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Abstract

We describe a method for the registration of range images in the presence of occlusions and
missing data. Our approach uses the missing data as an additional clue for matching. Each
point in both images, valid or missing, is classified and scored within a maximum likelihood
framework. Occlusions, shadows, noise, partially overlapping views, and outliers are all
considered in within this framework. We found that our registration method can be used
to register real scenes with complex geometry, discontinuities, missing data, and overlap as
small as ten percent.

1 Introduction

When building 3D models of real world objects from multiple range images, the range images
must be properly positioned and oriented within a common coordinate frame before they
can be merged into a coherent CAD description. This process, called registration, is often
accomplished using a method such as the iterative closest point algorithm, or a related
method [2, 5, 19, 12, 7, 4, 16, 13]. These algorithms operate on two range images, and search
for the rigid transformation that best maps one view into another according to distance
between the two surfaces.

The presence of occlusions and missing data confounds these algorithms because they
use point-to-point or point-to-plane correspondences to align the data, and there is difficulty



in deciding which points can be matched safely, and which should be rejected. One solution
to this problem is distance thresholding. According to the distance thresholding criteria, a
match can be made if the distance from the point to the matched point is less than some
threshold [19]. Another solution to this problem is view thresholding. According to the
view thresholding criteria, a match can be made if a point in one view would be visible to
the other sensor [3, 12]. A third possibility is to perform between pairs of correspondences
[6]. Neither distance thresholding nor thresholding based on the consistency of differences
are able to identify and exclude occluded regions from the matching process. Some view
thresholding methods use geometric reasoning to identify occlusions, but they have difficulty
with complex scenes that contain missing data.

The goal of this work is the design of a fully automatic registration method that will per-
form reliably on view pairs that are partially overlapping, contain occlusions, noise, outliers,
and missing data. Further, a large amount of overlap should not be required, and an initial
estimate should not be required. We have achieved all of these goals by using a maximum
likelihood framework that reasons not only about the likelihood of receiving a given depth
reading, but also reasoning about the likelihood of receiving no data. Missing data is ex-
pected to be correlated between views, as is the case when the target surface is non-reflective
or very distant. Geometric reasoning is used to detect not only occlusions and out of view
pixels, but also shadows cast by a structured light source. A robust estimator for valid
point matches allows reliable registration in the presence of Gaussian and spike noise. A two
stage search procedure is used to optimize the likelihood calculation. We demonstrate this
registration method on on structured light range images of scenes with complex occlusions,
discontinuities, and shadows.

This paper is organized as follows. In section 2, we describe a method that segments the
range images into different classes, and assigns likelihood measures for each class. In section
3, we describe how the maximum likelihood search may be conducted, and in section 4 we
demonstrate the effectiveness of this approach. Finally, in sections 5 and 6 we compare this
approach with other approaches, and suggest future directions for this work.

2 Registration Quality Measure

2.1 Probabilistic Framework

The registration quality measure we use is a probabilistic measure which attempts to evaluate
the likelihood of seeing a given scene. Suppose we have views S and M (the scene and the
model), and the rigid transformation Θ brings view S into alignment with view M. The
likelihood measure is the conditional probability

P (S,M|Θ). (1)

When P (Θ), P (S, Θ), and P (M, Θ) are each independent of Θ, the likelihood can be max-
imized by maximizing

P (S|Θ,M)P (M|Θ,S). (2)

The quantity P (S|Θ,M) is found by matching one view, the scene S, against the other
view, the model M. We assume that each point s in S can be matched against the model

2



s

s

m

m

OO
S M

1

1

2

2 s

s

m

m

OO
S M

1

1 2

2

missing missing

missing

Figure 1: (Left) Example model and scene. (Right) Example model and scene that have
missing points.

independently, so that we can minimize the negative log likelihood

− log P (S|Θ,M)P (M|Θ,S) =
∑
s∈S

− log P (Θ(s)|M) +
∑

m∈M
− log P (Θ−1(m)|S). (3)

Using the above assumptions, we proceed by quantifying the probability of viewing each
point m in M and each point s in S for configuration Θ. To simplify the notation, we shall
assume for the remainder of the paper that S has been properly transformed by Θ, and when
we refer to a scene point s we are actually referring to a transformed scene point Θ(s).

