
1

Dynamic Leakage-Energy Management of Secondary Caches

Erik G. Hallnor and Steven K. Reinhardt

Advanced Computer Architecture Laboratory
EECS Department

University of Michigan
Ann Arbor, MI 48109-2122

{ehallnor,stever}@eecs.umich.edu

Static leakage currents are the prime contributor to energy consumption for large on-chip sec-
ondary/tertiary caches. This energy cost can be reduced by dynamically disabling unneeded por-
tions of the cache. To provide overall energy savings, however, the leakage-energy reduction must
exceed the extra energy incurred due to additional off-chip accesses and increased runtime. We
derive a practical formula for on-line estimation of net energy reduction based on the number of
additional misses incurred and the ratio of off-chip access energy to per-cycle cache leakage
energy. We estimate reasonable values for this ratio by measuring the actual off-chip access
energy cost on a current system. We incorporate our estimation formula into a previously pro-
posed dynamic resizing scheme, preventing it from increasing net energy consumption and
improving its overall effectiveness.

We also present a new resizing framework that tracks misses and controls power at the granu-
larity of associative ways. Per-way miss counters enable simultaneous estimation of net energy
consumption at all possible cache sizes, allowing direct identification of the minimum-energy
configuration. This structure also greatly reduces hardware overhead compared to block-level
resizing schemes. We call the combination of this framework with our estimation formula Energy
Aware Bank-Level Resizing (EnABLR). Simulations show that, across the entire SPEC CPU2000
suite, EnABLR reduces secondary-cache leakage energy by up to 80%, without increasing overall
memory-system energy consumption by more than 1% in any situation. Average energy reductions
range 14% to 29%, depending on off-chip access energy costs.

1. Introduction

As threshold voltages scale downward along with transistor feature sizes, static power dissipa-
tion due to subthreshold leakage current is becoming an increasingly significant fraction of total
power consumption for microprocessors. Total leakage power is estimated to increase fivefold
with each process generation [5], equalling dynamic power within a few generations [7].

At the same time, growing transistor budgets have led to the incorporation of large on-chip
secondary caches on mid-range to high-performance microprocessors, including those used in
laptop and desktop PCs as well as server systems.1 On-chip secondary caches serve a valuable
purpose in avoiding off-chip memory accesses, which are very costly in terms of both energy and
performance. Because these caches contain large numbers of transistors, of which only a small
fraction switch in any given cycle, leakage may account for as much as 80% of secondary cache
energy consumption [17]. As these caches constitute a large fraction of microprocessor die area

1. For simplicity of discussion, we assume a two-level on-chip cache hierarchy, and use the term secondary to refer to
the on-chip cache furthest from the processor. For systems with three levels of on-chip cache, our discussion and
results apply equally well to the tertiary cache.

2

(and an even larger fraction of the total transistor budget), secondary cache leakage energy is
likely to be a significant factor in overall microprocessor energy consumption.

Leakage energy can be reduced by dynamically disabling unused portions of the cache, e.g.,
by gating Vdd [13] or raising the threshold voltage [12]. This “cache resizing” approach is largely
complementary to circuit-level optimizations that seek to reduce leakage on enabled memory
cells, such as high-VT or dual-VT memory designs [9]. Recently proposed techniques [17, 11, 19]
have shown that, for many benchmarks, significant portions of primary (L1) instruction and data
caches can be disabled without corresponding increases in miss rates or execution times.

Of course, disabling a portion of a cache reduces total system energy only if the reduction in
leakage energy is greater than the energy consumed by the overheads incurred. These overheads
include the energy expended in additional accesses to the next level of the memory hierarchy and
the added energy due to increased runtime. If the energy and performance penalties for additional
cache misses are relatively small, as in the case of an L1 cache backed by an on-chip secondary
(L2) cache, the potential downside of cache disabling may be minimal. However, misses in on-
chip secondary caches require off-chip accesses, which can be very costly in terms of both energy
and performance. Overly aggressive disabling may thus lead to large increases in both energy
consumption and runtime.

In this paper, we develop a secondary-cache resizing scheme which addresses this problem by
seeking explicitly to minimize overall memory-system energy consumption. To this end, we first
present a general formula for estimating net relative energy reduction due to cache resizing. We
then simplify this formula to make it amenable to on-line calculation. The simplified formula
relies on three parameters. One—the fraction of the cache disabled—can be measured directly.
We can track the second parameter—the number of additional misses caused by disabling that
fraction of the cache—by not disabling the tags corresponding to disabled data blocks, as has been
proposed for other schemes [19]. We assume that the final parameter—the ratio between the
energy consumption of an off-chip access to that of one cycle of cache leakage—is provided
externally. Because this ratio may depend on factors external to the cache design, such as the sys-
tem configuration and the operating temperature, systems should allow for this value to be varied
dynamically. We estimate a reasonable range of values for this ratio by combining published leak-
age figures with our own measurements of off-chip access energy costs. We then apply this for-
mula to the previously proposed adaptive mode control (AMC) scheme [19], causing it to adapt
its control parameter (the decay threshold) with the goal of maximizing the estimated energy
reduction. Unlike the original AMC algorithm, which uses a target relative miss rate to adapt its
threshold, our enhanced version never increases net memory-system energy consumption, and is
more effective overall.

