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Abstract

In this paper, we report on a new stability analysis for
hybrid legged locomotion systems based on factoriza-
tion of return maps. We apply this analysis to a fam-
ily of models of the Spring Loaded Inverted Pendulum
(SLIP) with different leg recirculation strategies. We
obtain a necessary condition for the asymptotic sta-
bility of those models, which is formulated as an ex-
act algebraic expression despite the non-integrability
of the SLIP dynamics. We outline the application of
this analysis to other models of legged locomotion and
its importance for the stability of legged robots and an-
imals.

1 Introduction

This paper introduces a new formalism for studying
the stability of legged locomotion gaits and other pe-
riodic dynamically dexterous robotic tasks. We are
most immediately motivated by the need to explain
and control the remarkable performance of RHex, an
autonomous hexapedal robot runner with unparalleled
mobility [1]. Powered by only six actuators, located
at the “hips” to drive each of its six passively com-
pliant legs, RHex’s locomotion is excited by a single
periodic “clock” signal split into phase and anti-phase
copies for coordinating its alternating tripod gait. A
simple PD controller at each hip motor in a given tri-
pod forces its leg to track the alternately fast and slow
clock reference signal corresponding to putative stance
and swing phases. Although RHex is currently being
endowed with more sophisticated proprioceptive reflex
loops to increase its responsiveness to varied terrain,
we are strongly motivated to develop an analytical un-
derstanding of the relationship between clock signal
and steady state gait properties in the “simple” open
loop case.

A complete account of this relationship in even the
simple case would entail insight into the steady state

properties of an under-actuated high degree of freedom
hybrid mechanical system whose Lagrangian dynam-
ics switches between a set of 26 possible holonomically
constrained models depending upon which toes are in
contact with the ground. Fortunately, a growing body
simulation study and empirical evidence [2] suggests
that RHex, when properly tuned, exhibits sagittal
plane stance behavior well approximated by the two
degree of freedom SLIP. Thus, in the short term, we
seek to understand how adjustments to a coordinat-
ing clock signal will determine the steady state perfor-
mance of the bipedal SLIP underlying the alternating
tripod gait. In this paper, we develop the mathemat-
ical foundations of a new formalism for distinguishing
volume-preserving from non-volume-preserving hybrid
Lagrangian systems. We apply this formalism to the
hybrid SLIP model, the results of which suggest new
insight into the relationship between clock excitation
and steady state gait.

1.1 Leg Swing Policies and Self Stabil-

ity in the SLIP Template

The SLIP model provides a ubiquitous description of
biological runners in the sagittal plane [3] and, as men-
tioned above, a broadly useful prescription for legged
robot runners such as RHex [4, 1, 2] as well. The
closely related three degree of freedom Lateral Leg
Spring (LLS), has been recently identified as a candi-
date template for cockroach running in the horizon-
tal plane [5, 6] and seems likely to be relevant for
RHex as well [1]. For present purposes, the most im-
portant insight from these models has been to pro-
vide a mathematical explanation for their unexpected
“self-stability” properties (asymptotically stable equi-
librium gaits in the absence of any sensor based feed-
back inputs), thus affording new hypotheses regarding
biological control strategies [7] and a formal founda-
tion for elucidating the stable open loop performance
of RHex.
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The originally discovered self-stability of SLIP [8, 9] is
based on a simple leg swing policy, the leg touchdown
angle at the end of aerial phases being kept constant
from stride to stride. A similar strategy was earlier
shown to yield stable gaits in the LLS model [6]. Re-
cently, a different time-dependent leg retraction pol-
icy has been shown to inherit the stability properties
of the fixed touchdown angle policy while increasing
the robustness of the SLIP system [10]. On the other
hand, numerical simulations of a recirculation policy
where the SLIP’s leg starts recirculating after leg liftoff
at a constant angular velocity until leg touchdown sug-
gest not asymptotic but neutral stability [11]. Hence
the leg swing policy seems to play a central role in the
stability of those low-dimensional models, as is also
suggested by high dimensional systems such as RHex
[1] or, as established in an independently conceived
model inspired by animal locomotion strategies, for a
quadrupedal trotter [12].