2.2 Notation and Point Properties

Intuitively, it is likely that we may sense a point s if the other view also sensed a range point
nearby. On the other hand, if the other view has a missing data reading at the coordinate of
this range point, this event is still somewhat likely when s is very distant, or unreflective, or
occluded. We will now make this intuitive this concept concrete, by performing a segmenta-
tion of the image into different classes, and assigning likelihood measures that depend upon
the classification of each point.

Each pixel of the range image will be called valid if the sensor has returned a proper
range value, or it will be called missing if the sensor could not return a range value. We
assume the model of a laser range finder, where each pixel senses within a cone with origin
Os, and some known solid angle. The pixel then encodes the distance to a point on the
closest visible surface patch within this cone. We will say that the point s in S matches m
in M when s lies within the cone sensed by the pixel m. For each point s in S, and for each
point m in M, we define the following attributes:

s.corr The point m in M which s matches in the sense that s lies within the
cone of pixel m.

s.invcorr Of all points in M which match s in the sense that they lie within the
cone of s, s.invcorr is the one that lies closest to Os. This condition
implies that (s.invcorr).corr = s.
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Figure 2: (Left) Cost function for fully matched points. (Right) Cost function for unmatched
points.

If s is missing, then s.corr is undefined. Further, if s is valid, s.corr may be a missing
data point in M, or may be undefined if s is out of the field of view of M. To illustrate
these definitions, consider figure 1 (left), where s1, s2, m1, and m2 are all valid points. In
this example, m2.corr is s1, m1.corr is undefined, and s1.corr and s2.corr are both set to m1.
Further, m1.invcorr is s2, s1.invcorr is m2, and m2.invcorr and s2.invcorr are both undefined.

2.3 Fully Matched Points

In the case where both s.corr and s.invcorr are defined, we call this a fully matched point. A
fully matched point corresponds to the event that our sensor has detected a surface patch
that the other view has verified to exist. In figure 1 (left), s1 is fully matched because s1.corr
= m1 and s1.invcorr = m2.

For fully matched points, we choose to model the probability P (s|M) using a mixed
normal and uniform distribution, normal for correctly sensed points and uniform for outliers.
With probability ρi the point is distributed normally with variance that depends upon the
distance from the sensor, and with probability 1 − ρi the point is distributed uniformly
over the range of valid outputs for the sensor. Let Dmin be the minimum sensing distance,
or standoff distance, of the sensor. Let Dmax be the maximum sensing distance. Then, if
m = s.corr, we have

− log P (s|M) = − log

(
ρi

1

σ
√

2π
e
−‖s−m‖2

2σ2 + (1− ρi)
1

Dmax −Dmin

)
. (4)

The shape of this cost function is shown in figure 2. It can be seen that the shape of the
cost function is very similar to certain M estimators, and in fact, it is a variant of Cauchy’s
function [14]. The cost runs between K1 = − log(ρi/(σ

√
2π) + (1− ρi)/(Dmax −Dmin)) and

K3 = − log((1− ρi)/(Dmax −Dmin))

Please note that we are taking some liberty with the probabilistic framework. Data points
that are closer than Dmin or farther than Dmax are probability zero events, but we extend
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the likelihood measure out to infinity because it leads to more predictable behavior when
the values Dmin and Dmax are incorrect. In addition, we omit a constant term needed to
normalize the joint distribution over different classifications. Since we are only computing
relative likelihoods, this term is safely omitted.

2.4 Out of View Points

In the case where s.corr is undefined, we call this point out of view. This corresponds to the
case where the point is out of the field of view of the camera. In figure 1 (left), m1 is out of
view because m1.corr is undefined.

When a point s could not have been sensed by the other view M, then M contains
no information about the possible values for s, and P (s|M) is not a function of M. Our
method for dealing with this case is to assume the same probability as the fully matched at
a distance ‖s−m‖ = 3σ. Hence, the cost for any out of view point is the constant labeled
K2 in figure 2:

K2 = − log P (s|M) = − log

(
ρi

1

σ
√

2π
e−

9
2 + (1− ρi)

1

Dmax −Dmin

)
. (5)

This choice for K2 biases the registration to prefer matching points over leaving them un-
matched. The 3σ error level is a convenient criteria, but K2 may be increased or decreased
to introduce more or less of this bias. In all cases K2 should be between K1 and K3.