Unfortunately, although the AMC framework allows calculation of the net energy reduction
provided by the current decay threshold setting, it cannot estimate what the net energy reduction
would have been using a different threshold. Our variant of AMC must iteratively adjust the
threshold to find the minimum-energy setting. We present a bank-level resizing (BLR) control
scheme which addresses this shortcoming by combining resizing based on associative ways [2,
18] with per-way hit counters [15]. This combination allows a control algorithm to calculate the
value of any miss-based metric (such as net energy reduction) simultaneously at all possible resize
points, not just the current setting. Thus the optimal resize point can be selected directly, without
iteration. Bank-level resizing also has a much lower hardware overhead than block-level schemes
such as cache decay [11] and AMC [19]. BLR achieves these benefits by restricting resizing to a
much coarser granularity; however, our results show that an 8-way associative cache—well

3

within the typical range for on-chip secondary caches—provides overall energy reductions com-
petitive with finer-granularity schemes.

Finally, we integrate our energy-aware metric with BLR to create a novel adaptive resizing
scheme, energy-aware bank-level resizing (EnABLR), which attempts to minimize net energy con-
sumption based on an externally specified estimate of the relative energy cost of off-chip accesses
vs. cache leakage. Simulations show that we are able to reduce energy by an average of 14% to
29%, depending on the off-chip energy ratio, while incurring less than 3% increase in execution
time. Perhaps more importantly, unlike energy-oblivious schemes, EnABLR almost never
increases system energy consumption.

The rest of the paper is organized as follows. In the next section we discuss previous work in
cache leakage-energy management. Section 3 describes our formula for calculating net energy
savings due to secondary-cache resizing. We then derive an estimate for one of the formula's key
parameters, the ratio of off-chip access to cache leakage energy. We apply this estimation formula
to the AMC resizing framework, and demonstrate that it significantly outperforms the original
energy-oblivious control strategy. In Section 4, we present our bank-level resizing (BLR) frame-
work and its energy-aware control algorithm (EnABLR). We present simulation results for
EnABLR in Section 5, and conclude in Section 6.

2. Previous Work

Previous work on cache resizing addresses two issues: circuit techniques for placing portions
of the cache into a low-leakage state, and architectural techniques for determining what fraction
of the cache, if any, should be placed in such a state. This work falls into the latter category. We
include a brief discussion of the former category as background.

2.1. Circuit Techniques for Reducing SRAM Leakage

One approach to reducing cache leakage is to fabricate cache transistors with a higher thresh-
old voltage (Vt) via doping. This technique incurs a performance penalty, in that the increased Vt
causes these transistors to switch more slowly; this penalty can be reduced by using high-Vt tran-
sistors only in the less performance-critical paths of the SRAM cell, an approach known as dual-
Vt [9]. However, higher Vt values reduce, but do not eliminate, leakage current. As supply volt-
ages cross below 1.0V, transistors with Vt high enough to make leakage energy negligible may not
switch at acceptable speeds [16]. Thus high-Vt fabrication provides at best a partial solution to
leakage energy.

The gated-Vdd technique [13] places high-Vt transistors on the path between a standard
SRAM cell and the power rails. When these transistors are active, the SRAM cell operates at full
speed. When the transistors are placed in an inactive state, the SRAM cell is disconnected from
power, effectively eliminating leakage current in the cell itself. If the Vdd-gating transistors have
high Vt values, the total leakage current seen in this disconnected state is practically negligible.
However, when placed in the inactive state, all data stored in the SRAM is lost.

An alternative technique, MTCMOS [12], raises Vt in the SRAM cell dynamically to reduce
leakage currents. This feat is accomplished using a separate, higher voltage to bias the PFET
wells in the low-power state, and raising the ground and Vdd levels by two diode-drop voltages.
Since only the threshold voltages are affected, the data stays resident, but transistor switching
speeds are greatly raised. Recently, Flautner et al. [8] proposed an alternate circuit which uses a
fixed Vt but dynamically lowers Vdd to place SRAM cells in a state-preserving “drowsy” mode.
Both these schemes involve greater hardware complexity than gated Vdd, such as the need to

4

route a separate power supply across the cache. They are also somewhat less effective at reducing
leakage energy per bit, as they do not completely disconnect the SRAM cell from the power
source. In this paper, we focus on using gated Vdd to reduce leakage energy at the circuit level.

2.2. Architectural Techniques for Cache Resizing

Given a circuit-level method such as gated Vdd for reducing leakage energy dynamically, a
higher-level policy must determine when and how to apply the method. We describe three such
architectural techniques: the DRI cache [17], cache decay [11], and adaptive mode control (AMC)
[19]. The techniques use gated Vdd to disable portions of the cache, adjusting the effective cache
size dynamically to match application requirements. Other cache-resizing techniques (e.g., [2, 4,
18]) focus on optimizing cycle time and/or dynamic power rather than leakage energy.

The DRI cache design [17] is intended to minimize the leakage energy of L1 instruction
caches. The DRI scheme uses a predetermined miss bound for its resizing decisions. If the number
of misses in a given interval is less than the miss bound, a section of the cache is turned off; if
greater, a section is turned on. The cache is resized by adjusting the number of active sets, which
restricts the cache to be grown or shrunk by factors of two. In addition, resizing changes the set of
address bits used for indexing, complicating the tag-matching logic. By focusing on instruction
caches, the DRI cache avoids the need to write back dirty data when the cache is shrunk.