Stability of such systems is observed through the full-
stride return map – the function relating body state at
one stride to body state at next – which summarizes all
properties relevant to the goal of translating the body
center of mass. Unfortunately, even the simplest 2dof
SLIP system is non-integrable [13], which precludes
closed form solutions that might illuminate stability
mechanisms. In this paper we will show how the sta-
bility of hybrid systems possessing certain symmetries
can be analyzed in terms of their non-hybrid compo-
nents, e.g. flight phase and stance phase in the case of
SLIP, thus decomposing the hybrid return map into
“partial” return maps that might be analyzed more
easily.

Before doing so, we first introduce certain terminology
and notation used throughout the paper by way of
reviewing Liouville’s theorem (see e.g. [14]), pointing
out that the classical result should not be expected to
apply in the present case.

1.2 Liouville’s theorem and stability

Liouville’s theorem states that volume in phase space
of a holonomically constrained conservative dynami-
cal system described by a single Hamiltonian flow is
preserved, i.e. a set of initial conditions at t = t0 in
phase space will be mapped to a set with identical
symplectic volume for any t ≥ t0.

In the case of non-holonomically constrained conser-
vative Hamiltonian systems, the number of indepen-
dent conjugate momenta is smaller than the number
of independent configuration space variables and Liou-
ville’s theorem cannot be applied (see e.g. the asymp-
totic stability of the Chaplygin sleigh in [15] and ref-
erences therein).

In the case of piecewise-defined holonomically con-
strained conservative Hamiltonian systems with dif-
ferent flows f tα with α in an indexing set I the tran-
sition to a new Hamiltonian flow is triggered by so-
called threshold functions (for a general definition of
hybrid systems see [16]). In almost all settings within
robotics, these threshold functions between different
flows f tα and f tβ depend upon state, and often have no
explicit time dependence at all. Examples include a
discrete version of the Chaplygin sleigh [15, 17] and
low-dimensional models of legged locomotion in the
horizontal and sagittal plane [6, 8, 9], which all ex-
hibit partial asymptotic stability for certain param-
eter settings. Here, the (local) asymptotic stability
of those hybrid system at a fixed point means that
the eigenvalues of the components of their linearized
return maps defined by Poincaré sections lie within
the unit circle (excluding those corresponding to con-
served quantities). Liouville’s theorem is not directly
applicable due to the hybrid nature of such systems,
despite the fact that the flows are Hamiltonian.

In those cases, the return mapR defined by a Poincaré
section is composed of several “factor” maps rβα that
relate the state variables directly after one transition
to those directly before the next. Additional transition
mappings T β

α are used at transitions from flows f tα to
f tβ . They arise in practice from the fact that different
flows are most easily handled analytically in different
coordinate systems. Thus R = T α

γ ◦ r
α
γ ◦ · · · ◦ T

β
α ◦ r

β
α.

1.3 Contribution of this paper

In this paper, we focus on the role of volume preserva-
tion in flows and transition maps of models of legged
locomotion as an indicator of local stability. Although
we cannot invoke Liouville’s theorem for reasons just
reviewed, we nevertheless deduce the necessity for vol-
ume preservation at a given fixed point in these flows,
manifesting itself as the condition of unity determi-
nant in the associated linearized return map. In gen-
eral, in order to check whether the return map of a hy-
brid system R is volume-preserving at a fixed point,
the map must be computed explicitly [17, 6, 8, 9].
However, we will show that if all vector fields fα, α ∈ I
possess time reversing symmetries Sα and if the peri-
odic orbit giving rise to a fixed point of R is composed
of pseudosymmetric orbits (to be defined below) on
each flow domain Vα, volume-preservation of the whole
system can be determined by volume-preservation on
individual flow domains. Moreover, if the transition
function, hβα, from a flow domain, Vα, to a next flow
domain, Vβ , enjoys a certain symmetry related to the
vector field’s time reversing symmetry Sα, then vol-
ume preservation on Vα can be determined in certain
cases without an explicit expression for the flow map
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on that domain.

