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Abstract

IP spoofing has been exploited by Distributed Denial of Ser-
vice (DDoS) attackers to (1) conceal flooding sources and lo-
calities of flooding traffic, and (2) coax uncompromised hosts
into becoming reflectors, redirecting and amplifying flooding
traffic. Thus, the ability to filter spoofed IP packets near vic-
tims is essential to their own protection as well as to their
avoidance of becoming involuntary DoS reflectors. Although
an attacker can forge any field in the IP header, he cannot
falsify the number of hops an IP packet takes to reach its des-
tination. This hop-count information can be inferred from the
Time-to-Live (TTL) value in the IP header. Based on this ob-
servation, we propose a novel filtering technique for Internet
servers to winnow away spoofed IP packets. By clustering
address prefixes based on hop-counts, Hop-Count Filtering
(HCF) builds an accurate IP to hop-count (IP2HC) mapping
table to detect and discard spoofed IP packets. Through anal-
ysis using network measurement data, we show that HCF can
identify and then discard close to 90% of spoofed IP pack-
ets with little collateral damage. We implement and evaluate
the HCF in the Linux kernel, demonstrating its benefits with
experimental measurements.

1 Introduction

DDoS attacks pose a serious threat to the availability of In-
ternet services [4, 15, 25]. Instead of subverting services,
DDoS attacks limit and block legitimate users’ access by ex-
hausting victim servers’ resources [5], or saturating stub net-
works’ access links to the Internet [16]. To conceal flooding
sources and localities of flooding traffic, attackers spoof IP
addresses by randomizing the 32-bit source-address field in
the IP header [10, 11]. In addition, some known DDoS at-
tacks, such as smurf [6] and more recent DRDoS (Distributed
Reflection Denial of Service) attacks [16, 30], are not possible
without IP spoofing. They masquerade the source IP address
of each spoofed packet with the victim’s IP address. The In-
ternet is vulnerable to IP spoofing because of the statelessness
of IP protocol and destination-based routing. The IP protocol
lacks the control to prevent a sender from hiding its packets’
origin. Moreover, destination-based routing does not main-
tain state information on senders, and delivers each IP packet
to its destination without authenticating the packet’s source IP
address. Overall, IP spoofing [26] makes DDoS attacks much
harder to detect and counter.

To thwart DDoS attacks, researchers have taken two dis-
tinct approaches. The first approach improves the routing
infrastructure, while the second approach enhances the re-
silience of Internet servers against attacks. The first approach
performs either off-line analysis of flooding traffic traces or
on-line filtering of spoofed IP packets inside routers. Off-
line IP traceback [2, 34, 36, 39] attempts to establish pro-
cedures to track down flooding sources after occurrences of
DDoS attacks. While it does help pinpoint locations of flood-
ing sources, off-line IP traceback does not help sustain ser-
vice availability during an attack. On-line filtering mecha-
nisms rely on IP router enhancements [13, 20, 21, 23, 24, 29]
to detect abnormal traffic patterns and foil DDoS attacks.
However, these solutions require not only router support, but
also coordination among different routers and wide-spread
deployment.

The end-system approach protects Internet servers with so-
phisticated resource management to servers. This approach
provides more accurate resource accounting, and fine-grained
service isolation and differentiation [1, 3, 32, 37], for exam-
ple, to shield interactive video traffic from FTP traffic. How-
ever, without a mechanism to detect spoofed traffic, spoofed
packets will share the same resource principals and code paths
as legitimate requests. While a resource manager can confine
the scope of damage to the particular service under attack, it
cannot sustain the availability of that service. In stark con-
trast, the server’s ability to filter most, if not all, spoofed IP
packets can help sustain service availability even under DDoS
attacks. Since filtering spoofed IP packets is orthogonal to re-
source management, it can also be used in conjunction with
advanced resource-management schemes.

As discussed earlier, end-system-based filtering that does
not require router support is necessary to detect and discard
spoofed traffic. We only utilize the information contained in
the IP header for packet filtering. Although an attacker can
forge any field in the IP header, he cannot falsify the number
of hops an IP packet takes to reach its destination, which is
solely determined by the Internet routing infrastructure. The
hop-count information is indirectly reflected in the TTL field
of the IP header, since each intermediate router decrements
the TTL value by one before forwarding it to the next hop.
The difference between the initial TTL (at the source) and the
final TTL value (at the destination) is the hop-count between
the source and the destination. By examining the TTL field of
each arriving packet, the destination can infer its initial TTL
value, and hence the hop-count from the source. Here we
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assume that attackers cannot sabotage routers to alter TTL
values of IP packets that traverse them.

In this paper, we propose a novel hop-count-based filter to
winnow away spoofed IP packets. The rationale behind hop-
count filtering is that most spoofed IP packets, when arriv-
ing at victims, do not carry hop-count values that are con-
sistent with legitimate IP packets from the sources that have
been spoofed. Hop-Count Filtering (HCF) builds an accurate
IP2HC (IP to hop-count) mapping table, while using a mod-
erate amount of storage, by clustering address prefixes based
on hop-count. To capture hop-count changes under dynamic
network conditions, we also devise a “safe” update procedure
for the IP2HC mapping table that prevents pollution by HCF-
aware attackers.