Cache decay [11] is a distributed scheme in which individual cache blocks determine autono-
mously whether to put themselves into a powered-off state. A periodic global signal increments
counters associated with each cache block. A block’s counter is reset when the block is accessed.
If the counter reaches a predetermined threshold value without an intervening access (three in
[11]), the block is powered down. In a writeback cache, a block containing dirty data must be
written back before powering itself down. On a miss, a powered-down block (if any) is reacti-
vated to hold the new data in preference to replacing an existing block. The base cache decay
scheme assumes a fixed decay interval. The authors note that the decay interval can be set accord-
ing to the energy cost of a miss to bound the worst-case energy consumption; we will present
results from this policy in Section 5. The paper also presents a sophisticated adaptive scheme that
allows blocks to select from global decay signals of various frequencies based on their access
rates, and discusses compiler- and profiling-based control schemes as well.

Adaptive Mode Control (AMC) [19] extends cache decay by adding feedback-based control
of the counter threshold value. To provide feedback, AMC does not turn off tag entries when the
corresponding data blocks are powered down. An access that matches the tag entry of a disabled
block is a “sleep miss”, a miss that would not have occurred in the absence of resizing. AMC can
thus measure the number of additional misses incurred due to the resizing policy. The system also
counts the number of misses that did not match any tags (i.e., that would have occurred even in
the absence of resizing). The ratio of these values gives the relative increase in misses over the
measurement interval, or equivalently, the relative increase in miss rate. AMC adjusts the decay
counter threshold value to attempt to keep the increase in relative miss rate within a predefined
window (1.25 to 1.75 in [19]).

Hanson et al. [10] compare the energy-delay product of L1 and L2 caches using dual-Vt, gated
Vdd, and MTCMOS, where the latter two are managed by the cache decay scheme. They conclude
that dual-Vt offers the best energy-delay product for L2 caches. However, they consider the L2
miss energy cost to be only the energy required to drive an address off chip. This restriction
results in an estimate of 0.9 nJ per L2 cache miss, roughly three orders of magnitude smaller than
the system-level energy cost we measure in Section 3.2. They also use the non-adaptive, energy-

5

oblivious cache decay scheme to control gated Vdd and MTCMOS. An updated comparison using
our off-chip energy parameters and our energy-aware resizing scheme would be interesting, but is
outside the scope of this paper.

Overall, these schemes target primarily L1 caches, where the penalty in both performance and
energy for additional misses to an on-chip L2 is relatively low. In particular, the ratio of dynamic
L2 access energy to per-cycle L1 leakage energy is estimated to be in the range of 4 to 10 (though
results for a range of values up to 100 are presented in [11]). In this situation, a very large number
of additional misses must be incurred before the energy benefits of disabling a portion of the
cache are negated. For example, the DRI cache work [17] shows that the energy benefit of their
scheme is largely insensitive to the miss bound, and that the performance impact of additional
misses tends to bound the minimum L1 instruction cache size much more than the energy cost.

In contrast, we show in Section 3 that the ratio of off-chip access energy to per-cycle L2 leak-
age energy is likely to be much higher, in the range of 50 to 100. Under these circumstances, it is
much more likely that overly aggressive cache disabling will lead to a net increase in system
energy consumption. Our proposed resizing scheme, described in Section 4.1, avoids this problem
by using a direct estimate of net energy savings as its optimization metric. For an improved metric
to be effective, however, we must first put in place a control scheme that is capable of resizing a
cache to track a target metric accurately. We propose one such scheme in the following section.

3. Calculating Energy Savings from Secondary Cache Resizing
This section presents a brief analysis of the energy savings due to secondary-cache resizing.

First, we derive an equation for estimating net energy savings. The ratio of off-chip access energy
to secondary-cache leakage energy is a key parameter in this equation. We then estimate values
for this ratio using published leakage values combined with measured off-chip energy costs.

3.1. Calculating Net Energy Savings

There are two primary sources of energy overhead induced by turning off portions of a sec-
ondary cache. First, the reduction in effective cache size leads to additional off-chip accesses,
each of which consumes dynamic energy. Second, these additional off-chip accesses increase pro-
gram runtime. The additional execution cycles could otherwise be spent on a different task or in a
low-power idle mode. Thus the additional runtime potentially incurs dynamic and static energy
overheads across the entire system, including the processor core, L1 caches, memory, and I/O
devices. Additional dynamic energy dissipation in the processor core and elsewhere can be signif-
icantly reduced through power-saving techniques such as clock gating. Static energy consumption
in other components may be significant, but is difficult to estimate within the scope of this paper.
Therefore we focus on only two sources of overhead: dynamic energy due to extra off-chip
accesses, and leakage energy dissipated by the L2 cache itself during the extra execution cycles.

Given these limitations, we can estimate the total energy savings as the leakage energy saved
by resizing, minus the energy costs of off-chip accesses and additional runtime, as follows:

(1)

where:
EL = cache leakage energy per cycle
FA = active fraction of cache
t = runtime with full cache in cycles
t' = runtime with resized cache in cycles
EOC = dynamic energy of an off-chip access

Energy savings E= L 1 FA–()t EOC M W+() ELFA t' t–()––

6

M = no. of additional misses vs. full-cache run
W = no. of additional writebacks vs. full-cache run

Given that our goal is to maximize energy savings, and not to quantify the energy saved, we
can normalize the energy savings relative to the per-cycle leakage energy (). We can then sim-
plify Equation 1 slightly, replacing the absolute energy terms EL and EOC with the ratio of off-
chip energy to leakage energy, . (ROL for secondary caches corresponds to the
L2Access:leak ratio used for primary caches in [8].) Dividing Equation 1 by thus gives:

(2)

Unfortunately, even this simplified equation is not directly useful as an on-line estimate.
Determining the effect of cache misses on total runtime () is extremely difficult, given the
widely varying latency tolerance of loads both within and across benchmarks [14]. Measuring the
number of additional writebacks caused by resizing (W) is also challenging; we must distinguish
writebacks that would not have occurred in the full-size cache, i.e., a dirty block that is written
back, reloaded, and modified again in an interval where it would have remained in the full-size
cache. We therefore eliminate these terms from consideration; we will show in Section 5 that
these terms constitute a small part of the total energy overhead in practice. These simplifications
lead to our final equation, which provides and estimate of the normalized energy savings over a
period of t cycles:

(3)

We control the active fraction of the cache (FA), and can directly measure the number of addi-
tional misses (M) if we maintain tags for disabled blocks (as in [19]). The key unknown is ROL,
the ratio of off-chip energy to leakage energy. We assume that the value of ROL is provided exter-
nally, e.g., written into a control register by boot firmware or the operating system. In the follow-
ing section, we estimate a range of values for ROL. We will use these values in our simulations in
Section 5 to determine the effectiveness of our scheme.

3.2. Estimating the Off-chip to Leakage Energy Ratio, ROL

To find an estimate for the value of ROL, we need to determine both the per-cycle leakage
energy for a cache of a given size and the energy consumed by an off-chip access. We obtain the
former from prior work. We found no published estimates for the latter, so we derived this value
experimentally by measuring the power consumption of an actual system.

Table 2 in [17] indicates that a single SRAM bit in a 0.18 µm process has a leakage energy of
1.74x10-6 nJ per cycle at a temperature of 110C. Thus the data portion of a 1MB cache has a leak-
age energy per cycle of roughly 15 nJ. Given variations in process technology, cache sizes, and
cycle times, this value is merely a ballpark estimate, but is adequate for our purposes.

Since the energy cost of an off-chip access has not been widely studied, we designed and per-
formed our own experiment to measure it. We developed a microbenchmark that executes a sim-
ple loop containing a single memory access to a dynamically selected element of a large array. By
exploiting the differences in size and associativity between the primary and secondary caches on
the machine under test, the microbenchmark guarantees that this access always misses in the pri-
mary cache, and can choose dynamically whether the access also misses in the secondary cache.
Parameters to the microbenchmark select a reference pattern of n L2 misses followed m hits. This
pattern is repeated until a minimum amount of time has elapsed.

We instrumented a PC motherboard by introducing 0.1 ohm resistors on the power supply
lines to the motherboard and tracking the voltage drop across these resistors. We integrate this

EL

ROL EOC EL⁄=
EL

Normalized energy savings 1 FA–()t ROL M W+() FA t' t–()––=

t' t–

Est. energy savings 1 FA–()t ROLM–=

7

measured power over the running time of the microbenchmark to determine the total motherboard
energy consumption. We model this energy consumption as an equation with three unknowns:
static energy per unit time, dynamic energy per microbenchmark iteration, and dynamic energy
per L2 miss. The total runtime, number of iterations, and number of L2 misses for each
microbenchmark run are known values. By measuring consumption across a variety of
microbenchmark parameters, we can solve for dynamic energy per L2 miss. Although we do not
account for variables such as operating-system activity, we minimize their effects by executing
the microbenchmark runs for macroscopic time intervals (30 seconds) and averaging across mul-
tiple runs. Thus, for example, the energy cost of timer interrupts should be reasonably stable
across our runs, and will be factored into the static energy per second component of our equations.

Performing this experiment on a system with a ASUS CUSL2-C motherboard, with a 933Mhz
Intel Pentium III CPU, an Intel 815E chipset, and 128MB of main memory, we measured off-chip
memory access costs ranging from 0.8 to 1.4 µJ. The variations arose from different patterns of
L2 misses, which induced different levels of operation overlap in the memory system. However,
for a given miss pattern, the energy measurements were very stable across multiple runs.

It is difficult to extrapolate these measurements to off-chip energy values for future systems;
in fact, we expect a wide range of values across contemporary systems, as memory systems vary
widely from laptop to workstation to server designs. However, as bus signaling and printed-circuit
technology changes more slowly than semiconductor process technology, and as we are merely
attempting to establish a reasonable range of energy ratios, we will simply use the measured range
of 0.8 to 1.4 µJ per access. Combining this with the estimated 15 nJ per cycle leakage energy of a
1MB cache, we get a rough estimate of 50 to 100 for ROL. To bracket both approximations in our
estimate and trends in future technologies, as well as operating temperature variations, we con-
sider ROL values ranging from 50 to 200, in 2x steps.

3.3. Adding Energy Awareness to AMC

In this section, we demonstrate the effectiveness of our on-line net energy estimation formula
by applying it to a previously proposed adaptive cache resizing framework. We chose adaptive
mode control (AMC) [19] (see Section 2.2) as our baseline. We also implemented the adaptive
cache decay scheme proposed by Kaxiras et al. [11] in our simulator, but found that AMC was
consistently more effective. AMC’s sleep miss measurements also provide a better foundation for
net energy estimation.

The original AMC control algorithm varies the cache decay threshold to keep the total number
of misses within a particular ratio of the number of “ideal misses” (those that would have
occurred even in a fully enabled cache). The authors suggest a target ratio of 1.5 (i.e., allowing
cache disabling to increases the number of misses by 50%). They sample hardware miss counters
every million cycles, and adjust the decay threshold whenever the measured ratio goes below 1.25
or above 1.75. This algorithm is not energy aware: as discussed in Section 3.1, net energy savings
is a function of the number of additional misses incurred (“sleep misses” in AMC terminology)
and the number of disabled blocks, and is independent of the number of ideal misses.