This paper introduces the rigorous foundations for the
formalism just outlined, and provides an example of
its value for robotics by application to the LLS [6]
and SLIP [8, 9] models. As explained above, the ques-
tion of whether a hybrid system is volume preserving
or not has immediate consequences for gait stability.
Since our conditions for volume preservation of the full
stride return map may be checked with respect to a
simple ”factor map”, we are able to study the effects
of a broad range of leg swing policies that are imple-
mentable in the analytically tractable ”flight” phase of
the leg. Specifically, we show how the volume preserv-
ing properties of SLIP under different leg recirculation
strategies can be determined by simple differentiation.
In particular, in Sec.3.1.3 we give for the first time
necessary conditions for asymptotic and neutral sta-
bility of a RHex-like leg recirculation scheme applied
to the SLIP model, without explicit computation of
the stance phase flow map.

2 Factoring return maps with

time reversing symmetries

Assume a hybrid mechanical system whose time evo-
lution is described by holonomically constrained au-
tonomous conservative vector fields fα, α ∈ I with
configuration space variables qα: ẋα = fα(xα) with
x = (qα q̇α)

> ∈ Vα. The open flow domains Vα are
called charts [16]. Transitions between vector fields are
governed by threshold functions hβα which can depend
on the initial condition xα0 = xα(t = 0) ∈ Vα, time
t, and the current state f tα(xα0).

1 We demand that
for each chart there is only one threshold function hβα.
Transitions to the vector field fβ are uniquely defined

by tβα0(xα0) = mint>0{t : h
β
α(f

t
α(xα0), xα0, t) = 0}. In

addition, all transition mappings T β
α are assumed to

be volume preserving. The flow map rβα for the αth

vectorfield is implicitly defined via tβα0 by rβα : xα0 7→

f
t
β
α0
α (xα0), where xα0 is assumed to be the result of a
preceding chart transition.

We will define a partial return map for evolutions on
individual charts Vα. Under the assumption that a
periodic orbit of the whole dynamical system is com-
posed of pseudo-symmetric orbits (to be defined be-
low) on individual charts, volume preservation of the
full return map R can be determined in some cases
without explicitly computing rβα.

Assume that the vector field fα admits a linear in-

1Note that this definition generalizes [16], where h
β
α only

depends on f tα(xα0).

volutive time reversing symmetry2 Sα (−Sα · ẋα =
fα(Sα · xα) ⇔ ẋα = fα(xα)) with S2

α = id. This im-
plies Sα ◦f

t
α ◦Sα = f−tα . We now investigate a compo-

sition of two partial return maps, xα1 = Sα ◦ r
β
α(xα0),

followed by xα2 = Sα ◦r
β
α(xα1). If the functional iden-

tity tβα1 = tβα0 holds, then

Sα ◦ r
β
α ◦ Sα ◦ r

β
α = Sα ◦ f

t
β
α0
α ◦ Sα ◦ f

t
β
α0
α =

f
−tβ

α0
α ◦ f

t
β
α0
α = id(1)

We now need a sufficient condition for tβα1 = tβα0. This
is given by

(

hβα(f
t
β
α0
α (xα1), xα1, t

β
α0) = 0⇔

hβα(f
t
β
α0
α (xα0), xα0, t

β
α0) = 0

)

⇒ tβα1 = tβα0 (2)

which can be rewritten as
(

hβα(f
t
β
α0
α ◦ Sα ◦ f

t
β
α0
α (xα0), Sα ◦ f

t
β
α0
α (xα0), t

β
α0) =

hβα(Sα(xα0), Sα ◦ f
t
β
α0
α (xα0), t

β
α0) = 0

)

⇔
(

hβα(f
t
β
α0
α (xα0), xα0, t

β
α0) = 0

)

(3)

which can be considered an invariance of the thresh-
old function under the partial return map Sα ◦ r

β
α :

xα0 7→ Sα ◦ r
β
α(xα0). This essentially checks that rβα is

“compatible” with time reversibility of fα.

