Section 4.3. Conceivably, the homography matrix
(25) computed directly from image-plane correspondences, could provide the basis for a more general
visual coordinate system, and this remains an interesting avenue for future investigation.
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A A navigation function for [−1, 1]n × Tm

Let
Z = [−1, 1]n × Tm (35)

for some m,n ∈ N and let (z∗, ζ∗) ∈
◦

Z denote a goal. Consider the function f : (−1, 1)n → R
n

f(z) =
[

z1−z∗
1

(1−z2

1
)
1

2

· · ·
zn−z∗n

(1−z2
n)

1

2

]T

.
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Let K ∈ R
n×n be a positive definite symmetric matrix and κi > 0, i = 1, . . . ,m. Define14

ϕ(z, ζ) := 1
2f(z)TKf(z) +

m∑

i=1

κi(1− cos(ζi − ζ∗i )). (36)

Proposition 4. The objective function

ϕ̃ :=
ϕ

1 + ϕ
(37)

is a navigation function on Z, where ϕ is given in (36).

Proof. According to Definition 1, ϕ̃ must be a smooth Morse function which evaluates uniformly to
unity on the boundary of Z , and has (z∗, ζ∗) as the unique minimum.

The boundary of Z is given by

∂Z = {(z, ζ) ∈ Z : zi = ±1, i ∈ {1, . . . , n}} .

Clearly, ϕ̃ evaluates to 1 on the boundary, i.e. as zi → ±1 then ϕ̃ → 1. Furthermore, ∀(z, ζ) ∈ Z ,
ϕ >= 0. Moreover, ϕ = 0 iff (z, ζ) = (z∗, ζ∗ +

∑
i∈Γ 2πei) = (z∗, ζ∗), i.e. the (z∗, ζ∗) is the global

minimum.
To study the critical points of ϕ̃, we need only study those of ϕ, because the function σ : [0,∞) →

[0, 1) given by σ(x) = x/(1 + x) has derivative σ′(x) = 1/(1 + x)2, which does not introduce any
spurious critical points. The critical points of ϕ are found by solving

0 = Dϕ =
[
fTKDf, κ1 sin(ζ1 − ζ∗1 ), · · · , κm sin(ζm − ζ∗m)

]
(38)

noting that

Df = diag {f ′} , where f ′i(z) :=
1− ziz

∗
i

(1− z2
i )3/2

,

i = 1, . . . , n.

Since Df is nonsingular on (−1, 1)n, Dϕ = 0 iff f = 0 and sin(ζi−ζ
∗
i ) = 0, i = 1, . . . , n which is true

iff (z, ζ) = (z∗, ζ∗ +
∑

i∈Γ πei), Γ ∈ powerset{1, . . . ,m}. There are 2m index sets which enumerate
all possible critical points. One readily verifies that the Hessian is nonsingular at every critical point
and (z∗, ζ∗) is the only minimum. Hence ϕ̃ is a Morse function which evaluates uniformly to unity
on the the boundary, has 2m − 1 saddles and the goal is the unique minimum.

B Buehgler map diffeomorphism

As described in Section 4.2, the physical Buehgler arm is a three degree of freedom (all revolute)
kinematic chain whose free joint space, V ⊂ T3, is the cross product of the (bounded) angles allowed
its “base” (first two) joints, R together with with the (unbounded) circular motion allowed its last

14Since use local coordinates to define our cost function (36), we require ϕ(z, ζ) = ϕ(z, ζ +
∑

i∈Γ
2πei) for all

possible index sets Γ ∈ powerset{1, . . . ,m}, where ei is the unit vector whose ith element is 1. This ensures that ϕ is
continuous on Z.
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joint — that is, V := R× S1. In a similar vein as the image space, we identify the joint space with
the unit tangent bundle, V ≈ T1R ⊂ TR.

If there were no “shoulder” offset (δ = 0) then the workspace image of the kinematic base map
would describe a metrically spherical surface in the codomain (three space), i.e. r0(R) = M0 ⊂ S2

%,
where % is the length of the arm [30], and the final joint axis would permit motion of the pointer
on the tip of the arm along a perfect copy of the unit circle tangent to the surface at each “base
point”, s ∈M0. For this simplified version of the kinematics, then, we are able to model the range
space of the full kinematic map as the unit tangent bundle over the base image, T1M0 ⊂ T1E

3. It
follows that the full kinematic map, h0, may be modeled as the restriction of the tangent map, Tr0,
to the unit tangent bundle over the base joint space, h0 = Tr0 |T1R. Specifically, h0 is a fiber map
[14], taking its domain in the unit tangent bundle over the base joints, T1R and its image in the
unit tangent bundle over the surface, T1M0.

As described in the body of the text, we have so arranged the camera relative to the Buehgler
that π ◦ rδ is an analytic diffeomorphism between the robot base joints, R, and the camera image
plane, J ⊂ E

2. In general, the tangent lift of a diffeomorphism between two spaces is itself a
diffeomorphism (of one lower grade of differentibility) between their tangent spaces, and it follows
that T (π ◦ rδ) is an analytic diffeomorphism between TR and TE

2.
Now, for δ = 0 we have

T1R
h0

// T1M0

Tπ|T1M0
// T1E

2,

hence, we may view the camera map as the composition c = Tπ |T1M0
◦h0, which, in turn may be

rewritten,

c = Tπ |T1M0
◦h0

= Tπ |T1M0
◦Tr0 |T1R

= (Tπ ◦ Tr0) |T1R

= T (π ◦ r0) |T1R,

as the restriction of the diffeomorphism T (π ◦ r0) to the unit tangent bundles over the domain and
range of the base map composition, (π ◦ r0). In general, the restriction of a diffeomorphism to
a smooth submanifold in the domain must remain a diffeomorphism onto its image, hence, when
δ = 0, we have shown that c is a diffeomorphism between the configuration space, T1R and the
image space, T1J .

Since the property of being a diffeomorphism is an open property, it follows that c remains a
diffeomorphism for small enough perturbations, δ 6= 0.
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Figure 8: Left: The pixel error and corresponding image plane feature trajectory for a typical high
gain trial on the Buehgler robot. Middle: A typical low gain trial, with a different initial and goal
locations. A two-dimensional cross section (with θ = θ∗) of the levels sets of the NF is superimposed
on the image plane trajectory. Right: Buehgler convergence results. Top: Five percent settling
time for each of the eight high-gain goal positions. Bottom: The mean pixel error for each of the
eight goal positions.
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Figure 9: Left: The pixel error and corresponding image plane feature trajectory for a typical trial.
Middle: Another typical trial, with a different initial condition and goal location. Right: RTX
convergence results. Top: The mean pixel error for each of the four goal positions. Bottom: Five
percent settling time for each of the four goal positions.
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