We make AMC energy aware by changing only the criteria used to vary the decay threshold
value. At the end of each million-cycle interval, we use Equation 3 to estimate the net energy sav-
ings for that interval, based on the measured number of sleep misses and the current number of
disabled blocks. (Because blocks are enabled and disabled continuously throughout each interval,
the number of disabled blocks at the end of the interval serves as a simple estimate of the average
number disabled at any point during the interval.) Based on this estimate, we use a simple hill-

8

climbing strategy to converge iteratively on the threshold value which provides the minimum net
energy consumption. Once we find a minimum-energy point, the threshold is held stable for ten
intervals before restarting the search. If at any time the estimate shows a net energy loss, the algo-
rithm immediately begins increasing the threshold until a new minimum is found. A detailed state
machine for our control algorithm is shown in Figure 1.

Figure 2 compares the performance of this energy-aware AMC to that of the original AMC
scheme for the SPEC CPU2000 benchmarks on a 1 MB, 8-way associative secondary cache. To
maximize the range of available decay thresholds, we provide a generous 10-bit idle counter per
block. These counters are incremented every 2048 cycles, as in [19], and cleared on an access to
the block. (Additional details regarding our simulation methodology are provided in Section 5.)
The energy-aware AMC scheme is significantly more effective than the original AMC at reducing
net energy consumption. Perhaps more importantly, the energy-aware AMC algorithm never
causes noticeable increases in energy consumption, unlike its energy-oblivious predecessor.
Although the performance of the original AMC scheme can be varied by adjusting the target miss
ratio, it is apparent from Figure 2 that the ratio of 1.5 used there is too large for some benchmarks
(e.g., ammp, galgel, twolf), while reducing it will only reduce AMC’s effectiveness for other
benchmarks (e.g., crafty, perl). This result is unsurprising, as there is no direct correlation between
this miss ratio and the net energy savings. Based on these results, we believe that any secondary-
cache resizing scheme which makes resizing decisions without direct consideration of their
energy impact is unlikely to insure a reduction in net energy consumption.

ESi > ESi-1 / thr--

0 < ESi < ESi-1 / thr++, ctr=10
DOWN

UP

STABLE

ESi > 0 &&
ESi < 0 / thr++

ESi > 0 && ctr > 0 / ctr--

ESi < 0 || ESi > ESi-1 / thr++

ESi < 0 / thr++

ctr==0 / –

0 < ESi < ESi-1 / thr--, ctr=10

Figure 1. Energy-aware AMC control algorithm. ESi is the estimated energy savings for interval i, thr is
the decay threshold, and ctr is a counter used to stabilize the threshold once a minimum is found. In the UP
or DOWN states, the threshold is adjusted in the appropriate direction as long as the energy savings
increases (ESi > ESi-1). The UP state is entered immediately whenever a net energy loss is detected
(ESi < 0). Each threshold adjustment (thr++ or thr--) corresponds to a doubling or halving of the actual
decay threshold value.

9

While energy-aware AMC performs well, the iterative threshold adjustment process con-
verges more slowly than necessary to the optimum setting. AMC’s block-level control also incurs
a noticeable hardware overhead in a large secondary cache: for our 1MB cache with 64-byte
blocks, the 10-bit idle counters we used result in 160K bits of state; even 2-bit counters require
32K bits total. Although these overheads are but a small fraction of the total cache area, and thus
quite tolerable, we present a new bank-level resizing scheme in the next section which provides
similar overall performance with negligible hardware overhead.

4. Bank-Level Resizing (BLR)

In this section, we present bank-level resizing (BLR), a control framework which combines
resizing based on associative banks (ways) [2, 18] with per-way hit counters [15]. BLR trades the
fine-grain block-level control of cache decay and AMC for two advantages. First, because BLR
uses the same dimension—associativity—both to track misses and to resize, a control algorithm
can calculate the value of any miss-based metric (such as net energy reduction) simultaneously at
all possible resize points, not just at the current setting. Thus the optimal resize point can be
selected directly after a single measurement interval, without iteration. Second, BLR adds only a
small amount of hardware per associative way, with no per-block overhead. Thus BLR inherently
has a much lower hardware overhead than block-level schemes, particularly for the large second-
ary caches on which we focus in this paper.

The key limitation of BLR is its coarse resizing granularity. As with other way-based resizing
schemes [2, 18], BLR cannot tune the effective cache size to a non-integral multiple of banks.
Also, as additional banks are disabled to reduce power, the effective associativity of the cache
decreases, increasing the likelihood of conflict misses. BLR is thus inappropriate for low-associa-
tivity caches. However, most current on-chip secondary caches are at least four-way associative to
minimize the performance penalties of off-chip accesses, and we expect future trends toward
higher associativities. For example, the AMD Athlon [1] has a 16-way associative on-chip L2
cache.