Two running states, alert and action, within HCF use this
mapping to inspect the IP header of each IP packet. Under
normal condition, HCF resides in alert state, watching for ab-
normal TTL behaviors without discarding packets. Upon de-
tection of an attack, HCF switches to action state, in which
the HCF discards those IP packets with mismatching hop-
counts. Besides the IP2HC inspection, several efficient mech-
anisms [14, 17, 28, 40] are available to detect DDoS attacks.
Through analysis using network measurement data, we show
that the HCF can recognize close to 90% of spoofed IP pack-
ets. Then, since our hop-count-based clustering significantly
reduces the percentage of false positives,1 we can discard
spoofed IP packets with little collateral damage. To ensure
that the filtering mechanism itself withstands attacks, our de-
sign is light-weight and requires only a moderate amount of
storage. We implement a test module of HCF in the Linux
kernel, at the network layer as the first step of IP-packet pro-
cessing. Then, we evaluate its benefits with real experiments
and show that HCF is indeed effective in countering IP spoof-
ing while producing significant resource savings.

The remainder of the paper is organized as follows. Section
2 discusses related work. Section 3 presents the hop-count in-
spection algorithm including hop-count computation, which
is in the critical path of HCF. Section 4 studies the feasibility
of the proposed filtering mechanism, based on a large set of
previously-collected traceroute data, and the resilience
of our filtering scheme against HCF-aware attackers. Section
5 demonstrates the effectiveness of the proposed filter in de-
tecting and discarding spoofed packets. Section 6 deals with
the construction of IP2HC mapping table, the heart of HCF.
Section 7 details the two running states of HCF, the inter-state
transitions, and the placement of HCF. Section 8 presents the
implementation and experimental evaluation of HCF. The pa-
per concludes with Section 9.

2 Related Work

Researchers have used the distribution of TTL values seen at
servers to detect abnormal spikes due to DDoS traffic [31].

1Percentage of the legitimate packets identified as the spoofed.

However, we are not aware of any scheme that computes hop-
counts of incoming packets to filter spoofed DDoS traffic at or
near victims. In this section, we highlight some of the recent
filtering techniques on lessening the effects of DDoS packets
and their propagation in the Internet.

As a proactive solution to DDoS attacks, several filtering
schemes [13, 23, 29], which must execute on IP routers, have
been proposed to prevent spoofed IP packets from reaching
intended victims. The most straightforward scheme is ingress
filtering [13], which blocks spoofed packets at edge routers,
where address ownership is relatively unambiguous, and traf-
fic load is low. However, the success of ingress filtering
hinges on its wide-deployment in IP routers. Most ISPs are
reluctant to implement this service due to administrative over-
head and lack of immediate benefit to their customers.

Given the reachability constraints imposed by routing and
network topology, route-based distributed packet filtering
(DPF) [29] utilizes routing information to determine whether
an incoming packet at a router is valid with respect to the
packet’s inscribed source and destination IP addresses. The
experimental results reported in [29] show that a significant
fraction of spoofed packets may be filtered out, and those
spoofed packets that the DPF fails to capture, can be local-
ized into five candidate sites which are easy to trace back.

To validate that an IP packet carries the true source address,
SAVE [23], a source address validity enforcement protocol,
builds a table of incoming source IP addresses at each router
that associates each of its incoming interfaces with a set of
valid incoming network addresses. SAVE runs on each IP
router and verifies whether an IP packet arrives at its expected
interface. By matching incoming IP addresses with their ex-
pected receiving interfaces, the set of IP source addresses that
any attacker can spoof is greatly reduced.

There already exist commercial solutions [19, 27] that
block the propagation of DDoS traffic with router support.
However, the main difference between our scheme and the ex-
isting approaches is that HCF is an end-system-based mecha-
nism that does not require any network support.

3 Hop-Count Inspection

Central to HCF is the validation of the source IP address of
each packet via hop-count inspection. In this section, we first
discuss the hop-count computation, then present the inspec-
tion algorithm in detail.

3.1 TTL-based Hop-Count Computation

Since hop-count information is not directly stored in the IP
header, one has to compute it based on the TTL field of the IP
header. TTL is an 8-bit field in the IP header, originally in-
troduced to specify the maximum lifetime of IP packets in the
Internet. During transit, each intermediate router decrements
the TTL value of an IP packet by one before forwarding it
to the next-hop router. The final TTL value when a packet

2



for each packet:
extract the final TTL T and IP address S;
infer the initial TTL To;
compute the hop-count Hc = T � To;
index S to get the stored hop-count Hs;
if (Hc

�� Hs)
packet is spoofed;

else
packet is legitimate;

Figure 1: Hop-Count inspection algorithm.

reaches its destination is therefore the initial TTL subtracted
by the number of intermediate hops (or simply hop-count).
The challenge in hop-count computation is that a destination
only sees the final TTL. It would have been simple if all oper-
ating systems (OSs) use the same initial TTL, but in practice,
there is no consensus on the initial TTL value. Furthermore,
Since the OS for a given IP address may change at any time,
we cannot assume a single static initial TTL value for each IP
address.

Fortunately, however, most modern OSs use only a few se-
lected initial TTL values, 30, 32, 60, 64, 128, and 255, ac-
cording to [12]. This set of initial TTL values cover most of
the popular OSs, such as Microsoft Windows, Linux, variants
of BSD, and many commercial Unix systems. We observe
that these initial TTL values differ from each other by more
than 30, except between 30 and 32, and between 60 and 64.
Since it is generally believed that few Internet hosts are apart
by more than 30 hops, which is also confirmed by our own
observations, one can determine the initial TTL value of a
packet by selecting the smallest initial value in the set that is
larger than its final TTL. For example, if the final TTL value
is 112, the initial TTL value is 128, the smaller of the two pos-
sible initial values, 128 and 255. To resolve ambiguities in the
cases of 30 and 32, and 60 and 64, we will compute a hop-
count value for each of the two possible initial TTL values,
and accept the packet if either hop-count matches.