2.5 Half Matched Points

In the case where s.corr is defined, and s.corr is valid, but s.invcorr is undefined, we call this
point half matched. One explanation for the half matched points is an occlusion in the scene
that prevents the scene from sensing the model. Another explanation for the half matched
point is a difference in sampling rates between the two images.

In figure 1 (left), m2 is half matched, because m2.corr = s1 and is m2.invcorr is undefined,
and s2 is half matched, because s2.corr = m1 and is s2.invcorr is undefined. We may suppose
that in the case of s2 the cause of the half matched point is that the surface between m1

and m2 was not sampled finely enough, so that no point could be matched with s2. When
a point is half matched, we assume that the point is occluded or undersampled, and assign
the cost of K2 described in equation 5, for the same reasons.

2.6 Unmatched Points

In the case where s.corr is defined, but s.corr is not a valid point in M, and s.invcorr is
undefined, we call this point unmatched. The unmatched point corresponds to the event
that we have sensed a point, but the other view provides no evidence that the point exists.
In figure 1 (right), s1 is an unmatched point because s1.corr = m1 is missing, and s1.invcorr
is undefined.

The likelihood of this event depends upon the sensor, but we model it as a low probability
event, with exponentially increasing probability as the distance from the sensor increases. If
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other information, such the surface normal direction or intensity is available, this information
may also be included in the probability estimation. For the unmatched point, we have

− log P (s|M) =




K1 ‖Os − s‖ < Dmin

K2 + ‖s−Os‖−Dmin

Dmax−Dmin
(K1 −K2) Dmin < ‖Os − s‖ < Dmax

K2 ‖Os − s‖ > Dmax

(6)

2.7 Fully Missing Points

In the case where s is missing, and s.invcorr is undefined, we call this point fully missing.
The fully missing point corresponds to the event that we could not sense the point from
either view. In figure 1 (right), s2 and m2 are fully missing points.

This event often occurs due to the poor response of the sensor off of dark surfaces,
or for surfaces which cannot be sensed because they are distant from the sensor for both
viewpoints. Again, we have little information about this configuration, and we assign the
cost of K2 described in equation 5.

2.8 Half Missing Points

In the case where s is missing, but s.invcorr is defined, we call this point half missing. This
event corresponds to the case where we expected to see the surface described by s.invcorr,
but for some reason failed to receive a data reading. In figure 1 (right), m1 is a half missing
points because m1 is missing, and m1.invcorr=s1.

The half missing point is a complementary case of an unmatched point, since s.invcorr
must be an unmatched point in M, and we treat it in a similar fashion. For m = s.invcorr,
we assign

− log P (s|M) =




K1 ‖OS −m‖ < Dmin

K2 + ‖m−OS‖−Dmin

Dmax−Dmin
(K1 −K2) Dmin < ‖OS −m‖ < Dmax

K2 ‖OS −m‖ > Dmax

(7)

2.9 Segmentation Example

To demonstrate the segmentation algorithm, we register view 1 against view 2 shown in
figure 3. Figure 4 shows the resulting segmentation when the view pair is well registered,
and figures 5 shows an example when the view pair is not well registered. When the alignment
is poor, the number of unmatched and half missing points increases.

Notice the checkerboard effect in the segmentation of view 1. This is caused by a difference
in the sampling rate between the two images. A method for correcting this effect is described
in section 5. Also, notice how the occluded regions in view 2 are detected to the left of the
front wall and to the left of the lamp in the center of the image.
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View 1 (refl) View 2 (refl) View 3 (refl) View 4 (refl)

View 1 (range) View 2 (range) View 3 (range) View 4 (range)

Figure 3: Range and reflection images of an indoor scene.

2.10 Multiple Centers of Projection

We can easily extend the concepts described in this section to include the case where our
sensor has multiple centers of projection. For example, a structured light range sensor returns
range values only for a surface patch that is visible to both the light source and the camera.
Similar considerations arise for a stereo camera, which requires the surface patch to be seen
from both cameras, but for this discussion we assume a structured light source. For these
sensors, we extend the above segmentation procedure by computing the attributes m.corr
and m.invcorr twice: once for the light source and once for the camera. Figure 4 shows the
use of this technique for the detection of pixels that are out of the view of the projector used
as a structured light source.

