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1. Introduction

Embedded systems are software systems which reside in a physical environment and must react
with that environment in real time. The problem of designing such systems in a principled way
is one which has become increasingly important as computational technology has been integrated
into physical systems.

In this paper we begin to address this problem by drawing on research traditions from computer
science and control theory for the long-range purpose of making a mathematical model of embedded
software systems. The theory of process algebras has been extensively developed within computer
science, to the point where control of distributed processes is well-understood, even to the point
where these processes are mobile (reconfigurable). Similarly, there is now a large body of work on the
topic of hybrid systems: automaton-based techniques for specifying discrete control of continuous
processes. Very recently, this work has been extended to proposed programming languages for
specifying distributed control of hybrid systems [1, 10]. Our work is in this latter direction: we
propose a simple method for integrating process-algebraic techniques with hybrid automaton-based
techniques so that one can use the integrated theory to specify the semantics of real programming
languages for concurrent and reconfigurable embedded systems.

The φ-calculus is a hybrid extension of Milner’s π-calculus [17] which allows processes to interact
with continuous environments. We choose the π-calculus to extend to the hybrid setting because
it has already been shown to be a rich language in which many interesting discrete concurrent
phenomena can be expressed: a language for, and theory of, communicating processes which can
reconfigure themselves; a language in which distributed objects and classes can be defined; and a
language and theory capable not only of expressing communication, but arbitrary computation, in
that the λ-calculus of Church can be translated into it. This all suggests that successful hybrid
versions of the π-calculus and other process calculi will have novel and elegant ways of expressing
hybrid systems – possibilities for distributed control which would be awkward, if not impossible,
to express in current formalisms.

The key idea in the present paper involves adding an explicit formal model of the active continu-
ous (physical) environment to an algebraic process description, and adding “environmental actions
(e-actions)” to processes which allow them to explicitly manipulate their environment. We define
an embedded (hybrid) system as a pair (E,P ), where E is an environment and P is a hybrid process
expression (φ-expression). An embedded system evolves (i) by means of π-actions, which change
only the process expression, (ii) by flow actions, which change only the environment continuously,
or (iii) by e-actions, which change both the environment and a process expression discretely.

The power of this idea can be seen by noting that Petri nets, in most of their flavors, are but simple
special cases of embedded systems, where (in the standard flavor) a process is a parallel composition
of net transitions, and an environment is a marking of the places; firing a transition is an e-action.
This example suggests that environments can be of arbitrary types, each possessing interesting
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ways of interacting with concurrent algebraically specified systems of processes. Mathematically
speaking, basic actions of a hybrid process are (possibly nondeterministic) actions of two monoids
on a cartesian product of sets, with constraints restricting arbitrarily free combinations of actions.
In the φ-calculus, the two monoids are the monoid consisting of real time segments, constrained
(as in hybrid automata) by differential equations and flow regions, and the monoid of strings of
φ and π-action names, constrained by process expressions using structural operational semantics.
We have extended this latter method to specify both time-transitions and discrete actions of an
embedded system. In this sense, we already have a compositional semantics for our system, because
structural operational semantics defines the transitions of any system in terms of the transitions of
its components.

The specific contributions of the paper are the following.

• The definition of embedded systems;
• Definitions of the behavior of mobile hybrid processes in a continuous environment, via

structural operational semantics;
• New definitions of strong and weak bisimulation for φ-processes, with congruence lemmas;
• A method for declaring local environmental variables;
• Obtaining recursive definition capabilities by hybridizing Milner’s replication operator;
• Translation of Klavins and Koditschek’s threaded Petri nets [13] into the φ-calculus;
• Illustrating the mobile φ-calculus in action, using Klavins and Koditschek’s robotic bucket

brigade, with the addition of a recursive process supplying a continuous stream of items to
be transported by the brigade.

2. Plan of paper

We begin by reviewing previous work on hybrid systems, and some work on process-algebraic
systems with timed behavior. Most of this review is concentrated on hybrid systems work which is
focused towards integration with programming. We ignore much work on the control theory side
of hybrid systems having more to do with differential equations, and we also ignore much work on
programming languages with real-time behavior.

We then review π-calculus (a simple version πc based on Milner’s CCS), and then introduce the
corresponding simple version of our hybrid extension φc. We indicate a general form, informally,
for e-actions, but then propose a concrete syntax based on a standard presentation of differential
equations. This allows us to describe exactly the effects of e-actions on the environment, as well
as to specify continuous time-transitions for the environment. We illustrate both versions with
Hoare’s classic example of a vending machine dispensing either coffee or tea, providing a hybrid
version of this machine which accepts one-second requests for coffee only and then for tea. We also
briefly indicate that Petri nets are an example of the general formalism.

A short section is then devoted to defining the notion of strong bisimulation for the φc-calculus,
showing in what sense one obtains congruences with this definition, and indicating that a revision
of the continuous time-transition rules is necessary in order to deal with weak bisimulation.

In the next section we introduce name-passing and recursion into our calculus, with associated
operational semantics for the φ-calculus. We introduce an abstraction operator for environmental
actions, so that variables can be hidden in modular components. Then we present another section on
strong and weak bisimulation in the full φ-calculus, revising the flow transition rules in accordance
with the notions of atomic experiments.

In the penultimate section we show by example how to translate Klavins and Koditschek’s
threaded Petri nets into the φ-calculus, using a φ-calculus version of their robotic bucket brigade.



THE φ-CALCULUS 3

This example shows mobility and recursion to good advantage. General details of the translation
appear in an appendix.

A final section gives conclusions and directions for more research.

3. Other work

There is already a body of research on the process-algebraic treatment of (some) hybrid phenom-
ena. Timed CSP [19], for example, is a well-known language in which an algebraic structure theory
of timed processes is presented, and made into a specification-oriented programming language al-
lowing various parallel and sequential compositions of processes, together with primitive timeout
and interrupt operators on processes for altering real-time behavior. One can view this language as
incorporating timed automata into a process-algebraic framework, with the significant addition of
recursive definition capabilities. Moreover, the language has a fully compositional semantics based
on the extension of “failures” [3] to the timed case. Unfortunately, it is not clear how to extend
the expressiveness of this language to the hybrid case, where the continuous behavior of a system
can follow control laws prescribed by arbitrary ordinary differential equations, not just (implicit)
equations describing the behavior of clocks.

Kosecka’s thesis [14] contains a proposal for structured programming which starts by assuming
a collection of basic low-level robot controllers (as, for example in Khatib [12] or Rimon and
Koditschek [18].) These controllers are composed into expressions using various automata-theoretic
operations. This idea is essentially what we have in mind for composing processes in our setting,
but crucially, the behavior of the continuous environment is not really represented.

Ordinary hybrid automata as in Henzinger [9], on the other hand, explicitly represent the contin-
uous environment by means of associating a controller (differential equation, differential inclusion)
with each state (control mode) of a finite automaton. Events trigger jumps from one control mode
to another. There is, moreover, a general “parallel composition” operator for combining these
automata, but no syntax is presented for a language which would allow program expressions.

Another approach to timed and hybrid distributed system design is via the I-O automata of
Lynch and Tuttle [16]. The original work has been extended in many ways, notably to a process-
algebraic version [20] and to the hybrid case [15]. Moreover, I-O automata have been used as
the formal foundation for a distributed programming language [6]; this includes an extension to
timed, but not hybrid versions. In this research vein, careful attention is paid to formal semantics,
using a combination of techniques, including simulation notions. The achievements of this work
are impressive, and represent in many ways the goals we would like to achieve for our work. There
are, on the other hand, some possible expressive advantages and some possible simplifications with
our approach. We plan to investigate the exact relationships between the two models as part of
our further research.

Two languages which support both hybrid dynamics and algebraic process structuring are
Charon [1] and Masaccio [10]. These languages are both outgrowths of earlier models for re-
active discrete systems [2]. At this point they both lack a full name-passing capability, and a
capacity for recursive instantiation, though they do support abstraction (variable hiding). There
has been a proposal as well for hybrid CSP [11], but the exact details of the semantics are a little
unclear.

A very different approach to the problem of integrating a full programming language with con-
tinuous dynamical systems is taken by the language HybridCC [8]. This is a constraint programming
language which extends earlier languages in the cc paradigm to the continuous setting. There are
many similarities in this model to the φ-calculus, in that continuous constraints can be “posted”
to the store by parallel agents. These constraints include both differential equations and “invariant
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regions”, a feature of hybrid automata. The store of HybridCC is much like the environment in the
φ-calculus. However, there is no explicit provision for mobile agents in this language, even though
some mobile systems can be represented. (Intuitively, these are systems in which the mobility
consists of rearranging groups of continuous variables.) A precise comparison is beyond the scope
of this paper.