BLR uses a counter for each logical way of the cache (MRU to LRU) to measure the number
of accesses to that way (i.e., that LRU stack position). Because the logical replacement priority

Figure 2. Normalized energy-delay product of original AMC and energy-aware AMC (EA-AMC).

am
m

p

applu

apsi

art_1

bzip2

crafty

eon_cook

equake

facerec

fm
a3d

galgel

gcc_2

gzip_rand

lucas

m
cf

m
esa

m
grid

parser

perl_4

sw
im

tw
olf

vortex_1

w
upw

ise

m
ean

0.0

0.5

1.0

AMC
EA-AMC

2.15 1.82 1.73 2.83 1.59 1.68

10

within a cache set is independent of the data’s physical location, the selection of the appropriate
counter to increment must combine the physical location of the tag match with the LRU state of
the accessed set.1 For enabled ways, the counter indicates the number of additional sleep misses
that would have been incurred had the way been disabled. For disabled ways, the counter indi-
cates the number of sleep misses that could have been saved had the way been enabled. In an n-
way associative cache, the number of hits that would have occurred in a cache of any associativity

can be obtained by summing the m access counters closest to the MRU position.

We make two minor modifications to the LRU replacement scheme so that the way counters
accurately reflect the number of hits that would have occurred in each way, even when some of
the ways are disabled. First, on a miss, we replace the LRU enabled block, but evict the tag for the
LRU disabled block, and move the tag from the replaced LRU enabled block to become the MRU
disabled tag.2 Thus a subsequent access to the replaced block will be counted as a hit in the MRU
disabled way. Similarly, a subsequent access to the former LRU disabled block will not be
counted as a hit, as it would have been evicted even in a fully enabled cache. Second, when an
access matches a disabled tag, we clear the tag (in addition to incrementing the associated way
counter). This operation prevents multiple accesses to the same disabled block from counting as
multiple independent misses that could have been avoided.

The maximum value of each counter is determined by the frequency with which the cache is
accessed and the maximum interval at which the control algorithm samples (and resets) their val-
ues. Conservatively assuming a worst case of one access per way per cycle during a million-cycle
interval leads to 20-bit counters; even with this level of overdesign, an 8-way associative cache
has only 160 bits of counter state.

Although BLR’s per-way access counts are based on the accessed block’s logical replacement
priority, for practical reasons BLR’s power control must follow the physical cache structure. We
use the term bank to indicate the physical memory structure associated with an associative cache
way. There is no direct tie between the logical ways and physical banks of a cache; e.g., the MRU
blocks in each set are effectively randomly distributed across the physical banks. When the BLR
control algorithm decides to enable or disable an additional way, a random physical bank is cho-
sen to be turned on or off. We experimented with copying data between physical banks when
shrinking to ensure that only the logical LRU blocks were lost; however, this copying did not pro-
vide enough of a performance increase to warrant the extra dynamic energy expended or the com-
plexity of the implementation.

In our current simulated implementation, all dirty blocks in a bank to be powered down are
written back sequentially, stalling the processor. A more aggressive implementation would queue
the writebacks and issue them in the background while the processor continues to execute. This
scheme would reduce the impact of bank deactivations on performance. The impact on energy is
less clear: by delaying writebacks, the bank may take longer to reach the fully powered-down
state, but the energy savings due to the reduced runtime will counteract this effect.

Although we assume a true LRU replacement algorithm in this paper, we believe that BLR
can be extended to deal with pseudo-LRU schemes, albeit with some loss of accuracy. The details
will depend on the specific pseudo-LRU algorithm used; we leave this effort for future work.

1. Similar per-way access counters have been proposed by Suh et al. [15] for cache partitioning in multithreaded pro-
cessors.
2. This operation can be performed without breaking the physical association between tag and data banks by physi-
cally copying the LRU enabled tag over the LRU disabled tag and updating the replacement priority appropriately.

m n≤

11

4.1. Energy-Aware Bank-Level Resizing (EnABLR)

Modifying BLR to be energy aware is as simple as using Equation 3 for the resizing metric.
For example, disabling i ways in a cache of associativity A reduces FA by . This change leads
to a net energy reduction if the number of additional misses incurred by disabling those ways (call
this Mi) over an interval of T cycles results in a net decrease in the estimate of Equation 3. That is,
these i ways should be disabled only if

(4)

Figure 3 describes the EnABLR algorithm in pseudocode. As in Section 4, resizing decisions
are normally made at regular intervals of T cycles. First, if any ways are disabled, we check
whether they should be re-enabled. Specifically, we examine each disabled way in MRU to LRU
order. For the ith disabled way, we compute Mi, the sum of the i way hit counters from the first
disabled way up to the way in question. We apply Equation 4 to determine whether a net energy
savings resulted from having them disabled. As soon as the algorithm detects a bank or set of

i A⁄

Mi
iT

AROL
-------------<

Figure 3. EnABLR algorithm pseudocode description.

T = period in cycles;
A = associativity of cache;
R = off-chip access to leakage energy ratio (ROL);

threshold = T / (A * R);/* recalculated only when T or R is modified */
i = 0;
M = 0;

for (bank = first inactive bank; bank < number of banks; bank++){
i++;
M += hits[bank];
if (M > (i * threshold) {

turn on i banks, from first inactive bank to bank
i = 0;
M = 0;

}
}

i = 0;
M = 0;
if (no banks turned on) {

for (bank = last active bank; bank > 0; bank--) {
i++;
M += hits[bank];
if (M < 0.8 * (i * threshold) {

turn off i banks, from last active bank to bank
i = 0;
M = 0;

}
}

}

12

banks which did not provide a net energy reduction, those banks are enabled, and the algorithm
continues examining the remaining disabled banks (if any).