Given that
Sα ◦ r

β
α ◦ Sα ◦ r

β
α = id (4)

then

D(Sα ◦ r
β
α ◦ Sα ◦ r

β
α) =

DSα ·Dr
β
α(Sα ◦ r

β
α) ·DSα ·Dr

β
α = 1 (5)

Next, we call a trajectory on a chart Vα pseudosym-
metric if a fixed point x̄α of the partial return map
Sα ◦ r

β
α with Sα ◦ r

β
α(x̄α) = x̄α exists. Evaluation of

expression (5) at such a fixed point then allows us to
determine the square of the determinant of the Jaco-
bian of rβα:

DSα ·Dr
β
α(x̄α) ·DSα ·Dr

β
α(x̄α) = 1

det(DSα ·Dr
β
α(x̄α) ·DSα ·Dr

β
α(x̄α)) = 1

det2(Drβα(x̄α)) = 1 .

Here det2(DSα) = 1. Hence if a periodic orbit de-
scribed by a fixed point of the full return map R is
composed of pseudosymmetric orbits on Vα and con-
ditions (2) hold on each chart, the full return map R

2The importance of time reversing symmetries for the
asymptotic behavior of dynamical systems has been emphasized
in [18].
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is volume-preserving at this fixed point. If conditions
(2) do not hold or if periodic orbits of the full return
map are not composed of pseudosymmetric orbits, no
conclusions can be drawn from this argument. Note
that here “volume” is defined with respect to the state
variables chosen, and in general is not a phase space
volume, and that the computation (at the fixed point)
is local.

3 Application to hybrid models

of legged locomotion

3.1 SLIP with pitching

The SLIP model consists of a rigid body of mass m
and moment of inertia I with a massless springy leg
attached to an unactuated hip joint which is a dis-
tance d away from the center of mass (for details see
[9]). A full stride consists of a stance phase with the
foothold fixed and the leg under compression, and a
flight phase in which the body describes a ballistic
trajectory. Hence there are two vector fields f1 (for
stance) and f2 (for flight) and the return map can be
written as R = T 1

2 ◦ r
1
2 ◦ T

2
1 ◦ r

2
1. We assume that

a periodic orbit of period one is composed of pseu-
dosymmetric stance and flight phases.3

3.1.1 Stance phase of SLIP with pitching

The equations of motion that describe the stance
phase of SLIP with mass m and moment of inertia
I read in the conventions of Fig. 1 (see also [9]):

ζ̈ = ζψ̇2 − g cosψ −
∂ηV (η)

mη
(ζ + d cos (ψ + θ))

ζψ̈ = −2ζ̇ψ̇ + g sinψ + d
∂ηV (η)

mη
(sin (ψ + θ))

θ̈ = dζ
∂ηV (η)

ηI
sin (ψ + θ) (6)

with spring potential V (η) where the compressed

spring length η =
√

d2 + ζ2 + 2dζ cos (ψ + θ) ≤ η0,
the relaxed spring length being denoted by η0. The
distance between the ‘hip’ pivot and the mass center
is d and all joints, including the toe-ground pivot, are
assumed frictionless and moment-free.

The linear involutive time reversing symmetry S1 of
(6) acting on x1 = (ζ ψ θ ζ̇ ψ̇ θ̇)> is given by

S1 = diag(1,−1,−1,−1, 1, 1) . (7)

3This was proven in [9] for SLIP without pitching dynamics
and without gravity in stance.

Figure 1: Parametrization of SLIP with pitching dy-
namics.

Under S1, the spring length η transforms as S1(η) = η.
Transitions to flight occur when the spring length has
reached its rest length η0 which is also the initial spring
length at the beginning of stance. Hence the threshold
function can be written as h2

1(x1(t), x10, t) = η2(t) −
η2
0 . Then the partial return map S1 ◦ r

2
1 is volume-

preserving at a fixed point, because (3) holds:

h2
1(x1(t

2
10), x10, t

2
10) = η2(t210)− η

2
0 = 0

⇔ h2
1(S1 · x10,S1 · x1(t

2
10), t

2
10) = η2

0 − η
2(t210) = 0

This result is independent of the specific form of the
spring potential V (η). For d = 0, the two-dimensional
SLIP system describing a point mass on a massless
spring is recovered.

