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Abstract 
Visual impressions from two-dimensional artistic 
paintings greatly vary under different illumination 
conditions, but this effect has been largely overlooked 
in most poster productions and electronic display. The 
light-dependent impressions are more pronounced in 
oil paintings and they arise mainly from the non-diffuse 
specular reflectances. We present an efficient method 
of representing the variability of lighting conditions on 
artistic paintings utilizing both simple empirical 
reflectance models and an image-based lighting method. 
The Lambertian and Phong models account for a 
significant portion of image variations depending on 
illumination directions, and residual intensity and color 
variations that cannot be explained by the reflection 
models are processed in a manner that is similar to the 
image-based lighting methods. Our technique allows 
brush strokes and paint materials to be clearly visible 
with relatively low data dimensionality.   
CR Categories and Subject Descriptions: I.3.3 [Computer 
Graphics]: Picture/Image Generation; I.3.7 [Computer 
Graphics]: Three-Dimensional Graphics and Realism – Color, 
shading, shadowing and texture; I.4.1 [Image Processing and 
Computer Vision] Digitization and Image Capture - 
Reflectance 

Additional Keywords: Image-based lighting, Illumination, 
Reflectance, Artistic Painting, Phong Model, Diffuse 
Reflectance, Texture Model. 
 

 
Figure 1. Paintings under different lighting conditions 

1  Introduction 
The difference between the visual impressions from a 
real painting in an art museum and from its 
photographed posters or images displayed on a CRT 
monitor is quite striking. The well-known reasons for 
the visual discrepancy include the inaccurate color 
reproduction and size difference. However, the visual 
impressions resulting from brush strokes, paint 
materials and canvas textures have been largely 
overlooked mainly due to the lack of appropriate means 
to display them in a reproduced image. The visual 
perception of those effects arises to a large extent from 
the non-Lambertian specular reflections and the 
appearance of a painting (especially oil painting) varies 
greatly depending on the illumination conditions. 
People in an art museum change their viewpoints 
occasionally to better appreciate the surface texture of a 
painting under various lighting environments. Figure 1 
shows two oil paintings under different light directions. 
A straightforward way to provide all the visual 
information would be to photograph a painting under 
all the possible illumination conditions and let a person 
change the conditions electronically in a computer. 
However, the data dimensionality would be 
prohibitively high, especially in a web environment. 

The ideal way of dealing with all the lighting and 
viewing variabilities is to employ accurate physical 
reflectance models based on the Bidirectional 
Reflectance Distribution Function (BRDF). However, 
most non-Lambertian physical models are quite 
complex and estimation of their parameters from real 
scenes is intricate. There have been data-driven 
approaches that render a scene under a novel lighting 
condition based on a set of input images acquired under 
known or unknown illumination conditions. These 
image-based relighting methods employ some form of 
data reduction schemes such as those based on 
eigenspace to lower data dimensionality and they 
linearly combine basis images to generate a novel view 
based on the linearity of light. For the paintings with 
both diffuse and non-Lambertian specular reflectances, 
the main difficulty in applying those methods lies in 
that they are limited to a single reflectance type from 
diffuse surfaces and specular reflections are not 
generally considered. 

In this paper, we present a new strategy of efficiently 
displaying artistic paintings under a range of lighting 
conditions using a combination of input images and 
reflectance models. This approach partly takes 
advantage of the compactness of reflection models and 
also partly of the image-based methods’ ability to 
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account for image variation without rigorous modeling. 
To explain this concept, we represent the image 
irradiance I as: 

I = f(Θ Θ Θ Θ ) + r 

where f(Θ Θ Θ Θ ) and Θ   Θ   Θ   Θ  are the reflectance model function 
and its parameters, respectively, and r is the residual, 
i.e., the difference between the measured image and the 
image predicted by the model. If f(Θ Θ Θ Θ ) is highly 
accurate physically, the residual is negligible and the 
image I can be compactly represented. If f(Θ Θ Θ Θ ) is only 
approximate, on the other hand, the residual r should 
be kept to maintain image information. Instead of the 
original images, this set of residuals can be used for 
image-based relighting together with f(Θ Θ Θ Θ ). When f(Θ Θ Θ Θ ) 
can account for a significant portion of multiple 
reflection components, the residual r becomes much 
smaller than the original image I and the data size for 
the image-based relighting part becomes much smaller. 
The reflectance model part f(Θ Θ Θ Θ ) allows both diffuse 
and specular reflections to be considered. Since it can 
be approximate, we use the Lambertian model for 
diffuse reflectance and the emprical Phong model for 
the specular reflectance for its simplicity. The residual r 
takes into account all the inaccuracies in modeling, 
measurement errors in image capture, and the intensity 
and color variations unmodeled in f(Θ Θ Θ Θ ) such as 
self-shadowing, sub-surface scattering and 
interreflections. In our work presented in this paper, the 
main variability is in lighting directions and we fixed 
the viewing direction. We show that our simple 
modeling using the Phong model keeps the residual 
very low for most of the paintings we experimented 
with and the total data size for displaying an oil 
painting under a wide range of illumination angles is 
kept very small.  