The drawback of limiting the possible initial TTL values is
that end-systems that use “odd” initial TTL values, may be
incorrectly identified as having spoofing source IP addresses.
This may happen if a user switches OS from one that uses
a well-known initial TTL value, to one that uses an “odd”
value. Note, however, that our filter starts to discard packets
only upon detection of a DDoS attack, so such end-systems
would suffer only during an actual DDoS attack. The study
in [12] shows that the OSs that use “odd” initial TTLs are
typically older OSs. We believe that they constitute a very
small percentage of end hosts in the current Internet. Thus,
the benefit of deploying HCF should out-weight the risk of
denying service to those end hosts during attacks.

3.2 Inspection Algorithm

Assuming that an accurate IP2HC mapping table is present
(details of its construction in Section 6), Figure 3.1 outlines
the procedure HCF uses to identify spoofed packets. The in-
spection algorithm extracts the source IP address and the final
TTL value from each IP packet. The algorithm infers the ini-
tial TTL value and subtracts it from the final TTL value to
obtain the hop-count. Then, the source IP address serves as
the index into the table to retrieve the correct hop-count for
this IP address. If the computed hop-count matches the stored
hop-count, the packet has been “authenticated;” otherwise,
the packet is classified as spoofed. Note that a spoofed IP ad-
dress may happen to have the same hop-count as the one from
a zombie (flooding source 2) to the victim. In this case, HCF
will not be able to identify every spoofed packet. However,
we will show in Section 5 that even with a limited range of
hop-count values, HCF can be highly effective at identifying
spoofed IP addresses.

4 Feasibility of Hop-Count Filtering

Recent Internet experiments [22, 33] have shown that, despite
the large number of routing updates, (1) a large fraction of
destination prefixes have remarkably stable Border Gateway
Protocol (BGP) routes, (2) popular prefixes tend to have sta-
ble BGP routes for days or weeks; and (3) a vast majority
of BGP instability stems from a small number of unpopular
destinations. Moreover, a recent case study of intra-domain
routing behavior [35] indicates that the intra-domain topology
changes are due mainly to external changes and no network-
wide instability is observed. Therefore, it is reasonable to ex-
pect hop-counts to be generally stable in the Internet. More-
over, the proposed filter contains a dynamic update procedure
to capture hop-count changes as shown in Section 6.2.

In this section, we investigate whether matching the hop-
count with the source IP address of each packet suffices to
recognize spoofed packets. The valid hop-counts to a server
must be diverse enough such that the largest percentage of IP
addresses that have a common hop-count value is small. We
examine the hop-count distributions of valid IP addresses to
47 Internet Web servers and observe that hop-counts among
these IP addresses are indeed diverse enough to support the
use of HCF. Furthermore, we show that even an HCF-aware
attacker cannot circumvent filtering easily.

4.1 Hop-Count Distribution

The key to effective HCF is that the hop-count distribution of
client IP addresses at a server take a range of values. Since
HCF cannot recognize forged packets whose source IP ad-
dresses have the same hop-count value as that of an attacker,
it is important to examine hop-count distributions at various
locations in the Internet to ensure that hop-count distributions

2In this paper, zombie and flooding source are interchangeable terms.
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Figure 2: CDF of size of client IP addresses.

are not clustered around a single value. If 90% of client IP
addresses are ten hops away from a server, one would not be
able to distinguish spoofed packets from legitimate ones using
hop-count filtering alone.

To obtain real hop-count distributions, we use the raw
traceroute data from 50 different traceroute gate-
ways in [9]. We use only 47 of the data sets because three
of them contain too few clients compared to the others. The
locations of traceroute gateways are diverse as shown in
Table 1. Figure 2 shows the distribution of the number of
clients measured by each of the 47 traceroute gateways.
Most of the traceroute gateways measured to more than
40,000 clients.

Type Sample Number

Commercial sites 11
Educational sites 4
Non-profit sites 2

Foreign sites 18
.net sites 12

Table 1: Diversity of traceroute gateway locations.

We examined the hop-count distribution plots of all
traceroute gateways to find that the Gaussian distri-
bution (bell-shaped curve) is a good first-order approxi-
mation. Figures 3–6 show the hop-count distributions of
four selected sites: a well-connected commercial server
net.yahoo.com, an educational institute Stanford Univer-
sity, a non-profit organization cpcug.org, and one site out-
side of the United States, fenice.it. We are interested in
the “girth” of a distribution, which can give a qualitative in-
dication of how well HCF works, i.e., the wider the girth, the
more effective HCF will be. For Gaussian distributions, the
girth is the standard deviation, σ. The Gaussian distribution 3

can be written in the following form:

f � h � � C e �
�
h � µ � 2
2σ2

3By “distribution,” we mean it in a generic sense that is equivalent to
histogram.

where C is the normalization constant, so the area under the
Gaussian distribution sums to the number of IP addresses
measured. The mean value of a Gaussian distribution spec-
ifies the center of the bell-shaped curve, and the standard de-
viation specifies the girth of the bell. We are only interested
in using the Gaussian distribution to study whether hop-count
is a suitable measure for HCF. We are not making any defini-
tive claim of whether hop-count distributions are Gaussian or
not. For each given hop-count distribution, we use the norm-
fit function in Matlab to fit the distribution of hop-count for
each data set. We plot the mean values and standard devia-
tions, along with their 95% confidence intervals, in Figures 7
and 8, respectively. We observe that most of the mean val-
ues fall between 14 and 19 hops, and the standard deviations
are generally between 3 and 4 hops. Such distributions allow
HCF to work effectively as we will show in our quantitative
evaluation of HCF in Section 5.

4.2 Robustness against Evasion

HCF relies on the fact that spoofed IP packets often have
mismatching IP addresses and hop-counts to effectively block
spoofed packets. Once attackers learn of this technique, they
will try to generate spoofed packets with matching source IP
addresses and hop-counts. In this subsection, we evaluate
whether attackers can easily evade the HCF by constructing
“seemingly-legitimate” IP packets.