3.1.2 Flight phase of SLIP with pitching

The equation of motion of the center of mass that
describe the flight phase of SLIP read

ÿ = 0

z̈ = −g

θ̈ = 0 (8)

where the z-axis points vertically upwards, the y-axis
points in a horizontal direction, and θ denotes the
SLIP body’s pitching angle with respect to the hori-
zontal. The linear involutive time reversing symmetry
S2 of (8) acting on x2 = (y z θ ẏ ż θ̇)> is given by

S2 = diag(±1, 1,−1,∓1,−1, 1) . (9)

Here, the sign ambiguity in θ was resolved by match-
ing θ’s transformation to that of the stance phase (7).
The transformation law of y under S2 is not needed in
subsequent calculations and is left unresolved.

The simplicity of the equations of motion (8) allows us
to explicitly compute the determinant of the Jacobian
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of the partial return map S2 ◦ r
1
2 at a fixed point for

a given leg recirculation scheme. Therefore the appli-
cation of the formalism of Sec. 2, which only provides
a sufficient condition for volume-preservation, but not
for non-preservation, is relegated to the appendix.

The equations of motion for the z and θ coordinates
can be explicitly solved and read in dimensionless vari-
ables:

z̃(t̃) = z̃0 + ˙̃z0t̃−
t̃2

2
˙̃z(t̃) = ˙̃z0 − t̃

θ̃(t̃) = θ̃0 +
˙̃
θ0t̃

˙̃
θ(t̃) =

˙̃
θ0 (10)

with t̃ = t
√

g
η0
, z̃ = z

η0
, ˙̃z = ż√

η0g
, θ̃0 = θ0, and

˙̃
θ = θ̇

√

η0

g
. We now want to explore different strate-

gies to position the leg during flight. Since the leg is
assumed massless, any leg angle trajectory φ(t̃) where
φ is defined in Fig. 1 can be commanded.

The threshold function h1
2 for a recirculating leg reads

in dimensionless variables

h1
2(x̃2(t̃), x̃20, t̃) = z̃(t̃) + d̃ cos(θ̃(t̃))− cos(φ(t̃)) (11)

where d̃ = d
η0
. Setting eq. (11) to zero determines the

time from leg liftoff (t̃LO = 0) to leg touchdown t̃TD :=
t̃120, for which in general a closed form solution does not
exist. Then the flow map r12 takes the dimensionless

state vector x̃2 = (z̃ θ̃ ˙̃z
˙̃
θ)> (y and ẏ are omitted) from

its value at leg liftoff to that at touchdown: r12(x̃20) =
x̃2(t̃TD). A fixed point of a pseudosymmetric flight
trajectory satisfies ¯̃x2 = S2 ◦ r

1
2( ¯̃x2).

The determinant of the Jacobian of r12 can easily be
computed from the flight trajectory expressions (10),
bearing in mind that the flight time t̃TD also depends
on the initial conditions:

det(Dr12) = 1− ∂ ˙̃z0
t̃TD + ˙̃z0∂z̃0 t̃TD +

˙̃
θ0∂θ̃0 t̃TD (12)

In this expression, the leading term 1 is a consequence

of Liouville’s theorem, because z̃ and ˙̃z and θ̃ and
˙̃
θ are

canonically conjugate up to a trivial rescaling, whereas
the remaining terms make the non-applicability of Li-
ouville’s theorem to this hybrid system with a state-
dependent threshold function (11) explicit. Albeit t̃TD
cannot be computed explicitly in general, t̃TD = 2 ˙̃z0

at a fixed point of S2 ◦ r
1
2 and cos(φ(t̃TD)) = z̃0 +

d̃ cos(θ̃0), sin(φ(t̃TD)) = −
√

1− (z̃0 + d̃ cos(θ̃0))2 and

θ(t̃TD) = −θ̃0. Hence using implicit differentiation of
(11) the determinant at this fixed point can be written

in terms of partial derivatives of φ(t̃)

det
(

Dr12( ¯̃x2)
)

= 1 +
∆1 num

2

∆1 den
2

(13)

with

∆1 num
2 =

√

1− (z̃0 + d̃ cos(θ̃0))2 ·
(

−∂ ˙̃z0
φ(t̃TD) + ˙̃z0∂z̃0φ(t̃TD) +

˙̃
θ0∂θ̃0φ(t̃TD)

)