2  BACKGROUND AND PREVIOUS 
WORK 
 
The Bidirectional Reflectance Distribution Function 
(BRDF) [Nicodemus 77] provides the most 
fundamental basis for the characterization of surface 
reflectance properties. There have been a large number 
of techniques developed to accurately and compactly 
represent the BRDF such as those that use linear basis 
functions [Cabral 87], [Sillion 91], and physically 
based analytic models [Torrance 67], [Cook 81], [He 
91]. [Dana 99] presents the Bidirectional Texture 
Function (BTF) that captures textures under 
pre-integrated lighting conditions. Empirical models 
have been widely used in computer graphics [Phong 
75], [LaFortune 97]. 

Image-based relighting methods have been developed 
that allow a scene to be rendered under novel lighting 
conditions, based on a set of input images. They 
include [Shashua 92], [Nimeroff 94], [Belhumeur 96], 
[Teo 97], [Nishino 99], [Georghiades 99], [Wood 00] 
and [Debevec 00]. Most of the methods are based on 
diffuse reflections and specular reflections have not 
been explicitly taken into account. Like our work 

presented in this paper, they assume fixed viewpoint. 
On the other hand, objects can be rendered with novel 
lighting from new viewpoints in [Wong 97] [Levoy 
96][Gortler 96]. 

[Epstein 95] and [Ramamoorthi 01] suggest that 
low-dimensional lighting models are adequate to model 
reflections including non-Lambertian reflections. 
However, specular reflections are widely spread 
spatially in the test and sharp specularities are not 
considered. [Lin 00] suggest a method for separately 
combining diffuse and specular reflections linearly for 
generating novel views. 

 

Figure 2. Light arrangement 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Imaging geometry 

 

3  APPROXIMATION OF REFLECTION 
COMPONENTS 
 

3.1 Acquisition of Image Irradiance 
from Painting 
 
As in the field of photometric stereo and other related 
fields ([Debevec 00], [Georghiades 99], [Malzbender 
01]), we collect multiple images of a static 2-D 
painting with a static color camera under varying 
illumination conditions. Figure 2 shows the 
arrangement of lights in circular arc. The camera and 
lights are calibrated, i.e., the position and orientation of 
the camera and the lights are known. For the work 
presented in this paper, only one circular layer of lights 
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has been used.  

Figure 3 shows the imaging geometry. The painting 
plane is taken as the reference X-Y plane and its normal 
direction is taken as the Z direction. Since the position 
and dimensions of the painting in the field of camera’s 
view are known, the position of each pixel can be 
determined as P=(X,Y,0), and the illumination direction 
L and the viewing direction V for each pixel is given 
as: 

PL
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−
−

=
W

W ,   
PC
PCV

−
−=

W

W           (1) 

Where LW is the position of the light and CW is the 
position of the camera center. The surface orientation N 
remains unknown, but its deviation from the Z 
direction varies depending on the blush touch and 
thickness of paint. 

 

3.2 Approximate Physical Reflection 
Models 
 
Each image in the set can be represented as the 
combination of diffuse and specular reflections as: 

 
I(x,y,φ) = Id(x,y,φ) + Is(x,y,φ) + r(x,y,φ) 

 
where Id(x,y,φ) and Is(x,y,φ) are the diffuse and specular 
reflections, respectively, φ denotes the lighting angle, 
and the residual r(x,y,φ) is the difference between the 
modeled image irradiance and measured image I(x,y,φ). 
Since we are not particularly interested in rigorous 
physical modeling of the reflection components but 
only in finding good and simple numerical 
representations that can approximately account for the 
variation of the image appearance depending on the 
lighting directions, we used the Lambertian model for 
the diffuse term and an empirical model for the 
specular term. Any discrepancy between the 
measurement and the approximation will remain in the 
residual r(x,y). 