To evade HCF, an attacker has to ‘manufacture’ an appro-
priate initial TTL value for each spoofed packet. Suppose the
hop-count from a flooding source to the victim is hz, and the
hop-count from a chosen spoofed IP address to the victim is
hs. Assuming that both the flooding source and the chosen IP
address use the same initial TTL value I, the final TTL value
of a packet from the flooding source to the victim is I � hz,
and the final TTL value of a legitimate packet from the cho-
sen IP address would be I � hs. To evade HCF, the attacker
must change the initial TTL value of the spoofed packet to
I � � I ��� hs � hz � so the spoofed packet would have the cor-
rect hop-count when it reaches the victim.

An attacker can know hz, the hop-count from a zombie site
to the victim by running traceroute. However, due to
random selection of the source address of each spoofed IP
packet [10, 11], it is extremely difficult, if not impossible, for
the attacker to figure out hs, the hop-count between a random-
ized IP address and the victim. To figure out hs in real time,
the attacker has to build a priori an IP2HC mapping table that
covers the entire random IP address space. This is much more
difficult than building an IP2HC mapping table at the victim.
The reason for this is obvious: the attacker cannot observe
the final TTL values of normal traffic at the victim, although
he can overload the victim. For the attacker to build such an
IP2HC mapping table, it must compromise at least one end-
host behind any stub network whose IP address is in the ran-
dom IP address space, and perform traceroute to get hs

for the corresponding IP2HC mapping entry. Without such
knowledge, even if the attacker knows hz, he cannot fabricate
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Figure 5: cpcug.org.
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Figure 6: fenice.it in Italy.

the desired TTL values to conceal the forgery.

An alternative way to find the IP address to hop-count map-
ping, without compromising end-hosts, is to figure out the
locations of IP addresses, an accurate router-level topology
of the Internet, and the underlying routing algorithms and
policies. The recent Internet mapping efforts such as Inter-
net Map [7], Mercator [18], Rocketfuel [38], and Skitter [8]
projects, may make the approach plausible. However, the cur-
rent topology mappings put together snap-shots of portions of
networks measured at different times. Topology maps thus-
produced are generally time-averaged approximation of net-
work connectivity. Moreover, none of topology mappings has
the details of a stub network like a campus network, and the
access router coverage ranges from fair to poor. Most im-
portantly, inter-domain routing in the Internet is policy-based,
and the routing policies are not disclosed to the outside world.
Even if an attacker has accurate information on geographic
and topology mappings, they cannot obtain hop-count infor-
mation based on network connectivity alone. The path, and
therefore the hop-count, between a source and a destination
is determined by routing policies and algorithms that are of-
ten unknown. In summary, it is practically impossible to get
accurate hop-count information by taking this alternative ap-

proach.

Instead of spoofing randomly selecting IP addresses, an at-
tacker may choose to spoof IP addresses from a set of al-
ready compromised machines, whose number would be much
smaller than 232, so that he can measure all hs’s and forge
the correct hop-counts. However, this weakens the attacker’s
DDoS attacks in several ways. First, the list of would-be
spoofed source IP addresses is greatly reduced,i which makes
the detection and blockage of flooding traffic much easier.
Second, source addresses of spoofed IP packets reveal the lo-
cations of compromised end-hosts, which makes IP traceback
much easier. Third, the attacker must probe the victim server
somehow to obtain the correct hop-counts. However, we find
that network administrators nowadays are extremely alert to
unusual access patterns or probing attempts so it would re-
quire great effort in coordinating the probing attempts such
that it does not raise red flags. Fourth, the attacker must mod-
ify the available attacking tools since the most popular dis-
tributed attacking tools, including mstream, Shaft, Stachel-
draht, TFN, TFN2k, Trinoo and Trinity, generate randomized
IP addresses in the space of 232 for spoofing [10, 11]. The
wide-spread usage of randomness in spoofing IP address has
been verified by the “backscatter” study [25], which quanti-
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fied DoS activities in the Internet.

5 Effectiveness of HCF

We now assess the effectiveness of HCF from a mathemat-
ical standpoint. More specifically, we address the question
“what fraction of spoofed IP packets can be detected by the
proposed scheme?” We assume potential DDoS victims know
the complete mapping between their client IP addresses and
hop-counts, and we discuss the construction of such map-
pings in the next section. We assume that to spoof packets,
attacker randomly select source IP addresses from the entire
IP address space, and select hop-counts according to some
distribution. Without loss of generality, we further assume
that attackers evenly divide flooding traffic among the flood-
ing sources. This analysis can be easily extended for cases
where the flooding traffic is unevenly distributed. To make the
analysis tractable, we consider only static hop-count values.
We will later discuss an update procedure that will capture
legitimate hop-count changes.

5.1 Simple Attacks

First, we examine the effectiveness of HCF against simple
attackers that spoof source IP addresses while still using the
default initial TTL values at the flooding sources. Most of
the available DDoS attacking tools [10, 11] do not alter the
initial TTL values of packets. Thus, the final TTL value of
a spoofed packet will bear the hop-count value between the
flooding source and the victim. To assess the performance of
HCF against such simple attacks, we consider two scenarios:
single flooding source and multiple flooding sources.

5.1.1 A Single Source

Given a single flooding source whose hop-count to the vic-
tim is h, let αh denote the fraction of IP addresses that have
the same hop-count to the victim as the flooding source. Fig-
ure 9 depicts the hop-count distributions seen at a hypothetical

server for both real client IP addresses, and spoofed IP ad-
dresses generated by a single flooding source. Since spoofed
IP addresses come from a single source, they all have an iden-
tical hop-count. Hence, the hop-count distribution of spoofed
packets is a vertical bar of width one. On the other hand, real
client IP addresses have a diverse hop-count distribution that
is observed to be close to a Gaussian distribution. This obser-
vation also follows the Central Limit Theorem. The shaded
area represents those IP addresses — the fraction αh of total
valid IP addresses — that have the same distance to the server
as the flooding source. Thus, the fraction of spoofed IP ad-
dresses that cannot be detected is αh. The remaining fraction
1 � αh will be identified and discarded by the HCF.

