
Solving Difficult Instances of Boolean Satisfiability
in the Presence of Symmetry

Fadi A. Aloul, Arathi Ramani, Igor L. Markov and Karem A. Sakallah

CSE-TR-463-02

September 6, 2002

THE UNIVERSITY OF MICHIGAN
Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122
USA



Solving Difficult Instances of Boolean Satisfiability
in the Presence of Symmetry

Fadi A. Aloul, Arathi Ramani, Igor L. Markov and Karem A. Sakallah

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2122

September 6, 2002



ABSTRACT

Research in algorithms for Boolean satisfiability (SAT) and their implemen-
tations [45, 41, 10] has recently outpaced benchmarking efforts. Most of the
classic DIMACS benchmarks [21] can now be solved in seconds on commodity
PCs. More recent benchmarks [54] take longer to solve due of their large size,
but are still solved in minutes. Yet, small and difficult SAT instances must ex-
ist if P6=NP. To this end, our work articulates SAT instances that are unusually
difficult for their size, including satisfiable instances derived from Very Large
Scale Integration (VLSI) routing problems. With an efficient implementation to
solve the graph automorphism problem [39, 50, 51], we show that in structured
SAT instances difficulty may be associated with large numbers of symmetries.

We point out that a previously published symmetry-detection mechanism
[18] based on a reduction to the graph automorphism problem often produces
many spurious symmetries. Our work contributes two new reductions to graph
automorphism, which detect all correct symmetries detected previously [18]
as well as phase-shift symmetries not detected earlier. The correctness of our
reductions is rigorously proven, and they are evaluated empirically.

We also formulate an improved construction of symmetry-breaking clauses
in terms of permutation cycles and propose to use only generators of sym-
metries in this process. These ideas are implemented in a fully automated
flow that first detects symmetries in a given SAT instance, pre-processes it by
adding symmetry-breaking clauses and then calls a state-of-the-art backtrack
SAT solver. Significant speed-ups are shown on many benchmarks versus di-
rect application of the solver.

In an attempt to further improve the practicality of our approach, we pro-
pose a scheme for fast “opportunistic” symmetry detection and also show that
considerations of symmetry may lead to more efficient reductions to SAT in the
VLSI routing domain.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry2

1 Introduction

Boolean satisfiability (SAT) is a pivotal problem in Computer Science with numerous appli-
cations that range from microprocessor verification [54] to FPGA layout [42]. A one-million-
dollar prize is offered by the Clay Institute for Mathematical Sciences for a complete polynomial-
time SAT solver or a proof that such an algorithm does not exist (the P-vs-NP problem). Ad-
ditionally, industrial applications motivate intensive research in SAT algorithms that quickly
solve real-life instances. The fundamental framework for state-of-the-art SAT algorithms was
laid out in the 1960s, but a number of recent improvements in algorithms and implementation
techniques [45, 41] have led to performance breakthroughs. Most DIMACS challenge bench-
marks [21] from the early 1990s are now solved in seconds on commodity PCs. Recently
posted SAT benchmarks [54] take somewhat longer to solve (minutes), but that is primarily due
to their enormous size (50MB+ files, etc). With the exception of artificially constructed families
of benchmarks, it appears that SAT can be solved in polynomial time “for practical purposes”.
It is well known that the dominant backtrack solvers, such as GRASP [45], CHAFF [41] and
BerkMin [10], do not perform well on randomly-created 3-SAT instances with� 4:3 clauses
per variable [47]. However, such instances are not common in practical applications because
they have little structure. The relative ease of structured instances from certain applications was
explained [43], and generic ways to exploit certain types of structure were proposed [2].

1.1 Difficult SAT benchmarks

Our work addresses both benchmarking and algorithmic aspects of SAT research. Given the ex-
cellent performance of existing SAT solvers, there is no room for improvement on easy bench-
marks, and we focus instead on difficult instances. Since the works of Haken and Urquhart
[52] on lower bounds for resolution and backtracking algorithms for SAT, several instance fam-
ilies have been known to require exponential time for DP/DLL (Davis-Putnam [19] and Davis-
Logemann-Loveland [20]) solvers and their derivatives. For example, a recent lower bound for
the pigeon-hole problem isΩ(2n=20) [7] wheren is the number of pigeons. The pigeon-hole
problem can be quickly solved by induction, but the proof system behind backtrack solvers
(resolution) is rather restrictive and does not allow polynomial-sized proofs for pigeon-hole
instances. Short proofs without induction exist if the use of symmetry is allowed [29, 53]. An-
other family of difficult instances was constructed by Tseitin and Urquhart in terms of expander
graphs and, unlike the pigeon-hole instances, can accommodate considerable randomness [52].
As expected, solving those instances with modern SAT solvers, such as CHAFF and BerkMin,
requires long time (see Tables 4 and 5), but their relevance to application domains (e.g., Elec-
tronic Design Automation (EDA), Software Verification and Artificial Intelligence) is not clear.
While lower bounds for SAT are often proven for unsatisfiable instances, it remains to be seen
whether practical satisfiable instances can be difficult for the best solvers. To this end, the work
in [1] contributed constructions of artificial randomly generated difficult satisfiable instances.

Our work demonstrates EDA-related SAT instances, both satisfiable and unsatisfiable, that
are very difficult for their size. Observe that an easy instance of any size can be made difficult
by adding a small difficult instance to it and connecting the two by inconsequential clauses to
defeat partitioning.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry3

1.2 Relevance of graph automorphism to SAT

Over many years, empirical algorithms research in many domains identified a number of fun-
damental problem formulations, such as Boolean satisfiability, and mustered significant efforts
to solve them efficiently. State of the art is gauged by optimized solver implementations (“en-
gines”). Performance breakthroughs are often due to novel algorithmic ideas, leaner imple-
mentations or the ability to apply a highly-optimized engine in a novel way. In this work, we
observe that graph automorphism engines can be applied to the satisfiability problem in certain
cases. Additionally we think that there may be significant room for future improvement given
that (i) the graph automorphism problem is thought to not be NP-complete, thus potentially
easier than SAT, and (ii) much less new research was done in recent years on the analysis and
design of high-performance engines for graph automorphism (such works include [40, 36]). To
be precise, in this work we will be dealing with the colored variant of the graph automorphism
problem that can be easily extended to hypergraphs.

Besides complexity-theoretic connections between variants of Boolean satisfiability, sym-
metries, and the hypergraph automorphism problem [4, 34], several pre-2000 works suggested
that “breaking symmetries” in CNF formulae can speed up SAT solvers [8, 12, 13, 17, 18, 36].
Symmetries of a CNF formula include clause-preserving permutations of variables. Such per-
mutations may involve arbitrarily many variables at once, e.g., a complete cyclic shift. In this
work, we do not address permutations that change the CNF formula but leave unchanged the
Boolean function it represents.1 However, if such symmetries are detected by other techniques
[27], our proposed methods can process them in the same way as symmetries of the CNF for-
mula. Similarly, many of the works we cite do not deal with symmetry detection, but rather
assume that symmetries of the Boolean function are given. Using this assumption, two main
directions were explored: (a) preprocessing the original CNF formula by adding symmetry-
breaking clauses that do not affect satisfiability but speed up search [18], and (b) extending SAT
solvers, particularly those based on backtracking, to dynamically use symmetries during the
search process [13, 6, 31, 44]. In this paper we pursue the pre-processing approach due to its
simplicity, but will outline how our techniques can be applied within a backtracking solver for
increased efficiency.

1.3 Empirical efficiency challenges

Most prior works on symmetries in SAT predate recent breakthroughs in SAT solvers and ty-
pically use several carefully constructed instances to illustrate their approach, or do not show
convincing empirical results at all. For example, Crawford et al. suggest in [18] that symmetry-
based techniques allow the pigeon-hole instances to be solved in polynomial time, but their
empirical data [18, Figure 3] do not support this suggestion. In the course of more recent work
[31, 49], specific families of CNF formulae with extremely high numbers of symmetries were
successfully attacked. Yet, it remains unclear whether the performance of leading-edge SAT
solvers can be improved, via the use of symmetries, on large CNF families of practical sig-
nificance. In principle, the overhead due to symmetry detection and usage may outweigh the

1Such permutations can be called “semantic” symmetries, in contrast with the narrower class of “syntactic”
symmetries that leave the CNF formula unchanged.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry4

benefits, and it remains to be seen that useful CNF formulae have many symmetries. P´olya
(1937), Erdös and R´enyi (1963) proved that a random graph onn vertices hasno symmetries
with probability 1�

�n
2

�
2�n�2(1+o(1)) [5, p. 1461]. This claim can be extended to CNF formu-

lae, but structured real-world instances may have richer symmetries. Indeed, Boolean functions
arising in the design of hardware systems often have many symmetries [27, 9], and the over-
all number of functions ofn variables with non-trivial symmetries grows double-exponentially.
On the other hand, for a function with exponentially many symmetries, trying to explicitly
use all symmetries may defeat the purpose of speeding up search [18]. Despite these pitfalls,
symmetry-based approaches have been useful in model checking [26, 15, 23], hardware verifi-
cation [36], software verification [11], logic synthesis [28, 9] and DSP algorithms [22]. Some
researchers limited the notion of symmetry to swaps of variables [22] or subsets of variables
[28] to achieve efficiency. Other works [9, 44] limited the notion of symmetry to negations of
single variables or subsets of variables and referred to those restricted classes asautosymmetries
or phase-shift symmetries.

1.4 Our contributions

In this work, we study and fully automate a flow that starts with a CNF formula in the DIMACS
format and finds all of its symmetries within a very general class, including all permutational
symmetries, variable negations, and their compositions. In this flow, all symmetries are first cap-
tured implicitly, in terms of irredundant group generators, which always guarantees exponential
compression. The CNF formula is then preprocessed by adding symmetry-breaking clauses that
do not affect satisfiability. A black-box SAT solver is subsequently applied to the preprocessed
CNF instance to produce the final answer; any satisfying assignment to this instance is (or cor-
responds to) a satisfying assignment of the original instance, and if the preprocessed instance is
unsatisfiable then so is the original instance. The flow is illustrated in Figure 1.

We propose new symmetry-finding techniques and empirically compare them with previ-
ously proposed constructions.

We also propose a novel construction of symmetry-breaking clauses. It is much more eco-
nomical than that in [18]. Additionally, it directly applies to the compressed representation of
all symmetries in the format produced by graph automorphism software [38, 39, 50, 51].

Our empirical results show significant overall performance improvements on CNF instances
arising in EDA applications, as well as on highly randomized provably-difficult Urquhart bench-
marks [52] that are related to Tseitin formulae used to prove lower bounds on the size of
resolution proofs. Two extensions are proposed to speed up symmetry finding. One is op-
portunistic symmetry finding, where only some symmetries are found. The other extension
pursues domain-specific symmetries and leads to improvements of SAT formulations by adding
domain-specific symmetry-breaking clauses. Thus, generic symmetry finding is avoided by
creating symmetry-less SAT instances that can be solved quickly.

The remaining material is organized as follows. Symmetry finding is described in Section
2 and symmetry-breaking in Section 3. Section 4 discusses constructions of SAT benchmarks.
Our empirical results are presented in Section 5 and further extensions in Section 6. Section 7
concludes our work and discusses our future directions.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry5

CNF formula Colored graph

Graph symmetries

CNF symmetries

Symmetry-breaking predicates

Preprocessed input

Solution of original instance

Our constructions

(error found in [18])

NAUTY/GRAPE/GAP [38, 39, 50, 51]

Theorem 2.3.3

Crawford et al. [18]Our construction, or

Concatenated to original formula

Solved by backtrack solver

Figure 1: Preprocessing-based flow for symmetry-breaking studied in this work.
Our construction of symmetry-breaking predicates improves upon that from [18].



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry6

2 Finding Symmetries

In general, a symmetry of a discrete object is a reversible transformation of its components that
leaves the object unchanged. This can be taken as an informal definition, and more rigorous
definitions will be given below for specific structures. Examples include permutations of graph
vertices that map edges into edges, rotations of a spatial solid, e.g., a cylinder, that preserve
its shape, as well as the negation of the variablea in the Boolean formula(a+a0)b, since the
formula and the function it represents are unaffected by this transformation. The discrete objects
considered in our work have only finitely many symmetries. Unlike most previous works in the
field, we consider, detect, represent and use several types of symmetries and their compositions,
including permutational symmetries and variable negations in CNF formulae, sometimes called
“phase changes” or “autosymmetries”.

2.1 Representing and manipulating symmetries

Every discrete object has at least one symmetry — the “do-nothing” permutation. It is easy to
see that composition of two symmetries is a symmetry, and that composition with the do-nothing
permutation does not change a symmetry. The composition of symmetries is associative, and
every symmetry has an inverse. However, the composition operation is oftennot commutative.
An example is given by the six permutational symmetries of an equilateral triangle: (i) the do-
nothing symmetry, (ii) three vertex swaps, and (iii) two cyclic rotations — counterclockwise
and clockwise.

Definition 2.1.1 (from abstract algebra). A groupG is a set with a binary operation
(“multiplication”) defined on it that have the following three properties:

� the operation is associative, i.e.8a;b;c2G (aÆb)Æc= aÆ (bÆc);

� there is aunit element e2G such that8a2G aÆe= eÆa= a;

� for every a2G there is a uniqueinversea�1 2G such that aÆa�1 = a�1Æa= e.

A subgroupis a subset of a group that is closed under the group operation (and is therefore a
group itself).

For example, integers form a group with respect to the addition operation (0 is the unit
element) and positive rationals form a group with respect to the multiplication operator (1=1
is the unit element). Group Theory [24] is a major branch of abstract algebra [25], and its
development in the nineteenth century was motivated by groups of symmetries. Such diverse
areas as the Galois theory describing solvability of polynomial equations, the periodic table
of chemical elements, and Special Relativity involve analyses of groups of symmetries. In
this work we will only deal with groups of symmetries whose elements can be thought of as
permutations of finite sets. This obviously restricts us to finite groups. A permutation can be
represented by cycles, e.g.,(23)(567) represents a permutation on a set of at least 7 marks
(elements). This permutation swaps marks 2 and 3, cyclically permutes marks 5, 6 and 7 in that
order, and leaves unchanged all other marks, e.g., 1 and 4.

