
Verifying π-calculus Processes by Promela

Translation

Hosung Song and Kevin J. Compton

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109, USA

{hosungs,kjc}@umich.edu

Abstract. In this paper, the possibility of verifying π-calculus processes
via Promela translation is investigated. A general translation method
from π-calculus processes to Promela models is presented and its useful-
ness is shown by performing verification tasks with translated π-calculus
examples and SPIN. Model checking translated π-calculus processes in
SPIN is shown to overcome shortcomings of the Mobility Workbench,
which implements a theorem-proving style µ-calculus model checking al-
gorithm for the π-calculus.

1 Introduction

Processes in Promela models achieve concurrency through global variable sharing
or message passing. Promela’s message passing primitives have a unique feature:
they can pass channels as messages in communication. The π-calculus [4, 5] is a
canonical process algebra especially designed for mobile concurrent computation
in a very abstract way. The π-calculus achieves this goal with the same idea:
passing channels as messages in communication. This striking similarity leads
us to think about the possibility of performing π-calculus verification tasks in
Promela and SPIN environments.

Verification in the π-calculus is usually done by checking bisimulation equiv-
alence. A more complex process representing an implementation is shown to be
bisimilar to a simpler process representing a specification. The simpler process
should be so clear that it can be regarded as satisfying correctness requirements
in an intuitive sense, not with rigorous mathematical proof. This may not be
the case for every occasion, and we believe there should also be a usable model
checking verification method with temporal logic specification. There are model
checking algorithms for the π-calculus with µ-calculus style specification logic [2,
1], but the logic itself is very complicated to describe or understand, and some-
times results are not obtained in reasonable amount of time even for the proofs
of very simple correctness requirements.

In this paper, we suggest an alternative way of model checking π-calculus
processes via Promela translation. We present a translation method from π-
calculus processes to Promela models. A strategy to unify the model checking
logics and styles between the π-calculus and Promela/SPIN is also suggested.

Experimental study with simple examples is presented to show the effectiveness
of our approach to π-calculus model checking. Visualized counterexamples for
negative results are the most immediate benefit we can get through our approach.
Also, we find that some π-calculus problems, which fail to terminate in several
hours using the usual π-calculus model checking method, can be solved with
SPIN and Promela translation in less than a second. With these experiments,
we believe our translation-based approach to π-calculus model checking can be
a better alternative to the existing one.

This paper is organized as follows. In Section 2, we review necessary back-
ground knowledge: the π-calculus, the µ-calculus extension for the model check-
ing, and an existing tool for this purpose. In Section 3, the translation method
is presented for general π-calculus processes. In Section 4, various experiment
results are presented to show the usefulness of our approach. Section 5 concludes
the paper with interesting thoughts about the extension of this research.

2 Preliminaries

We briefly review the π-calculus, the π-µ-calculus and the Mobility Workbench
(MWB) in this section.

2.1 The π-calculus

The π-calculus [4, 5] is a canonical process algebra which can describe mobile
concurrent computation in an abstract way. It provides a way of defining labeled
transition systems which can exchange communication channels as messages.
The π-calculus used in this paper consists of following components.

– Action. The set N of names (for actions). The set of co-names is N =
{x | x ∈ N}. The set of labels L is N ∪N . The set of actions Act is L∪{τ},
where τ is the label for silent actions.

– Action prefix. The action prefixes π of the π-calculus are a generalization of
the actions introduced above; an action prefix represents either sending or
receiving a message (a name), or making a silent transition. The syntax is

π ::= x(y) receive y along x

x〈y〉 send y along x

τ unobservable action

where x, y ∈ N .
– Process. The set P π of π-calculus process expressions is defined by the fol-

lowing syntax:

P ::= 0
∣

∣

∑

i∈I

πi.Pi

∣

∣ P1|P2

∣

∣ (νa) P
∣

∣ [x = y]P
∣

∣ !P

where a ∈ N , πi is an action prefix, and I is any finite indexing set.

2

In the above definition of P π, there are 6 kinds of processes.

– Null. 0 is the deadlocked process which cannot involve with any transition.
– Prefixed sum.