The attacker may happen to choose a zombie that is 16 or
17 — the most popular hop-count values — hops away from
the victim as the flooding source. However, the standard devi-
ations of the fitted Gaussian distributions are still reasonably
large such that the percentage of IP addresses with any sin-
gle hop-count value is small relative to the overall IP address
space. As shown in Section 4.1, even if the attacker floods
spoofed IP packets from such a zombie, the HCF can still
identify nearly 90% of spoofed IP addresses. In most distri-
butions, the mode accounts for 10% of the total IP addresses,
with the maximum and minimum of the 47 modes being 15%
and 8%, respectively. Overall, HCF is very effective against
these simple attacks, reducing the attack traffic by one order
of magnitude.

5.1.2 Multiple Sources

DoS attacks usually involve more than a single host, and
hence, we need to examine the case of multiple active flood-
ing sources. When there are n sources that flood a total of F
packets, each flooding source has a unique hop-count to the
victim server, and generates F � n spoofed packets. Figure 10
shows the hop-count distribution of spoofed packets sent from
two flooding sources. Each flooding source is seen to gener-
ate traffic with a single unique hop-count value. Let hi be the
hop-count between the victim and the flooding source, then
the percentage of spoofed packets that the HCF can identify
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is F
n � 1 � αi � . The fraction, Z, of identifiable spoofed packets

generated by n flooding sources is:

Z �
F
n � 1 � αh1 ����������� F

n � 1 � αhn �
F

� 1 �
1
n

n

∑
i � 1

αhi

This expression says that the overall effectiveness of hav-
ing multiple flooding sources is somewhere between that of
the most effective source i with the largest αhi and that of the
least effective source j with the smallest αh j . Adding more
flooding sources does not weaken the HCF’s ability to identify
spoofed IP packets. On the contrary, since the hop-count dis-
tribution follows Gaussian, existence of less effective flood-
ing sources (with small αh’s) enables the filter to identify and
discard more spoofed IP packets than in the case of a single
flooding source.

5.2 Sophisticated Attackers

Most attackers will eventually recognize that it is not enough
to merely spoof source IP addresses. Instead of using the de-
fault initial TTL value, the attacker can easily randomize it for
each spoofed IP packet. Although the hop-count from a single
flooding source to the victim is fixed, randomizing the initial
TTL values will create an illusion of packets having many dif-
ferent hop-count values at the victim server. The range of ran-
domized initial TTL values should be a subset of [hz, Id � hz],
where hz is the hop-count from the flooding source to the vic-
tim and Id is the default initial TTL value. The starting point
in this range should not be less than hz. Otherwise, spoofed
IP packets bearing TTLs smaller than hz will be discarded
before they reach the victim. The simplest method of gener-
ating initial TTLs at a single source is to use a uniform dis-
tribution. The final TTL values, Tv’s, seen at the victim are
Ir � hz, where Ir represents randomly-generated initial TTLs.
Since hz is constant and Ir follows a uniform distribution, Tv’s
are also uniformly-distributed. Since the victim derives the

hop-count of a received IP packet based on its Tv value, the
perceived hop-count distribution of the spoofed source IP ad-
dress is uniformly-distributed.

Figure 11 illustrates the effect of randomized TTLs, where
hz

� 10. We use a Gaussian curve with µ � 15 and σ � 3
to represent a typical hop-count distribution (see Section 4.1)
from real IP addresses to the victim, and the box graph to
represent the perceived hop-count distribution of spoofed IP
addresses at the victim. The large overlap between the two
graphs may appear to indicate that our filtering mechanism is
not effective. On the contrary, uniformly-distributed random
TTLs actually conceal fewer spoofed IP addresses from the
HCF. For uniformly-distributed TTLs, each spoofed source IP
address has the probability 1 � H of having the matching TTL
value, where H is the number of possible hop-counts. Conse-
quently, for each possible hop-count h, only αh � H fraction of
IP addresses have correct TTL values. Overall, assuming that
the range of possible hop-counts is � hi � h j 	 where i 
 j and
H � j � i � 1, the fraction of spoofed source IP addresses that
have correct TTL values, is given as:

Z̄ � αhi

H
�������
� αh j

H
� 1

H
�

j

∑
k � i

αhk �

Note that we use Z̄ in place of 1 � Z to simplify notation. In
Figure 11, the range of generated hop-counts is between 10
and 20, so H � 11. The summation will have a maximum
value of 1 so Z̄ can be at most 1 � H � 8 � 5%, which is repre-
sented by the area under the shorter Gaussian distribution in
Figure 11. In this case, less than 10% of spoofed packets go
undetected by the HCF.

In general, an attacker could generate initial TTLs within
the range � hm � hn 	 , based on some known distribution, where
the fraction of IP addresses with hop-count hk is phk . If in the
actual hop-count distribution at the victim server, the fraction
of the IP addresses that have a hop-count of hk is αhk , then the
fraction of the spoofed IP packets that will not be caught by
the HCF is:

Z̄ �
n

∑
k � m

αhk � phk �
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Figure 11: Hop-Count distribution of IP addresses with a sin-
gle flooding source, randomized TTL values.