Klavins and Koditschek’s work on threaded Petri nets [13] is another starting point for our
research. This model of distributed hybrid systems uses the places of a Petri net to hold a set
of continuous variables as tokens. This model has interesting applications to robotic assembly
problems in factory settings. Moreover, it can be used for large-scale problems without state
explosion, since the Petri net keeps interactions local. The model lacks, however, a process-algebraic
syntax. Our translation of threaded nets into φ-calculus provides it.

Other Petri net models (timed Petri nets [7], hybrid Petri nets [5]) differ from the threaded Petri
nets in that (say for the timed nets) specific delays are prescribed for the transitions, while (for
hybrid nets) tokens are “counted by” either integers or real numbers. These models do not seem
to be as flexible as the threaded nets; for example, it is easy to simulate a timed net by a threaded
one.

4. π-calculus and φ-calculus

4.1. πc.

We proceed as in Milner [17] by introducing a simple CCS fragment πc, without name-passing,
and also reviewing transition relations and the notion of structural congruence.

Definition 4.1. The set of πc expressions is given by the following syntax:

P ::= A | Σi∈Iαi.Pi | P1 ‖ P2 | νaP

where α ranges over a finite set N of positive actions a, negative actions N = {a | a ∈ N} and the
silent action τ . The empty sum is denoted 0. We put L = N ∪ N , and call elements of this set
action prefixes.

This syntax defines process expressions. The operator ‖ represents parallel composition; sum-
mation represents a choice of actions followed by a process; ν is the operator used to restrict access
to actions under its scope. We follow a simple (temporary) convention that every process identifier
A has a defining equation A ::= ΣiαiAi, which has the effect of defining finite-state automata. The
expression on the right here is called a sum.

Definition 4.2 (Structural congruence). The relation ≡ of structural congruence is the congruence
relation generated by the following equations:

• Change of bound names (alpha-conversion);
• Reordering of terms in a sum;
• ‖ is commutative and associative; P ‖ 0 ≡ P ;
• νa( P ‖ Q ) ≡ P ‖ νaQ if a is not free in P ; νa0 ≡ 0; νabP ≡ νbaP ;
• A ≡ PA if A ::= PA (recall PA is a sum.)

Structural congruence reflects our intuitions about the basic operations; for example that parallel
composition does not depend on which process is named first, and so on.
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Definition 4.3 (Transition relations). Let α range over actions in L ∪ {τ}, λ over L. Consider
the following expression inference rules:

Sum: α.P +M
α→ P(1)

React:
P

λ→ P ′ Q
λ→ Q′

P | Q τ→ P ′ | Q′
(2)

L-Par:
P

α→ P ′

P | Q α→ P ′ | Q
R-Par:

Q
α→ Q′

P | Q α→ P | Q′
(3)

Res:
P

α→ P ′

νaP
α→ νaP ′

if α is not a or a(4)

Ident:
PA

α→ P ′

A
α→ P ′

if A ::= PA(5)

We say that P
α→ Q if this relation can be inferred from the above inference rules.

Example 4.4 (The vending machine.). We begin with a finite-state machine specified algebraically
as in Milner’s book. A vending machine is prepared to serve coffee or tea according to a button
pressed by a user. After serving, it goes back to its prepared state. The picture of this is given by
the simple FSA

teacof

Algebraically, we define
VM ::= cof .VM + tea .VM

One uses the Sum and the Ident laws to infer the actions of this machine. We have cof .VM +

tea .VM
cof→ VM by the Sum rule. Since this transition entails the hypothesis of the Ident rule, we

have VM
cof→ VM . To illustrate reaction, we model a customer as someone who issues the “button”

command cof to the VM . Their interaction is specified by the composition VM ‖ cof .0 . Since

VM
cof→ VM , and cof

cof→ 0, we get

VM ‖ cof .0
τ→ VM ‖ 0 ≡ VM

by the React rule. This amounts to a successful interaction of a (one-shot) customer with the
machine.

A very different VM is one which can decide internally to accept or not requests for coffee or tea.
This machine has nondeterministic internal transitions to states which can reject coffee requests
for only tea requests, and reject tea requests for only coffee requests. Its specification would be

BADVM ::= τ.cof .BADVM + τ.tea .BADVM .

This machine can evolve using the τ “silent” transition to tea .BADVM , a state in which coffee
requests are refused.

With the φ-calculus, we would like to define an intermediate creature: a machine which accepts
coffee requests only, but for one second, after which it “times out” and accepts a tea request only
for one second, after which it times out again to its original state. This example is trivial in Timed
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CSP, where the “timeout after d seconds ” operator is primitive; it is also trivial using ordinary
hybrid automata. We will show how to specify it below in the φ-calculus.

4.2. φc.

Hybrid automata associate with each state a flow law, typically an ordinary differential equation
over R

n, and an invariant condition: a predicate over R
n. There are also actions which are enabled

by other predicates; these can change the values of the continuous variables and can change the state
(also called “control mode”.) In the φ-calculus we have both π-actions as in the last subsection, and
resetting actions as just described. Hybrid automata allow π-style labels to be attached to certain
resetting actions; this is what enables communication between concurrent automata via handshake
synchronization. For simplicity, we assume no such labeling, so that we have pure π-actions; in this
section we replace the jumps and resets by “environmental actions” on the continuous state. We
begin by defining the analogue of “modes.”

Definition 4.5 (Environments, informal). An environment is a triple {c;F ; I} where c ∈ R
n, I is

an (invariant) predicate on R
n, and F is a dynamic system (typically described by an autonomous

differential equation, and typically over R
n).

Let us be specific, so we can give simple examples. Let X be an infinite set of “environment
variables” disjoint from N and we let Ẋ = {ẋ | x ∈ X} be the “dotted versions” (formal variables
for differential equations.)

Definition 4.6 (Environments, formal). An environment consists of:

• the state, an element of [V → R], the set of all functions (valuations) from a finite subset
V of X to R. We call V the domain of the environment;

• the differential equation: a valuation from V̇ to C1[RU ], the set of continuously differentiable
functions from R

U to R, for a finite set U ⊇ V;
• the invariant: a predicate, or map from [W → R] to {0, 1}, for some W ⊆ V.

Example 4.7. Here is a sample environment:



c = (x : 1.5, y : 0)
F = (ẋ : x− y − x3, ẏ : x+ y − y3)

I = {(x, y) | (x ≥ 0) ∧ (1 ≤
√
x2 + y2 ≤

√
2)}


 .

The state c and the (flow of) the differential equation F are both parts of the environment; here
we have specified the flow implicitly.

We say that a differential equation F ∈ [V̇ → [U → R]] is autonomous if U = V. Time-transitions
will only be allowed when the equation part of the environment is autonomous.

With regard to the notation for differential equations, all that we are really doing is replacing
R

n with R
U , where U has n elements, so as to “name” the coordinates of vectors. We allow “free

variables” in U \ V to represent continuous controls.

Definition 4.8 (Environmental actions, informal). An environmental action (e-action) is com-
prised of three types of subactions. The first type resets the continuous state (typically setting new
initial conditions); the second changes the dynamic system to a new one; and the third updates
the invariant predicate. We combine these three kinds into just one kind, which can be invoked
conditionally using a predicate ψ on the continuous state. The application is atomic: all the sub-
actions of an environmental action are performed indivisibly at the same time. A (conditional)
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environmental action, therefore, is a construct [ψ → (c
.
= d;F

.
= G; I

.
= J)] where ψ is a predicate

over R
V . Any of the four parts of such a construct can be empty.

Since environmental actions will be programmer-defined, we assume a specific syntax in which
the constructs c, F,G, etc. can be written. The syntax will depend on the application, but we can
think of c

.
= d, F

.
= G as “assignment statements” so that, for example, d can depend on c We

read c
.
= d as “c is replaced by d”. For our specific setting, defining environments coordinatewise,

we have the following specific types of actions:

Definition 4.9 (Environmental actions, formal).

• “State-reset”: Let c ∈ [Vc → R] and d ∈ [Vd → R]. Then the result of c
.
= d is the

valuation s from Vc ∪ Vd to R given by

s(x) =

{
c(x) if x ∈ Vc \ Vd;

d(x) otherwise.

• “Flow-reset”: Let F ∈ [V̇F → C1[RUF ]] and G ∈ [V̇G → C1[RUG ]]. Then the result of
F

.
= G is

H(x) =

{
F (ẋ) if x ∈ VF \ VG;

G(ẋ) otherwise.;

• Invariant-reset: Let I : [WI → R] → {0, 1} and J : [WJ → R] → {0, 1}. Then the result
of I

.
= J is

K(x) =

{
I(x) if x ∈ WI \WJ ;

J(x) otherwise.

Notice that if domains are disjoint in the above definition, and that if differential equations
are autonomous, then environmental replacement produces a “decoupled” autonomous equation.
It is also possible to define “superposition” actions; these are obtained by simple coordinatewise
addition of the state and differential components where these components are in common to two
environments; and where addition of invariants I and J is given by

I + J = {x+ y | x ∈ I, y ∈ J},

regarding “undefined” values as 0 for this purpose.
Environmental actions can be used as prefixes for processes.