∑

i∈I
πi.Pi can proceed to Pi by taking the transition of the

action prefix πi. Transitions and nondeterministic choices are described as
prefixed sums.

– Parallel composition. P |Q is a process consisting of P and Q which will
operate concurrently, but may interact with each other through actions/co-
actions.

– Restriction. (νa) P means that the action/co-action a or a in P can neither
be observed outside, nor react with a or a outside the scope of P . This
operator is for the description of restricted internal actions/co-actions. Also
the effect of any restriction requires a new instantiation of the local name a
inside the restriction.

– Match. [x = y]P behaves like P if the names x and y are identical, and
otherwise like 0.

– Replication. !P means that the behavior of P can be arbitrarily replicated.

Structural operational semantics of the π-calculus is given by reaction and tran-
sition rules. One of the rules is the reaction rule:

(x(y).P + M) | (x〈z〉.Q + N) → {z/y}P | Q

where {z/y}P means syntactic substitution of names for names. Every free oc-
currence of y in P is substituted with z. The meaning of this reaction is as
follows. x(y).P (input to y along x, then P) is chosen for the left component,
and x〈z〉.Q (output of z along x, then Q) is chosen for the right component. The
result of this reaction is the parallel composition of the remaining parts of each
component with free occurrences of y in P substituted by z.

For more details of the π-calculus, we refer to [4, 5].

2.2 The π-µ-calculus

A logic for specifying correctness requirements for π-calculus processes was sug-
gested in [2] and is called the π-µ-calculus. The π-µ-calculus extends the µ-
calculus logic to reason about the messages that accompany any π-prefix. In
addition to the usual components of the µ-calculus (base propositions, conjunc-
tion, disjunction, possibility modality, necessity modality, fixpoint expression),
the π-µ-calculus also has the constructs for quantifying message contents. For
more details, we refer to [2, 1]. In this paper, we briefly reproduce from [1] an
example of the π-µ-calculus logic formula for the correctness requirement of no
message loss. The target π-process is any buffer with input channel i and output
channel o.

νL.([t]L ∧ [o]Σu.L ∧ [i]Πu.(νI(u).([t]I(u) ∧ [i]Πz.I(u) ∧ [o]Σz.z = u))(u))

Note that the usage of square/angle brackets is different from SPIN’s LTL.
Square brackets are used for necessity modality, not the “always” operator, and

3

angle brackets are used for possibility modality, not the “eventuality” operator.
The meaning of the formula is also reproduced from [1].

L(“nothing has been input yet”) must hold after all transitions, except
after an input i(u) when I(u) holds. I(u)(“u has been input but not
output”) holds after all transitions, except after an output o〈u〉 (then
nothing more is required) or after an output o〈z〉 with z 6= u (then it
is false). So I(u) means nothing can be emitted before u, and L means
that nothing can be emitted before the first received item.

In general, the π-µ-calculus specification of correctness requirements is much
more complicated than the µ-calculus specification (not to mention CTL or
LTL) because message contents need to be quantified accordingly. In the above
example, Σ and Π are for that purpose. This is due to the model checking style–
there is no environment process and the correctness requirement should consider
every possible configuration of any possible environment. Since we are going to
translate π-calculus processes into Promela, in which models under verification
should be closed by suitable environment processes, we will not encounter such
complicated name-quantified π-µ-calculus formulas if we also add environment
processes to models in the π-calculus.

2.3 The Mobility Workbench

The Mobility Workbench (MWB) [6] started as a bisimulation equivalence checker.
It contains everything needed for π-process analysis: π-grammar, parser, ab-
stract representation, executor and bisimulation checker. A model checking al-
gorithm [2] for π-µ-calculus temporal logic formulas was also included and later
improved with another algorithm [1]. To the best of our knowledge, the MWB is
the only tool available for simulation and verification of the π-calculus. Its source
code, written in SML/NJ, has all the useful functionalities, so it is very natural
to implement our translation program as an add-on to the MWB utilizing MWB
basis.