The term inside the summation simply states that only phk

fraction of IP addresses with hop-count hk can be spoofed
with matching TTL values. For instance, if an attacker is
able to generate initial TTLs based on the hop-count distri-
bution at the victim, phk becomes αhk . In this case, Z̄ be-
comes Z̄ � ∑n

k � m α2
hk

. Based on the hop-count distribution
in Figure 11, we can again calculate Z̄ for m � 0 and n � 30
to be 9.4%, making this attack slightly more effective than
randomly-generating TTLs. Surprisingly, none of these “in-
telligent” attacks are much more effective than the simple at-
tacks in Section 5.1.1.

6 Construction of HCF Table

We have shown that HCF can remove nearly 90% of spoofed
traffic with an accurate mapping between IP addresses and
hop-counts. Thus, building an accurate HCF table (i.e.,
IP2HC mapping table) is critical to detecting the maximum
number of spoofed IP packets. In this section, we detail our
approach to constructing HCF tables. Our objectives in build-
ing an HCF table are: (1) accurate IP2HC mapping, (2) up-to-
date IP2HC mapping, and (3) moderate storage requirement.
By clustering address prefixes based on hop-counts, we can
build accurate IP2HC mapping tables and maximize HCF’s
effectiveness without storing the hop-count for each IP ad-
dress. Moreover, we design a pollution-proof update proce-
dure that captures legitimate hop-count changes while foiling
attackers’ attempt to pollute HCF tables.

6.1 IP Address Aggregation

It is highly unlikely that an Internet server will receive le-
gitimate requests from all live IP addresses in the Internet.
Also, the entire IP address space is not fully utilized in the
current Internet. By aggregating IP address, we can reduce
the space requirement of IP2HC mapping significantly. More
importantly, IP address aggregation covers those unseen IP
addresses that are co-located with those IP addresses that are
already in an HCF table.

Grouping hosts according to the first 24 bits of IP addresses
is a common aggregation method. However, hosts whose
network prefixes are longer than 24 bits, may reside in dif-
ferent physical networks in spite of having the same first 24
bits. Thus, these hosts are not necessarily co-located and have
identical hop-counts. To obtain an accurate IP2HC mapping,
we must refine the 24-bit aggregation. Instead of simply ag-
gregating into 24-bit address prefixes, we further divide IP
addresses within each 24-bit prefix into smaller clusters based
on hop-counts. To understand whether this refined clustering
improves HCF over the simple 24-bit aggregation, we com-
pare the filtering accuracies of HCF tables under both aggre-
gations — the simple 24-bit aggregation (without hop-count
clustering) and the 24-bit aggregation with hop-count cluster-
ing.

For this accuracy experiment, we treat each traceroute gate-
way (Section 4.1) as a “web server,” and its measured IP ad-
dresses as clients to this web server. We build an HCF table
based on the set of client IP addresses at each web server
and evaluate the filtering accuracy under each aggregation
method. We assume that the attacker knows the client IP
addresses of each web server and generates packets by ran-
domly selecting source IP addresses among legitimate client
IP addresses. We further assume that the attacker knows the
general hop-count distribution and uses it to generate the hop-
count for each spoofed packet. This is the DDoS attack that
the most knowledgeable attacker can launch without learning
the exact IP2HC mapping, i.e., the best scenario for the at-
tacker.

We define the filtering accuracy of an HCF table to be the
percentages of false positives and false negatives. False pos-
itives are those legitimate client IP addresses that are incor-
rectly identified as spoofed. False negatives are spoofed pack-
ets that go undetected by the HCF. Both should be minimized
in order to achieve maximum filtering accuracy. We compute
the percentage of false positives as the number of client IP
addresses identified as spoofed divided by the total number
of client IP addresses. We compute the percentage of false
negatives according to the calculation in Section 5.2.

6.1.1 Aggregation into 24-bit Address Prefixes

For each web server, we build an HCF table by grouping its
IP addresses according to the first 24 bits. We use the min-
imum hop-count of all IP addresses inside a 24-bit network
address as the hop-count of the network. After the table is
constructed, each IP address is converted into a 24-bit ad-
dress prefix, and the actual hop-count of the IP address is
compared to the one stored in the aggregate HCF table. Since
24-bit aggregation does not preserve the correct hop-counts
for all IP addresses, we examine the performance of three
types of filters: “Strict Filtering,” “+1 Filtering,” and “+2 Fil-
tering.” “Strict Filtering” drops packets whose hop-counts do
not match those stored in the table. “+1 Filtering” drops pack-
ets whose hop-counts differ by greater than 1 compared to
those in the table, and “+2 Filtering” drops packets whose
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Figure 12: Accuracies of various filters. (Note that the points
of 24-bit clustering filtering overlap with those of 32-bit fil-
tering.)

hop-counts differ by greater than two.
We have shown in Section 5.2 that percentage of false neg-

atives is determined by the distribution of hop-counts. Ag-
gregation of IP addresses into 24-bit network addresses does
not change the hop-count distribution significantly. Thus, the
24-bit strict filtering yields a similar percentage of false neg-
atives for each web server to the case of storing individual IP
addresses (32-bit Strict Filtering in the figure). On the other
hand, percentage of false positives is significantly higher in
the case of aggregation as expected. Figure 12 presents the
combined false positive and false negative results for the three
filtering schemes. The x-axis is the percentage of false nega-
tives, and the y-axis is the percentage of false positives. Each
point in the figure represents the pair of percentages for a sin-
gle web server. For example, under “24-bit Strict Filtering,”
most web servers suffer about 10% of false positives, while
only 5% of false negatives. As we relax the filtering criterion,
false positives are halved while false negatives approximately
doubled. Clearly, tolerating packets with mismatching hop-
counts requires to make a trade-off between percentage of
false positives and that of false negatives. Overall, +1 Filter-
ing offers a reasonable compromise between false negatives
and false positives. Considering the impact of DDoS attacks
without HCF, a small percentage of false positives may be an
acceptable price to pay.