Computational Group Theory (CGT), started ca 1911, is one of the oldest and most devel-
oped branches of computational algebra [48]. The flourishing of CGT began in the 1960s, and



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry7

great strides were made in the 1990s with the development of the GAP package (“Groups, Al-
gebra and Programming”) [51]. A major efficiency in computational Group Theory comes from
the notion ofirredundant sets of generatorsof a group.

Definition 2.1.2. A set of generatorsconsists of group elements such that any other group
element can be composed of generators and their inverses. A generator isredundantif it can be
expressed in terms of other generators. Anirredundant set of generators, by definition, does not
contain redundant generators.

(Lagrange) Theorem 2.1.3 (from Elementary Group Theory) [24, 25].The size of any
subgroup H of any finite group G must divide the size of G.

Corollary 2.1.4. For any group G with N> 1 elements, any irredundant set of generators
containsat most log2N elements.

Proof. Observe that any proper subgroup must be at least twice as small compared to the
group. Given a set ofn irredundant generatorsx1; : : : ;xn consider a chain of subgroupsGk for
k= 1::n, whereGk is generated byx1; : : : ;xk. By construction,Gk is a proper subgroup ofGk+1,
and as such must be at least twice as small. Therefore, the size ofGn = G must be at least 2n.

For example, thek! permutations onk marks can be generated by(12) and(12::k) or by
(12);(23); : : :;(k�1 k). Thus, representing groups by sets of generatorsalways ensures expo-
nential compression. Computational group theory provides efficient algorithms (due to Sims,
Knuth, Babai and others) for manipulating groups represented by sets of generators, without
decompression. Therefore, an intelligent algorithm for symmetry finding may return a small set
of generators rather than list all symmetries.

Definition 2.1.5. A mapping f: G1 ! G2 between two groups is ahomomorphismiff for
any a2 G1 and b2 G1, we have f(a�b) = f (a) Æ f (b), where� andÆ are group operations
in G1 and G2 respectively. A homomorphism for which an inverse mapping exists that is also a
homomorphism, is called anisomorphism. If an isomorphism exists between G1 and G2, the two
groups are calledisomorphic. An isomorphism of a group with itself is calledautomorphismof
that group and can be thought of as a symmetry of the group.

Automorphisms can be composed, and form a group under this operation.
It is easy to see that iff is a homomorphism, thenf (a�1)= f (a)�1. An isomorphism cannot

map two different group elements to one. Additionally, the notion of isomorphism defines an
equivalence relation and is useful to compare groups formally defined over different sets. In
simple terms, isomorphic groups have “the same structure”. Therefore, when looking for a
group of symmetries of some objects, it may be convenient to find an isomorphic group instead.
Since groups are often described by sets of generators, it is important to know that isomorphisms
preserve such descriptions.

Theorem 2.1.6.Any group isomorphism maps sets of generators to sets of generators, and
maps irredundant sets of generators to irredundant sets of generators.

Proof. If any elementh2 G1 can be written as a product of elements of a generating set
or their inversesh = g1 � g2 � : : :� gn, then a homomorphismf : G1 ! G2 will preserve such
expressions inG2: f (h) = f (g1)Æ f (g2)Æ : : :Æ f (gn). Since every isomorphism has an inverse,
any elementk2G2 can be mapped back toG1, where its pre-image can be decomposed into a
product and then mapped back toG2. This constructs a decomposition ofk into a product of the
images of elements of a generating set inG1 and their inverses.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry8

Now consider a pair of sets of generators that are mapped to each other by an isomorphism,
they must have the same cardinality. Assume that one of them has a redundant element that
can be expressed in terms of remaining elements. Since such an expression is preserved by an
isomorphism, the image of this element must be redundant in the other set of generators.

2.2 Colored automorphism problems
Definition 2.2.1. Given two graphs, anisomorphismis a 1-to-1 mapping between the

vertex sets of the two graphs that maps edges to edges. Given a graph, asymmetry(also called
anautomorphism) is a permutation of its vertices that maps edges to edges. In case of directed
graphs, edge orientations must be preserved.

Definition 2.2.2. In thegraph automorphismproblem one seeks all symmetries of a given
graph, e.g., in terms of group generators. Thedecision versionof this problem tests for the
presence of non-trivial automorphisms.

It is known that all graphs, except for an exponentially small family, haveno symmetries[5,
p. 1461]. No general worst-case polynomial-time algorithms are known for this problem, but it
is commonly believed not to be NP-complete (unless, of course, P=NP) [30]. Polynomial-time
algorithms are available in many special cases [5, p. 1511], in particular for graphs of bounded
degrees [33, 3]. Observe that many practical applications entail graphs of bounded degree
because the objects involved (logic gates in VLSI chips, facts stored in knowledge bases, etc.)
are interconnected sparsely. In contrast, Boolean Satisfiability instances of bounded degree,
e.g., 3-SAT, are known to be NP-complete and 3-SAT instances may be quite difficult in practice
even if every literal participates in only several clauses [47]. Generic algorithms for the graph
automorphism problem [38] are based on linear-time partition refinement passes, followed by
backtrack search. A simple version of partition refinement completes in three passes and does
not require follow-up backtracking for all but an exponentially small family of graphs [5, p.
1513]. However, exponential worst-cases have been constructed even for very sophisticated
versions [38], both theoretically and empirically [40].

The graph automorphism problem may be constrained by vertex labels — symmetries must
map each vertex into a vertex with the same label. Label constraints are computationally easy
and can be formally reduced to plain graph automorphism. Labels are often expressed by inte-
gers and called colors (no relation tograph coloring). Another extension is to coloredhyper-
graphs— symmetries must map hyperedges to hyperedges (of the same cardinality because no
two vertices can map to one). The colored hypergraph automorphism problem reduces to the
colored graph automorphism via the bipartite graph of the hypergraph. This graph contains a
vertex for each hypergraph vertex and hyperedge, and connects them with edges according to
the hypergraph’s incidence relation. Graph vertices in the hyperedge part are painted with a
new color, and other vertices retain their original colors.

Brendan McKay implemented a practical algorithm for graph automorphism [38] in a soft-
ware package called NAUTY [39], which has been continually improved for the last 20 years.2

NAUTY has been integrated into the computational group theory system GAP [51] by means of
the GRAPE package [50]. This integration enables efficient group-theoretic operations on the

2NAUTY version 2.0 was released in 2001.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry9

results returned by NAUTY and facilitates some of our proposed algorithms. In 1998, Manku
et al. [36] claimed speed-ups over a pre-2.0 version of NAUTY in the context of hardware
verification. However, their code is not generic (built into a larger system) and is no longer
supported. Finally, we observe that the runtime of existing graph automorphism programs, e.g.,
NAUTY, typically increases with growing numbers of vertices and symmetry generators found,
but may decrease with growing numbers of vertex colors and, sometimes, graph edges.

2.3 CNF symmetries via graph automorphism

The problem of finding symmetries of a CNF formula is reduced to the colored graph auto-
morphism problem. The main idea behind such reductions is to find a colored graph whose
symmetry group is isomorphic to the symmetry group of the CNF formula. Related construc-
tions are described in [17] and [18] for permutational symmetries, and we draw upon them in
our work. We now consider a CNF formula withV variables andC clauses, of whichC2 are
binary andCx have two or more literals (clauses with fewer than two literals can be removed by
preprocessing). In quotations, the word “theories” refers to CNF formulae. From [17, p.3]:

Now consider reducing symmetry detection to graph isomorphism. We show the mapping for
propositional theories (...). First note that we can “type” the nodes in the graphs, and only allow
isomorphisms which preserve type (...), without increasing the difficulty of the isomorphism
problem. We use five types of nodes: nodes for positive literals, nodes for negative literals,
inversenodes, nodes for clauses andgoal nodes. We first link (the node for) each literalp to
an inverse node and then link this inverse node to (the node for):p. These links ensure that
any graph isomorphism preserves negation. We then create a node for each clause and link it
to the literals appearing in the clause. These links force graph isomorphisms to map clauses
to clauses. Finally, recall that we are required to find aθ which mapsp to q. To force this we
create two copies of the graph for the theory. In the first we givep the typegoal and in the
second we giveq the typegoal. This typing forces any isomorphism between the two graphs
to mapp to q. One can then show that an isomorphism between the graphs exists iff the theory
contains a simple symmetry mappingp to q.

The author then concludes that thedecision versionof the CNF symmetry detection problem
is polynomial-time solvable if the length of the longest clause and the number of occurrences
of the most common literal are bounded by a constant. That is because the degree of graph ver-
tices is bounded by that constant, in which case the graph automorphism problem is poly-time
solvable [33, 5]. If applied literally, the proposed construction only addresses symmetries that
mapp to q for particularp andq, rather than arbitrary symmetries. In order to find even a single
non-trivial symmetry, one may need to traverse all pairs of variables. Thus, no isomorphism of
symmetry groups is claimed in [17], and no empirical results are reported.

Additionally, we observe that for a formula withV variables andC clauses, this construction
entails a graph with 6V+C vertices. Given that runtime of graph automorphism programs, e.g.,
NAUTY, grows super-linearly in terms of the number of vertices, more economical construc-
tions (see below) can significantly reduce runtime.

Despite being impractical, the construction from [17] was apparently the first to introduce
fundamental elements now used by more competitive constructions, including ours. We empha-
size as particularly important



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry10

� the modeling of variables by pairs of positive-literal and negative-literal vertices,

� the modeling of each clause by a vertex connected to respective literal vertices by edges,

� connecting positive-literal and negative-literal vertices to enforce Boolean consistency.

Additional useful elements were introduced in [18, p.7]:

The input theory is converted into a graph such that the automorphisms of the graph are
exactly the symmetries of the theory. This is done using the construction in [Crawford,
1992]. There are three “colors” of vertices in this graph, the vertices representing positive
literals, those representing negative literals, and those representing clauses. Graph auto-
morphisms are constrained to always map nodes to other nodes of the same color. We also
add edges from each literal to each clause that it appears in. These edges (together with
the node colorings) guarantee that automorphisms of the graph are the symmetries of the
theory.Footnote 5: For efficiency we special-case binary clauses by representingx^y with
a link directly fromx to y (instead of creating a node for the binary clause and linkingx and
y to it). This is important because some of the instances we consider have a huge number
of binary clauses and some of the algorithms that follow are quadratic, or worse, in the
number of nodes.

The reference [Crawford, 1992] in this quotation is the same as reference [17] in our paper,
but the construction appears different from that cited above.3 In fact, this formulation seems
to inadvertently omit the enforcement of Boolean consistency, which leads to the generation of
many spurious symmetries. For example, the formula(a+b) has two symmetries: (i) the do-
nothing symmetry, and (ii) the transposition(ab). The graph built by the above procedure has
two positive-literal vertices, two negative-literal vertices and one clausal vertex connected to the
positive-literal vertices by two edges. Since no negative literals are used, the respective vertices
are disconnected and can be mapped to each other even if positive-literal vertices are fixed.
There are four symmetries. One of them is the swap (transposition) of ¯a and b̄ with a andb
fixed. It violates Boolean consistency. Notably, in [18] this construction is described in Section
7 on empirical results, next to a discussion of pigeon-hole and n-queens benchmarks. However,
it produces spurious symmetries even when applied to pigeon-hole benchmarks, starting with
hole-2 .

On the positive side, this construction entails a graph with 2V +C� vertices — a marked
improvement over [17]. We also found very useful in practice the idea to model each binary
clause by one edge rather than by one vertex and two edges. Importantly, the proposed con-
struction can be corrected by adding, for each variable, a vertex of color 4 and connecting it to
the positive-literal and negative-literal vertices for the same variable (these nodes were called
inversenodes in [17]). We implemented this corrected version, and report empirical results for
it. Similarly to [17], the reduction from [18] and its corrected version cannot find phase-shift
symmetries.

In this work we propose several reductions of CNF symmetry-finding to graph automor-
phism, all of which allow finding phase-shift symmetries and their compositions with per-
mutational symmetries. One of our constructions entails 2V +C� vertices and never finds

3Both papers [17] and [18] are downloadable fromhttp://citeseer.nj.nec.com/cs and also from
http://www.cirl.uoregon.edu/crawford/papers/papers.html .



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry11

spurious symmetries, but requires double edges that are not supported by the graph automor-
phism software NAUTY[39] used in our experiments. Another proposed construction entails
2V +C�+minfC2;Vg vertices and never finds spurious symmetries. The third construction
entails 2V +C� vertices, is implementable with NAUTY, produces no spurious symmetries on
our benchmarks and allows a trivial check for spurious symmetries in general. Since this con-
struction is often the fastest in practice, we characterize CNF formulae on which it produces
spurious symmetries and show how spurious symmetries can be removed.

We first preprocess a given CNF formula to remove any clauses with fewer than two lit-
erals. If there is an empty clause, the formula is immediately declared unsatisfiable and the
search for the symmetries of the formula becomes pointless (because every transformation of
variables is a semantic symmetry as it does not affect the value of the function). If there are
one-literal clauses, they can be eliminated in linear time by repeatedly (i) recording implied
truth assignments (clause(a) impliesa= 1, clause(ā) impliesa= 0), (ii) eliminating the one-
literal clauses, (iii) substituting the implied values of relevant variables, thus eliminating the
variables, (iv) simplifying each affected clause independently. This process may prove that the
original formula is satisfiable or unsatisfiable, or otherwise result in a smaller formula where
every clause has at least two literals.

Given a CNF formula where every clause contains at least two literals, we represent every
variable by two vertices that correspond to its positive and negative literals. We represent ev-
ery non-binary clause by a single vertex, and connect that vertex, using bipartite edges, to the
vertices representing literals in that clause. Binary clauses are represented by double edges con-
necting their respective literals. Clausal vertices are painted with color 1 and literal vertices are
painted with color 2. Because vertices representing positive and negative literals in our graph
are of the same color, we need to ensure Boolean consistency and mate vertices of opposite
literals by single edges. Observe that no symmetry can map a single edge to a double edge,
thus there is no risk of mapping a Boolean consistency edge to a binary-clause edge. This con-
struction results in a graph with 2V +C� vertices. It corrects the reduction from [18] without
increasing vertex counts and has the added advantage of detecting phase-shift symmetries (sub-
sets of negated variables, e.g.,a 7! ā) and their compositions with permutational symmetries.
We refer to this construction as 2xEDGES.