Definition 4.10 (φ-expressions). Let E be the set of environmental actions. We extend the set of
process prefixes by simply adjoining all of the actions in E (Any of these prefixes will be signified
by µ.) Environmental actions do not have negatives; in this respect they are like τ -actions. By
allowing these prefixes in any expression we obtain the set of hybrid φ-expressions.

It is straightforward to extend the notion of structural congruence to hybrid expressions.

Definition 4.11 (Embedded system). An embedded system is a pair (E,P ) where E is an envi-
ronment and P is a φ-expression.

Now we turn to the transitions which an embedded system can make. First, any of the π-actions

are still allowed: if P
α→ Q then (E,P )

α→ (E,Q) for α ∈ L ∪ {τ}.
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Definition 4.12 (Environmental action transitions). This set of transitions is given by the following
rules, where e is the environmental action ψ → (c

.
= d;F

.
= G; I

.
= J), E is the environment

(c, F, I), and (s,H,K) is the environment given by Definition 4.9:

Sum: (E,M + e.P +N)
e→ ((s,H,K), P ) if φ(c) is true;(6)

LPar:
(E,P )

e→ (E′, P ′)

(E, P ‖ Q )
e→ (E′, P ′ ‖ Q )

RPar:
(E,Q)

e→ (E′, Q′)

(E, P ‖ Q )
e→ (E′, P ‖ Q′ )

;(7)

Res:
(E,P )

e→ (E′, P ′)

(E, νaP )
e→ (E′, νaP ′)

.(8)

An embedded system can evolve over time. This entails a new kind of rule called a flow tran-
sition rule. In this section we propose provisional rules, which will have to be strengthened in a
later section in order to allow weakly bisimilar processes to behave the same way in an arbitrary
continuous environment.

Definition 4.13 (Flow transitions - provisional). Suppose that a state x ∈ [V → R] and that the

differential equation F ∈ [V̇ → [U → R]] is autonomous, i.e., U = V. Then the flow φ(t, x) of the
equation will be defined in some time-interval J = [0, u) of R. We then have the following flow
transitions:

Sum: ({x, F, I},ΣiµiPi)
t→ ({φ(t, x), F, I},ΣiµiPi)(9)

provided that for all 0 ≤ s < t: (i) φ(s, x) is defined and in I ; and (ii) no µi is an environmental
action ψ → (c

.
= d;F

.
= G; I

.
= J) with ψ(s) true.

Flow transitions are extended to other φ-expressions by

Par:
(E,P )

t→ (E′, P ) (E,Q)
t→ (E′, Q)

(E, P ‖ Q )
t→ (E′, P ‖ Q )

(10)

Res:
(E,P )

t→ (E′, P )

(E, νaP )
t→ (E′, νaP )

(11)

We illustrate transitions with a simple example.

Example 4.14. Consider the embedded system

(∅ , [TRUE → x
.
= 0;F

.
= (ẋ : 1); I

.
= (x ≤ 3)].b).

This process runs in the null environment ∅, where the valuations all have empty domains. In this
environment, it will have an e-transition to

(




x : 0
ẋ : 1

(x ≤ 3)


 , b),
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initializing a clock which runs for at most 3 seconds. During any portion of this time, it may do
the discrete action b, but must do b within 3 seconds. So, for example,

(




x : 0
ẋ : 1
x ≤ 3


 , b)

0.5→ (




x : 0.5
ẋ : 1
x ≤ 3


 , b)

b→ (




x : 0.5
ẋ : 1
x ≤ 3


 , 0)

in which the action b happens after one-half second.

Remark 4.15 (Explaining flow transition rules).

(1) The Sum rule (provisional) reflects evolution over time in a control mode; the sum represents
possible exit transitions from the mode. Note that all parts of the environment must be
defined for time to progress here. For later reference we abbreviate (i) by saying the flow is
in I during t, and abbreviate condition (ii) by saying that there is no environmental guard
enabled in P during time t. The reason for (ii) is to make enabled environmental actions
“eager”; see the example below.

(2) The rule Par (provisional) also needs explanation. One might expect a rule which mirrors
the standard notion of direct product, so would involve some “environmental product”.
Processes, however, can create their own environments via Sum environmental action. If
we have a parallel composition of two sums, then each sum can manufacture the part of
the environment it needs to progress over time. When both parallel sums have contributed
their own local environment, then in effect the necessary product environment will have
been created, and both processes then can progress simultaneously. Notice also that for
parallel composition, no compatibility conditions as in Henzinger [9] need to be assumed.

Example 4.16 (Eagerness). Why not let any sum evolve over time? Here’s an example involving
parallel composition. Consider

P ‖ Q =




x
.
= 0

I
.
= x ≤ 3

F
.
= (ẋ = 1)


 .b ‖




y
.
= 0

I
.
= y ≤ 5

F
.
= (ẏ = 1)


 .c .

Our intention is that, starting in the null environment, P and Q both initialize their part of the
global environment and then evolve simultaneously in parallel over time, so that the composition
P ‖ Q cannot get past time 3 without blocking because of P ’s invariant. If we let any sum evolve
over time, then Q can put its y definition into the environment and the process P ‖ c can evolve
until y = 5, not what we want. But with the Par and restricted Sum time transition rules, both
processes have to use their local environment descriptions to update the actual global environment
before any time evolution can happen, so we get the desired simultaneity.

Example 4.17 (Timeouts.). We illustrate the φc calculus by defining the “timeout” VM promised
earlier. It is convenient to define the timeout operator on processes given in Schneider’s book on
timed CSP [19, page 275]. Suppose d is a non-negative real constant. Paraphrasing Schneider:

The process Q1
d
. Q2 (read “Q1 timeout d Q2”) offers a time-sensitive choice between

Q1 andQ2. IfQ1 performs an (observable) action before d units of time have elapsed,
then the choice is resolved for Q1 and Q2 is discarded. If Q1 performs no such action,
then the process Q2 is enabled after d units of time and Q1 is discarded.
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To achieve this behavior, the definition is simply:

Q1
d
. Q2

def
= [x

.
= 0;F

.
= (ẋ = 1)].(Q1 + [x = d].Q2)

where x is not free in Q1 or Q2.
1 Notice that we have had to add the new variable x to the

environment, which suggests that we make this variable local. We ignore this question for now,
and define

TVM = cof .TVM
1
. (tea .TVM

1
. TVM ).

(The two timeouts here will have to be defined with distinct timer variables.)

Although there seems to be a recursive definition here, it can be eliminated by writing out all
the abbreviations. However, this example points out the need both for localizing environmental
variables and for recursive definition capabilities. We revisit the matter in Section 6.

Example 4.18 (Petri nets). Consider a Petri net N with place set P , and transition set {t1, . . . tk}.
We consider markings m of the net where a place can contain any nonnegative integer, and where a
transition can fire if all of its input places are positive. Firing is a vector operation which subtracts
1 from each input place and adds 1 to each output place. (This is again just for definiteness.) Let
vt be the vector representing the difference of these two vectors: vt should be added to a marking
m by transition t to achieve the new marking. Then for each transition t we describe a φc process
Qt which will manipulate markings as environments:

Qt ::= [min(t) > 0 → m
.
= m+ vt].Qt

wheremin(t) is the subvector of the markingm which is indexed by the input places for the transition
t.

The whole Petri net is then just the composition

Qt1 ‖ . . . ‖ Qtk

run in the environment of the initial marking.

Of course, for Petri nets, environmental actions are over a discrete dynamical system, not a
continuous one.

5. On bisimulations

The notion of strong bisimulation is important in the π-calculus, as this relation between two
processes ensures that one of them can be substituted for the other in any process context. Al-
gebraically, the relation of strong bisimilarity is a congruence relation with respect to the process
composition operators. We want a definition of strong bisimulation which leads to congruences
with respect to the standard process composition operators. The following is an obvious candidate.

Definition 5.1. A relation R over φ-expressions is a strong simulationif whenever P R Q and for

any action (either π or e) µ such that P
µ→ P ′, there is Q′ such that Q

µ→ Q′ and P ′ R Q′. We
then can say We say that P and Q are strongly bisimilar, and write P ∼ Q, if there is a relation
R on process expressions, relating P with Q, such that both R and R−1 are strong simulations.

We want this definition to preserve flow actions as well as π and e-actions. What does this mean?
One answer is that we can consider environments as “surrounding contexts”. Thus we have:

Proposition 5.2. If P is strongly bisimilar to Q, then whenever (E,P )
t→ (E′, P ) we have

(E,Q)
t→ (E′, Q).