In practice, 24-bit aggregation is straightforward to imple-
ment and can offer fast lookup with an efficient implementa-
tion. Assuming a one-byte entry per network prefix for hop-
count, the storage requirement is 224 bytes or 16 MB. The
memory requirement is modest compared to contemporary
servers which are typically equipped with multi-gigabytes of
memory. Under this setup, the lookup operation consists of
computing a 24-bit address prefix from the source IP address
in each packet and indexing it into the HCF table to find
the right hop-count value. For systems with limited memory,
the aggregation table can be implemented as a much smaller
hash-table. While 24-bit aggregation may not be the most ac-
curate, at present it is a good and deployable solution.

6.1.2 Aggregation with Hop-Count Clustering

Under 24-bit aggregation, the percentage of false negatives
is still high ( � 15%) if false positives are to be kept reason-
ably small. Based on hop-count, one can further divide IP
addresses within each 24-bit prefix into smaller clusters. By
building a binary aggregation tree iteratively from the leaf
nodes, we cluster IP addresses with same hop-count together.
The leaves of the tree represent the 256 (254 to be precise)
possible IP addresses inside a 24-bit address prefix. In each it-
eration, we examine two sibling nodes and determine whether
we can aggregate IP addresses behind these two nodes. We
will aggregate the two nodes as long as they share a common
hop-count, or one of them is empty. If we are able to aggre-
gate them, the parent node will have the same hop-count as
the children. We will be able to find the largest possible ag-
gregation for each IP address. Figure 13 shows an example of
aggregating a list of IP addresses (with the last octets shown)
upward the aggregation tree (showing the first four levels).
We can aggregate 11 of 13 IP addresses into four aggregated
network prefixes. The remaining IP addresses cannot be ag-
gregated using this scheme.

0/24

0/25

128/25

0/26

64/26

128/26

192/26

0/27

32/27

64/27

96/27

128/27

160/27

192/27

224/27

16  21

17  20

26  20

56  20

57  21

58  20

59  21

62  20

79  20

105 20

111 20

128 20

200 20

218 20

227 20

240 20

245 20

24/29  20

60/30  20

64/26  20

128/25 20

Figure 13: Example of hop-count clustering.

With hop-count-based clustering, we never aggregate IP
addresses that do not share the same hop-count. Hence, we
can eliminate false positives when all clients of a server are
known as in Figure 12. The HCF will be free of false pos-
itives as long as the table is updated with the correct hop-
counts when client hop-counts change. Furthermore, under
hop-count clustering, we observe no noticeable increase in
false negatives compared to the approach of 32-bit Strict Fil-
tering. Thus, one cannot see the difference in Figure 12 due
to their having similar numbers of false positives and nega-
tives. Compared to the 24-bit aggregation, the clustering ap-
proach is more accurate but consumes more memory. Fig-
ure 14 shows the number of table entries for all web servers
used in our experiments. The x-axis is the ID of the web
server ranked by the number of client IP addresses, and the

9



10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25 30 35 40 45

H
F

T
 E

nt
rie

s

Traceroute Gateway Rank

32-bit Strict Filtering
24-bit Strict Filtering

24-bit Clustering Strict Filtering

Figure 14: Sizes of various HCF tables.

y-axis is the number of table entries. In the case of 32-bit
Strict Filtering, the number of table entries for each server is
the same as the number of client IP addresses. We observe
that the hop-count-based clustering increases the size of HCF
table, by no more than 20% in all but one case (36%).

6.2 Pollution-Proof Initialization and Update

To populate the HCF table initially, an Internet server should
collect traces of its clients that contain both IP addresses and
the corresponding TTL values. The initial collection period
should be commensurate with the amount of traffic the server
is receiving. For a very busy site, a collection period of a few
days could be sufficient, while for a lightly-loaded site, a few
weeks might be more appropriate.

Keeping the IP2HC mapping up-to-date is necessary for
our filter to work in the Internet where hop-counts may
change. The hop-count, or distance from a client to a server
can change as a result of relocation of networks, routing insta-
bility, or temporary network failures. Some of these events are
transient, but changes in hop-count due to permanent events
need to be captured.

While adding new IP2HC entries or capturing legitimate
hop-count changes, we must foil attackers’ attempt to slowly
pollute HCF tables by dropping spoofed packets. One way
to ensure that only legitimate packets are used during initial-
ization and dynamic update is through TCP connection estab-
lishment, an HCF table should be updated only by those TCP
connections in the established state [41]. The three-way
TCP handshake for connection setup requires the active-open
party to send an ACK (the last packet in the three-way hand-
shake) to acknowledge the passive party’s initial sequence
number. The host that sends the SYN packet with a spoofed
IP address will not receive the server’s SYN/ACK packet and
thus cannot complete the three-way handshake. Using pack-
ets from established TCP connections ensures that an attacker
cannot slowly pollute an HCF table by spoofing source IP ad-
dresses. While our dynamic update provides safety, it may be
too expensive to inspect and update an HCF table with each

newly-established TCP connection, since our update func-
tion is on the critical path of TCP processing. We provide
a user-configurable parameter to adjust the frequency of up-
date. The simplest solution would be to maintain a counter p
that records the number of established TCP connections since
the last reset of p. We will update the HCF table using pack-
ets belonging to every k-th TCP connection and reset p to zero
after the update. p can also be a function of system load and
hence, updates are made more frequently when the system is
lightly-loaded.