+˙̃z0 − d̃ sin(θ̃0)
˙̃
θ0

∆1 den
2 = −

√

1− (z̃0 + d̃ cos(θ̃0))2∂t̃φ(t̃TD)

− ˙̃z0 + d̃ sin(θ̃0)
˙̃
θ0

The eigenvalues of the partial return map S2 ◦ r
1
2 are

λ1 = 1 (vertical energy), λ2 = 1 (rotational energy),
λ3 = −1, and λ4 = −det(Dr12( ¯̃x2)). It must be em-
phasized, however, that the eigenvalues of this partial
return map are not equal to the eigenvalues of the to-
tal return map R at the fixed point. In particular, the
eigenvalues of R can be complex, as in Fig. 2, below.

Setting eq. (13) to 1 yields a partial differential equa-
tion for leg recirculation schemes φ(t̃) that are vol-
ume preserving. In the following, for simplicity,we ap-
ply formula (13) to different leg recirculation schemes

for SLIP without pitching dynamics, i.e. d̃ = 0 and
no θ̃ dependence. The investigation of leg recircula-
tion strategies of SLIP with pitching dynamics will be
published elsewhere. For SLIP without pitching, the
determinant at the fixed point simplifies to

det(Dr12( ¯̃x2)) = 1 + (14)
√

1− z̃2
0

(

−∂ ˙̃z0
φ(t̃TD) + ˙̃z0∂z̃0φ(t̃TD)

)

+ ˙̃z0

−
√

1− z̃2
0∂t̃φ(t̃TD)−

˙̃z0

3.1.3 Analysis of Recirculation Strategies

Consider now the following family of leg recirculation
schemes

φ(t̃) = k arccos(z̃0) + α(t̃− l ˙̃z0) : k, l > 0

with α(x) = 0 for x < 0 (15)

k = 1 means that recirculation starts at the leg liftoff
angle; if l = 1, a certain angular trajectory is specified
starting at apex (see the leg retraction scheme in [10]).

The application of the partial return map S2 ◦ r
1
2 on

x̃20 in the threshold function h1
2 (3) in order to de-

termine for which parameters of the leg recirculation
schemes (15) volume is preserved is relegated to the
appendix. Instead we proceed by explicitly computing
det(Dr12( ¯̃x2)). With the angular trajectory (15), the
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determinant becomes

det(Dr12( ¯̃x2)) = 1+
−l
√

1− z̃2
0α̇(

˙̃z0(2− l)) + ˙̃z0(k − 1)
√

1− z̃2
0α̇(

˙̃z0(2− l)) + ˙̃z0

(16)
Hence for different leg angle protocols we obtain

1. Constant leg touchdown angle protocol: k = l =
0, α = 2π − β ⇒ det(Dr12( ¯̃x2)) = 0. The two-
dimensional Jacobian has rank one, and the re-
turn map becomes one-dimensional. In [8] this
return map was parametrized by apex height,
whereas in [9] the angle of the touchdown velocity
was chosen. No information about the behavior
of this lower-dimensional return map can be ob-
tained from this argument.

2. Leg retraction [10]: k = 0, l = 1, and α(t̃− ˙̃z0) =
αA + ω̃(t̃− ˙̃z0) where αA is a constant angle and

ω̃ = ω
√

η0

g
is a constant dimensionless angular

velocity. Then again det(Dr12( ¯̃x2)) = 0 and the
behavior of the remaining one-dimensional return
map cannot be determined from this argument.

3. Leg recirculation (starting at leg liftoff): l = 0,
k > 0, and α(t̃) = αA + ω̃t̃. This exemplifies
the fast rotation phase of the open loop policy
used by RHex [1], although a full analysis is be-
yond the scope of the present paper. Then for
˙̃z0 ≥ 0 and z̃0 ≤ 1 (necessary conditions for a
pseudosymmetric flight phase):

det(Dr12( ¯̃x2)) = 1−
˙̃z0(1− k)

˙̃z0 + ω̃
√

1− z̃2
0

(17)