Unfortunately, the graph automorphism program NAUTY [39] used in our experiments
cannot represent double edges. Therefore we must seek another mechanism to distinguish
Boolean consistency edges from binary-clause edges. A straightforward solution is to split ev-
ery Boolean consistency edge into two edges by an added vertex of color 3 (one per edge). Alter-
natively, we can split binary-clause edges, which in some cases may be a better option. In fact,
we can split the less numerous of the two types of edges, which yields 2V +C�+minfC2;Vg
vertices. Because three colors are used, this construction is referred to as MIN3C.

A far less obvious solution isnot to make explicit distinctionbetween the two types of edges,
but represent both Boolean consistency and binary clauses by single edges. Since we first de-
scribed this construction at the 2002 Design Automation Conference, we refer to it as DAC02.
Figure 2 shows an example. In general, there are 2V +C� vertices, but the analysis of this
construction is far more complex than that of the constructions described above. However, our
efforts are justified by the often-superior empirical performance of this construction. Before



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry12

Clauses:
A (1̄+2+3)
B (1+ 2̄+ 3̄)
C (2̄+3)

Graph: A B

1 1̄ 2 2̄ 3 3̄
C

Symmetry:
(11̄)(23̄)(2̄3)(AB)

Symmetric image: B A

1̄ 1 3̄ 3 2̄ 2
C

Figure 2:A CNF formula with three clauses — A, B and C, — and three variables is converted into a
bi-colored graph for symmetry detection purposes. The two-literal clause C is represented by one edge
(double-line) while larger clauses A and B are represented, each, by a vertex and three edges. Any sym-
metry must map C7! C, therefore this instance has only one non-trivial symmetry(11̄)(23̄)(2̄3)(AB).

we proceed with formal results, let us articulate the correspondence between (i) variables and
clauses in a given CNF formula, and (ii) vertices and edges of the bi-colored graph we build.
Every variable corresponds to exactly two vertices of color 2. Every vertex of color 2 corre-
sponds to a variable, and every vertex of color 1 corresponds to a clause. Every clause with
more than two literals corresponds to a vertex of color 1, and every two-literal clause corre-
sponds to an edge between two vertices of color 2. There are no edges connecting vertices of
color 1, but every vertex of color 2 is connected to that of its complement literal by an edge,
and there can be edges connecting pairs of vertices of different colors.

Definition 2.3.1.A circular chain of implicationsover the variables x1;x2; : : : ;xN is a set of
N binary clauses equivalent to(y1) y2)(y2) y3) : : :(yN�1) yN)(yN ) y1), where for each k
from1::N, yk = xk or yk = x̄k.

Observe that the clause(ȳk+yk+1) is equivalent to(yk ) yk+1) and also to(ȳk+1) ȳk). In
terms of specific values, we have(yk = 1)) (yk+1 = 1) and(yk+1 = 0)) (yk = 0). For eachk,
one of the two possible values ofyk triggers an implication sequence, and thus unambiguously
determines the values of all literals involved. In the remaining case, none of the variables
assumes the value that triggers an implication in the circular chain. Therefore, a circular chain
of implications allows only two satisfying solutions.

Theorem 2.3.2. Assume that a given CNF formula does not contain a circular chain of
implications over any subset of its variables. Then, with respect to the proposed construction of
the colored graph from a CNF formula, the symmetries of the formula correspond one-to-one
to the symmetries of the graph.

The practicality of the assumption is discussed after Corollary 2.3.4 below.
Proof. It is not hard to see that every permutational symmetry of the initial formula (i.e.,

a permutation of variables that maps clauses to clauses) corresponds to a colored symmetry of



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry13

the bi-colored graph we built. Such a graph symmetry will map vertices to vertices of the same
color and edges to edges. In particular, ifa maps tob, thenā maps tob̄ and the edgeaā maps
to the edgebb̄. Edges between vertices of color 2 will always map to edges between vertices
of color 2, and the same can be said about edges between vertices of different colors. Phase-
shift symmetries of the original formula also correspond to colored graph symmetries. For
examplea 7! ā will induce a swap between the verticesa andā, leaving the edgeaā in place
and swapping any existing edgesac andāc for a clausal vertexc. An immediate consequence
is that every composition of permutational and phase-shift symmetries of the original formula
correspond to a colored graph symmetry. For example, ifa is symmetric tōb, thena 7! b̄ and
ā 7! b so that the edgeab̄ maps to ¯ab.

Our next observation is that given a colored graph symmetry that corresponds to some
CNF symmetry, we can always uniquely reconstruct the CNF symmetry as long as the cor-
respondence between variables and vertices of color 2 is available. This is also shown by first
considering purely permutational symmetries, then phase shift symmetries and then their com-
positions. A graph symmetry that corresponds to a permutational CNF symmetry must map
positive-literal vertices to other such. Therefore we can restrict the graph symmetry to this
subset of vertices, thus producing a permutation of CNF variables. A graph symmetry that
corresponds to a phase-shift CNF symmetry must either preserve a given literal vertex or map
it to the complement-literal vertex, preserving the edge between them. Therefore, a list of
positive-literal vertices that are not preserved uniquely identifies a phase-shift CNF symmetry.
To reconstruct a CNF symmetry that is a composition of permutations and phase-shifts, we dis-
tinguish (i) positive-literal vertices that map to positive-literal vertices, from (ii) positive-literal
vertices that map to negative-literal vertices. In each case, a given CNF variable is mapped to
another variable, possibly with a follow-up negation. By ignoring the follow-up negations, we
reconstruct the purely permutational component of the CNF symmetry. The phase-shift com-
ponent, i.e., variables to be negated before the permutation is applied, can be reconstructed by
listing positive-literal vertices that map to negative-literal vertices.4

Perhaps, the least trivial property of the proposed reduction to graph automorphism is that
every colored symmetry of the graph corresponds to a symmetry of the original formula. To
prove this, we show that the reconstruction procedure from the previous paragraph can be suc-
cessfully applied to any colored graph symmetry. A vertex permutation is a colored symmetry
if and only if (i) vertices are mapped to vertices of the same color, and (ii) edges are mapped
to edges. This is consistent with CNF symmetries’ mapping variables to variables and clauses
with more than two literals to such clauses. However, it is more difficult to prove Boolean con-
sistency, i.e.,8 a;b (a 7! b)) (ā 7! b̄), wherea andb areliterals. This is easy in the absence of
2-literal clauses because all edges connecting vertices of color 2 are Boolean consistency edges
of the form āa. Since every such edge can only map to another such edge,(a 7! b) leave no
choice foraā but to map tobb̄ becausebb̄ is the only edge that connectsb to another vertex
of color 2. This simple proof also applies if the two-literal clauses are represented by vertices,
rather than by edges as in Figure 2.

4If one should perform negationsafter the permutation is applied, then listed should be the negative-literal
vertices that map to positive-literal vertices.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry14

Correct
symmetries:
()
(āb̄c̄)(abc)
(āc̄b̄)(acb)
(aā)(cb̄)(c̄b)
(bb̄)(ac̄)(āc)
(cc̄)(bā)(b̄a)

ā a

c b̄

c̄ b

(a+ b̄)(b+ c̄)(c+ ā)

Spurious
symmetries:
(ab̄bc̄cā)
(aācc̄bb̄)
(ac̄)(b̄c)(bā)
(ab)(āc̄)
(ac)(b̄c̄)
(bc)(b̄ā)

Figure 3: An illustration of spurious symmetries: a CNF formula and its graph. Boolean consistency
edges are shown by double-lines, but are indistinguishable from other edges by graph automorphism
software NAUTY which cannot handle double-edges. Therefore the graph has 12 symmetries: 6 rotations
and 6 axial flips. Only 6 of them — 3 rotations and 3 flips, — preserve Boolean consistency edges and
correspond to symmetries of the CNF formula. The remaining 6 symmetries are spurious (the first three
spurious symmetries shown are rotations, and the remaining three are axial flips).

The difficulty in the general case is due to our modeling of two-literal clauses by edges that
connect vertices of color 2. Such edges may potentially map to Boolean consistency edges, and
our task is to prove that impossible. This is done in the Appendix.

The 2xEDGE reduction circumvents this difficulty by connecting positive-literal vertices to
negative-literal vertices with double-edges.

Theorem 2.3.3.Under the assumption of Theorem 2.3.2, the symmetry groups of the CNF
formula and the bi-colored graph are isomorphic.

The proof consists of the straightforward verification that the one-to-one mapping con-
structed in the proof of Theorem 2.3.2 is a homomorphism.

Corollary 2.3.4. Under the assumption of Theorem 2.3.2, sets of symmetry generators of the
bi-colored graph correspond one-to-one to sets of symmetry generators of the CNF formula.

To evaluate the practicality of the assumption in Theorems 2.3.2 and 2.3.3. observe that the
failure of this assumption implies that in every satisfying assignment, the variables involved in
the circular chain of implications can have one of two different sets of values (models). This
can be illustrated by the CNF formula(a+ b̄)(b+ c̄)(c+ ā), which allows only two models
(000 and 111) but has six symmetries (do-nothing, two three-cycles and three variable swaps
combined with negation of all variables). However, the graph produced by our construction is
a hexagon having 12 symmetries (the so-calleddihedral group D6 [24, 25]). Half of those are
spurious as explained in Figure 3.

From the practical standpoint, we note that

� Circular chains of implications do not arise in standard SAT models from many applica-
tion domains. For example, they do not appear in equivalence checking of combinational
circuits because combinational circuits are directed acyclic graphs.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry15

Reduction #Colors #Vertices Detects Finds spurious Practical with
type phase-shifts? symmetries ? NAUTY[39]?

[17] 5 6V +C No No No

[18] 3 2V +C� No Many+often No
2xEDGES 2 2V +C� Yes No No
MIN3C 3 2V +C� Yes No Yes

+minfC2;Vg
DAC02 2 2V +C� Yes In rare cases + Yes

trivial check9

Table 1: Comparing reductions of CNF symmetry detection to graph automorphism.V is the
number of variables in the original CNF instance,C is the number of clauses,C2 is the number
of binary clauses,C� = C�C2. The 2xEDGES reduction is not practical with NAUTY be-
cause NAUTY does not support double edges in graphs. CNF instances for which the DAC02
reduction finds spurious symmetries are characterized in Theorem 2.3.2.

� The presence of circular chains of implications does not invalidate our construction. As
can be seen from the proof of Theorem 2.3.2, the only potential problem is spurious
graph symmetries that do not correspond to any CNF symmetries. Since any application
of Theorem 2.3.2 must convert symmetry generators returned by a graph automorphism
problem into CNF symmetries, any spurious symmetry generators can be identified with
minimal computational effort and minimal programming overhead.

� If some, but not all, symmetry generators are spurious, the non-spurious generators are
still useful for symmetry-breaking, while spurious generators can be discarded (but that
is not necessarily the best approach).

� Since the product of non-spurious symmetries cannot be spurious, there can be no spu-
rious symmetries at all if none of symmetry generators are spurious. In other words, if
spurious symmetries exist, at least one generator must be spurious.

� Once a spurious symmetry generator is found, a circular chain of implications can be
identified in linear time along the lines of analysis in the proof of Theorem 2.3.2 in the Ap-
pendix. Since every circular chain of implications implies two sets of values for variables
involved, circular chains of implications can beremovedby introducing one Boolean
variable to represent the two sets of values (old variables get eliminated).

� In applications where many spurious symmetries are expected and can slow down sym-
metry detection, circular chains of implications can be identified in linear timebefore
symmetry detection, using Depth-First Search on a directed graph of binary clauses.

While the correctness of representing binary clauses with edges (Theorem 2.3.2) appears
much harder to prove compared to the correctness of graph reductions proposed earlier, our
construction reduces the number of vertices in the graph by the number of binary clauses in
the CNF instance. Application-derived CNF instances typically have a significant proportion



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry16

of binary clauses, and our construction DAC02 leads to non-trivial run time savings in practice.
Table 1 summarizes the main properties of various reductions of CNF symmetry finding to
graph automorphism. Additionally, we empirically compare MIN3C, DAC02, the reduction
from [18] and a corrected version of that reduction. In the corrected version, to ensure Boolean
consistency, we add one extra node of color 4 for each variable and two edges connecting that
node to the positive and negative literals of that variable.

Our testbed includes five sets of difficult benchmarks with non-trivial symmetries.

1. Thehole-n benchmark set, available within the DIMACS collection [21].

2. Randomized benchmarksUrq proposed by Urquhart[52], based on parity checks and
expander graphs.

3. Randomized benchmarksgrout derived in this work in the context of global grid-based
routing for VLSI.

4. Benchmarksfpga derived in this work in the context of detailed routing for Field-
Programmable Gate Arrays.

5. Recent benchmarks from the micro-processor verification domain [54].

Descriptions of all benchmark sets except for theUrq and microprocessor verification sets are
given in Section 4. Our implementation of symmetry-finding uses the program NAUTY [39]
version 2.0, shipped with the GAP package [51] version 4 release 3. Table 2 compares sizes of
graphs produced by four constructions. We make the following observations:

� Because all of our benchmarks contain more binary clauses than variables, MIN3C gen-
erates exactly as many vertices and edges as the corrected version of the reduction from
[18]. However, MIN3C entails one color less and detects phase-shift symmetries.

� Graphs produced by MIN3C always have more vertices than those produced by DAC02.

� DAC02 and [18] produce graphs with the same numbers of vertices, but DAC02 generates
more edges because it ensures Boolean consistency.

Table 3 compares symmetry-finding runtime and rounded number of symmetries (sizes of
symmetry groups) discovered with each reduction. All runtimes are recorded on a Linux work-
station with 1.2GHz AMD Athlon and 1Gb or DDRAM.