The first user interface of the MWB would be the process description com-
mand. The detailed grammar and command description can be found in [6, 1].
The following are examples of MWB process descriptions.

agent Buf1(i,o) = i(x).’o<x>.Buf1(i,o)

agent Buf2(i,o) = (^m)(Buf1(i,m) | Buf1(m,o))

agent Buf20(i,o) = i(x).Buf21(i,o,x)

agent Buf21(i,o,x) = i(y).Buf22(i,o,x,y) + ’o<x>.Buf20(i,o)

agent Buf22(i,o,x,y) = ’o<x>.Buf21(i,o,y)

agent is the keyword for defining a π-process in the MWB. This differs from
formal π-calculus grammar in that the output prefix o〈x〉 is typed as ’o<x> and
the restriction (νm) P is typed as (^m) P. Also, the silent action τ is typed as
t. No replication is allowed for π-process description in the MWB because of the
decidability issue. In the above examples, Buf1(i,o) is a 1-cell FIFO (First In

4

First Out) buffer, Buf2(i,o) is a 2-cell FIFO buffer with parallel composition,
and Buf20(i,o) is a 2-cell FIFO buffer without parallel composition. All free
names in any process description should be parameterized as above. Primitive
verification tools are the model executor (simulator) with the command step

and the bisimulation checker with the commands eq, weq, eqd and weqd. The
different bisimulation checking commands are for different bisimulation flavors
and name distinctions.

Model checking π-µ-calculus formulas with π-processes is also available in
the MWB. The π-µ-calculus formula in the previous subsection can be typed in
the MWB as follows.

nu L.(([t]L) & ([’o]Sigma u.L) & ([i]Pi u.(nu I(u).(([t]I(u))

& ([i]Pi z.I(u)) & ([’o]Sigma z.z=u)))(u)))

This differs from the formal π-µ-calculus in using the Greek letter representation
and the output transition representation with ’. The interface for the more recent
model checking algorithm [1] is:

MWB> prove {pi-process} {pi-mu-formula}

3 Translating π-calculus processes to Promela

With the background knowledge of the π-calculus as described in the previous
section, we present the details of the translation of π-calculus processes into the
Promela language. The following translation methods are implemented as an
add-on to the MWB in several hundred lines of SML/NJ codes.

3.1 π-names

π-calculus names are used not only for communication channels but also for
messages. We may first be tempted to define some π-names as mtype Promela
constants and others as Promela channels (chan type). This strategy was used
for the mobile phone handover example in the SPIN distribution and seemingly
worked fine. This strategy forces a channel to deal with communication of not
only messages, but also channels. This causes quite a few type clash errors during
simulation runs of the mobile phone handover example, but the simulation results
as well as the verification results seem all fine due to the similarity of the internal
representation of mtype constants and channels (chan). In our translation, we
require the strong type consistency. That is, we define every π-name as a Promela
channel with capacity 0. This will force the Rendez-Vous message passing in
SPIN verification, which gives the same semantics for π-calculus synchronous
communication.

One restriction here is that “polyadic” π-calculus cannot be supported. Polyadic-
ity means a channel can be used for as many messages as needed at once. This
contradicts to the concept of communication in Promela. Thus, our translation
supports monadic π-calculus, which restricts that exactly one message can be
exchanged in any message passing. This will result in the translation of any
instantiated π-name n to Promela channel definition:

5

chan n = [0] of { chan };

Uninstantiated (e.g. bound or parameterized) names are just declared as Promela
channels.

3.2 π-processes

A π-calculus process is translated into a Promela proctype process in a straight-
forward manner. Parameters in a π-process description are naturally matched
with parameters in the corresponding Promela proctype definition. There are
two more things to be taken care of. One is the declaration of bound names
unparameterized in π-process description. In the π-calculus, there are bound
names which are not parameterized at all, such as names for incoming messages.
In agent Buf(in,out)=in(x).’out<x>.Buf(in,out), x is not parameterized,
but it is bound. This kind of names cannot be used in Promela translation with-
out proper declarations, so we need to declare these names in the head of actual
process definition. The other is to give a label for possible looping. In the above
example, the process is just a loop expressed in a recursive way. To enhance the
quality of the translation, such a self-loop is detected and process instantiation
(run) is replaced by a goto statement. To achieve this looping for recursion, a
label for the process should be given. We give a label for every process transla-
tion.