The Lambertian diffuse term in each image pixel (x,y) 
is given as: 

 
Id = Cd (N•L) = Cd cosθ, 

 
where Cd is the coefficient that accounts for the albedo 
and the scale factor from the Lambertian BRDF, and θ 
is the angle between L and N (see Figure 3.2). When 
the directions of L and N are close to the Z direction, it 
can be shown that Id also varies depending on the 
cosine of the lighting angle and it reaches its maximum 
when L is closest to N, i.e., 
 

Id (x,y,φ) = Cd (x,y) cos[φ−ξ(x,y)], 

 
where φ is the azimuth angle of light in the XYZ 
coordinates (see Figure 3) and ξ (x,y)  is the value of φ  
when L is closest to N. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Light arrangement: (a) top view of the XYZ 
space, (b) side view of the XYZ space. (c) Illustration 
of Id variation. 

 
Figure 4 (a) and (b) show our light arrangement for 
image capture. The lights are placed in a circular arc. 
The angles of the lights about the Y axis (denoted as φ´ 
in Figure 4 (a)) are uniformly sampled. However, the 
actual light angle φ for an off-center pixel should be 
adjusted according to Equation (1) and this results in 
non-uniform light sampling. Figure 4 (c) illustrates the 
variation of Id at a pixel with this adjusted non-uniform 
sampling. Note that the effect of non-uniformity 
becomes negligible when the distance to the lights is 
much larger than the painting size. 
We use the Phong model for approximating the 
single-lobe specular term. It is up to the capability of 
this empirical model how small the residual term r(x,y) 
becomes. We further simplify this model for our 
approximation as described below. The specular 
reflection is represented as: 

Is= Cs (V • R)n , 
where R is the light reflection unit vector (mirror of L 
about N), Cs  is the coefficient for the Phong 
reflectance and n represents the shininess of surface. 
Since R = 2(L • N)N–L, the specular reflection by this 
Phong model is given as: 

Is = Cs [2(L • N)(V • N) –V • L ]n 

Since the surface normals of each local surface in a 
painting do not deviate significantly from the Z 
direction, we can make an approximation of N≈V and 
the specular reflection is further simplified as: 

Is = Cs [N • L ]n = Cs cos nθ . . . .    
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Including the above specular term, the image 
variation is represented as: 

 
I(x,y,φ) = Cd (x,y) cos[φ−ξ(x,y)]  
      + Cs (x,y) cos n(x,y) [φ−ξ(x,y)] 
            + r(x,y,φ) .                  (2) 

 
Due to the approximations we made, the diffuse and 
specular terms in Equation (2) may not carry precise 
physical meaning but they are simply an analytical 
approximation of the reflection variation. All the 
inaccuracies in modeling, measurement errors in image 
capture, and the intensity and color variations 
unmodeled in f(Θ Θ Θ Θ ) such as self-shadowing, sub-surface 
scattering and interreflections, remain in the residual 
r(x,y,φ). The parameter ξ carries partial information 
about the surface normal with our lighting arrangement 
and the parameter n represents the surface shininess in 
the Phong model. Note that both ξ  and n vary from 
pixel to pixel. For a given set of measured images 
I(x,y,φk) under sampled illumination at φk, the 
parameters n(x,y) and ξ(x,y) and the coefficient color 
images Cd (x,y) (for R, G ,and B) and Cs (x,y) (for R, G, 
and B) can be estimated in the minimum least-squares 
sense. 

In addition to the residual images r(x,y,φ), the estimated 
two color images Cd(x,y) and Cs(x,y) and the two 
parameter images n(x,y) and ξ(x,y) are all that are 
needed for generating a view under novel lighting at 
φ using Equation (2) . The residuals r(x,y,φk) are 
obtained from all the frames (e.g., 40), but if their 
intensities are small, compression will be very effective 
and the their total size will be small. We can reduce the 
r(x,y) data by keeping only low dimensional data in 
eigenspace after a principal component anlaysis (PCA).  

 

3.3 Computation of Model Parameters 
 
The approximate two-lobe reflectance model described 
in Equation (2) is a nonlinear function of eight 
parameters: three diffuse coefficients, three specular 
coefficients, one coefficient for ξ(x,y), and one 
coefficient for n(x,y). This function is difficult to 
optimize because it is non-convex, and in particular it 
is exponential in one of the free parameters. 

We perform a two-stage optimization to minimize the 
residual. In the first stage, the parameter ξ is chosen 
heuristically based on the lighting angle for which 
intensity is maximized. The parameter ξ is then held 
fixed while the remaining seven parameters are 
optimized. By holding ξ fixed, we can establish a good 
initial estimate of the parameter n without 
complications due to the coupling of the two terms. 
Then, in the second phase, all eight parameters are 
optimized simultaneously. We use an interior-reflective 
Newton method for both stages, for which the Matlab 
implementation requires about 0.25 seconds of 
processing for each pixel. 