Several entries of the table with sizes of symmetry groups can be verified independently. For
example, the number of symmetries inhole-n benchmarks isn!(n+1)! because the symmetry
group is the Cartesian product ofSn (holes can be permuted arbitrarily) andSn+1 (pigeons
can be permuted arbitrarily). Forn = 7 this yields 203212800, which rounds off to 2:03e8.
Furthermore, we make the following observations:

� Except for the second (Urq ) and the last (microprocessor verification) benchmark sets,
the reduction from [18] entails more symmetries than other reductions. This is be-
cause Boolean consistency is not enforced by that reduction, and spurious symmetries
are found.Urq benchmarks do not have permutational symmetries, as checked by the
corrected version of [18]. The reduction from [18] cannot detect phase-shift symmetries.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry17

Instance vari- clau- Previous work Our work
ables ses [18] [18] corrected MIN3C DAC02

#vert #edges #vert #edges #vert #edges #vert #edges

hole07 56 204 120 252 164 364 164 364 120 308
hole08 72 297 153 360 225 504 225 504 153 431
hole09 90 415 190 465 280 675 280 675 190 585
hole10 110 561 231 660 341 880 341 880 231 770
hole11 132 738 276 858 408 1122 408 1122 276 990
hole12 156 949 325 1092 481 1404 481 1404 325 1248

Urq3 5 46 470 560 2910 606 3002 606 3002 560 2956
Urq4 5 74 674 840 4270 914 4418 914 4418 840 4434
Urq5 5 121 1210 1450 7546 1571 7788 1571 7788 1450 7667
Urq6 5 180 1756 2122 10772 2292 11132 2292 11132 2112 10952
Urq7 5 240 2194 2672 13194 2912 13674 2912 13674 2672 13434

grout3.3-01 864 7592 2306 9024 3170 10752 3170 10752 2306 9888
grout3.3-03 960 9156 2558 10740 3518 12660 3518 12660 2558 11700
grout3.3-04 912 8356 2432 9864 3344 11688 3344 11688 2432 10776
grout3.3-08 912 8356 2432 9864 3344 11688 3344 11688 2432 10776
grout3.3-10 1056 10.8k 2796 12564 3852 14676 3852 14676 2796 13620

fpga10.08 120 448 328 840 448 1080 448 1080 328 960
fpga10.09 135 549 369 1035 503 1305 504 1305 369 1170
fpga12.11 198 968 539 1815 737 2211 737 2211 539 2013
fpga12.12 216 1128 588 2124 804 2556 804 2556 588 2340
fpga12.08 144 560 392 1032 536 1320 536 1320 392 1176
fpga12.09 162 684 441 1269 603 1593 603 1593 441 1431
fpga13.09 176 759 478 1398 654 1750 654 1750 478 1574
fpga13.10 195 905 530 1675 725 2065 725 2065 530 1870
fpga13.12 234 1242 636 2322 870 2790 870 2790 636 2556

2pipe1.ooo 834 7026 3851 14925 4685 16593 4685 16593 3851 15759
2pipe2.ooo 925 8212 4133 17231 5058 19081 5058 19081 4133 18156

2pipe 861 6695 2621 12841 3482 14563 3482 14563 2621 13702
3pipe 2392 27533 7428 53620 9820 58404 9820 58404 7428 56012

Table 2: Comparison of reductions in terms of sizes of graphs produced.

� Except for the second and the last benchmark sets, the reductions MIN3C, DAC02 and
corrected [18] find the same numbers of symmetries. In particular, those three reductions
produce correct numbers of symmetries forhole-n instances. This is consistent with
the reduction from [18] being erroneous, as it discovers many spurious symmetries.

� Except for the second (Urq ) benchmark set, the runtimes of MIN3C and corrected [18]
are comparable. This is expected because they generate equal numbers of vertices and
edges, differing only in the number of colors. The runtimes forUrq benchmarks are
different because MIN3C leads to the discovery of more symmetries.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry18

Instance vari- clau- Previous work Our work
ables ses [18] [18] corrected MIN3C DAC02

time #symm time #symm time #symm time #symm

hole07 56 204 0.25 1.47e70 0.0 2.03e8 0 .0 2.03e8 0.0 2.03e8
hole08 72 297 0.35 1.24e77 0.47 1460 0.1 1460 0.0 1460
hole09 90 415 0.73 5.69e77 0.23 1.32e12 0.0 1.32e12 0.05 1.32e12
hole10 110 561 2.0 4.06e77 0.12 1.45e14 0.15 1.45e14 0.08 1.45e14
hole11 132 738 3.38 1.53e78 0.32 1.91e16 0.19 1.91e16 0.12 1.91e16
hole12 156 949 6.66 1.61e78 0.24 2.98e18 0.39 2.98e18 0.13 2.98e18

Urq3 5 46 470 0.05 1 0.21 1 0.51 5.37e8 0.39 5.37e8
Urq4 5 74 674 0.0 1 0.15 1 1.56 8.8e12 1.6 8.8e12
Urq5 5 121 1210 0.12 1 0.15 1 14.16 4.72e21 13.73 4.72e21
Urq6 5 180 1756 0.53 1 1.2 1 70.29 6.49e32 63.37 6.49e32
Urq7 5 240 2194 1.06 1 1.62 1 189.0 1.12e43 175.99 1.12e43

grout3.3-01 864 7592 109.1 8.28e77 16.36 8.71e9 15.44 8.71e9 4.86 8.71e9
grout3.3-03 960 9156 173.1 4.67e77 32.2 6.97e10 28.02 6.97e10 9.07 6.97e10
grout3.3-04 912 8356 143.5 1.10e78 21.85 2.61e10 19.65 2.61e10 7.01 2.61e10
grout3.3-08 912 8356 143.6 1.80e78 26.04 3.48e10 22.23 3.48e10 7.09 3.48e10
grout3.3-10 1056 10.8k 263.6 1.03e78 42.54 3.48e10 33.03 3.48e10 10.73 3.48e10

fpga10.08 120 448 2.24 5.49e77 0 6.69e11 0.21 6.69e11 0.18 6.69e11
fpga10.09 135 549 3.92 1.44e78 0.32 1.50e13 0.35 1.50e13 0.07 1.50e13
fpga12.11 198 968 15.05 1.99e78 1.17 1.79e18 1.0 1.79e18 0.47 1.79e18
fpga12.12 216 1128 24.2 2.81e78 1.73 2.57e20 1.68 2.57e20 0.64 2.57e20
fpga12.08 144 560 4.96 1.01e78 0.52 2.41e13 0.51 2.41e13 0.18 2.41e13
fpga12.09 162 684 7.38 8.18e77 0.55 5.42e14 0.53 5.42e14 0.28 5.42e14
fpga13.09 176 759 10.16 8.50e77 0.76 3.79e15 0.66 3.79e15 0.25 3.79e15
fpga13.10 195 905 16.64 2.13e78 1.15 1.90e17 0.94 1.90e17 0.44 1.90e17
fpga13.12 234 1242 31.81 9.29e77 1.89 9.01e20 1.8 9.01e20 0.73 9.01e20

2pipe1.ooo 834 7026 9.61 2 13.19 2 15.95 8 9.14 8
2pipe2.ooo 925 8212 12.26 2 21.59 2 20.17 32 11.15 32

2pipe 861 6695 3.19 32 7.6 8 7.28 128 3.21 128
3pipe 2392 27.5k 72.09 32 165.75 8 163.2 512 70.95 512

Table 3: Comparison of reductions in terms of symmetry-finding runtime and rounded numbers
of discovered symmetries. Runtimes are in seconds on a 1.2GHz AMD Athlon running Linux.

� DAC02 is generally the fastest reduction. No other reduction generates fewer vertices,
and DAC02 does not discover any spurious symmetries on given benchmarks as its results
always agree with MIN3C.

In addition, we explicitly verified that the symmetries discovered by MIN3C and DAC02,
but not by the two versions of [18], are phase-shift symmetries and their compositions with per-
mutational symmetries. An implementation of the DAC02 reduction is available in our software
packagĕSatter that targets symmetry-finding and symmetry-breaking for SAT. This package can
be downloaded fromhttp://gigascale.org/bookshelf/Slots/shatter/ .



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry19

3 Symmetry-breaking

Symmetries induce equivalence classes on the set of truth assignments (in group theory, they
are calledorbits). Specifically, given a satisfying truth assignment, all other truth assignments
to which it can be mapped by symmetries, must also be satisfying. Similarly, symmetries al-
ways map unsatisfying assignments to unsatisfying assignments. Therefore, for a complete
SAT solver it suffices to reason about one representative from each such class. This restric-
tion can be implemented by selecting unique representatives from every equivalence class and
adding clauses that are only satisfied by those representatives. An earlier construction of such
symmetry-breaking clauses [18] is based on a given ordering of variables. Its main idea is (i) to
order all elements from the solution space lexicographically, and (ii) to select the lexicographi-
cally smallest element from each equivalence class as its representative.

3.1 Previous work

The lex-leader symmetry-breaking predicates described by Crawford et al. in [18] are built
for a given group of permutational symmetries. Such predicates are conjunctions of smaller
predicates for individual symmetries. Below, letn be the number of variables andLL(G) be
the lex-leader symmetry-breaking predicate for the groupG. Boolean variablesxk are traversed
according to the original ordering.

LL(G) =
^

π2G

LL(π) (1)

LL(π) =
^

1�i�n

C(π; i) (2)

C(π; i) = [
^

1� j<i

(xj = xπ
j )]) (xi � xπ

i ) (3)

Theorem 3.1.1 [18]. For a group G acting on truth assignments, the truth assignments
that satisfy LL(G) are the lexicographically smallest representatives from each class of truth
assignments that can be mapped to each other by symmetries from G.

EachC(π; i) is then expressed in the CNF form usingi�1 auxiliary variablesej = (xj = xπ
j ):

C(π; i) = (e1e2 : : :ei�1) (xj � xπ
j )) = (ē1+ ē2+ : : :+ ēi�1+ x̄i +xπ

i ) (4)

Due to clauses of growing size, CNF expressions for eachLL(π) haveΘ(n2) literals, which
may be prohibitively expensive even for one permutationπ with, say, 9,000 variables (see Table
4). Additionally, LL(π) for different π may contain redundant clauses. To prune redundant
clauses, the authors propose the concept of a symmetry tree, but it does not always prevent
redundant clauses and is itself not always prunable to polynomial size.[18].5

5In the special case of the symmetry groupSn, according to [18], the symmetry-breaking predicate produced
using a symmetry tree has sizeΘ(n2). Techniques proposed in our work generate a linear-sized predicate.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry20

The need for more efficient, and also partial symmetry-breaking has been understood for
some time [18, 37, 35], but no satisfactory generic approaches have been proposed that can be
fully automated. In a recent work [35] Luks and Roy show that, even for an Abelian (commuta-
tive) symmetry group and a given ordering of variables, full lex-leader symmetry-breaking pred-
icates can be exponentially large. This drawback can be circumvented by reordering variables,
which facilitates polynomial-sized full lex-leader symmetry-breaking predicates for Abelian
symmetry groups. However, the construction in [35] is not practical and is rather used for an
existence proof. Also, it does not address non-Abelian groups.

3.2 Using symmetry generators

In this work we explore partial symmetry-breaking, i.e., we do not require that symmetry-
breaking predicates be satisfied by lex-leaders only (but we still require that all lex-leaders sat-
isfy symmetry-breaking predicates). As other authors, we compute symmetry-breaking clauses
on a per-symmetry basis, but consider only irredundant sets of symmetry generators (returned
by graph automorphism programs) instead of the entire symmetry groupG. By breaking gener-
ator symmetries only, one does not necessarily break all symmetries. However, we believe that
by breaking only generator symmetries, one can often achieve significant pruning because an ir-
redundant set of generators contains “maximally independent” symmetries — none of them can
be expressed in terms of others. The following example suggested to us by Eugene Goldberg of
Cadence Berkeley Labs demonstrates that symmetry-breaking by generators is not complete in
some cases.

Consider a formula with four Boolean variablesx1, x2, x3 and x4 that can be permuted
arbitrarily, e.g.,(x1+x2+x3+x4). The symmetry group,S4, can be given by the two generators:
g1 = (12) andg2 = (1234). Let us assume that in each equivalence class of truth assignments
under those symmetries we select the lexicographically smallest element with respect to the
original order of variables, i.e.,x1 is the most significant bit. Note that Boolean cube is split
into 5 equivalence classes by the action ofS4 because the number of 1’s in truth assignments
is invariant under permutational symmetries. In particular, the equivalence class of the truth
assignment 0101 has six elements, and the smallest element is 0011. However, if we build
symmetry-breaking predicates usingg1 andg2 only, 0101 will satisfy them becauseg1(0101) =
1001> 0101 andg2(0101) = 1010> 0101. Thus, such symmetry-breaking predicates select
more than one representative from some equivalence classes. Moreover, additionally conjoining
symmetry-breaking predicates forpowersof generators does not help in this case becauseg2

1 =

(), g4
2 = (), g2

2(0101) = 0101 andg3
2(0101) = 1010> 0101.

Interestingly, for the symmetry groupS4, GAP/GRAPE/NAUTY do not produce the two
generators used in the above example. They produce the following set of three generators:
(12), (23) and(34). Our construction proposed below generates the symmetry-breaking clauses
(x1� x2), (x2� x3) and(x3� x4), which admit only five truth assignments: 0000, 0001, 0011,
0111 and 1111 — one from each equivalence class underS4. This analysis shows that the
particular choice of irredundant generating sets is important for symmetry-breaking. In our
experience, GAP/GRAPE/NAUTY often produce “lucky” sets of generators that lead to fuller



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry21

symmetry-breaking. Our future research will attempt to explain why that is happening.
As shown by our experiments in Section 5 below, symmetry-breaking by generators offers

an attractive trade-off between effective pruning and small overhead. However, we would like
to articulate an important pitfall in this direction. Firstly, adding symmetry-breaking predicates
should not change the satisfiability of the original CNF instance. In our and previous work
this is ensured by the fact that symmetry-breaking predicates are satisfied by at least one truth
assignment from each class of symmetric truth assignments. The lex-leader predicates described
above are satisfied by lexicographically smallest truth assignments because allLL(π) are. The
pitfall lies in the possibility to conjoin symmetry-breaking predicates that are satisfied by non-
lex-leader representatives of classes of symmetric truth assignments. A conjunction of such
predicates may be unsatisfiable and thus unusable as a symmetry-breaking predicate. Therefore,
in this work, we adhere to lex-leader predicates.