1To use the operator +, we need also to assume that Q1 is a sum.
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To prove this proposition, it is easiest to begin a lemma, which extends (1) of Remark 4.15

to structured processes. In the statement, the notation P
e→ means that for some P ′, P

e→ P ′

(without reference to the environment).

Lemma 5.3. For all environments E = {x, F, I} with F autonomous, and for any process P , we

have that (E,P )
t→ (E′, P ) if and only if E ′ = {φ(x, t), F, I}, the flow is in I, and no e with P

e→
is enabled during time t.

Proof. We proceed by induction on the structure of the process P . In the “base case”, when P
is a sum, then the assertion is just the Sum transition rule. For the inductive step, we consider only

the case when P is P1 ‖ P2 . Then (E,P )
t→ (E′, P ) iff (E,P1)

t→ (E′, P1) and (E,P2)
t→ (E′, P2),

by the Par flow transition rule. Assume (E,P )
t→ (E′, P ). The inductive hypothesis applies to

(E,P1) and (E,P2) so that E ′ = {φ(x, t), F, I}, there is no enabled guard for any e such that Pi
e→,

and the flow is in I. Since the Lpar and Rpar rules ((7) in Definition 4.12) are the only rules
allowing inference of an e-action for a parallel composition, the same holds for (E,P ). Conversely,

assume that E ′ = {φ(x, t), F, I}, the flow is in I, and no e with P
e→ has a true guard during time

t. Then (E,Pi)
t→ (E′, Pi) by inductive hypothesis, and consequently (E,P )

t→ (E′, P ) by the Par
flow rule. This completes the inductive step for this case; the corresponding step for P = νaP1 is
easier. �

Proof of Proposition 5.2. Assume P is strongly bisimilar to Q. If (E,P )
t→ (E′, P ) then by

the lemma E ′ = {φ(x, t), F, I}, the flow is in I, and no e with P
e→ has a true guard during time

t. By bisimilarity the same statement is true for Q, because P
e→ iff Q

e→. By the lemma in the

converse direction, we have (E,Q)
t→ (E′, Q). �

This proposition shows that strong bisimilarity has the expected properties of bisimulations even
when flow transitions are allowed. Furthermore, we have obvious congruences:

Proposition 5.4. If P ∼ Q then

• µ.P +M ∼ µ.Q+M , where M is any sum.
• P ‖ R ∼ Q ‖ R .
• νaP ∼ νaQ.

The proof is straightforward. �

Interestingly, the natural extension of weak bisimulation from CCS to φc fails to be an environ-
mental congruence in the sense of Proposition 5.2. The problem is not with the definition of weak
bisimulation itself, but with the Sum flow transition rule. This rule forces enabled environmental
actions to be eager, but does not force reactions to be eager. To see what is happening, we start
by defining the natural notion of weak bisimulation for φc:

Definition 5.5. Let ⇒ be the reflexive transitive closure of
τ→ ◦ ≡, and let

µ⇒ be the composition

⇒ ◦ µ→ ◦ ⇒, where µ can be either a π-action α or an environmental action e. A relation R over

φ-expressions is a weak simulation if whenever P R Q and for any action µ such that P
µ⇒ P ′,

there is Q′ such that Q
µ→ Q′ and P ′ R Q′. We say that P and Q are weakly bisimilar, and write

P ≈ Q, if there is a relation R on process expressions, relating P with Q, such that both R and
R−1 are weak simulations.

We now show that Proposition 5.2 fails for weak bisimulations:

Example 5.6. Consider the processes

P = νa( a.[TRUE → x
.
= 1] ‖ a ) and Q = [TRUE → x

.
= 1].
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These are weakly bisimilar, but the environment E =




x : 0
ẋ : 1
TRUE


, in the context of process P ,

can flow for arbitrarily long periods before a reaction happens, while the same E in the context of
the process Q is time-blocked because Q’s environmental action is enabled.

It turns out that to deal with weak bisimulation, we need to revise the Sum and Par flow
transition rules so that with respect to this new kind of bisimulation, weakly enabled environmental
transitions, as well as weakly possible reactions, are made eager. We carry out this revision in
Section 7, when we have introduced the full hybrid calculus.

6. The full φ-calculus

In this section we extend the full π-calculus to the full φ-calculus, which will therefore deal with
name-passing and recursion (replication). We address first the status of environmental variables
as names which can be passed from one process to another in a reaction. We recall the π-calculus
rules for abstractions and concretions, and extend these to the π-calculus. Then we introduce en-
vironmental restriction, a way of localizing environmental variables. We then give the commitment
rules for the φ-calculus. Lastly in the section, we introduce the rules for recursion.

6.1. Abstractions, concretions, and name-passing. As above let X the set of environment
variables. We define output prefixes to be of the form a〈y0, . . . , yn−1〉, where a ∈ N , and where the
y’s are in N ∪X , together with input prefixes of the form a(y0, . . . , yn−1) with the same convention
on the y’s. We can think of variables in X as links to the environment. As such they can only have
values in R, and cannot be used as message channels. However, these variables can themselves be
passed as messages between processes2. The syntax of φ-expressions is just as before, only now
accommodating the new sorts of prefixes. (Replication will be added later in the section.)

We recall the π-calculus definitions of abstractions and concretions.

Definition 6.1 (Milner). An abstraction of arity n ≥ 0 takes the form (~w).P , where |w| = n. The
letters G,H, . . . , stand for abstractions. Two abstractions are structurally congruent (≡) if, up to
α-conversion, their bound names ~x are identical and their process parts are structurally congruent.

A concretion of arity n ≥ 0 takes the form ν~z〈 ~y 〉.P where |~y| = n and ~z ⊆ ~y. The letters C,D
stand for concretions. Structural congruence for concretions is like that for abstractions, together
with allowing restricted names to be reordered.

An agent is an abstraction or a concretion. The class of π-agents is denoted Aπ, and the letters
A,B stand for agents.

We extend abstraction operators to the φ-calculus. Again, let X be the set of environmental
variables. φ-abstractions simply allow X -variables to occur as part of ordinary abstractions and
concretions (~w).P and 〈 ~y 〉.P . Allowing these variables in ~w will allow for the passing of environ-
mental variables as links to the environment. Substitutions must of course repect these two types of
names. In particular, if x is an X -variable in ~w, substitutions for x are for occurrences of x in action
prefixes and environmental actions inside the scope of (~w). As always we allow for α-conversion in
the appropriate sense. See Example 6.4 below.

Definition 6.2. Abstractions and concretions in the φ-calculus have the following forms:

• φ-abstractions are of the form (~w).P for ~w over X ∪N .

2We could even allow differential equation names to be passed, but omit this here.
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• φ-concretions are of the form ν~z〈 ~y 〉.P , where ~y may include variables in X but ~z ⊆ ~y may
have no such variables.

Again, an agent is either an abstraction or a concretion.

Abstractions apply to concretions more or less exactly as in the π-calculus.

Definition 6.3. The application G@C of a φ-abstraction and concretion is defined as follows:

((~w)P )@ν~z〈 ~y 〉.Q =def ν~z( {~y/~w}P ‖ Q )

where ~y and ~w have the same length, and where names in N must be substituted for names in N ,
and names in X for names in X .

Applications can of course be carried out in the context of an environment E.

Example 6.4. For any E

(E, (axb).a.[x
.
= 2].b@〈 cyd 〉.[y .

= 3]) = (E, c.[y
.
= 2].d ‖ [y

.
= 3] ).

We now introduce the environmental restriction operator new xP for x ∈ X . The intent of this
operator is to make these variables local to the process P . In the literature, this operator is called
“variable hiding”, and sometimes “abstraction”. In φ-calculus usage, however, it is much more
akin to the restriction operator νa. Whereas abstractions apply to concretions, this “abstraction”
operator has no corresponding concretion. So we define it as an operator from processes to processes.

Definition 6.5. For x ∈ X the operator new xP is called the environmental restriction operator.
This operator restricts any e-action mentioning the variable x or ẋ (we call such actions x-actions).
We allow for α-conversions under the scope of new x, replacing occurrences of x in x-actions by a
new variable not occurring free in P .

We turn to the rules for commitments in the full φ-calculus. For brevity we do not define reaction
rules separately, as is done in Milner.

Definition 6.6 (φ-commitments). The commitments of embedded systems (aside from those in-
volving the replication operator) are given in Figure 6.1. In the Sum-e rules, e is an environmental
action of the form ψ → (c

.
= d;F

.
= G; I

.
= J) and E is the environment (c, F, I). Further,

α ∈ N ∪N , and µ is either an α or an e.

Notice the effect of the Env -commitment rule: it is simply to introduce a fresh new variable into
P . This variable is local to the scope of new x, as desired. Note: the substitution w/x includes
occurrences of the variable x in e-actions under the scope of new x.

The flow transition rules for the φ-calculus include those of the φc-calculus. Flow transitions are
allowed for processes (and not abstractions) as in Definition 4.13. We need to add a flow transition
rule for the environmental restriction operator; this works in analogy with the Res rule in Definition
4.13.