An example of the quality of the fitting procedure is 
shown for a sharply specular pixel in Figure 5, and a 
diffuse pixel with broad specularity in Figure 6. The 
sharp specularity of the pixel in Figure 5 causes 
saturation of the sensor, which needs to be considered 
when fitting the parameters. In the first stage of the 
optimization, we naively fit the parameters as if the 
data has no saturation. However, in the second stage we 
do not penalize models which saturate the sensor at 
lighting angles where the measurement is saturated. 
The result is a model which tends to saturate the sensor 
at the same lighting angles as were observed, as can be 
seen in Figure 6. 

 
  
 
 
 
 
 
 
 

 

 

Figure 5. Parameter fit of a saturated, sharply specular 
pixel 

 

 

 

 

 

 

 

 

 

Figure 6. Parameter fit of a diffuse, broadly specular 
pixel 

 
4  EXPERIMENTAL RESULTS 
 
Images were captured from from both oil and 
watercolor paintings. Nine samples from a set of 43 oil 
painting images are shown in Figure 7. Figures 8, 9 and 
10 show an image captured with the illumination angle 
φ=90°  in (a), its residual image in (b), and the relative 
values of the eight recovered coefficients in (c)-(f). The 
parameters in Figure 8 and 10 were recovered from a 
set of 22 images taken at 5 degree intervals, while the 
set in Figure 9 were recovered from a set of 43 images 
taken at 2.5 degree intervals. Note that the residual 
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images in Figures 8, 9 and 10 are contrast-enhanced for 
better visibility. Without the enhancement, the 
intensities are too low since the RMS fitting errors are 
7.0, 7.1, and 5.8 grey levels, respectively. As suggested 
by Figure 6, error is greatest near the specular peaks. 
Figure 10 shows the recovered reflectance parameters 
of a watercolor. Since the watercolor painting is nearly 
completely diffuse, no specular texture is visible. 
Figure 11 shows reconstructions of the paintings, as 
they would be seen from novel lighting directions. 

 
Figure 7. Nine of the 43 images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Oil painting: (a) Captured image 
I(x,y,φ=90°), (b) Residual r(x,y,φ =90°), (c) Diffuse Cd 
(x,y),  (d) Specular Cs (x,y), (e) Surface structure 
ξ(x,y),   (f) Surface shininess n(x,y)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Oil painting: (a) Captured image 
I(x,y,φ=90°), (b) Residual r(x,y,φ =90°), (c) Diffuse Cd 
(x,y),  (d) Specular Cs (x,y), (e) Surface structure 
ξ(x,y),   (f) Surface shininess n(x,y)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Water color painting: (a) Captured image 
I(x,y,φ=90°), (b) Residual r(x,y,φ =90°), (c) Diffuse Cd 
(x,y),  (d) Specular Cs (x,y), (e) Surface structure 
ξ(x,y),   (f) Surface shininess n(x,y) 
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The residuals are compressed using principle 
components analysis, and used to tradeoff between 
storage size and fidelity of reproduction. Figure 12 
shows this tradeoff for the painting shown in figure 7. 
An RMS error of less 4 grey levels is achieved using 
13 coefficients. 
 
 
 
 
 

  

 

 

 

 

 

 

 

 

 

Figure 11. (a) One of the 22 captured oil painting 
images. (b) One of the 43 captured oil painting images. 
(c) The image in (a) under a novel illumination 
direction. (d) The image in (b) under a novel 
illumination direction. 

 

 

 

 

 

 

 

Figure 12. Reproduction accuracy as a function of the 
number of residual images retained 

 

5  CONCLUSIONS AND FUTURE 
WORK 
 
We present a new method for visualizing artistic 
paintings under a range of lighting directions. It 
combines simple empirical reflectance models with the 
image-based lighting approaches. We show that 
important 3-D effects in paintings such as brush strokes 
and canvas texture can be visually reproduced with low 
data dimensionality. We plan to include physical color 
models for more efficient and accurate estimation 

reflection parameters. They include the dichromatic 
and neutral interface reflection models. 
We are interested in creating artificial illumination 
environments similar to those of good art museums. We 
intend to extend the range of lighting directions 
vertically, and develop an interactive editor for 
combining images under multiple lights and for 
modifying the recovered parameter maps to generate 
better subjective realism. Of particular interest is to 
create natural ambient lighting critical for reproducing 
museum-grade lighting environments. 
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