3.3 Using cycles of permutations

Our construction is formulated in terms of cycles of a permutation, which is convenient because
the output of graph automorphism programs is expressed in cycle notation. We observe that in
overwhelmingly many instances all generators have two-cycles only. Even in rare cases when
three-cycles were present, two-cycles dominate by far. Another important observation about the
output of graph automorphism programs is that collections of two-cycles returned on the output
are sorted according to the given variable ordering. Therefore, we can apply the Crawford
construction in Equations 2 and 3 to individual cycles and further optimize it for two-cycles. In
particular, for the variable swap(ab) the construction in [18] entails one additional variable and
six symmetry-breaking clauses. Our construction below entails only one clause.

Single cycles.First observe that if the cycle(ab) is a symmetry, whenever there is a satis-
fying assignment witha= 0;b= 1, there should be a symmetric (equivalent) satisfying assign-
ment witha= 1;b= 0 and other variables unchanged. To allow only the first assignment, we
add the symmetry-breaking clause(ā+b), which can also be interpreted as(a� b). Similarly,
to “break” a cycle of length three(abc), we add(ā+b)(b̄+ c), i.e., (a� b)(b� c). To make
sure that lexicographically smallest representatives of symmetric truth assignments satisfy our
predicates, one has to choose an ordering of all variables at the beginning, and always use the�

sign consistently with that ordering. Whena= b̄, we get the cycle(āa), and it can be broken in
two ways. In terms of the original CNF instance, the value ofa can be fixed arbitrarily, and this
can be expressed by a single one-literal symmetry-breaking clause:(a) or (ā). The construction
in [18] does not address such phase-shift symmetries and never results in one-literal clauses.

In general, longer cycles require more complex symmetry-breaking clauses, but apparently
one can always improve on the construction from [18]. A particular difficulty with cycles of
length> 3 is that they cannot, in general, be ordered according to a given ordering of variables.
For example, the cycle(1324) can be written as(3241), (2413) or (4132), but none of these
representations are ordered. Therefore we are not considering longer cycles in this work (and
they do not appear useful for symmetry-breaking on our benchmarks).

Multiple cycles. While single-literal symmetry-breaking clauses are most efficient (they



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry22

reduce the solution space by 50%), they are associated with variables whose values do not affect
satisfiability. After such variables are found and eliminated, other symmetries may remain.
Indeed, we can produce symmetry-breaking clauses from any one two-cycle or three-cycle of
any symmetry. However, clauses of the form(ā+b) achieve no pruning in areas of the solution
space where the variables involved have identical values. A key idea in that case, similar to that
in [18], is to process another cycle, but only ifa= b. In fact, this is similar to Equation 3, except
that we now operate on cycles and do not need to involveall variables, which can dramatically
reduce the size of symmetry-breaking clauses. Specifically, when building a symmetry-breaking
predicate for the symmetry(ab)(cd)(e f):::, we first add(ā+b), then(a= b)) (c� d), then
((a = b)(c = d))) (e� f ), etc. In the spirit of Equation 4, we introduce one additional
variable per cycle to indicate the equality of all variables in the cycle. A sample clause with
new variables looks like(x̄a=b+ x̄c=d + ē+ f ). This construction is given only for permutations
with two-cycles and three-cycles.

It can be seen that both Equation 3 and our construction entail a lexicographic compari-
son between the tested truth assignment and its symmetric image: the former operates on bits
and the latter operates on cycles. In practice, this often leads to very large reductions in the
number of generated clauses. As a result of the bitwise comparison, lexicographically smallest
truth assignments are identified if single-bit comparisons are performed according to the global
ordering of variables. However, in the context of cyclewise comparison, the situation is more
complex. We only assert that a lexicographic comparison is performed when (i) each cycle is
a two-cycle, (ii) each cycle is ordered according to the global ordering of variables, and (iii)
cycles are ordered lexicographically (which is equivalent to ordering them by the first element
since they must be disjoint). Any chain of two-cycles can be brought to this form by sorting.

Theorem 3.3.1. Consider an arbitrary single permutation consisting of two-cycles only.
Apply the proposed construction of symmetry-breaking predicates, including the sorting of cy-
cles and elements within each cycle. All resulting CNF clauses are satisfied by lexicographically
smallest representatives of classes of truth assignments that are symmetric under the given per-
mutation. No other truth assignments satisfy all of those clauses.

Proof. We begin by noting that variables not involved in any cycles can be skipped during
a lexicographic comparison of a truth assignment to its image under the given permutation. Our
construction, indeed, skips those variables. The remaining part of the proof employs induction
on the numbernc of cycles. In the base casenc = 0, the lexicographic comparison always returns
true, and no clauses are generated. For an added cycle(ab) wherea precedesb, we note that the
clause(ā+b), also known as(a� b), lexicographically compares the partial assignmentsab
andba. In other words, the test(ā+b) checks that the value ofa in the current truth assignment
be� to the value ofa in the symmetric assignment. If those values are different, the overall
comparison is finished. Otherwise, the comparison shifts its focus to the least variable unseen
before (which may be ordered before or afterb) and its image under the permutation. This
corresponds to considering the next two-cycle. We would like to articulate that our construction
does not require variables in two-cycles to be pairwise-adjacent in the variable ordering.

Since the square of the permutation is the identity, the classes of symmetric truth assign-



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry23

ments consist of one or two elements only. The clauses we consider are satisfied by a given
assignment if and only if (by construction) the image of this assignment is not lexicographi-
cally smaller than the assignment itself. Therefore, all clauses are satisfied by (i) one-element
classes, and (ii) the smaller elements of all two-element classes.

In our experiments, most generators returned by graph automorphism software consist of
two-cycles only. For rare benchmarks, some generators have small numbers of cycles of other
lengths, typically three-cycles. It turns out that three-cycles can be ignored without violating
the correctness of the symmetry-breaking procedure.

Theorem 3.3.2.Consider a single permutation having (i) cycles of length two, (ii) cycles
of odd lengths, and no other cycles. If the proposed construction of symmetry-breaking clauses
is applied to two-cycles only, the resulting clauses must be satisfied by all lex-leader truth
assignments, and potentially other truth assignments.

Proof. Consider the product (or the least common multiple)p of all odd cycle lengths.
The p-th power of the given permutation has the same two-cycles, but no other cycles. Since
it is also a symmetry, Theorem 3.3.1 applies. Moreover, any lex-leader truth assignment with
respect to the original permutation (i.e., cannot be improved by applying the permutation or its
powers) is also a lex-leader with respect to thep-th power.

3.4 Further improvements

In practice, the process of constructing symmetry-breaking clauses is often dwarfed by the
symmetry-detection time. However, with every cycle processed, we add larger and larger
symmetry-breaking clauses. Since large clauses that do not affect satisfiability rarely improve
run time of SAT solvers, we optionally limit symmetry-breaking clauses to the first 10 cycles
of every symmetry. For the price of incomplete symmetry-finding, this technique considerably
reduces the overhead of symmetry-breaking clauses. Based on Theorem 3.3.1, we make the
following observation.

Observation 3.4.1. Consider a variant of the proposed construction of symmetry-breaking
predicates for permutations with two-cycles only. After cycles are sorted, only the first k cy-
cles are considered and the remaining cycles ignored. The clauses produced by this reduced
construction are all satisfied by lex-leader truth assignments, but other truth assignments may
satisfy those clauses.

While the reduced construction does not achieve as much pruning as the full construction
involving all cycles, its overhead is smaller. In our experiments the reduced construction often
performed better.

Another potential improvement is to modify the source code of a backtrack SAT solver to
dynamically check conditions of the form((a = b)(c = d):::(u= v)). We do not pursue this
option in the current work because our discussion is limited to pre-processing.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry24

Figure 4: Construction of difficult SAT instances: (left) two switchboxes in common FPGA architec-
tures, (right) similarN-by-M switchboxes are used to build hard satisfiable instances. Four connections
are sought between (i)a;b;c andd, and (ii)e; f ;g andh. Crosses correspond to input connections mated
to channels, and every solid dot indicates the absence of a link.

4 Difficult SAT Instances

The pigeon-hole principleasserts thatn+1 pigeons cannot be assigned ton holes as long as
(i) two pigeons are not assigned to the same hole, and (ii) every pigeon must be assigned to
one hole. These constraints can be expressed in terms ofn(n+ 1) Boolean variables:xi j is
interpreted as the indicator of assignment of pigeonj to hole i. The first family of clauses
consists ofn2(n+ 1)=2 mutual exclusions(xi j1 + xi j2); j1 6= j2. The second family consists
of n+1 n-literal clauses(∑n

i=1xi j ) — one for every pigeonj. The pigeon-hole principle then
asserts that those two families of clauses cannot be satisfied simultaneously. However, its easy
proof by induction is beyond the capabilities of backtrack SAT-solvers that typically operate
within the resolution proof system.

The pigeon-hole instanceshole-n described above are provably difficult for backtrack
SAT solvers tied to resolution [7] and empirically difficult for the leading-edge implementa-
tion CHAFF as shown in Table 4. However, they are often treated as artificial in the EDA
literature. Below, we derive equivalent instanceschnl[N]x[N+1] from the domain of de-
tailed routing for Field-Programmable Gate Arrays (FPGAs) and generalize them in two ways:
chnl[N]x[M] (unsatisfiable) andfpga[N].[M] (satisfiable). We also give randomized
constructions of difficult global routing instancesgrout .

4.1 FPGA routing instances

The pigeon-hole principle is directly related to routing because it can be interpreted as the
impossibility of routingn+ 1 connections throughn channels. As one can imagine, trying
to makem connections throughn channels is typical for FPGA routing, and in some cases
m> k. We encode such instances in terms ofm� k FPGA switchboxes that matem input
connections tok channels. A switchbox can connect any given input to any one channel, but no
two inputs can be connected to the same channel, and every input must be connected to some
channel. The state of an FPGA switchbox is described by anm� k matrix of binary variables
and, similarly to the encoding of the pigeon-hole principle above, is subject to two families of
constraints. These constraints are violated iff there are fewer channels than inputs. We put two
m�k switchboxes on both sides of a batch ofk channels, which entails 2mkvariables (see [42]
for details of SAT formulations). Figure 4(left), which illustrates our construction. It shows two



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry25

4�3 FPGA switchboxes connected to three horizontal channels. Four connections are sought
between (i)a;b;c andd on the left, and (ii)e; f ;g andh on the right. Crosses represent input
connections mated to channels, and every dot indicates the absence of a link. Empirical results
in Table 4 are shown for six routing configurations (chnl ) in which one tries to route (a) 11,
12 or 13 connections through 10 tracks, and (b) 12, 13 or 20 connections through 11 tracks.
These instances are extremely difficult for the leading-edge SAT solver CHAFF [41] and also
have many symmetries. They can appear as sub-instances in larger routing instances, and such
sub-instances may be difficult to find.

From the benchmarking point of view, it is natural to expectunsatisfiableinstances among
the most difficult to solve. Indeed, randomized restarts used by CHAFF [41] typically allow
it to avoid difficult regions of the search space and to quickly find satisfying solutions if they
exist. However, our second construction is designed to create difficultsatisfiableinstances that
trap even the best solvers in hopeless regions of their solution space for a long time before a
satisfying solution can be found. The main idea is to create a satisfiable instance with a large
number of hard-to-avoid unsatisfiable sub-instances. If the number of unsatisfiable branches is
much larger than the number of satisfiable branches, then random restart will keep on jumping
from one unsatisfiable branch to another for a long time. Solvers without random restarts will,
too, need to prove the unsatisfiability of many branches.

Our second construction entails routing a number of wires through four FPGA switchboxes
of the type used in the first construction. The rightmost switchbox in the configuration in Figure
4(right) has several redundant outgoing tracks that are divided into two channels. Each chan-
nel is connected to a smaller switchbox with an insufficient number of outgoing tracks. The
two groups of tracks that leave the smaller switchboxes are connected to the leftmost switch-
box. When routing connections through tracks right-to-left, connections must be split between
switchboxes subject to the throughput constraints of switchboxes. However, to a SAT solver, the
throughput constraints are obscured by the pigeon-hole principle. SAT solvers first partition the
connections between the two channels and backtrack from every partition that does not lead to
a satisfying assignment. If the capacities of the two channels leading to the smaller switchboxes
are greater than the throughput of those switchboxes, an overwhelming majority of partitions
will lead to unsatisfiable pigeon-hole instances. On average, at least several such instances
must be solved before a good partition is found. Empirical results for these satisfiable instances
(fpga ) in Table 4 show that they are difficult for CHAFF. We observe that these instances be-
come more harder when the difference between the throughput of the small switchboxes and
the capacities of the channels that lead to them is increased. This is consistent with our observa-
tions for the unsatisfiablechnl instances. Conceivably, some SAT-solvers may order variables
related to the leftmost switchbox first and find satisfying assignments faster than CHAFF. This
is consistent with our empirical data for the BerkMin solver [10] in Table 5. However, the con-
figuration of switchboxes in Figure 4 (right) can be further modified to generate more difficult
benchmarks. Specifically, one can add three new switchboxes on the left which are copies of
existing three switchboxes on the right. The overall configuration will then be symmetric about
the vertical axis passing through the currently leftmost switchbox in Figure 4 (right).



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry26

hi11

vi11

1 2 3
S

E

(a)

1

2

3

Tracks1

2

3

1 2 3

(b)

Figure 5:Construction of difficult SAT instances (global routing).

4.2 Global routing instances

We propose a new construction of difficult randomizedsatisfiableinstances unrelated to pigeon-
holes. They express routing two-pin connections in a grid with edge capacity constraints. To
ensure that an instance is satisfiable but difficult, we userandomized flooding. Namely, we
create a routing configuration by adding shortest possible routes while unused routing resources
(edge capacities) remain. Shortest routes are created by breadth-first-search between pairs of
randomly chosen grid cells or, if that fails, by finding a maximal shortest route starting at a
given grid cell with unused routing resources. After a routing configuration is created, routes
are erased and their end-points are used to formulate a SAT instance.