To summarize, a π-process:

agent Proc(p1,...,pn)= ... (process body containing

bound names b1,...,bm)

will be translated into a Promela process:

proctype Proc(chan p1,...,pn)

{

chan b1,...,bm;

looplabel__Proc:

... (translation of the process body)

}

One final point to make is that π-processes without parameters are translated
into active proctype processes in Promela. This is because Promela requires
some process(es) to be initially instantiated and π-processes without parameters
are the best candidates for this purpose.

3.3 π-prefixes

Prefixes in π-calculus processes are communication primitives and they are nat-
urally matched with message passing primitives in Promela. A message send-
ing prefix ’out<msg> is translated into out!msg, and a message receiving pre-
fix in(msg) is translated into in?msg. To extend our translation a little fur-
ther by incorporating CCS processes, prefixes without any messages are trans-
lated with a dummy message, which is globally defined for each translation as

6

chan dummy__msg = [0] of { chan };. Output prefix ’out will be translated
into out!dummy__msg and input prefix in will be translated into in?dummy__msg.

Finally, a silent internal transition τ in the π-calculus (t in the MWB gram-
mar) is translated into one line of skip command in Promela language.

3.4 π-match

A π-match [a=b] is simply translated into a Promela boolean expression and
implication a==b ->. This preserves the meaning of the match.

3.5 π-restriction

Restriction in π-calculus is the only way of defining and instantiating new names,
which are also channels. Other names are either passed from the calling process
or bound by message input prefixes. By passing locally instantiated restricted
names to other processes, the π-calculus achieves powerful scope extrusion and
mobility support.

New names should be introduced before other process behavior descriptions.
But the π-calculus grammar allows introduction of new names in the middle of
arbitrary process behavior descriptions. To make translation simpler, we rewrite
such processes so that rewritten processes contain new name introduction always
in front of their process definition. For example, a π-process

agent Gen(in) = in(out).(^new)’out<new>.Gen(in)

is first rewritten to (only in the translation algorithm):

agent Gen(in) = in(out).Gen__1(in,out)

agent Gen__1(in,out) = (^new)’out<new>.Gen(in)

and then translated into:

proctype Gen(chan in)

{

chan out;

in?out; run Gen__1(in,out)

}

proctype Gen__1(in,out)

{

chan new = [0] of { chan };

out!new; run Gen(in)

}

Notice that rewriting breaks the loop structure and relies on recursive procedure
calls. The best way of dealing with this problem would be to do alpha conversion
and move such new name introduction in front of process definition. But such
alpha conversion works only for parallel composition and prefixes, and there can
be new name introduction in the middle of summed process definition, for which
alpha conversion is impossible. Rather than applying different techniques, we de-
cided to use same simpler translation for all occasions of new name introduction.
This idea preserves the meaning of new name introduction in a clearer way.

7

3.6 π-sum

π-sum is essentially about nondeterministic choices, which are best matched
with the if construct in Promela. The translation is also straightforward. If a
π-process definition is:

agent P(a1,...,ak) = ... (body for choice 1)

+ ... (body for choice 2)

...

+ ... (body for choice n)

then the translation will be:

proctype P(chan a1,...,ak)

{

... (new name definition, bound name declaration, loop label)

if

:: ... (translation for choice 1)

:: ... (translation for choice 2)

...

:: ... (translation for choice n)

fi

}

Any sub-choice can have another sum and the if construct can be nested without
any problem.

3.7 π-application

Any non-finite π-process definition ultimately leads to process calls. The buffer
process agent Buf(i,o)=i(x).’o<x>.Buf(i,o) finally calls itself recursively
achieving infinite loop behavior. A process can be transformed to another by
calling it at the end of a choice. The buffer process can be divided into two-
staged buffer like:

agent Buf2(i,o)=i(x).Buf21(i,o,x)

agent Buf21(i,o,x)=’o<x>.Buf2(i,o)

This is just a trivial example, but shows the idea clearly. This π-process calling is
called “application” in the literature. π-application can be obviously achieved by
the run construct in Promela. There is one exception to enhance the quality of
translation slightly. If a process calls itself, then the translation is not a recursive
call, but an unconditional jump to the loop label declared in the beginning. We
believe these two are essentially same, but since the recursive call will result in
different process instantiations in simulation and verification, the looping would
be a slightly better translation. In this case of looping translation, parameters
need to be adjusted if they do not match one by one. This is also taken care of
by the translation algorithm.