=







< 1 : 0 < k < 1
1 : k = 1
> 1 : k > 1

In order to illustrate the predictive power of eq.
(17), we numerically approximate the determinant
det(DR(x̄)) of the full return map for fixed SLIP
parameters Ẽ = E

mgη0
= 2.1, γ = κη0

mg
= 13, and

fixed recirculation parameters αA = π, ω̃ = 14 for
different k ∈ {1/6, 0.5, 1, 2, 3.3}. Here, E is the to-
tal energy of the system and the spring potential is
V (η) = (κ/2)(η− η0)

2. We then compare these values
to the values of the determinant obtained by inserting

the numerically determined fixed points x̄2 = ( ¯̃z0
¯̇̃z0)

>

into eq. (17). The determinants obtained in those two
different ways are plotted in Fig. 2a and agree to a
high precision (|det(DR(x̄))−det(Dr12( ¯̃x2))| < 10−7).
Barring an improbable numerical cancellation between
stance and flight phase dynamics, this also demon-
strates that the SLIP’s stance phase is volume pre-

serving.4 In Figs. 2b-d iterations of the return map

in ( ¯̃z0
¯̇̃z0)-space are shown for k ∈ {1/6, 1, 3.3} and

initial conditions off the fixed point. The eigenvalues
are complex conjugate pairs in all three cases. For
k = 1/6 the trajectory spirals towards the fixed point,
as expected from a stable fixed point (Fig. 2c), for
k = 1 the trajectory is a deformed circle around the
fixed point,5 indicating neutral stability (Fig. 2d), and
for k = 3.3 the trajectory spirals away from the fixed
point, indicating instability (Fig. 2b).

3.2 Lateral leg-spring model

The lateral leg-spring (LLS) was introduced in [6].
We focus here on the three-degree-of-freedom version
with pairs of ‘virtual’ elastic legs in intermittent con-
tact with the ground. A full stride consists of two
stance phases: a phase where the first elastic leg piv-
ots around a “foothold” on one side of the rigid body,
followed by a phase where the second elastic leg piv-
ots around a “foothold” on the opposite side. See [6]
for details. The equations of motion of both stance
phases can be cast into the form (6) (with g = 0).
Hence the stance phases from leg touchdown to liftoff
are volume preserving. They are related by a transi-
tion mapping T 2

1 which maps the state at liftoff of the
1. leg to the state at touchdown of the 2. leg, and
an analogous map T 1

2 . Thus the return map reads
R = T 1

2 ◦ r
1
2 ◦ T

2
1 ◦ r

2
1.

The dynamics of the LLS model can be described by
four state variables (v, δ, θ, ω), where v is the center of
mass speed, δ is the angle between the body axis and
the mass center velocity vector, θ is the angle between
the body axis and an inertial frame and ω = θ̇. In
[6] these four variables are augmented by two fixed
parameters: β, the leg touchdown angle with respect
to the body axis, and l0, the relaxed leg length; and
from the values of these six quantities at liftoff one can
find the initial data for the next stance phase.

In these variables, the transition mapping T 2
1 (omit-

ting l0) reads

T 2
1

(

(vLOn δLOn θLOn ωLOn βLOn )>
)

=

(vLOn δLOn θLOn ωLOn β)> (18)

where n stands for the nth stance phase, LO for liftoff,
and β is held constant for all stance phases. If, as im-
plicitly assumed for the SLIP treated above, β (and/or
l0) are regarded as state variables rather than param-
eters, then since they are ‘reset’ to fixed values at

4This is not true for approximations to the stance phase
dynamics which violate the time reversing symmetry S1.

5Despite the fact that the determinant away from the fixed
point is not 1 in this example, volume seems to be preserved in
a finite region around the fixed point.
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Figure 2: a) Comparison of the numerically computed determinant det(DR(x̄)) (+) of the return map Jacobian
to to the determinant det(Dr12( ¯̃x2)) (◦) obtained by using the numerically determined fixed points in eq. (17).
b)-d) Trajectories around a fixed point. Because of the slow convergence, only every 9th iteration in plot b) and
every 5th iteration in plot c) is shown.

touchdown, independent of their values at liftoff, the
transition mapping T 2

1 has rank four, volume is not
preserved, and no deductions can be made regarding
the reduced four-dimensional map. Restoring a non-
trivial dynamical role to the variable β, for example,
via a leg swing feedback strategy similar to (15), could
lead to a non-degenerate mapping.