If no banks were enabled in the first phase of the algorithm, the second phase performs the
complementary operation, examining the enabled banks from LRU to MRU to determine whether
a net energy reduction would have resulted had they been disabled. To avoid thrashing, the disable
threshold is set at 80% of the threshold for enabling a bank.

To enable more rapid adaptivity for a given resize interval T, EnABLR continuously compares
the enable threshold (threshold in the pseudocode) with the hit counter for the first inactive way.
If this counter exceeds the threshold, the bank is activated immediately.

One potential drawback of our design is that tag entries for disabled ways cannot be powered
off, as the information they contain is vital to distinguishing the additional accesses due to resiz-
ing from the accesses that would be present with a full cache. If we only maintain tags for one
additional way beyond the enabled portion of the cache, then we might still be able to adapt the
cache size while disabling n-1 tag banks along with n data banks. Unfortunately, this approach
caused problems in a few benchmarks. In apsi, the situation regularly arose where the number of
misses saved by enabling one additional bank was too small to justify enabling that bank, but
enabling two additional banks was amply justified due to the number of hits in the second dis-
abled way. Leaving all tags enabled also allows us to enable multiple banks at a time and to turn
on banks in the middle of a period, which helps to adapt more quickly to changing behavior and
recover more rapidly from overly aggressive disabling.

5. Analysis

We simulated the EnABLR scheme using a modified version of SimpleScalar [6]. We config-
ured the simulator to model an Alpha processor similar to the 21264, with out-of-order execution
in a 64-instruction window, and up to 16 outstanding memory accesses. The memory hierarchy
included split 64KB 2-way associative L1 caches, a 10-cycle 1MB 8-way set-associative L2
cache, and a 100-cycle latency to main memory. All caches used 64-byte lines and LRU replace-
ment. We examine the full SPEC CPU2000 suite, to capture a wide range of benchmark behav-
iors.1 Each benchmark was run for 200 million instructions from a checkpoint 20 billion
instructions into the program’s execution. We ran a subset of our experiments for 500 million
instructions and saw no significant variation in the results.

We compare EnABLR with both the energy-aware AMC scheme, discussed in Section 3.3,
and the cache decay scheme. As noted by Kaxiras et al. [11], we set the decay interval to the ratio
of cache line leakage to an off-chip access energy to bound the energy loss. EnABLR and AMC
use a resize interval of 1,000,000 cycles. The AMC decay clock ticks every 2048 cycles.

Figure 4 plots, for each benchmark, the energy dissipated, the execution time, and their prod-
uct (normalized to the full-cache run) for an ROL of 100. Values closer to zero are better, since
they represent the greatest power savings. EnABLR achieves similar performance to both AMC
and cache decay. The benchmarks where they greatly outperform EnABLR experience very few
secondary cache misses, and require a very small cache size (less than one bank). In these cases,
the finer block-level granularity provides a benefit. Both schemes are also able to turn blocks off
in the middle of a adaptive interval, which EnABLR does not do. However, EnABLR never
increases net system energy by more than 1%, and does not increase the normalized energy-delay
product by more than 1%. The same cannot be said of either AMC or cache decay.

1. We were unable to simulate sixtrack and vpr due to errors in the simulation environment.

13

Breaking down the energy overheads of resizing, we found that extra misses, writebacks and
execution time accounted for 78%, 19% and 3% of the overhead, respectively. These measure-
ments indicate that tracking only additional misses, as in the EnABLR scheme, is indeed a reason-
able approximation to estimate overall energy savings.

Figure 4. Relative energy, delay and energy-delay product for EnABLR, energy-aware AMC, and cache
decay.

ammp applu apsi art_1 bzip2 crafty eon_cook equake facerec fma3d galgel
0.0

0.5

1.0

EnABLR ExD
EA-AMC ExD
Decay ExD
Energy
Delay

gcc_2 gzip_rand lucas mcf mesa mgrid parser perl_4 swim twolf vortex_1wupwise
0.0

0.5

1.0

Figure 5. Mean energy, delay, and energy-delay product for ROL = 50, 100, and 200

50 100 200
0.0

0.5

1.0

EnABLR ExD
EA-AMC ExD
Decay ExD
Energy
Delay

14

To account for possible technology and operating temperature changes, we also ran for ROL
values of 50 and 200. Figure 5 presents the mean results over all the benchmarks for each of the
three schemes. As can be clearly seen, EnABLR stays competitive at all ratios, and even outper-
forms AMC at the higher ratios.

Unfortunately, EnABLR’s granularity changes as the associativity changes for a fixed size
cache. Figure 6 shows the mean performance of the three schemes across all benchmarks for
cache associativities of 4, 8, and 16. As expected, the block-level schemes suffer very little perfor-
mance hit from lower associativities. EnABLR’s performance seriously degrades with a 4-way
associative cache. This is mainly due to the fact that a full quarter of the cache must be turned off
at a time. However, EnABLR is competitive for 8-way and higher associativites, which is not
atypical for secondary caches. Therefore EnABLR is a viable scheme for secondary cache leak-
age management.

6. Conclusions

Leakage energy in large on-chip caches is a significant issue for future microprocessors. This
energy dissipation can be reduced by powering off unneeded portions of the cache. However, this
leakage energy reduction must be carefully balanced with the induced energy costs of additional
off-chip accesses and increased runtime. This paper highlights the importance of managing this
trade-off explicitly; otherwise, cache resizing schemes may not only fail to reach a minimum net
energy consumption, but may inadvertently increase overall system energy. We propose a practi-
cal formula for estimating the net energy savings, and apply it in the context of the previously pro-
posed AMC resizing framework.