In addition, regions in the shadow of the light source, as shown in figure 6, can be
identified. A valid pixel which is unmatched with respect to the camera, and either half
matched or fully matched with respect to the light source is labeled shadowed in the other
image. The converse case is when a pixel is half missing with respect to the camera, and
either half matched or fully matched with respect to the light source. In this case, we
label the pixel shadowed in this image. For both of these cases, we assign the probability
− log P (s|M) = K2. An example of the detection of shadowed regions for view 2 and view
3 is shown in figure 7.
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Figure 4: Segmentation results for view 1 and view 2 when they are properly registered. The
color key for the bottom images is: (a) Fully matched: White, (b) Out of view (camera):
Blue, (c) Out of view (projector): Cyan, (d) Half matched: Green, (e) Unmatched: Yellow,
(f) Fully missing: Black, (g) Half missing: Red.

Figure 5: Segmentation results for view 1 and view 2 when they are not properly registered.

8



Light

Camera
Occluded

Shadow

Figure 6: Shadows and occlusions in structured light range sensing.

3 Optimization

The registration procedure described above involves a difficult maximum likelihood search.
The cost function is highly non-linear, it is discontinuous, and it has a multitude of tiny local
minima. We have found a two stage optimization procedure to be useful for optimizing the
registration criteria. The first stage performs a rough fit using a randomized search modeled
on Masuda’s algorithm [12]. A small set of random samples are taken from the scene, and
these samples are registered to the model using ICP. The solution of the ICP minimization
is then tested against the maximum likelihood registration criteria, and if an improvement
is shown, the new registration parameters are accepted. This idea is conceptually similar to
RANSAC method [8, 4]. If an rough initial estimate of the pairwise registration is known,

Figure 7: Segmentation results for view 2 (left) and view 3 (right). The data points that lie
within the cast shadow of the structured light source in view 3 are identified in both images.
The green pixels in view 2 are shadowed in the other image, and the red pixels in view 3 are
shadowed in this image.
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Figure 8: Negative log likelihood measurements for the first stage randomized search (left),
and second stage Nelder-Mead search (right).

this first stage may be omitted.

The second stage uses a Nelder-Mead simplex search to refine the result [11]. Because
the cost function has many discontinuities, the simplex search provides superior performance
when compared to classical optimization methods such as conjugate gradient search. Once
the initial estimate is known, convergence to a good local minimum is rapid.

It is also advisable to perform the optimization using multiple resolutions. First we
run the randomized search on the subsampled image, increasing the size of cone used for
matching by an appropriate amount so as not to introduce half-matched points. Then the
Nelder-Mead search is run on subsampled images of increasing resolution. Since the purpose
of the initial randomized stage is only to perform the rough alignment, there is no need to
run that stage on higher resolutions.

4 Experimental Results

The range images of figure 3 were registered using the cost function described in section 2
and using the two stage search strategy described in section 3. The range images were taken
from on board of a mobile robot in an indoor environment using a structured light range
camera made from a DLP data projector and CCD camera. The method of Trobina was
used to for calibration and signal processing of the sensor [17]. The parameter settings for
minimum and maximum sensing distances, Dmin and Dmax, were set to 3 m and 8 m, the
noise standard deviation parameter σ was set to 1 cm, and the inlier probability parameter
ρi was set to 90%.

Convergence rates for the registration of view 1 and view 2 are shown in figure 8. For
all scenes that we have tried, the first stage converges to an approximate solution in less
than 1000 function evaluations, and the second stage converges in less than 400 function
evaluations. On a 200 MHz Pentium II computer, one function evaluation on a 160 × 120
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Figure 9: (Top) Registration of view 1 (blue) and view 2 (red) with 41.3% overlap. (Bottom)
Registration of view 2 (red) and view 3 (blue) with 20.3% overlap.
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Figure 10: Registration of view 2 (red) and view 4 (blue) with 9.1% overlap.

image takes less than 300 ms, and a 640 × 480 image takes less than 500 ms.

Figures 9 and 10 shows the result of registering both view 1 against view 2, view 2
against view 3, and view 2 against view 4. The size of the overlapping region between the
image pairs is approximately 41.3% for view 1 and view 2, approximately 20.3% for view
2 and view 3, and approximately 9.1% for view 2 and view 4. In each case, the correct
registration was found fully automatically, without supplying an initial guess. To estimate
our confidence about the quality of the fit, we compare the final log likelihood values for
these three examples against the quantity K2. For this set of images, K2 = 5.4754, while the
average negative log likelihood measure is 4.9725 for the match between view 1 and view 2,
5.4039 for view 2 and view 3, and 5.4012 for view 2 and view 4. Since these measures are all
less than K2, we feel some confidence that these matches are reasonable.