Res − x :
(E,P [w/x])

t→ (E′, P [w/x])

(E, new xP )
t→ (E′, new xP )

(w not mentioned in E, not free in P ).

The reason for the side conditions can be seen from an example:

Example 6.7. Let P = new x[x
.
= 1] and Q = new y[y

.
= 1]. Then P and Q are structurally

equivalent by α-conversion. Let E be the environment




x : 0
ẋ : 1
TRUE


. If we did not have the
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Sum − pi : (E, M + αA+N)
α
→ (E,A) Sum − e : (E,M + e.P +N)

e
→ ((d,G, J), P ) if ψ(c) is true;

L −React :
(E,P )

w
→ (E,G) (E,Q)

w
→ (E,C)

(E, P ‖ Q )
τ
→ (E,G@C)

R − React :
(E,P )

w
→ (E,C) (E,Q)

w
→ (E,G)

(E, P ‖ Q )
τ
→ (E,G@C)

L− par :
(E,P )

µ
→ (E′, A)

(E, P ‖ Q )
µ
→ (E′, A ‖ Q )

R − par :
(E,Q)

µ
→ (E′, A)

(E, P ‖ Q )
µ
→ (E′, P ‖ A )

Res − pi :
(E,P )

µ
→ (E′, A)

(E, νwP )
µ
→ (E′, νwA)

if µ /∈ {w, w}

Res − x :
(E,P )

µ
→ (E′, Q)

(E, new xP )
µ
→ (E′, new xQ)

if µ is not an x-action

Env : (E, new xP )
τ
→ (E,P [w/x]) (w ∈ X , w not mentioned in E and not free in P .)

Figure 1. Commitment rules for the φ-calculus

side conditions, then (E,P )
t→ for any t, but (E,Q) cannot flow because y is not defined in the

environment. Once again, the new x declaration in P enforces that the local variable x is different
from any variable in the environment of P .

6.2. Recursion. The π-calculus rule for recursion is

!P ≡ P ‖ !P

where ≡ is structural equivalence. We adopt this for the φ-calculus, and we handle commitments
just as in the π-calculus with provision for possible environmental changes. Thus when µ is either
a π-action or an e-action

(E, P ‖ !P )
µ→ (E′, Q)

(E, !P )
µ→ (E′, Q)

.

The only other thing that we need to add is the flow transition rule. This is simply

(E,P )
t→ (E′, P )

(E, !P )
t→ (E′, !P )

.

Notice that this rule dovetails well with the Par rule in Definition 4.13 together with the structural
equivalence for recursion above.

Milner provides a translation of recursively defined processes into replicated parallel processes,
which works exactly the same way in the φ-calculus. To review from [17]:

To encode the definition

A(~x)
def
= QA,where QA = · · ·A(〈 ~u 〉 · · ·A(〈~v 〉) · · ·

where the scope of the definition is some process

P = · · ·A〈 ~y 〉 · · ·A〈 ~z 〉 · · ·
(1) Invent a new name a to stand for A;

(2) For any process R, denote by R̂ the result of replacing every call A〈 ~w 〉 by
a〈 ~w 〉;
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(3) Replace P and the accompanying definition of A by

̂̂
P

def
= νa( P̂ ‖ !a(~x).Q̂A) .

This translation has the expected effect of allowing us to unfold recursive definitions of the
standard kind by replacing recursive calls of a process “textually” by the original definition.

Example 6.8 (Timeouts revisited.). Consider again the definition

Q1
d
. Q2

def
= [x

.
= 0;F

.
= (ẋ = 1)].(Q1 + [x = d].Q2)

where x is not free in Q1 or Q2. Localizing the x variable is simple:

Q1
d
. Q2

def
= new x([x

.
= 0;F

.
= (ẋ = 1)].(Q1 + [x = d].Q2)).

Using Milner’s translation, the definition

TVM = cof .TVM
1
. (tea .TVM

1
. TVM )

now makes sense (provided of course that Q1 is actually a sum).

Recursive constructions, commitments, and name-passing will be illustrated in Section 8 where
we show how to represent a physical buffer consisting of robots moving back and forth in a “bucket
brigade.”

7. Extended bisimulations

In this section we extend the strong bisimulations of Section 5 to the full φ-calculus, introduce
weak bisimulations and revise the flow transition rules so that we obtain similar behavior of weakly
bisimilar processes in all environmental contexts.

7.1. Strong bisimulation. As in Milner let Aφ be the set of φ-calculus agents and let Pφ be the
set of processes. A binary relation S over Pφ can be extended to a relation between abstactions of
like arity and concretions of like arity using

F S G means that for all ~y, F 〈 ~y 〉 S G〈 ~y 〉.
C S D means that C ≡ ν~z〈 ~y 〉.P and D ≡ ν~z〈 ~y 〉.Q such that P S Q.

Definition 7.1. A binary relation S over Pφ is a strong simulation if whenever P S Q, and µ is
either an α or e action,

if P
µ→ A then there exists B such that Q

µ→ B and A S B.

If both S and its converse are strong simulations then S is called a strong bisimulation. Two agents
A and B are strongly bisimilar, written A ∼ B, if there is a strong bisimulation relating them.

The extension of Proposition 5.2 to the full φ-calculus follows from Theorem 7.13 below and the
fact that a strong bisimulation is a weak bisimulation.

7.2. Weak bisimulation. We extend Milner’s definition of input and output experiments to the
φ-calculus. The definitions are mostly unchanged from the π-calculus, but we now must recognize
that we have environmental actions e, that environmental variables can be passed as messages, and
that there is a new kind of τ -transition corresponding to the Env -commitment.

We begin by defining some notions for process and agent expressions only, and then lifting them
to embedded processes and agents. So, considering φ-process expressions only, define the relation

⇒ to be the reflexive transitive closure of
τ→ ◦ ≡, where ≡ is structural equivalence.
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Definition 7.2 (Experiment). The relation
a〈 ~y 〉→ over Pφ is defined as follows:

P
a〈 ~y 〉→ P ′ iff, for some G, P

a→ G and G〈 ~y 〉 ≡ P ′.

An input experiment is an instance of the relation
a〈 ~y 〉⇒ , defined as

P
a〈 ~y 〉⇒ P ′ iff P ⇒a〈 ~y 〉→ ⇒ P ′.

An output experiment is an instance of the relation
a⇒, where

P
a→ ν~z〈 ~y 〉.P ′ iff, for some P ′′, P ⇒ a→ ν~z〈 ~y 〉.P ′′ and P ′′ ⇒ P ′;

An e-experiment is an instance of the relation
e⇒, where

P
e→ P ′ iff P ⇒ e→⇒ P ′.

(The last action
e→ above just uses e as a π-prefix.)

In what follows, we consider embedded experiments, defined as (the pair of endpoints of) sequences
of commitments (where µ can be any of the actions in the above definition)

(E,P )
τ→ (E,P1)

τ→ . . .
τ→ (E,Pn)

µ→ (E′, P ′).

The final µ-commitment in the sequence is a commitment that is possible for (E,Pn), and may
change the environment E.

Remark 7.3.

(1) Given an embedded experiment, we can pass by projection to the underlying process ex-
pressions in the sequence to obtain a non-embedded experiment. We just examine the
commitments at each step, and notice that τ -commitments are accompanied by underlying
τ -transitions in the process expressions at the underlying level. (Remember that we have
extended τ -transitions at the underlying level to take account of Env -commitments.)

Conversely, if there is a non-embedded experiment connecting P to P ′, then there is a
sequence

(∗) P
τ→ P1

τ→ . . .
τ→ Pn

µ→ P ′.

Given an environment E, we will construct a corresponding embedded experiment connect-
ing (E,P ) to a certain (E ′, Q′), whose projection will be another experiment starting with
P and ending with a µ′-transition to Q′. The action µ′ will be µ if µ ∈ N , and otherwise
will be the environmental action e, some of whose free variables will have been substituted
by others.

Given the sequence (∗), let E be an environment in which the set V (E) of variables
is mentioned. Proceeding from left to right along the sequence (∗), we construct a new
embedded experiment

(E,P )
τ→ (E,Q1)

τ→ . . .
τ→ Qn

µ′→ Q′,

with the property that each Qi arises from Pi by making a substitution of new variables
for free variables of Pi. Let Q0 be P . Assume that (E,Qi) has been constructed. If the

transition Pi
τ→ Pi+1 is not one of the new Env -transitions, then Qi+1 is just Pi+1 with the

same substitution of free variables that Qi had. If (∗) has a transition Pi = new xP ′
i

τ→
P ′

i [w/x], then Qi will be of the form new xQ′
i. Let z be a fresh variable not occurring

in V (E) and not free for x in Q′
i, and put Qi+1 = P ′

i [z/x]. Having constructed (E,Qn),
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suppose that e was the last action in (∗). Replace any variables in e by the ones which
have been replaced into Qn from Pn. This gives the new environmental action e′. Finally,
let Q′ be P ′ with the same updated variables. It is clear that the embedded sequence we
constructed projects in the desired way.