Our SAT encoding of routing instances has two components. One deals withroute definition
and captures possible ways to route each connection. The other addressescapacity constraints
and restricts the number of connections that can be routed across a grid cell boundary.

Route definition constraints.Routes are specified in terms of edges across cell boundaries
in a grid. For each connection, we consider routing tracks across each cell boundary on the
grid. In the SAT formulation, each track (for a given connection) is treated as a variable. Figure
5 (a) illustrates routing tracks in a 3-by-3 grid. Consider a two-terminal connection fromS to
E. Horizontal tracks for connectioni are labeledhir;c, wherer andc are the row and column
indices of the cell whose boundary the track crosses. Vertical tracks are labeledvir;c. In Figure 5
(a), let the points markedSandE be the terminals of some two-terminal connectioni. The SAT
formulation proceeds as follows. For every connection, we add groups of clauses corresponding
to individual grid cells.

For each of the two terminals, we add a clause consisting of positive literals of variables of
all tracks to which the terminal can connect. For example, we add the clause(hi1;1 + vi1;1) for
terminal markedS in Figure 5(a) because any route for this connection must pass throughhi1;1

or vi1;1. In the general case, we also need to add [binary] mutual exclusion clauses ensuring that
only one of the incident tracks is actually taken. For the terminalS, this entails only one clause
(hi1;1 +vi1;1). For the terminalE, this entails three clauses(hi3;1 +vi2;2)(hi3;1 +hi3;2)(vi2;2 +hi3;2).

We now consider every grid cell other than the terminals. Eithernoneor twoof its boundary
edges must be selected. This is enforced as follows. Observe that a given cell may have two,
three or four boundaries with tracks passing through them. Only two track variables, label them
x1 andx2, are involved when “corner” grid cells are considered. In this case, we add clauses
(x1+x2)(x1+x2). In the case of three or four track variables (“border” grid cells or “internal”



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry27

grid cells respectively), we add two types of clauses. First, for every variablexi , we add the
constraint(xi ) ∑ j 6=i xj), which can be captured by one clause(xi +∑ j 6=i xj) and says that if
one boundary edge is selected, then another must be selected as well. The second type of clauses
prohibits selecting three or four boundary edges. In the case of three variablesx1, x2 andx3, we
add(x1+x2+x3). For four variablesx1, x2, x3 andx4, we add

(x1+x2+x3)(x1+x2+x4)(x1+x3+x4)(x2+x3+x4)

As an illustration, we apply this procedure to the grid cell (1,2) in Figure 5(a) and produce

(hi1;1 +hi1;2 +vi1;2)(hi1;1 +hi1;2 +vi1;2)(hi1;1 +hi1;2 +vi1;2)(hi1;1 +hi1;2 +vi1;2)

The correctness of the general construction can be proven by following argument. First, it
can be seen that any given connection, interpreted as a truth assignment, satisfies those con-
straints. Now assume an arbitrary satisfying assignment and show that, topologically, it is a
valid connection. Start at a terminal. Exactly one track must be taken to a neighboring grid cell.
If that grid cell is a terminal, we are done. Otherwise, exactly one track must be taken to a grid
cell not visited before. The same argument shows that if a partial route is not completed, it can
be extended by one track. Since there is only a finite number of grid cells, the route must be
completed sooner or later.

When the layout is notobstructed, the above construction can be applied to all grid cells in
an arbitrary order. However, if some tracks are removed or if certain grid cells are not available
for routing, some grid cells may be unreachable from the terminals. Since no routes can pass
through unreachable grid cells, they can be ignored when a SAT instance is constructed. We
perform this optimization by traversing grid cells by a breadth-first search. Once a terminal is
enqueued, our algorithm enters a loop that dequeues one grid cell, marks it visited, adds relevant
clauses and enqueues unvisited adjacent grid cells. The algorithm finishes when the queue is
empty. If the other terminal was not visited in the process, no routes connect the two terminals.

Capacity constraints. Each edge of a grid cell boundary has a capacity associated with
it to restrict the number of connections that can be routed through it. The capacity limits are
intended to prevent routing congestion. IfC is the capacity limit for an edge of a grid cell, we
includeC variables per edge for each connection. In other words, each connection can be routed
through one ofC tracks across a cell boundary as shown in Figure 5 (b).

Consider two connectionsi and j. Consider horizontal route tracks for each connections,
hir;c, andhjr;c for some rowr and columnc. Let ir;c1

; ir;c2
; : : : ir;cC

and jr;c1
; jr;c2

; : : : jr;cC
be the

C extra variables introduced in the SAT formulation for the horizontal track in question. Then
clearly, for anyir;ck

;1� k�C, ir;ck
) hir;c, and alsohir;c ) (ir;c1 + : : :+ ir;cC

). Clauses of this
form are added to the SAT instance. Another restriction is that a route cannot pass through two
tracks in the same channel (edge of a grid cell), i.e., if for somek;1� k�C, if ir;ck

is true, then
for all l ;1� l �C; l 6= k;(ir;ck

) ir;cl
). These clauses are also added. Finally, two connections

cannot be routed through the same track, i.e. for allk;1� k� C, (ir;ck
) jr;ck

) for all j 6= i,
where j represents another connection.

We created ten routing configurations by randomly flooding a 3-by-3 routing grid with con-
nections subject to edge capacity constraints of 3. Then we applied the SAT encoding above.
The difficulty of these randomly generated benchmarks varies, and we only report empirical
results for the five most difficult instances (grout in Table 4).



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry28

5 The Effect of Breaking Symmetries

Our computational experiments were performed on PCs with AMD Athlon processors @1.2GHz
and 1GB of RAM. All codes were compiled withg++ 2.95.4 -O3 and ran on Debian
Linux. In addition to the instances described in Section 4 (chnl and fpga ) and (grout ),
Table 4 lists six standard pigeon-hole instances (hole ), five families of artificially constructed
randomized Urquhart benchmarks (Urq ) [52] and seven recent benchmarks from the micro-
processor verification domain [54].

CHAFF run times in Table 4 are averages of (up to) 20 independent starts because CHAFF
uses randomization internally and results of different runs may vary significantly. All runs not
completed in 1000 seconds were aborted and did not contribute to averages. The percent of
time-outs is shown for each instance.

To detect symmetries in CNF formulae, we convert them into colored graphs as outlined
in Section 2. Those graphs are subsequently processed by the NAUTY program [38, 39]. For
each run, the result is a list of permutation generators of the group of symmetries, specified by
their cycles. For each SAT instance, Table 4 lists NAUTY run time in seconds excluding I/O,
the total number of symmetries and the number of permutation generators. Those symmetry
detection implementations are deterministic and not affected by re-ordering of vertices in the
input graph. For some benchmarks we built symmetry-breaking clauses only for ten cycles per
symmetry. The first ten cycles typically capture most of the speed-up provided by “breaking”
a given symmetry. After new clauses were added, the preprocessed CNF instance was solved
with CHAFF. Table 4 lists CHAFF run times for each instance. Because CHAFF run time on
a given instance fluctuates from run to run, we report averages of 20 independent runs for each
instance. Pre-processed CNFs never timed out in our experiments.

The last column in Table 4 shows the relative speed-up ratios due to the use of symmetry-
breaking clauses. For a given CNF instance, the first number is the ratio of (i) the CHAFF run
time on original instance, and (ii) the total run time of symmetry detection and CHAFF on pre-
processed instances. The second number is produced similarly, except that symmetry detection
run time is ignored. This is the maximal possible speed-up if symmetries are detected instanta-
neously or provided as domain-specific knowledge. We make the following observations:

1. The proposed SAT instances are only a fraction of the size of recent micro-processor
verification benchmarks [54], but are more difficult to solve.

2. Some difficult SAT instances have astronomical numbers of symmetries; this includes the
randomizedUrq andgrout benchmarks.

3. Symmetry-breaking clauses often speed up the best available SAT solver CHAFF [41].

4. Symmetry-breaking clauses typically do not slow down CHAFF and often speed it up,
even when few symmetries are present.

5. Either CHAFF or symmetry detection may be a bottleneck.

6. Among thechnl instances, the hardest to solve was routing of 20 connections through
11 tracks. Adding extra unrouted connections consistently increased difficulty. That is
somewhat counter-intuitive.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry29

Instance Satis- #vars Plain Time Symmetries Speed-up:
fiable? and CHAFF -out Finding Number #generators CHAFF total /

#clauses sec % sec of cycles sec search only

hole07 UNS 56;204 0.37 0% 0.1 2.03e8 all 13 0.01 3.32; 36.50
hole08 UNS 72;297 1.27 0% 0.07 1.46e10 all 15 0.01 15.22; 94.15
hole09 UNS 90;415 3.79 0% 0.1 1.32e12 all 17 0.02 32.0; 204.97
hole10 UNS 110;561 22.44 0% 0.15 1.45e14 all 19 0.02 132; 1122
hole11 UNS 132;738 212.73 0% 0.18 1.91e16 all 21 0.03 1.23k; 7.09k
hole12 UNS 156;949 >1000 100% 0.24 2.98e18 all 23 0.04 — ; —

Urq3 5 UNS 46;470 232.44 10% 0.48 2.32e6 all 29 0.0 484.16; —
Urq4 5 UNS 74;694 250.01 25% 1.35 2.50e6 all 43 0.0 185.18; —
Urq5 5 UNS 121;1210 >1000 100% 13.15 >1e7 all 72 0.0 —; —
Urq6 5 UNS 180;1756 >1000 100% 62.93 >1e7 all 109 0.0 —; —
Urq7 5 UNS 240;2194 >1000 100% 176.62 >1e7 all 143 0.0 —; —

grout3.3-01 SAT 864;7592 19.01 0% 4.79 8.71e9 10 26 0.67 3.48; 28.37
grout3.3-03 SAT 960;9156 44.35 0% 8.94 6.97e10 10 29 0.40 4.75; 110.9
grout3.3-04 SAT 912;8356 19.36 0% 6.81 2.61e10 10 27 0.36 2.70; 53.79
grout3.3-08 SAT 912;8356 21.30 0% 7.14 3.48e10 10 28 0.67 2.73; 31.80
grout3.3-10 SAT 1056;10.8k 28.18 0% 10.65 3.48e10 10 28 0.85 2.45; 33.15

chnl10x11 UNS 220;1122 22.17 0% 0.45 4.20e28 all 39 0.11 39.91; 210.1
chnl10x12 UNS 240;1344 81.88 0% 0.61 6.04e30 all 41 0.12 111.6; 663.0
chnl10x13 UNS 300;2130 657.61 25% 1.28 4.50e37 all 47 0.17 454.8; 3.96k
chnl11x12 UNS 264;1476 207.37 0% 0.75 7.31e32 all 43 0.15 231.3; 1.41k
chnl11x13 UNS 286;1742 788.32 20% 1.08 1.24e35 all 45 0.16 633.5; 4.79k
chnl11x20 UNS 440;4220 >1000 100% 4.4 1.89e52 all 59 0.31 —; —

fpga10.08 SAT 120;448 7.56 0% 0.63 6.00e71 all 62 0.05 11.15; 157.6
fpga10.09 SAT 135;549 3.80 0% 0.88 6.33e77 all 68 0.03 4.16; 113.4
fpga12.11 SAT 198;968 694.00 50% 3.76 7.18e77 all 95 0.06 181.6; 11.3k
fpga12.12 SAT 216;1128 80.20 0% 5.31 7.44e77 all 104 0.13 14.74; 616.9
fpga12.08 SAT 144;560 246.70 10% 1.23 8.41e77 all 72 0.08 188.4; 3.10k
fpga12.09 SAT 162;684 885.00 80% 1.7 2.25e77 all 79 0.05 504.6; 16.4k
fpga13.09 SAT 176;759 550.00 85% 2.57 2.56e77 all 84 0.06 208.8; 8594
fpga13.10 SAT 195;905 >1000 100% 4.04 5.76e77 all 93 0.08 — ; —
fpga13.12 SAT 234;1242 >1000 100% 6.9 8.85e77 all 110 0.08 — ; —

2dlx ca mc* UNS 3250;24.6k 6.54 0% 38.36 4 10 2 6.30 0.15; 1.04
2pipe.cnf UNS 892; 6695 2.08 0% 10.74 128 10 7 1.56 0.17; 1.33

2pipe1 ooo UNS 834; 7026 2.55 0% 9.37 8 10 3 1.80 0.23; 1.41
2pipe2 ooo UNS 925; 8213 3.43 0% 11.14 32 10 5 2.82 0.25; 1.22

3pipe UNS 2468;27.5k 36.44 0% 463.57 512 10 9 19.65 0.08; 1.85
4pipe UNS 5237;80.2k 337.61 0% >1000 — — — — —; —
5pipe UNS 9471;195k 325.92 0% >1000 — — — — —; —

Table 4: CHAFF run time on original SAT instances is compared to the combined run time of symme-
try detection and CHAFF on instances with symmetry-breaking clauses added. The rightmost column also
shows pure search speed-up (that does not take symmetry detection into account). The full name of bench-
mark 2dlx ca mc is 2dlx ca mc ex bp f . The numbers of symmetry generators and max cycles used
per generator (10 or all) are shown. The benchmarks we generated for these experiments are available at
http://gigascale.org/bookshelf/Slots/SATbench



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry30

Instance original with SBPs

hole10 110 0.01
Urq3 5 >1000 0.17

groute3.3-03 5.5 0.6
chnl1011 109.95 0.02
fpga108 0.02 0.02

3pipe 2.69 0.3

Table 5: Runtime of the BerkMin solver [10] (version 56) on sample
SAT instances: original and with symmetry-breaking predicates added.

Not to limit out results to a single SAT-solver (CHAFF), we ran similar experiments with
the BerkMin solver [10] version 56. Representative results are shown in Table 5 where solver
runtimes are compared with and without symmetry-breaking predicates added. BerkMin solves
thegrout , fpga and microprocessor verification benchmark sets faster than CHAFF, but other
benchmark sets are harder for BerkMin. Symmetry-breaking reduces runtime in most cases. In
similar experiments with GRASP[45], all of our benchmarks are solved faster with the help of
symmetry-breaking predicates, even if symmetry-finding time is charged for.