The buffer process examples shown above will be translated into:

8

proctype Buf(chan i,o)

{

chan x;

looplabel__Buf:

i?x; o!x; goto looplabel__Buf

}

proctype Buf2(chan i,o)

{

chan x;

looplabel__Buf2:

i?x; run Buf21(i,o,x)

}

proctype Buf21(chan i,o,x)

{

looplabel__Buf21:

o!x; run Buf2(i,o)

}

3.8 π-composition

Parallel composition is the method to describe concurrency in any process alge-
bra. In Promela, such composition can be achieved by multiple run statements
in an atomic group. For example, a two-cell buffer π-process example:

agent Buf1(i,o)=i(x).’o<x>.Buf1(i,o)

agent Buf2(i,o)=(^m)(Buf1(i,m)|Buf1(m,o))

will be translated into:

proctype Buf1(chan i,o)

{

chan x;

looplabel__Buf1:

i?x; o!x; goto looplabel__Buf1

}

proctype Buf2(chan i,o)

{

chan m = [0] of { chan };

looplabel__Buf2:

atomic { run Buf1(i,m); run Buf1(m,o) }

}

This idea requires that components in any parallel composition should only be
process calls. But in the π-calculus, valid processes can be composed in parallel.
That means for example sums and prefixes can be composed. Here, we have no
other choice than rewriting the original π-process as we did for new name intro-
duction translation in Section 3.5. For instance, the translation of the following
π-process:

9

agent SomeBuf2(i,o) = i(x).’o<x>.0 | i(y).’o<y>.SomeBuf2(i,o)

will be in Promela:

proctype SomeBuf2(chan i,o)

{

looplabel__SomeBuf2:

atomic { run SomeBuf2__1(i,o); run SomeBuf2__2(i,o) }

}

proctype SomeBuf2__1(chan i,o)

{

chan x;

looplabel__SomeBuf2__1:

i?x; o!x

}

proctype SomeBuf2__2(chan i,o)

{

chan y;

looplabel__SomeBuf2__2:

i?y; o!y; run SomeBuf2(i,o)

}

4 Verifying π-calculus processes using Promela

translation and SPIN

In this section, we discuss verification of π-calculus processes using the transla-
tion described above and SPIN. We also present results of simple experiments
and comparison with the π-µ-calculus model checking approach.

4.1 Incompatible verification styles between the π-µ-calculus and

SPIN

Promela’s power for model description exceeds that of the π-calculus, given the
translation strategy described in the previous section. However, there are defi-
nite differences between verification styles of two formalisms. The first issue is
whether models under verification are closed or not. In SPIN model checking,
models under verification should be closed. That is, we should also specify neces-
sary environment processes to make verification work. The SPIN model checker
can inspect every variable or process status in a Promela model, and this makes
verification with closed models possible. This is not the case with the π-calculus
verification. If a set of processes in the π-calculus is closed, then all we can ob-
serve from outside are the silent internal transitions (τ). Since transitions are
the only observables in the π-calculus, we cannot do any meaningful verification
with τ transitions only. Thus, π-calculus models under verification should always
be open. π-calculus transitions are also accompanied by messages and this makes
the π-µ-calculus specification logic [2] for the π-calculus very complicated.

10

The other discrepancy comes from the difference between the logics them-
selves. LTL is the logic for Promela verification, whereas the π-µ-calculus, an
extension of the µ-calculus, is the logic for the π-calculus verification. It is well
known that CTL formulas can be translated into µ-calculus formulas, but not
the other way around. To the best of our knowledge, there is no general trans-
lation algorithm from LTL to the µ-calculus. Even for LTL formulas which are
also CTL formulas, the textbook translation does not work because of the dif-
ference of meanings in base propositions in the π-µ-calculus. Base propositions
in the π-µ-calculus are about future possibility—for example, 〈a〉TT is satisfied
by a process which can make an a transition, and [a]FF is satisfied by a process
which cannot make any a transition. This is clearly different meaning from that
of SPIN LTL in which base propositions are about the current state, not about
future possibility.