5 Discussion

Although many researchers favor using a threshold on the Euclidean distance between point
matches to remove occlusions and outliers, we feel that geometric reasoning based on view
thresholding is a better approach. It is, after all, a great performance gain to compute s.corr
in constant time rather than searching through a tree in O(log n) average case time to find
a closest point [3]. Furthermore, thresholding on Euclidean distance or distance consistency
does not properly penalize registrations that are infeasible due to conflicts in visibility. For

12



Figure 11: Distance thresholding cannot recognize that this registration is inconsistent with
sensor visibility.

−4 −2 0 2 4
2.055

2.06

2.065

2.07

2.075

2.08
x 10

5

Translation (cm)

N
eg

at
iv

e 
lo

g 
lik

el
ih

oo
d

−4 −2 0 2 4
24

24.2

24.4

24.6

24.8

25

25.2

25.4

Translation (cm)

T
hr

es
ho

ld
ed

 S
qu

ar
ed

 E
rr

or

Figure 12: Registration quality measures for small translations near the best registration
of view 2 and view 3. The view threshold method described in this paper (left), is less
ambiguous criteria than the distance threshold criteria [19] (right).

example, figure 11 shows a registration that is very good using the distance thresholding, but
is infeasible due to sensor geometry. Although matches at the boundary may be excluded by
disallowing matches to boundary points [18], it is not obvious what constitutes a boundary
for complex scenes with missing data. Even when view thresholding is performed, there has
been much confusion about how to compare infeasible matches to those which are out of
view. Almost always this is accomplished by requiring some minimum number of matches
[3, 12], which implies that the amount of overlap should be known.

In addition, distance thresholding has been found in practice to have relatively poor
localization. Figure 12 shows a comparison of the error surfaces for the maximum likelihood
method described in this paper, and the normalized distance thresholding as described Zhang
[19], for small translations near the correct registration. The method described in this paper
is ambiguous to about 1 cm, while the distance thresholding method is ambiguous to about
3 cm.

It would be worthwhile to improve the segmentation results by using scan conversion
rather than point projection to assign the value of s.corr. If s represents a surface patch,
it rightfully may match several pixels in the model. This will greatly improve our ability
to discriminate between the undersampling and occlusion for half matched points. Scan
conversion will also greatly improve performance when a hardware Z-buffer is available [1].

As discussed earlier, the cost function for fully matched points is an M estimator, and
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provides a method for limiting the bias of the estimate due to outliers. However, we find
another place that the robust statistics can be used, which is in the estimate of s.invcorr
itself. Currently, we are accepting that s.invcorr should be the closest point to the sensor,
but when several points in M match to s, we will obtain a better estimate of the underlying
surface using an M estimator.

Another important aspect of our algorithm is that it provides an absolute reference point
to compare the quality of a match. As mentioned in section 4, we can compute the likelihood
of two scenes that have no overlap, which assigns probability K2 to all points. If a candidate
match is less than, or not significantly better than this, we may wish to conclude that either
the two scenes do not overlap or that the registration is low quality. This could be useful for
building and verifying a graph of neighboring views used in multiview registration [15, 9].

Finally, we have not addressed the use of intensity information, or the use of surface
normals. Intensity, and especially color, are crucial for the alignment of surfaces for which
the shape has few remarkable features [10]. They will also be useful in the identification
of missing data due the saturation of structured light sensors by specular reflection. The
chief problem with using intensity information is the photometric calibration of the intensity
response, which varies according to the distance to the surface, the surface normal, and
the typically non-linear response of the sensor. Surface normals will be useful not only
for computing the compatibility of the two surfaces, but also for computing the reliability
or noise variance of the readings. Unfortunately, computing the surface normals is not a
straightforward process since most range sensors exhibit considerable fine grain noise.

6 Conclusion

This paper has presented a fully automatic method for aligning range scans that contain
occlusions and missing data. Both valid and missing range data are used to assess the
quality of the match within a probabilistic framework. Using this framework, the registration
of complex, noisy scenes with occlusions, missing data, and as little as 10% overlap have been
demonstrated.
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