6 Opportunistic Symmetry-Finding

The use of symmetry-breaking clauses does not require findingall symmetries. In fact, an
algorithm that does not guarantee finding all symmetries may finish sooner. Some symmetries
may be found using domain-specific knowledge, and then symmetry-breaking clauses can be
added during the creation of SAT instances.

6.1 Window-based symmetry finding

We observed that a variable would sometimes be symmetric to another variable connected by
a clause (one hop) or through a chain of two clauses (two hops). When this is not true for
all symmetries of a CNF formula, many symmetries may be composable from permutation
generators of that kind. We therefore focus on “local” symmetries that permute small subsets
of variables and fix all other variables.6 We define the subsets by sliding a window of fixed size
along a given linear ordering of the variables — either the original variable ordering of the CNF
formula or the connectivity-based MINCE ordering [2]. For a window, we consider the left and
right cuts, as in Figure 6. To find symmetries local to a given window, the standard construction
of colored graph is applied to clauses and literals that are entirely inside the window. Eachcut
clauseis represented by a vertex of a unique color that is connected to literals inside the window.
Vertices beyond the current window are ignored. To argue that the proposed construction is
correct, i.e. does not add spurious symmetries, we consider the followingrecoloringprocess.

Definition 6.1.1. Given a colored graph and a subset of its vertices, change the color of
each vertex into a unique color — one new color per vertex. This process is calledrecoloring

6The complexity of such a restricted version of the graph automorphism problem was studied in [32].



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry31

of a given set of vertices.The following lemma shows how to restrict the set of symmetries of
a colored graph. This can be done, e.g., with the purpose of accelerating symmetry-finding for
the price of losing some symmetries.

Lemma 6.1.2.Given a colored graph G, consider an arbitrary recoloring of an arbitrarily-
chosen subset of its vertices. Call the resulting graph GR. Then the following claims hold.

(a) every symmetry of GR is a symmetry of G, and must map each recolored vertex to itself;

(b) symmetries of GR form a subgroup in the group of symmetries G;7

(c) the choice of new (unique) colors does not affect the symmetry group GR.

While reducing the number of symmetries can, in principle, be consistent with smaller
symmetry-detection runtimes, most graph automorphism programs are most sensitive to the
number of vertices in the input graph rather than to the number of symmetries. The following
lemma shows how to reduce the vertex set of the graph in the context of Lemma 6.1.2.

Lemma 6.1.3.Given a colored graph G, consider an arbitrary recoloring of an arbitrarily-
chosen subset of its vertices. Call the recolored graph GR. Consider a non-empty subset W of
recolored vertices such that each of them is adjacent to recolored vertices only (if such a subset
exists). Remove all vertices in W from GR together with all incident edges. Then the symmetries
of the remaining colored graph GRW are in one-to-one correspondence with the symmetries of
GR, in fact the two groups of symmetries are isomorphic.

Proof. Every symmetry ofGR maps every vertex fromW to itself by Lemma 6.1.2 (a).
Therefore, every such symmetry gives rise to a symmetry ofGR

W. Vice versa, every symmetry
of GR

W can be unambiguously extended to a symmetry ofGR by mapping every vertex fromW
to itself. This construction restores every symmetry ofGR mapped to a symmetry ofGR

W.
Lemma 6.1.3 reduces the number of vertices under the assumption that setW exists — the

largerW, the greater the reduction. Constructively findingW remains an open problem.
Lemma 6.1.4. Given a colored graph G and an arbitrary edge-cut in it, pick one of the

partitions and recolor all vertices in it. Then the set of vertices in that partition that are not
incident to any edges in the cut can play the role of set W in Lemma 6.1.3.

Observe that colored graphGR
W from Lemma 6.1.3 may still contain a large number of re-

colored vertices. This may be undesirable because the total number of vertices inGR
W is limited

by the scalability of available symmetry-detection software, and non-trivial symmetries ofGR
W

do not involve recolored vertices. Indeed, recolored vertices are included into the vertex set of
GR

W, thus potentially slowing down symmetry-detection programs or at least increasing memory
usage.8 Therefore, this construction can be improved by minimizing the number of vertices
incident to cut edges, e.g., by minimizing the size of the cut itself.

Another concern about restricting symmetry detection along the lines of Lemmas 6.1.2-
6.1.4 is that one should apply it several times, with different sets of vertices recolored. This
way more symmetries can be detected. Indeed, if the size ofGR

W is limited by a constant, then
the number of calls to symmetry-detection software should grow at least linearly so that every
vertex inG be “given an opportunity” to map elsewhere.

The concerns mentioned above can be addressed in the context of window-based symme-
try detection. We first order CNF variables by representing the CNF as a hypergraph (clauses

7This subgroup is thestabilizer[24, 25] of the set of recolored vertices in the symmetry group ofG.
8NAUTY maintains the input graph in a dense adjacency matrix.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry32

Clauses:
A (1+3+5), B (5̄+8+ 1̄0)
C (5̄+6+7), D (5+6+ 7̄)

Symmetry:
(67)(6̄7̄)

Graph: C D

A B

1 3 5 5̄ 6 6̄ 7 7̄ 8 9̄

Symmetric
image:

C D

A B

1 3 5 5̄ 7 7̄ 6 6̄ 8 9̄

Figure 6: Window-based opportunistic symmetry detection for a CNF instance with ten variables and
four clauses. Vertical dashed lines capture the window to which search for symmetries is limited. Each
clause that includes literals from both within and beyond the window are represented by vertices of
unique colors (dashed boxes). Symmetries are only allowed to permute vertices within the current win-
dow, therefore vertices and edges beyond the current window are not included in the graph for window-
based symmetry-detection. This reduces the size of graph automorphism problems.

correspond to hyperedges) and heuristically finding a min-cut linear arrangement of those ver-
tices using recursive balanced bisection [2]. We then consider cuts along the resulting variable
ordering, and those cuts are relatively small by construction. Note that cuts in Lemma 6.1.4 cor-
respond to pairs of cuts in a given variable ordering as shown by vertical dashed lines in Figure
6. Furthermore, in window-based symmetry-detection only clausal vertices can be recolored,
therefore min-cut linear arrangement naturally minimizes the number of recolored vertices.

We concatenate lists of permutation generators produced for different windows, consider
the group generated by all those and use GAP [51] to produce an irredundant list of genera-
tors of this “global” group. Symmetry-breaking clauses are constructed from those generators.
Observe that when applying symmetry detection to a given window, we can only detect symme-
tries that permute variables in that window only. Therefore, potentially more symmetries can
be found if windows are allowed to overlap. On the other hand, if overlaps are allowed some
symmetries may be detected in multiple windows. Thus, producing symmetry-breaking clauses
independently from each window and concatenating them may cause considerable redundancy.
This is why we call GAP if windows are allowed to overlap. The trade-off between run time,



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry33

Instance Satis- #variables Plain Time Symmetries Speed-up:
fiable? and CHAFF -out Finding # #generators CHAFF total /

#clauses sec % sec of cycles sec search only
WINDOW-BASED SYMMETRY FINDING (1000 variables per window)

2dlx ca mc* UNS 3250;24.6K 6.54 0% 3.17 1 - 0 6.54 0.67; 1.00
2pipe UNS 892; 6695 2.08 0% 10.47 128 10 7 1.30 0.18; 1.63

2pipe1 ooo UNS 834; 7026 2.55 0% 9.02 8 10 3 1.80 0.24; 1.41
2pipe2 ooo UNS 925; 8213 3.43 0% 11.09 32 10 5 2.80 0.25; 1.23

3pipe UNS 2468;27.5K 36.44 0% 3.63 4 10 2 36.20 0.91; 1.01
4pipe UNS 5237;80.2K 337.61 0% 9.32 2 10 1 334.0 0.98; 1.01
5pipe UNS 9471;195K 325.92 0% 29.42 2 10 1 325 0.92; 1.00

Table 6:Results for window-based symmetry-finding. Labeling is identical to that of Table 4.
Typically all or a large fraction of all symmetries are discovered, compared to data in Table 4.

incomplete symmetry-finding and redundancy among windows depends on their overlap. Simi-
larly, the window size affects the trade-off between run time and incomplete symmetry-finding.
We observe good empirical performance with windows of size 1000. Results in Table 6 show
that our window-based technique found all or a significant portion of all symmetries for the
micro-processor verification benchmarks [54] in a fraction of the run time spent by complete
symmetry-finding. If a randomized variable ordering is used, one could combine local permu-
tation generators found for different orderings.

6.2 Improving SAT formulations

One way to reduce the run time of symmetry-finding is to learn how to detect (or predict)
symmetries from domain-specific knowledge. Given the well-understood structure and symme-
tries of thehole , chnl andfpga benchmarks, we evaluated this approach on (randomized)
grout benchmarks. We noticed that permuted variables in many cases correspond to neighbor-
ing tracks, e.g., if two connections are routed in parallel through several grid cells, there is con-
siderable freedom (symmetry) in track assignment. To break this symmetry, we added clauses
that preserve the relative order of tracks taken by every pair of connections routed through the
same two edges of a grid cell. In other words, if one connection is routed through track 2 when
entering the cell, and another connection is routed through track 3 when entering the cell, then
the connections are allowed to leave the cell through tracks 2 and 3 resp., 1 and 2 resp. or 1 and
3 resp. Such constraints speed-up CHAFF: eachgrout instance is now solved in0.50-0.80
seconds versus 19-45 seconds. More dramatic speed-ups are achieved forgrout instances
built with larger routing grids. Even if we apply symmetry-detection to modified instances, it
completes much faster than on original instances because no symmetries are found. It may also
be possible to add domain-specific symmetry-breaking clauses to SAT instances from [54] and
improve CHAFF runtime according to results in Table 4.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry34

7 Conclusions

Our work addresses solving difficult instances of Boolean (CNF) satisfiability that exhibit struc-
tural symmetries. While the utility of our approach on easy instances is not clear at this moment,
the difficulty of domain-specific classes of CNF-SAT instances is often known, and adequate
SAT algorithms can be chosen. Otherwise, several SAT solvers can be executed in parallel until
one of them finishes. On a single processor, this may buy exponential speed-ups at the cost of
a constant-factor slow-down. Therefore, our focus on difficult instances is well justified. Addi-
tionally, our experiments identify a number of difficult instances whose difficulty is apparently
due to symmetries and redundant search caused by them.

We describe an automated flow that finds symmetries in given CNF instances and uses them
to speed up SAT search. This flow includes symmetry detection, pre-processing of given CNF
instances and an application of an existing state-of-art SAT solver. When compared to the SAT
solver alone, applied to given CNF instances without pre-processing, our flow dramatically
speeds up the solution of two well-known provably-difficult benchmark families — pigeon-
hole problems and Urquhart benchmarks. Notably, methods proposed in a previous work [18]
cannot detect any non-trivial symmetries in Urquhart (Urq ) benchmarks.

We offer constructions of realistic satisfiable and unsatisfiable SAT instances, arising in
routing applications, that are unusually difficult for their size. Unlike most existing SAT bench-
marks, our benchmark families enable studies of the asymptotic performance of SAT solvers.

Since symmetry-finding is a bottleneck, we speed it up using opportunistic approaches. In
one, we only look for symmetries that permute small groups of variables. Those groups are de-
termined by sliding a fixed-sized window along a given variable ordering. The second approach
attempts to improve the construction of SAT instances by detecting symmetries in domain-
specific terms so that new clauses can be added during construction. We find astronomically
many symmetries in randomizedUrq andgrout benchmarks. This refutes a conventional-
wisdom argument claiming that significant randomization necessarily destroys symmetries. We
explain symmetries ingrout benchmarks and break them using domain-specific knowledge.

Our proposed flow does not require source code modifications in SAT solvers and should
work with most back-track SAT solvers. We successfully validated our flow with CHAFF [41],
BerkMin [10] and GRASP [45] (GRASP results are not included in this paper). Experiments
performed with publicly available versions of WalkSAT [46] indicate that symmetry-breaking
clauses do not improve runtimes and even make them worse. This was observed by others and
is the focus of on-going work by Preswitch, Kautz and Selman.

We stress that the proposed flow may not be useful on SAT benchmarks that (i) are easy, or
(ii) do not have symmetries. Many difficult SAT instances do not have symmetries [16]. On the
other hand, many DIMACS benchmarks [21] have large numbers of symmetries, but are easy
and can be solved faster than their symmetries can be found by existing methods.

Our on-going research seeks (i) faster symmetry detection, e.g., via incomplete algorithms,
(ii) finding [some] semantic symmetries that are not necessarily syntactic, (iii) more efficient
constructions of symmetry-breaking clauses, and (iv) the use of partial/conditional symmetries.
The latter were already shown useful in BDD-based model checking [23], SAT-solvers based
on backtracking [13, 31] and more general constraint-satisfaction solvers [6].



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry35

Acknowledgements

This work is funded by the DARPA/MARCO Gigascale Silicon Research Center, an Agere
Systems/SRC Research fellowship and a fellowship from the ACM/IEEE Design Automation
Conference.

References

[1] D. Achlioptas, C. P. Gomes, H. A. Kautz, and B. Selman, “Generating Satisfiable Problem
Instances”,AAAI 2000, pp. 256-261.

[2] F. Aloul, I. Markov and K. Sakallah, “Faster SAT and Smaller BDDs via Common Struc-
ture”, Intl. Conf. on Computer-Aided Design (ICCAD) 2001, pp. 443-448.

[3] L. Babai and E. M. Luks, “Canonical Labeling of Graphs”,Symp. on the Theory of Com-
puting (STOC) ‘83, pp. 171-183.

[4] L. Babai, R. Beals and P. Tak´acsi-Nagy, “Symmetry and Complexity”,Symp. Theory of
Comp. (STOC) ‘92, pp. 438-449.

[5] L. Babai, “Automorphism Groups, Isomorphism, Reconstruction”, Chapter 27, pp. 1447-
1541, In (R. L. Graham, M Gr¨otschel and L. Lov´asz, eds, Handbook of Combinatorics,
vol. 2, MIT Press, 1995).