Due to these incompatibilities, model checking π-calculus processes cannot
be made fully automatic by our translation strategy. One has to devise a proper
environment for Promela-translated π-processes, and find valid LTL formulas
for corresponding π-µ-calculus formulas. We could not think of any mechanical
translation of these two logics, but there may be some way of achieving this if
more time is spent in studying two logics.

4.2 Verification results with simple buffer examples

To claim the usefulness of the verification of π-processes by translation, we
present the results of model checking of simple examples with the MWB and
SPIN. The example systems are simple buffers (which may not be FIFO). Some
of them are shown in Figure 1.

(* one cell buffer *)

agent Buf1(i,o) = i(x).’o<x>.Buf1(i,o)

(* two cell buffer with parallel composition *)

agent Buf2(i,o) = (^m)(Buf1(i,m) | Buf1(m,o))

(* three cell buffer with parallel composition *)

agent Buf3(i,o) = (^m)(Buf1(i,m) | (^n)(Buf1(m,n) | Buf1(n,o)))

(* lossy buffer *)

agent Buf1l(i,o) = i(x).(’o<x>.Buf1l(i,o) + t.Buf1l(i,o))

(* bag with capacity 2 : no order preservation *)

agent Bag2(i,o) = Buf1(i,o) | Buf1(i,o)

Fig. 1. π-calculus description of simple buffers

The π-calculus models are self-explanatory with comments. Target proper-
ties for model checking are no message loss and order preservation, which are
also used for a standard go-back-n flow control protocol verification in the SPIN

11

tutorial paper [3]. We also use the same environment process idea as in the pa-
per: send arbitrarily many white messages, followed by a red message, arbitrarily
many white messages again, a blue message and finally arbitrarily many white
messages. Also, the same idea of global monitor variables (sent and rcvd to
record which messages are sent and received) are used for our experiment. The
same LTL formulas for the properties to be verified are used. For no message
loss (NL), the correctness requirement is [](sr -> <> rr), where sr is defined
as (sent == red) and rr is defined as (rcvd == red). The formula says that
the sending of a red message, sr, implies its eventual reception, rr, and this
condition should be true always. For order preservation (OP), the negated cor-
rectness requirement is (!rr U rb), where rb is defined as (rcvd == blue).
This formula states that no reception of red messages (!rr) should hold until
a reception of blue message (rb), which is the violation of order preservation
property.

It is natural to expect that SPIN model checking of these properties with
translated π-calculus simple buffers is trivial, because in the tutorial paper, these
properties are verified with more complicated go-back-n flow control protocol.
As expected, SPIN model checking of these properties with translated buffers
gives correct answers in less than a second (excluding compilation time) for all
cases. The lossy buffer Buf1l and the 2-cell bag Bag2p do not satisfy the two
properties and SPIN gives negative answers with counterexamples, which clearly
visualize the violating sequence in message sequence charts.

The above result does not seem to show superiority of model checking π-
processes via Promela translation, because of the triviality. Advantages, however,
can be shown when we compare the result with the π-µ-calculus model checking
of same models. To make the comparison as fair as possible, the open π-calculus
model should be incorporated with the environment as in SPIN model checking.
The π-calculus model for the environment is as follows.

(* send w*,r,w*,b,w* and before sending r, raise the flag "sr" *)

agent Send(i,r,b,w,sr) = ’i<w>.Send (i,r,b,w,sr)

+ sr.’i<r>.Send1(i,r,b,w)

agent Send1(i,r,b,w) = ’i<w>.Send1(i,r,b,w) + ’i.Send2(i,r,b,w)

agent Send2(i,r,b,w) = ’i<w>.Send2(i,r,b,w)

(* receive messages. *)

(* for reception of r and b, raise the flag "rr" or "rb" *)

agent Recv(o,r,b,w,rr,rb) = o(x).(x.0|(’w.Recv(o,r,b,w,rr,rb)

+’r.rr.Recv(o,r,b,w,rr,rb)

+’b.rb.Recv(o,r,b,w,rr,rb)))

The key transitions of sending a red message and receiving a red or a blue
message should be observed from the outside model checker, so there are flags
sr for sending a red message, rr for receiving a red message and rb for receiving a
blue message. As stated earlier, the LTL formulas should be properly translated
into the π-µ-calculus formulas, considering the different semantics of two logics.
The following formulas are manually-translated µ-calculus formulas for the two
properties.