(2) In the rest of the section, we will often consider barbed e-experiments, which are defined by
sequences of τ◦ ≡-actions, followed by a last e-action. We will use the fact that, in either
the embedded or non-embedded setting, a process admits some e-experiment if and only if
it admits some barbed e-experiment.

Definition 7.4 (Weak simulation). A binary relation R over Aφ is a weak simulation if, whenever
P R Q,

if P ⇒ P ′ then there is Q′ such that Q⇒ Q′ and P ′ R Q′;

if P
a〈 ~y 〉⇒ P ′ then there is Q′ such that Q

a〈 ~y 〉⇒ Q′ and P ′ R Q′;

if P
µ⇒ C, where µ is either a or e, then there is D such that Q

µ⇒ D and C R D.

If both R and its converse are weak simulations, R is a weak bisimulation. Two processes P and
Q are weakly bisimilar, written P ≈ Q, if there is some weak bisimulation relating them.

In this definition, of course, the experiments are not embedded.
Now we need to show that environments of weakly bisimilar processes flow the same way ; but

as we showed in Example 5.6, this does not hold with the Sum flow transition rule in its current
form. We revise this rule, and we also make reactions eager by revising the flow transition rule for
Par.

Definition 7.5 (Revised flow rules). We present all of the new flow rules in one display. In the
following, E is an environment having an autonomous differential equation with flow φ(s, x) out of
the state x, such that for a given time t, we have that for all 0 ≤ s < t, φ(s, x) is defined and in
the invariant set I.

Sum: (E,ΣiµiPi)
t→ (E′,ΣiµiPi)

iff no µi is an enabled e-action in E, and for every τ such that µi = τ we have (E,Pi)
t→ (E′, Pi)

Par:
(E,P )

t→ (E′, P ) (E,Q)
t→ (E′, Q)

(E, P ‖ Q )
t→ (E′, P ‖ Q )

provided (∀S)( P ‖ Q τ→ S implies (E,S)
t→ (E′, S)).

Res-π:
(E,P )

t→ (E′, P )

(E, νaP )
t→ (E′, νaP )

Res-x:
(E,P [w/x])

t→ (E′, P [w/x])

(E, new xP )
t→ (E′, new xP )

provided w is not free in P and not mentioned in E.

Rep:
(E,P )

t→ (E′, P )

(E, !P )
t→ (E′, !P )

.

It is understood in these rules that “P” refers to the structural equivalence class of P .

With this revision of the flow laws, we embark on the proof of our context theorem. We begin
by passing to a non-embedded version of the flow laws. We define the non-embedded flow laws
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for φ-calculus expressions to be the projections of the flow laws for embedded expressions. In this
setting, the relation “can flow for t seconds” just becomes a unary predicate of P , which we denote
F l(P ), suppressing t, which is fixed. Thus, for example, the non-embedded Par rule is

Par:
F l(P ) F l(Q)

F l( P ‖ Q )
provided (∀S)( P ‖ Q τ→ S implies F l(S)).

and

Res-x:
F l(P [w/x])

F l(new xP )
provided w is not free in P .

This version of the laws reveals a basic structure; the laws are τ -persistent: for every τ -commitment
possible for a process, the process committed to must be able to flow. This holds for the Sum, Par,
and (new x) rules, and has the effect in practice of making all of these (embedded) commitments
eager: time cannot flow unless one of the τ -commitments available to a process in one of these
forms actually takes place.

Lemma 7.6. Let T be any τ -persistent property of φ-calculus processes, Then for all P , T (P ) holds

if and only if for all P ′ with P
τ∗→ P ′ we have T (P ′).

Proof. The ⇐ direction in the statement is trivial. The proof of ⇒ is by structural induction on
P , but we must be careful here, because we consider only P up to structural equivalence. The proof
is therefore by induction on the (length of) the shortest representative of a structural equivalence
class.

Basis: P = 0. This is clear, as 0 has no τ -commitments.

Induction: cases on the form of P .

(1) P is a sum. Assume T (P ). The only τ -commitments of a sum are to subprocesses, so the
conclusion follows by τ -persistence of T .

(2) P = P1 ‖ P2 . There are three different kinds of τ -transitions possible for P : those
introduced by means of the Lpar and Rpar rules, and those introduced by the React rule.
In each case, the process committed to is shorter than P1 ‖ P2 , so the conclusion follows
again by τ -persistence.

(3) The case of νaP ′ is clear, as the τ -commitments of νaP ′ are just those of P ′.
(4) P = new xP ′. In this case the only τ -commitment of new xP ′ is to P ′[w/x], which is shorter

than P .
(5) P =!P ′. If P has a τ -commitment then since !P ′ ≡ P ′ ‖ !P ′ , we must have that P ′ has

a τ -commitment. Therefore, T (P ′) by inductive hypothesis. By the commitment law Rep,
the conclusion again obtains.

�

Definition 7.7. For any µ, write P ↓µ if there is a Q such that P
µ→ Q.

Lemma 7.8. For all P and e, if F l(p), then ¬P ↓e.

Proof. Again by induction on P . The conclusion is certainly true for 0. It holds for sums by
virtue of the requirement that no µi prefix in a sum can be an e-action. For the case P1 ‖ P2 , we
have that P ↓e iff one of Pi ↓e. The other cases are straightforward. �

Corollary 7.9. If F l(P ), then P has no barbed e-experiments.

Proof. By the two previous lemmas. �

Lemma 7.10. If P has no barbed e-experiments, then F l(P ).
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Proof. Again this is an induction, but it is best presented as a proof by contradiction. Suppose
that P has no barbed e-experiments, but that P cannot flow. We consider the smallest coun-
terexample P (the structural equivalence class of process expressions whose smallest member is a
counterexample). Clearly P cannot be 0, because 0 can flow.

(1) If P were a sum, then none of its non-τ arms can be an e. Hence if P cannot flow, then some

Pi with P
τ→ Pi cannot flow. By induction, Pi has a barbed e-experiment, and therefore so

does P .
(2) If P is P1 ‖ P2 , then reasoning as in the Sum case shows that P cannot τ -commit to

a non-flowing process. Hence if P cannot flow, then one of P1 or P2 must not be able to
flow. Thus, by induction, one Pi, say P1, has a barbed e-experiment, and then by the Lpar
commitment rule, we construct an e-experiment for P .

(3) If P is νaP1 and cannot flow, then P1 cannot flow by the νa flow rule, so that P1 has a
barbed e-experiment, which passes through to P .

(4) If P is new xP1 and cannot flow, again P1[w/x] cannot flow for a w not free in P . This

gives a barbed experiment for P1[w/x], and since P
τ→ P [w/x], we get a barbed experiment

for P .
(5) Finally, if P is !P ′, and cannot flow, we have by the Rep flow rule that P ′ cannot flow. This

gives a barbed experiment for P ′, and by the structural equivalence !P ′ ≡ P ′ ‖ !P ′ and
the Lpar rule, we get a barbed experiment for P .

�

Lemma 7.11. For any process P , P can flow if and only if P has no barbed e-experiments.

Proof. By the previous lemma and Corollary 7.9. �

Lemma 7.12. For any environments E,E ′ as in Definition 7.5, and any process expression P ,

(E,P )
t→ (E′, P ) iff (E,P ) has no (embedded) barbed e-experiments.

Proof. This follows by observation of the proofs of the above lemmas. All of the steps go through
in the embedded case; the only place where a τ -commitment might depend on the environment is
in the new xP case. But there the argument can be made, since one only has to choose at that
stage a fresh variable not free in P nor in the given environment E. �

Theorem 7.13. If two weakly bisimilar processes are placed in the same environment, the envi-

ronment fows in exactly the same way: if P ≈ Q, then for any E, (E,P )
t→ (E′, P ) if and only if

(E,Q)
t→ (E′, Q).

Proof. Assume P ≈ Q. Suppose for some t, it is not the case that (E,P )
t→ (E′, P ). We

want to prove the same negative statement with P replaced by Q. Using the last lemma, there
must be an embedded µ-experiment possible for (E,P ), where µ is either an environmental action
or an output action. This experiment projects onto a non-embedded µ-experiment for P . Since
P ≈ Q, the same non-embedded experiment is possible for Q. But using Remark 7.3, this gives us

an embedded µ-experiment possible for (E,Q), so that the flow (E,Q)
t→ (E′, Q) is not possible,

by the converse direction of the same lemma.
Finally, the converse implication of the theorem follows by a symmetric argument. �

Remark 7.14. From this result, we can see that weakly bisimilar processes will evolve over time
and over actions in the same way. Once a time-transition for the environment of two bisimilar
process has completed, then the processes themselves can match each other’s discrete transitions to
again bisimilar processes, and this can be repeated.