[6] R. Backofen and S. Will, “Excluding Symmetries in Constraint-Based Search”,Intl. Conf.
on Principles and Practice of Constraint Programming (CP’99), Lecture Notes in Com-
puter Science, vol. 1713, pp. 73-87, Springer-Verlag, 1999.

[7] P. Beame, R. Karp, T. Pitassi and M. Saks, “The efficiency of Resolution and Davis-
Putnam Procedure”, to appear inSIAM Journal on Computing.
http://www.cs.washington.edu/homes/beame/papers/resj.ps

[8] B. Benhamou and L. Sais, “Tractability through symmetries in propositional calculus”,
Journal of Autom. Reasoning, vol. 12, (no.1), Feb. 1994. pp. 89-102.

[9] A. Bernasconi, V. Ciriani, F. Luccio, L. Pagli, “Fast Three-Level Logic Minimization
Based on Autosymmetry”,Design Automation Conf., 2002, pp. 425-430.

[10] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust SAT Solver”,Design Automa-
tion and Test in Europe (DATE) 2002, pp. 142-149.

[11] D. Bosnacki, D. Dams and L. Holenderski, “A Heuristic for Symmetry Reductions with
Scalarsets”,Intl. Symposium on Formal Methods for Increasing Software Productivity
(FME) 2001, Lecture Notes in Computer Science, Springer-Verlag, 2001.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry36

[12] L. Brisoux, E. Gregoire, L. Sais, “Improving backtrack search for SAT by means of re-
dundancy”,Intl. Symp. Foundations of Intelligent Systems (ISMIS) ’99. Warsaw, Poland;
Springer-Verlag 1999, p. 301-309.

[13] C. A. Brown, L. Finkelstein, and P. W. Purdom. “Backtrack searching in the presence of
symmetry”. (T. Mora, editor),Intl. Conf. on Applied Algebra, Algebraic Algorithms and
Error Correcting codes, 6th intl. conf., pp. 99-110. Springer-Verlag, 1988.

[14] V. Chvatal and E. Szemeredi, “Many hard examples for resolution”,Journal of ACM,
35(4), pp. 759–768, 1988.

[15] E.M. Clarke et al., (Edited by: Hu, A.J.; Vardi, M.Y.) “Symmetry Reductions in Model
Checking”, inIntl. Conf. Computer Aided Verification (CAV) ’98, pp. 159-171.

[16] S. A. Cook and D. G. Mitchell, “Finding Hard Instances of the Satisfiability Problem: A
Survey”, In Satisfiability Problem: Theory and Applications, DIMACS Series in Discr.
Math. and Theor. Comp. Sci, 25, pp. 1–17. Amer. Math. Soc., 1997.

[17] J. Crawford, “A theoretical analysis of reasoning by symmetry in first-order logic”,The
AAAI Workshop on Tractable Reasoning held at the Tenth National Conference on Artifi-
cial Intelligence (AAAI-92), San Jose, CA.

[18] J. Crawford, M. Ginsberg, E. Luks and A. Roy, “Symmetry-breaking predicates for search
problems”,5th Intl Conf. Principles of Knowledge Representation and Reasoning (KR)
’96, Cambridge, MA, pp. 148-159.

[19] M. Davis and H Putnam. “A Computing Procedure For Quantification Theory”,Journal
of the ACM, vol. 7(3), pp. 201–215, 1960.

[20] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem Proving”,
Journal of the ACM, (5)7, pp. 394–397, 1962.

[21] DIMACS Boolean Satisfiability Challenge Benchmarks:
ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf

[22] C.A.J. van Eijk, E.T.A.F. Jacobs, B. Mesman and A. H. Timmer, “Identification and Ex-
ploration of Symmetries in DSP Algorithms”, inDesign Automation and Test in Europe
(DATE) ‘99, March 1999, pp. 602-608.

[23] E. A. Emerson and R. J. Trefler, “From Asymmetry to Full Symmetry: New Techniques
for Symmetry Reduction in Model Checking”,Conf. on Correct Hardware Design and
Verification Methods (CHARME) ‘99, Lecture Notes on Computer Science, Springer 1999.

[24] M. Hall Jr., “The Theory of Groups”, McMillan, 1959.

[25] Th. W. Hungerford, “Algebra”,Graduate Texts in Mathematics, vol. 73, Springer, 1973.

[26] C. N. Ip and D. L. Dill, “Better verification through symmetry”,Formal Methods in System
Design, 9(1/2), pp.41-75, 1996.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry37

[27] V. Kravets and K. Sakallah, “Generalized Symmetries of Boolean Functions”,Intl. Conf.
on Computer-Aided Design 2000, pp. 526-532.

[28] V. Kravets and K. Sakallah, “Constructive Library-Aware Synthesis Using Symmetries”,
Intl. Conf. Design Automation and Test in Europe (DATE) 2001, pp. 208-213.

[29] B. Krishnamurthy, “Short Proofs For Tricky Formulas”,Acta Informatica, vol. 22, pp.327–
337, 1985.

[30] J. Köbler, U. Sch¨oning and J. Tor´an, “Graph Isomorphism Is Low
For PP”, Computational Complexity, vol. 2, no. 4, 1992, pp. 301-330,
http://citeseer.nj.nec.com/obler92graph.html .

[31] C. M. Li, B. Jurkowiak and P. W. Purdom, “Integrating Symmetry Breaking Into A DLL
Procedure”,Intl. Symp. on Boolean Satisfiability (SAT), Cincinnatti, 2002, pp. 149-155.

[32] A. Lozano and V. Raghavan, ”On the complexity of moving vertices in a
graph”, Tech Report LSI-98-30-R, Universitat Polit´echnica de Catalunya, 1998,
http://citeseer.nj.nec.com/25551.html .

[33] E. Luks, “Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial
Time”, Proc.IEEE Symp. on Foundations of Comp. Sci.(1980), pp. 42-49.

[34] E. Luks, “Hypergraph isomorphism and structural equivalence of boolean functions”,
Symp. on Theory of Computing (STOC) ‘99, pp. 652-658.

[35] E. Luks and A. Roy, “Symmetry Breaking in Constraint Satisfaction”,Intl. Conf. of Arti-
ficial Intelligence and Mathematics, Ft. Lauderdale, Florida, Jan 2-4, 2002.

[36] G. S. Manku, R. Hojati and R. Brayton, “Structural symmetry and model checking”,Intl.
Conf. Computer-Aided Verification (CAV) ’98, pp. 159-171.

[37] I. McDonald and B. Smith, “Partial Symmetry Break-
ing”, Technical Report, APES-49-2002, May 2002.
http://www.dcs.st-and.ac.uk/˜apes/apesreports.html

[38] B. D. McKay, “Practical Graph Isomorphism”,Congressus Numerantium, 30 (1981), pp.
45-87.

[39] B. D. McKay, “Nauty user’s guide” (version 1.5), Technical report TR-CS-90-
02, Australian National University, Computer Science Department, ANU, 1990.
http://cs.anu.edu.au/˜bdm/nauty/

[40] T. Miyazaki, “The Complexity of McKay’s Canonical Labeling Algorithm”, InL. Finkel-
stein and W. M. Kantor, eds, Groups and Computation II, Workshop on Groups and Com-
putation, DIMACS Series on Discrete Mathematics and Theor. Computer Science, 1996.

[41] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik, “Chaff: Engineering an
Efficient SAT Solver”,Design Automation Conf., 2001, pp. 530-535.



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry38

[42] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative Study of Two Boolean
Formulations of FPGA Detailed Routing Constraints”,Intl. Conf. on Physical Design
(ISPD 2001), pp. 222-227.

[43] M. Prasad, P. Chong and K. Keutzer, “Why is ATPG easy?”,Design Automation Conf
(DAC) ‘99, pp. 22-28.

[44] M. Prasad, E. Goldberg and R. Brayton, “Using Problem Symmetry In Search Based Sat-
isfiabiliy Problems”,Design Automation and Test in Europe (DATE) 2002, pp. 134-142.

[45] J. P. M. Silva and K. A. Sakallah, “GRASP: A New Search Algorithm for Satisfiability”,
IEEE Trans. On Computers, vol. 48, no. 5, May 1999, pp. 506-521.

[46] B. Selman, H. A. Kautz and B. Cohen, “Noise Strategies for Improving Local Search”,
National Conference on Artificial Intelligence (AAAI’ 94), pp. 337-343.

[47] B. Selman, D. Mitchell and H. Levesque, “Generating Hard Satisfiability Problems”,Ar-
tificial Intelligence, vol. 81, no. 1-2 (1996) pp. 17–29.

[48] A. Seress, “An introduction to computational group theory”,Notices Amer. Math. Soc.,
vol. 44 (1997), no. 6, 671-679.

[49] B. M. Smith, K. E. Petrie and I. P. Gent, “Models and Symmetry breaking
for ‘Peaceable Armies of Queens”, Technical Report, APES-50-2002, May 2002.
http://www.dcs.st-and.ac.uk/˜apes/apesreports.html

[50] L. H. Soicher, “GRAPE: A System For Computing With Graphs and
Groups”, in ”Groups and Computation” (L. Finkelstein and W.M. Kantor,
eds), DIMACS Ser. in Discr. Math. & Theor. Comp. Sci.11, pp. 287-291.
www-groups.dcs.st-andrews.ac.uk/˜gap/Share/grape.html

[51] E. L. Spitznagel, “Review of Mathematical Software, GAP”,Notices Amer. Math. Soc., 41
(7), (1994), pp. 780–782.http://www.gap-system.org/

[52] A. Urquhart, “Hard Examples for Resolution”,Journal of ACM, 24(1), pp.209-219, 1987.

[53] A. Urquhart, “The Symmetry Rule in Propositional Logic”, 1996.

[54] M. N. Velev, and R.E. Bryant, “Effective Use of Boolean Satisfiability Procedures in the
Formal Verification of Superscalar and VLIW Microprocessors”,DAC 2001, pp. 226-231.
http://www.ece.cmu.edu/˜mvelev/#BENCHMARKS



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry39

? ā a a1 ā1

b̄1 b1 b b̄ ?

Figure 7:An illustration of the proof of Theorem 2.3.2. Only vertices of color 2 are shown. All labels
are literals and not necessarilyvariables. Solid and dashed double-arrows show edges between those
vertices and the direction of logic implications in the chains. Double edges correspond to binary clauses
and single edges are Boolean consistency edges. Dotted arrows show a permutation of vertices implied
by a 7! b andā 67!b̄. Double dashed arrows show implications that complete the circular chain. Note that
the original graph is undirected, and the choice of direction for horizontal edges is a part of the proof.

Appendix

Below we complete the proof of Theorem 2.3.3 by showing that Boolean consistency is pre-
served. Recall that we model two-literal clauses by edges that connect vertices of color 2. Such
edges may potentially map to Boolean consistency edges, and we must prove that impossible.

The informal argument below proceeds by contradiction and amounts to a proof by induc-
tion, but betterexplainscorrectness to a human reader. Assume, without the loss of generality,
that there exists a literala that maps to a literalb, but ā does not map tōb. Then the edgeaā
must map into an edgebb1, whereb1 is a literal (b1 6= ā) sharing a binary clause withb. In other
words,ā 7! b1. Similarly, a literala1, distinct fromā and sharing a binary clause witha, must
map intob̄ (the case when literalsa1 andb1 correspond to the same variable can be analyzed
explicitly, but generally falls into cases (ii) and (iii) below). Two immediate consequences in-
volve vertices̄b1 andā1. Sinceā1 is adjacent toa1, it must map into a vertex adjacent tōb and
distinct from the vertices that we have encountered so far. Similarly, a vertex adjacent to ¯a and
distinct from the vertices that we have encountered so far must be mapped tob̄1. These two
new vertices are shown with question marks in Figure 7. Observe that any binary clause can
be thought of as a logic implication between its values. For example,(a+b) can be viewed as
(a= 0)) (b= 1) or (b= 0)) (a= 1), depending on the direction we need.

Through the process outlined above, a spurious symmetry leads to two chains of implica-
tions, such that one is mapped to the other by the symmetry. The fact that the symmetry is
spurious allows one to continue the chain by adding two new implications at a time, in either
direction. However, since we are dealing with a finite graph, this process must end at some
point by involving variables used before, whence we arrive at a circular chain of implications
as shown in Figure 7. Indeed, suppose we continue the two chains to the left, considering two



CSETR-463-02: Solving Difficult Instances of Boolean Satisfiability In The Presense of Symmetry40

more vertices in the graph. One of them (b̄1 in Figure 7) must represent the negation of a literal
we considered at the previous step (b1), and the other (the vertex in the upper left corner with
a question mark) does not have to. We are interested in two cases for this unknown vertex: (i)
represents the negation of a previously encountered literal, or (ii) this vertex does not represent
the negation of a previously encountered literal, but was encountered before. If the vertex was
not encountered before, we simply continue expanding the two chains to the left until we find
ourselves in case (i) or case (ii).

If case (i) is observed when extending the chains in one direction, e.g., to the left in Figure
7, the two chains become connected. Moreover, because existing chains consist of pairs of
complementary literals, one chain can only connect to “the opposite” end of the other chain.
After that, we can still continue the united chain to the right. If case (i) is observed on the right,
a circular chain of implications found. For example, if the two vertices with question marks in
Figure 7 correspond to literalsz andz̄, we get(a1+a)(ā+z)(z̄+ b̄)(b+b1)(b̄1+ ā1).

Case (ii) requires more sophisticated analysis because not every chain of binary clauses is
a chain of implications according to Definition 2.3.1. For example, if the two vertices with
question marks in Figure 7 both correspond to the literalz, then simply connecting the two
chains byz yields(a1+a)(ā+ z)(z+ b̄)(b+b1)(b̄1+ ā1). The literalz enters the two incident
binary clauseswith the same polarityand therefore does not propagate implications in either
direction. Therefore,instead ofconnecting the two chains, we continue both of them by adding
the Boolean consistency edgezz̄. While this does not, by itself, create a circular chain of
implications, it reduces the supply of vertices that were not encountered yet. By finiteness, case
(i) should happen sooner or later, and a circular chain of implications will be found.