4 Conclusions

In this paper we used the example of the SLIP locomo-
tion model to show how factored analysis of the return
map may be a useful new tool in the stability analy-
sis of hybrid Lagrangian systems. Specifically, we ob-
tained a necessary condition for the asymptotic stabil-
ity of SLIP in the presence of a leg recirculation strat-
egy relevant to the operation of the robot RHex [1].
This condition is formulated in Sec. 3.1.3 for a particu-
lar family of leg recirculation strategies as an exact al-

gebraic expression despite the non-integrability of the
SLIP system. Hence leg recirculation strategies that
violate the above condition can be discarded without
recourse to cumbersome numerical simulations. Ap-
plication of this formalism to the robot RHex requires
a more elaborate parametrization of leg recirculation
schemes modeled after RHex’s open loop controller.

This analysis can provide for the first time a partial
explanation for the surprising self-stable behavior ob-
served empirically in RHex. It also paves the way for a
more principled investigation of detailed, biologically
motivated leg placement strategies in the LLS model
[6] which captures many aspects of cockroach locomo-
tion [19].
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Appendix: Invariance of the

threshold equation for SLIP

without pitching

In this appendix we show that the invariance of
the threshold equation (11) under S2 ◦ r

1
2 : x̃20 7→

S2 ◦ f
t̃TD
2 (x̃20) with x̃20 = (z̃0 ˙̃z0)

> corresponds to
|det(Dr12)| = 1 for the leg recirculation family (15).
First we observe that

f t̃2(x̃20) =

(

z̃0 + ˙̃z0t̃−
t̃2

2
˙̃z0 − t̃

)

(19)

S2 ◦ f
t̃
2(x̃20) =

(

z̃0 + ˙̃z0t̃−
t̃2

2

−( ˙̃z0 − t̃)

)

(20)

f t̃2 ◦ S2 ◦ f
t̃
2(x̃20) =

(

z̃0
− ˙̃z0

)

(21)

The threshold function h1
2(f

t̃
2(x̃20), x̃20, t̃) becomes

h1
2(f

t̃
2(x̃20), x̃20, t̃) = z̃(t̃)− cos(φ(z̃0, ˙̃z0, t̃)) (22)

with φ(z̃0, ˙̃z0, t̃) = k arccos(z̃0) + α(t̃− l ˙̃z0).

Then

h1
2(f

t̃TD
2 ◦ S2 ◦ f

t̃TD
2 (x̃20),S2 ◦ f

t̃TD
2 (x̃20), t̃TD) =(23)

z̃0 − cos
(

k arccos(z̃0 + ˙̃z0t̃TD −
t̃2TD
2

)+

α
(

t̃TD + l( ˙̃z0 − t̃TD)
)

)

= 0

For a solution of this equation with the leg recirculat-
ing only once during flight φ(z̃0, ˙̃z0, t̃TD) ∈ ( 3

2
π, 2π).

This must be taken into account when inverting the
cosine:

arccos(z̃0) = −
(

k arccos(z̃0 + ˙̃z0t̃TD −
t̃2TD
2

) +

α
(

t̃TD + l( ˙̃z0 − t̃TD)
)

)

+ 2π

⇔ cos
(

k arccos
(

z̃(t̃TD)
))

− cos
(

arccos(z̃0) +

α
(

t̃TD + l( ˙̃z0 − t̃TD)
)

)

= 0

k=1,l=0
⇔ z̃(t̃TD)− cos

(

arccos(z̃0) + α
(

t̃TD
))

= 0

For k = 1 and l = 0 this does reduce to the orig-
inal threshold function (22) and we conclude that

|det(Dr12)| = 1, as was explicitly derived in (17). For
other values of k and l this does not in general re-
duce to (22), although we have not ruled out that for
specific values of k and l and a specific form of α the
original threshold function (22) is recovered.

References

[1] U. Saranli, M. Buehler, and D.E. Koditschek.
Rhex: A simple and highly mobile hexapod
robot. The International Journal of Robotics Re-
search, 20(7):616–631, 2001.

[2] R. Altendorfer, N. Moore, H. Komsuoḡlu,
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