20 WILLIAM C. ROUNDS AND HOSUNG SONG

8. Representing threaded Petri nets in the φ-calculus

Threaded Petri nets [13](TPNs) merge hybrid system dynamics with Petri net concepts. They
can be used to specify robotic assembly systems and to prove some useful properties such as
deadlock-freeness and liveness. In this section we show an informal example of a TPN and its
translation to φ-calculus, looking at the ”bucket brigade” from Klavins and Koditschek. Formal
details of the general translation are in Appendix A.

The bucket brigade consists of three robots arranged in a straight line. The first robot picks up
a part from a parts feeder, moves right, passes the part to the second robot, and returns left for
another part. The second robot moves right with the part, passes it to the third robot, and returns
left for another exchange. The third robot moves right and drops the part in the output bin, then
returns to meet the second robot. See Figure 2. In the threaded Petri net representation of this

Figure 2. The bucket brigade.

scheme, tokens in a place are names of continuous variables. When a set of variables is in a place,
the place evolves continuously according to a predefined controller, one controller for each place.
The continuous variables are, in fact, partititioned among (some of) the places. Further, when
each transition’s input places are occupied by (evolving) variables, its output places are empty. A
Liapunov-like firing rule applies: when a transition fires, it redistributes (according to a prespecified
function) the variables in its input places bijectively to its output places, which then activate their
respective controllers. The condition for firing is that for each output place q which receives a
variable from an input place p, the goal predicate for p must entail the domain predicate for q.
By referring to Figure 3 the reader can trace the action of the threaded Petri net for our bucket
brigade. The gray directed lines in the graph represent the movement of tokens representing the
robots and the parts in the brigade. The places (aside from the parts feeder and the output buffer)
hold the tokens (continuous variables, links to the environment) we have described.

Figure 3. Action of the bucket brigade net.



THE φ-CALCULUS 21

We focus first on the brigade at the stage when robots 1 and 2 are approaching each other in
preparation for the transfer of the part to robot 2. The variables in the places are given by

pick : {}, hold1 : {}, trans12 : {r1, p, r2}, wait3 : {r3}, hold2 : {}, hold3 : {}, drop : {}.
The new configuration (omitting places holding no variables) would be

wait1 : {r1}, hold2 : {p, r2}, wait3 : {r3}.
We now consider the net firing rule for this stage. For this we look at the place trans 1,2, the input

place to transition t2. Associated with this place is a controller ftrans12
which is a gradient system

based on the Liapunov navigation function scheme of Rimon and Koditschek [18]. The purpose of
the controller is to bring the robots into an appropriately “mated” configuration, requiring that
they meet at almost zero velocity at the specified goal. The resulting closed loop dynamical system
is thus endowed with a goal set Gftrans12

which can be thought of as a predicate on the local state,

i.e., the values of the continuous variables (p, r1, r2). All trajectories in the basin of attraction of
this controller must enter the goal set, which is arranged to be a subset of the domain of attraction
Dfwait1

of the controller for the place wait1 intersected with the domain Dfhold2

of the controller for
hold2. Once a trajectory enters the goal set, the transition t2 must fire, redistributing the variables
as indicated in the previous paragraph.

Using the idea of representing transitions of a Petri net by individual φ-processes as in Example
4.18, we see immediately that the redistribution of the variables in the net can be modelled by
environment variable name-passing between the processes. As an example we sketch the process
T2 representing the transition t2. Let φ2(p, r1, r2), γ2(p, r1, r2) be the predicates

(p, r1, r2) ∈ Dftrans12
\ Gftrans12

, (p, r1, r2) ∈ Gftrans12
,

respectively.
We also introduce process names corresponding to the input and output places of transitions. In

this example, they are trans 12,wait1 , and hold2 .
The process T2 is then

T2(p, r1, r2) ::= trans12(p, r1, r2) (receive variables from place trans 12)

.[I
.
= φ2(p, r1, r2);F

.
= ((ṗ, ṙ1, ṙ2) = ftrans12

(p, r1, r2))]

(force firing, hence activation later of T3 and T4;

activate controller for place trans 12)

.[γ2(p, r1, r2)].wait 1〈 r1 〉.hold 2〈 p, r2 〉 (wait until goal reached;

send variables to hold 2 and wait 1)

.T2〈 p, r1, r2 〉 (and repeat.)

The process T1 representing t1 has to be more complex since it receives variables from the two
places wait2 and hold 1, so has to execute two receive actions in parallel. First, though, for the
invariant, we let φ1(p, r1, r2) be the predicate

(p, r1) ∈ (Dhold 1
\ Ghold1

) ∨ r2 ∈ (Dwait2 \ Gwait2).

This represents the fact that we wish to keep running the controllers for wait 2 and hold1 as long as
either one has not attained its goal set. (The Cartesian product of the two goal sets is predetermined
to be in the domain of attraction of the controller ftrans12

.) We also let γ1(p, r1, r2) be the predicate

(p, r1) ∈ Ghold1
∧ r2 ∈ Gwait2 .
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We now need to deal with the problem of simulating the firing rule of transition t1 in the net.
The transition fires when all of its variable tokens are present in both of its input places, and the
appropriate goal condition is satisfied. We simulate token-passing by name-passing during reaction,
so we have to treat the problem of exactly when T0 and T5 send their variables to hold 1, and wait 2

and not to let T1 fire when not all of its input variables have been received. This requires us to
anticipate a sequence of input actions which may occur in any order. In the example of T1, we need
to anticipate that the action of receiving a pair of variables from hold 1 may or may not precede
the action of getting a variable from wait 2.

One solution to this problem is to introduce Boolean variables corresponding to each place in the
net. Such variables can be realized using continuous variables having zero derivative, and which are
initialized and reset to 0 or 1. Let us call these variables Bhold 1, Bwait 2, and Btrans12 respectively.
To delay the firing of T1 we introduce the test

(Bhold 1 = 1) ∧ (Bwait2 = 1).

Officially, this is an environmental action with no body.
With this notation, we may describe the process corresponding to transition t1.

T1(p, r1, r2) ::= [(Bhold 1 = 1) ∧ (Bwait2 = 1)]

.hold 1(p, r1).wait 2(r2)

(receive variables from places hold 1 and wait 2)

.( [I
.
= φ1(p, r1, r2);

F
.
= ((ṗ, ṙ1) = fhold1

(p, r1); ṙ2 = fwait2(r2))]

(force firing, hence activation later of T2;

activate controllers for places hold 1 and wait 2)

.[γ1(p, r1, r2)].trans 12〈 p, r1, r2 〉 (wait for goals; send variables to trans 12)

.[Bhold 1 := 0].[Bwait 2 := 0].[Btrans 12 := 1] (reset Booleans)

.T1〈 p, r1, r2 〉 (and repeat.)

)

The code for the process T2 should now be rewritten in this same way.
Finally we model the parts feeder using recursion and the new operator. The feeder operates by

proximity; every time robot 1 is within some small ε of 0, the feeder produces a new part.
We call this recursive process PF . It is convenient to think as well of the “parts feeder”” in

Figure 3 as an actual place with name pf .

PF ::=
[
I
.
= (r1 ≥ ε)

]
.new part(

[
part

.
= 0

˙part
.
= 0

]
.[Bpf := 1].pf〈 part 〉.PF ).

The invariant I in this process is violated when the first robot gets within ε distance of the parts
feeder. This triggers a call of the localizing operator new part. This in turn creates a fresh part
name, using alpha-conversion to avoid clashes with part names in the environment when the “new”
process “decays” at the Env commitment. Parts start with 0 velocity at position 0. The name of
the part is passed to the place pf which is an input place to transition t3.

The Petri net representing the whole bucket brigade is then represented by the parallel compo-
sition of all the processes representing the transitions, the parts feeder, and the parts drop.
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9. Conclusion

We hope to have demonstrated in this report the feasibility of using process-algebraic techniques
in the design of hybrid systems. However, much theoretical work remains to be done.

First, we need to have a deeper understanding of simulations and bisimulations. An important di-
rection is studying the analogue of bisimulations for environments; in the literature these are called
topological conjugacies. We would like to integrate these into a combined definition of bisimulation.
It would be nice to give conditions on environments and environmental actions (guarantees that
flows will eventually reach the boundary of an invariant, for example), so that a “time-abstract”
version of a process could be proven live (deadlock-free) by passing to its discrete version using sim-
ulation. This (implicitly) is already the case in Klavins and Koditschek’s threaded Petri nets. One
can pass to the underlying net structure to prove liveness, because of the backchaining conditions
assumed on the controllers in the net. (See Appendix A.)

Next, we would like to have a version of the φ-calculus which automatically is free from Zeno
executions (infinite sequences of discrete transitions in bounded total time). Here we could study
the receptivity property introduced in [15].