12

nu X.([t]X & [sr] mu Y.(<rr>TT | (<t>TT & [t]Y)))

nu X.([t]X & [sr] mu Y.(<rr>TT | (<t>TT & [rb] FF & [t]Y)))

Note that <> is now used for the existential modality of the labeled transition
rather than eventuality as in SPIN’s LTL, and [] is used for the universal modal-
ity of the labeled transition rather than the always operator. The first formula
states that the property X should hold always (greatest fixpoint nu X). It also
states the property X should hold recursively after any silent internal transition
(τ=t) and also after any sr (can send a red message) transition, property Y

should hold eventually (least fixpoint mu Y). Property Y should hold if rr (can
receive a red message) is possible, or else if a silent transition is possible, Y

should hold recursively after any such transition. To summarize, the property
states that after sending a red message, reception of the red message should
be eventually possible. This means that the formula specifies NL property. The
second formula is almost the same as the first one, except in the eventuality of
the rr transition, there is one more condition that no rb (can receive a blue
message) is possible. This effectively specifies the OP property: no reception of
a blue message should be possible until a red message is received.

Model checking results

Example models NL OP
SPIN MWB SPIN MWB

Buf1 Y, 0.1 Y, 0.24 Y, 0.1 Y, 0.37
Buf2 Y, 0.1 Y, 4.14 Y, 0.1 Y, 6.66
Buf3 Y, 0.1 Y, 473.12 Y, 0.1 Y, 776.4
Bag2 N, 0.1 N, 7.04 N, 0.1 N, 10.99
Buf1l N, 0.1 ? N, 0.1 N, 1.82

(time in seconds, ? means not terminated after 8 hours)
Table 1. Experiment results with SPIN and MWB

Table 1 shows the execution times of model checking using the MWB and
SPIN (with translated π-processes) for selected buffer processes and properties.
Buf1, Buf2 and Buf3 are buffers with corresponding capacity. Bag2 is a 2-cell
buffer without order preservation. It can also trap a message indefinitely, so NL
does not hold for the Bag2. Buf1l loses input messages nondeterministically.
These are defined in Figure 1 as π-calculus processes with MWB grammar. A
Sun Ultra-10 (440 MHz) workstation with 512MB main memory was used for all
experiments. As stated earlier, SPIN gave correct answers in less than a tenth
second in all cases. For negative answers by SPIN, it also gave counterexamples
as usual. The MWB spent more than 8 minutes to give answers for Buf3. Also, it
failed to give an answer for the NL property of the lossy buffer even after 8 hours.
It is also interesting to note that the answer for the OP property of the lossy
buffer came out in less than two seconds and the OP seems more complicated

13

than the NL. Also note that the MWB gives no trace of the counterexample for
negative answers.

We do not present the experiment results with a more substantial example,
the mobile phone handover protocol. The MWB verification simply did not ter-
minate in several hours, while the manual translation of the protocol by Gerard
Holzmann in SPIN distribution is instantaneously verified.

The MWB theorem prover appears to require long execution times and some-
times results in nontermination, without any trace of counterexample in negative
cases. The implementation in a very high level functional programming language
(SML/NJ) might be an explanation for the inefficiency. Even though the advan-
tages of model checking π-calculus processes with SPIN and Promela translation
are due to the shortcomings of the MWB, we believe our approach can be a bet-
ter alternative, considering the MWB is the only available π-calculus model
checking tool.