We also introduce a new bank-level resizing framework, which provides more complete infor-
mation regarding the impact of cache resizing decisions at a much lower hardware overhead than
block-based resizing schemes such as cache decay and AMC. Although the coarser resizing gran-
ularity limits the energy reduction in some extreme cases, an eight-way associative cache is ade-
quate to provide comparable energy-delay performance.

The application of our energy-estimation formula in the BLR framework, called Energy
Aware Bank-Level Resizing (EnABLR), provides energy reductions competitive with energy-
aware block-level schemes with lower hardware cost. Across the SPEC CPU2000 benchmarks on
a 1MB 8-way associative secondary cache, EnABLR reduces the overall energy used by the L2

Figure 6. Mean energy, delay, and energy-delay product for associativities 4, 8, and 16 at ROL = 100

4 8 16
0.0

0.5

1.0

EnABLR ExD
EA-AMC ExD
Decay ExD
Energy
Decay

15

cache by up to 80%. Average energy reductions range from 14% to 29%, depending on off-chip
access energy costs.

Acknowledgments

This material was supported by the National Science Foundation under Grant CCR-9734026,
by grants from Intel and Compaq, and by a Sloan Research Fellowship.

References

[1] Advanced Micro Devices, Inc. AMD Athlon processor and AMD Duron processor with full-speed on-die L2
cache. White Paper, June 2000. http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/
cache_wp.pdf.

[2] D. Albonesi. Selective cache ways: On-demand cache resource allocation. In 32nd Annual International Sympo-
sium on Microarchitecture, pages 248–259, November 1999.

[3] R. Balasubramonian, D. Albonesi, A Buyuktosunoglu, and S. Dwarkadas. Memory hierarchy reconfiguration for
energy and performance in general-purpose processor architectures. In 33rd Annual International Symposium on
Microarchitecture, pages 245–257, December 2000.

[4] N. Bellas, I. Hajj, and C. Polychronopoulos. Using dynamic cache management techniques to reduce energy in a
high-performance processor. In Proceedings of the 1999 International Symposium on Low-Power Electronics
and Design, pages 64–69, August 1999.

[5] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23–29, July 1999.

[6] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating future microprocessors: the SimpleScalar tool set.
Technical Report 1308, Computer Sciences Department, University of Wisconsin–Madison, July 1996.

[7] J. Butts and G. Sohi. A static power model for architects. In 33rd Annual International Symposium on Microar-
chitecture, pages 191–201, December 2000.

[8] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy caches: Simple techniques for reducing leak-
age power. In To Appear in Proceedings of the 29th Annual International Symposium on Computer Architecture,
May 2002.

[9] F. Hamzaoglu, Y. Te, A. Keshavarzi, K. Zhang, S. Narendra, S. Borkar, M. Stan, and V. De. Dual-Vt sram cells
with full-swing single-ended bit line sensing for high-performance on-chip cache in 0.13 um technology genera-
tion. In Proceedings of the 2000 International Symposium on Low-Power Electronics and Design, pages 15–19,
August 2000.

[10] H. Hanson, V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D.C.Burger. Static energy reduction techniques for
microprocessor caches. In Proceedings of the 2001 International Conference on Computer Design, pages 276–
283, September 2001.

[11] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting generational behavior to reduce cache leakage
power. In Proceedings of the 28th Annual International Symposium on Computer Architecture, pages 240–251,
July 2001.

[12] K. Nii, H. Makino, Y. Tujihashi, C.Morishima, Y. Hayakawa, H. Nunogami, T. Arakawa, and H. H Hamano. A
low power sram using auto-backgate-controlled MT-CMOS. In Proceedings of the 1998 International Sympo-
sium on Low-Power Electronics and Design, pages 293–298, 1998.

[13] M. Powell, S. Yang, B. Falsafi, K. Roy, and T. Vijaykumar. Gated-Vdd: A circuit technique to reduce leakage in
deep-submicron cache memories. In Proceedings of the 2000 International Symposium on Low-Power Electron-
ics and Design, pages 90–95, August 2000.

[14] Srikanth T. Srinivasan and Alvin R. Lebeck. Load latency tolerance in dynamically scheduled processors. In
30th Annual International Symposium on Microarchitecture, pages 148–159, November 1998.

16

[15] G.E. Suh, S. Devadas, and L. Rudolph. A new memory scheme for memory-aware scheduling and partitioning.
In Proceedings of the 8th International Symposium on High-Performance Computer Architecture (HPCA), Feb-
ruary 2002.

[16] Dennis Sylvester. Personal communication, October 2001.

[17] S. Yang, M. Powell, B. Falsafi, K. Roy, and T. Vijaykumar. An integrated circuit/architecture approach to reduc-
ing leakage in deep-submicron high-performance i-caches. In Proceedings of the 7th International Symposium
on High-Performance Computer Architecture (HPCA), pages 147–157, January 2001.

[18] S. Yang, M. Powell, B. Falsafi, K. Roy, and T. Vijaykumar. Exploiting choice in resizable cache design to opti-
mize deep-submicron processor energy-delay. In Proceedings of the 8th International Symposium on High-Per-
formance Computer Architecture (HPCA), pages 147–157, February 2002.

[19] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte. Adaptive mode control: A static-power-efficient cache
design. In Proceedings of the 2001 International Conference on Parallel Architectures and Compilation Tech-
niques (PACT’01), September 2001.