In this preliminary document we have said nothing about possible logics for reasoning about
φ-calculus processes. A possibility is to extend the work by Mads Dam [4] which reasons about
π-calculus in a µ-calculus (!). Such an extension would incorporate assertions about the continuous
state.

On the control theory side, we would like to see what kinds of systems can be modeled with
“superposition” environmental actions. Much work on coupled oscillators uses superposition to
combine individual oscillators, and it is possible that one could smooth out hybrid jumps using
this kind of reset. Also, we would like to investigate extensions of backchaining so that goal sets
could be parts of limit cycles determined by Poincaré sections, for example. This work should be
important in the further study of robotic assembly problems.
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Appendix A. Formal translation of TPNs

For reference, we present in this appendix a summary of threaded Petri net definitions and a
review of the control-theoretic ideas used in the constructions of goal sets and domains of attraction
for the various controllers exemplified above. It will then be clear how the translation of TPNs to
the φ-calculus can be carried out in general.

We begin with generalized marked graphs. These are Petri nets with finite sets P of places and T
of transitions. We denote by •t and t• the set of input and output places respectively for transition
t. In a marked graph, each place is an input place to at most one transition and an output place
for at most one transition. Let p• be the unique, if any, transition for which p is the input place.
Similarly •p is the unique transition feeding p.

Next, there is a finite set S of slots {s1, . . . , sn}; We have a function α : P → P(S), called the
slot distribution function, which is such that (i) for each transition t, α(p) ∩ α(q) = ∅ for all p 6= q
in •t; (ii) also for all p 6= q in t•; and (iii) for each transition t,

⋃

p∈•t

α(p) =
⋃

p∈t•

α(p).

In the bucket brigade, we have shown neither the distribution function nor the set S of slots.
We might put S = {fr , sr , tr , part}, standing for first robot, second robot, third robot, and part
respectively. Then, for example, α(trans 12) = {fr, tr, part}. The slots can be thought of as the net
equivalent of φ-calculus abstractions.

The distribution function has the property that if a slot s is in α(p) for p an input place of t, then
there is a unique place q in t• with s in α(q). Thus we have implicitly defined a (partial) function
δ : S × P → P , called the redistribution function of the net. (The transitions do not enter this
definition, because any place is input to at most one transition; the function δ(p, s) is undefined if
p• is not defined.) By iterating the function δ(s, ·) for a fixed slot s, starting at a given place p, we
get a finite or infinite sequence of places which is called a thread for the net starting at p. A full
thread starts at a place p for which •p is not defined, and is either infinite or terminates at a place
p for which p• is not defined. Following a gray line in Figure 3 and enumerating the places passed
gives a thread.

We assume prespecified a set V of variables for the net. In the bucket brigade, V = {p1, p2, . . . }∪
{r1, r2, r3}. A marking for such a is a pair (m, ρm), where m is a set of places (the marked places)
and a bijective map ρm :

⋃
p∈m({p} × α(p)) → V. For each slot s of a place p in m, ρ(p, s) is the

variable in that slot. The presence of a variable in a slot corresponds in the φ-translation to having
carried out a commitment via a reaction which has passed environment variable names. In our
example, the marking represented just before trans 12 fires is m = {trans12, wait3}, and ρm is

{(trans12, fr) 7→ r1; (trans 12, sr) 7→ r2; (trans12, part) 7→ p; (wait3 , tr) 7→ r3}.

The continuous dynamics of a net is given locally. For each place p there is assumed a differential
equation ẋ = Fp(x), x ∈ R

α(p). Here we use the slot names as abstract variables, corresponding
to the fact that the differential equation which is actually in force when a place is operating under
a specific mode dynamics may vary according as to which actual variables occupy the slots in a
place. We assume that the solution f(x, t) of this equation has a stable fixed point (equilibrium
point) x∗, where of course Fp(x

∗) = 0. We call x∗ the goal. The goal set of p is a (small) open set
Gp containing the goal, and such that (∀t)(f(y, t) ∈ Gp) for all y ∈ Gp. The largest open set Dp with
the same property is called the domain of attraction for p. The collection {Fp | p ∈ P} is called a
palette of controllers for the net.
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The palette of controllers satisfies a backchaining condition, which we now explain. Roughly, the
goal set of one controller in an input place to a transition is supposed to be a subset of the domain
of a controller of an output place for that transition. Because a transition can have several input
and output places, this condition is more complicated. Let t be any transition. Because we have a
marked graph, the transition t is the unique one feeding any of its output places. If q is an output
place of t, denote by δ−1[α(q)] the set of slots s in any input places p to t such that δ(s, p) ∈ α(q).
The backchaining condition for the net is then

(∀q ∈ t•) : πδ−1[α(q)](Gp1
× · · · × Gpn) ⊆ Dq

where πA is the projection of a set in R
S onto R

A for A ⊆ S, and {p1, . . . , pn} =• t.

Let x ∈ R
V be a “state” of the net. A transition t is enabled with respect to marking (m, ρm)

and x, if

(1) •t ⊆ m and t• ∩m = ∅;
(2) (xρm(p,s1), . . . , xρm(p,sn)) ∈ Gp for every input place p to t, where {s1, . . . , sn} = α(p).

The follower marking for an enabled transition is the marking (n, ρn), where n = (m \• t)∪ t•, and

ρn(r, s) =

{
ρm(r, s) for r /∈ t•;
ρn(r, s) = ρm(p, s) if r ∈ t• and δ(p, s) = r.

With this review (and slight reformulation) of TPNs, we can present our formal translation of
TPNs into the φ-calculus. We proceed on a transition-by-transition basis. Let t be a transition
with •t = {p1, . . . , pn}, t• = {q1, . . . , qm} and overall slot set {s1, . . . , sl} =

⋃
p∈•t α(p). Also by

t(α(p)) we mean an abstraction with name t over the environmental variables in α(p), using slot
names as the bound variables of the abstraction. Let ξt(s1, . . . , sl), γt(s1, . . . , sl) be the predicates

∨

p∈•t

(α(p) ∈ Dp \ Gp),
∧

p∈•t

α(p) ∈ Gp,

respectively.
As in the examples of the last section, we introduce formal place names p1, . . . , pn, and the

corresponding Boolean variables Bp1, . . . , Bpn.
For the transition t we define a process Tt(s1, . . . , sl) as follows:

Tt(s1, . . . , sl) ::=

[
∧

p∈•t

(Bp = 1)]

.p1(α(p1)). . . . .pn(α(pn))

(receive variables from all transitions feeding t)

.( [I
.
= ξ(s1, . . . , sl); F

.
= (( ˙α(p1) = fp1

(α(p1); . . . ; ˙α(pn) = fpn
(α(pn))]

(force firing, hence activation later of controllers for output places of t;

activate controllers for input places)

.[γt(s1, . . . , sl)].q1〈α(q1) 〉. . . . qm〈α(qm) 〉 ( wait for goals; send variables to follower transitions)

.[Bp1 := 0]. . . . .[Bpn := 0].[Bq1 := 1]. . . . .[Bqm := 1]

.Tt〈 s1, . . . , sl 〉 (and repeat.)

)

As in the bucket brigade, we just put all the transitions Tt in parallel combination to get the
φ-calculus process representing the net.



THE φ-CALCULUS 27

A word is in order about the adequacy of our translation. We should be concerned about
preserving liveness and safety properties from the original TPN into the translated φ-calculus
version. We notice that establishing these properties, in the work of Klavins and Koditschek, is
reduced to consideration of the discrete version of the net, without the continuous dynamics. This
discrete version is simply a Petri net which accumulates variable names in its places, and fires
when the appropriate variable names for a given transition have been accumulated into the input
places for that transition. The reason that this reduction is possible is the backchaining condition;
a guarantee is provided that the goal set of a controller will be contained in the domain set of a
follower controller.

It is easy to see that a corresponding translation of the discrete version of a TPN into φ-calculus
will preserve liveness and safety properties of the original net. To do this, one can establish a kind
of bisimulation property in which the firing of a transition in the net corresponds to an interaction
step of the translated process in which the tokens on the input places are transmitted to the output
places via name-passing.

There is, however, a minor problem with the TPN formalism itself. Once the goal predicate of
a controller has been attained, there is nothing in the TPN formalism which forces a transition to
actually fire. In contrast, this firing is forced in our translated version via the use of an appropriate
invariant.

Finally, the parts feeder in Klavins and Koditschek’s bucket brigade example is an anomalous
kind of “place” in which tokens can magically be created. It does not actually conform to the TPN
formalism. Our tratment of the parts feeder, by contrast, uses recursion and the new operator to
generate this stream of part numbers.

CSE Division, EECS Department, University of Michigan, Ann Arbor, MI 49109, USA

E-mail address: {rounds, hosungs}@eecs.umich.edu