5 Conclusion

In this paper, we studied the feasibility of model checking π-calculus processes
using SPIN and Promela translation. The π-calculus is a canonical process al-
gebra which can describe mobile concurrent computation. Because of the ability
of passing channels to other processes in Promela description language, it is
natural to think that any π-calculus process can be embedded in a Promela
model by proper translation. We gave one such translation strategy in this pa-
per. The translation procedure was implemented with SML/NJ as an add-on to
the MWB and used to generate Promela translation of simple π-calculus buffer
processes. With addition of environment processes, the first benefit of the trans-
lation is that the simulation experiment of π-calculus processes can be greatly
improved graphically with the XSPIN interface. Also with manually translated
π-µ-calculus formulas, we were able to do the verification of π-calculus processes
for π-µ-calculus formulas more efficiently in the SPIN environment. It was not
too surprising to find that SPIN could even give answers very quickly for seem-
ingly non-terminating model checking problems with the π-µ-calculus and the
MWB. SPIN also gives trace of counterexample for negative results as usual,
whereas theorem-proving style π-µ-calculus model checker only gives a yes or no
answer.

A number of interesting issues arose in this research. First of all, it was not
easy at all to translate π-µ-calculus formulas into equivalent LTL formulas, or
vice versa. The π-µ-calculus is for “labeled” transition systems, and its base
propositions are about the future possibility. If we disregard all the labels, CTL
formulas can be translated into general µ-calculus formulas, but no result is
available for any other case. We believe that an automatic translation from µ-
calculus to LTL would be almost impossible. It is also very difficult to specify
and understand requirements written in the µ-calculus, so a better option would
be just to translate π-calculus model only, and to specify the correctness require-
ments in SPIN and LTL formalism. In this regard, we believe our translation

14

routine will be useful for large scale π-calculus models, for which model checking
type of verification is required and there have been no such attempts so far.

The translation procedure also needs a substantial improvement. Currently,
its loop detection works only with self-looping π-processes. π-processes are usu-
ally mutually looping, and the current translation gives recursive calls for those
looping processes. Since recursively spawned processes are regarded as different
from parent processes, SPIN’s cycle detection does not work and it keeps search-
ing on and on until the depth limit is reached. However, detection of arbitrary
mutual-looping behavior is also nontrivial. It requires complex data flow analysis
and may lead to building a complete optimizing compiler. It may be a better
way to make SPIN detect cycles from recursive calls.

As stated earlier, SPIN’s verification models should be closed, while they
should be open for the π-µ-calculus verification. To make closed verification work,
we must also specify environment and verification should be done with that. Any
such environment should be proved to be representative of any possible other
configuration of environment. Open verification requires a complicated logic such
as the π-µ-calculus, because it has to specify the quantification of messages along
communications. It is, however, mathematically rigorous to let the logic specify
every possible configuration. It may be interesting to extend SPIN’s verification
strategy to accommodate the open verification idea, even though it is much
harder for explicit state-based model checking algorithms such as SPIN.

The initial verification effort in the process algebra community always starts
from the bisimulation equivalence checking. The definition of bisimulation equiv-
alence is always chosen so that two bisimilar processes satisfy the same set of
temporal logic formulas. It would be also nice to have similar notion of equiv-
alence in Promela so that equivalent Promela processes satisfy the same set of
LTL formulas.

References

1. F. Beste. The Model Prover – a Sequent-calculus Based Modal µ-calculus

Model Checker Tool for Finite Control π-calculus Agents. M.S. The-
sis. Dept. of Computer Science, Uppsala University. January 1998.
ftp://ftp.docs.uu.se/pub/mwb/x4.ps.gz.

2. M. Dam. Model checking mobile processes. In E. Best, editor, CONCUR’93, 4th

Intl. Conference on Concurrency Theory, Vol. 715 of Lecture Notes in Computer

Science, pp. 22–36. Springer-Verlag, 1993. Full version in Research Report R94:01,
Swedish Institute of Computer Science, Kista, Sweden.

3. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-

ing, 23(5):279-295, 1997.
4. R. Milner. The polyadic π-calculus: a tutorial. In F. L. Bauer, W. Brauer and H.

Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag, 1993.
5. R. Milner, J. Parrow and D. Walker. A calculus of mobile processes, Parts I and

II. Journal of Information and Computation, 100:1–77, September 1992.
6. B. Victor. A Verification Tool for the Polyadic π-calculus. DoCS Licentiate Thesis

94/50. Dept. of Computer Science, Uppsala University, May 1994.

15