7 Running States of HCF

Since HCF causes delay in the critical path of packet process-
ing, it should not be active at all time. We therefore intro-
duce two running states inside HCF: the alert state to detect
the presence of spoofed packets and the action state to dis-
card spoofed packets. By default, HCF stays in alert state and
monitors the trend of hop-count changes without discarding
packets. Upon detection of a flux of spoofed packets, HCF
switches to action state to examine each packet and discards
spoofed IP packets. In this section, we discuss the details of
each state and show that having two states can better protect
servers against different forms of DDoS attacks.

7.1 Tasks in Two States

Figure 7.1 lists the tasks performed by each state. In the
alert state, HCF performs the following tasks: sample incom-
ing packets for hop-count inspection, calculate the spoofed
packet counter, and update the IP2HC mapping table in case
of legitimate hop-count changes. Packets are sampled at
exponentially-distributed intervals with mean m in either time
or the number of packets. The exponential distribution can
be precomputed and made into a lookup table for fast on-line
access. For each sampled packet, IP2HC Inspect() returns a
binary number spoo f , depending on whether the packet is
judged as spoofed or not. This is then used by Average() to
compute an average spoof counter t per unit time. When t is
greater than a threshold T1, the HCF enters the action state.
The HCF in alert state will also update the HCF table using
the TCP control block of every k-th established TCP connec-
tion.

The HCF in action state performs per-packet hop-count in-
spection and discards spoofed packets, if any. The HCF in
action state performs a similar set of tasks as in alert state.
The main differences are that HCF must examine every packet
(instead of sampling only a subset of packets) and discards
spoofed packets. The HCF stays in action state as long as
spoofed IP packets are detected. When the ongoing spoof-
ing ceases, the HCF switches back to alert state. This is ac-
complished by checking the spoof counter t against another
threshold T2, which should be smaller than T1 for better stabil-
ity. HCF should not alternate between alert and action states
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In alert state:
for each sampled packet p:

spoo f = IP2HC Inspect(p);
t = Average(spoo f );
if ( spoo f )

if ( t � T1 )
Switch Action();

Accept(p);

for the k-th TCP control block tcb:
Update Table(tcb);

In action state:
for each packet p:

spoo f = IP2HC Inspect(p);
t = Average(spoo f );
if ( spoo f )

Drop(p);
else Accept(p);

if ( t 
 T2 )
Switch Alert();

Figure 15: Operations in two HCF states.

when t fluctuates around T1. Making the second threshold
T2 � T1 avoids this instability.

To minimize the overhead of hop-count inspection and dy-
namic update in alert state, their execution frequencies are
adaptively chosen to be inversely proportional to the server’s
workload. We measure a server’s workload by the number of
established TCP connections. If the server is lightly-loaded,
the HCF calls for IP2HC inspection and dynamic update more
frequently by reducing user-configurable parameters, k and x.
In contrast, for a heavily-loaded server, both k and x are de-
creased. The two thresholds T1 and T2, used for detecting
spoofed packets, should also be adjusted based on load. The
general guideline for setting execution rates and thresholds
with the dynamics of server’s workload is given as follows:

Load � � Rates � � Threshold �

Currently, however, we only recommend these parameters to
be user-configurable. Their specific values depend on the re-
quirement of individual networks in balancing security and
performance.

7.2 Staying “Alert” to DRDoS Attacks

Introduction of the alert state not only lowers the overhead
of HCF, but also makes it possible to stop other forms of
DoS attacks. In DRDoS attacks, an attacker forges IP pack-
ets that contain legitimate requests, such as DNS queries, by
setting the source IP addresses of these spoofed packets to

ServerISP Router Access Router

NotifyInstall
 

  

Hop-Count
  Table

Admin

Figure 16: HCF at routers to protect bandwidth.

the actual victim’s IP address. The attacker then sends these
spoofed packets to a large number of reflectors. Each reflector
only receives a moderate flux of spoofed IP packets so that it
may easily sustain the availability of its normal service, thus
not causing any alert. The usual intrusion detection methods
based on the ongoing traffic volume or access patterns may
not be sensitive enough to detect the presence of such spoofed
traffic. In contrast, the HCF specifically looks for IP spoofing,
so it will be able to detect attempts to fool servers into act-
ing as reflectors. Although the HCF is not perfect and some
spoofed packets may still slip through the filter, the HCF can
detect and intercept enough of the spoofed packets to thwart
DRDoS attacks.

7.3 Blocking Bandwidth Attacks

To protect server resources such as CPU and memory, the
HCF can be installed at a server itself or at any network de-
vice near the servers, i.e., inside the ‘last-mile’ region, such
as the firewall of an organization. However, this scheme will
not be effective against DDoS attacks that target the band-
width of a network to/from the server. The task of protecting
the access link of an entire stub network is more complicated
and difficult because the filtering has to be applied at the up-
stream router of the access link, which must involve the stub
network’s ISP.

The difficulty in protecting against bandwidth flooding is
that packet filtering must be separated from detection of
spoofed packets as the filtering has to be done at the ISP’s
edge router. One or more machines inside the stub network
must run the HCF and actively watch for traces of IP spoof-
ing by always staying in the alert state. For complete pro-
tection, the access router should also run the HCF in case at-
tacking traffic terminates at the access router. This can be
accomplished by substituting a regular end-host configured
as a router. In addition, at least one machine inside the stub
network needs to maintain an updated HCF table since only
end-hosts can see established TCP connections. Under an at-
tack, this machine should notify the network administrator
who then coordinates with the ISP to install a packet filter
based on the HCF table on the ISP’s edge router.

Our two running-state design makes it natural to separate
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these two functions — detection and filtering of spoofed pack-
ets. Figure 16 shows a hypothetical stub network that hosts
a web server that runs HCF. The stub network is connected
to its upstream ISP via its access router and the ISP’s edge
router. Under the normal network condition, the web server
monitors its traffic and builds the HCF table. When the at-
tack traffic arrives at the stub network, the web server or the
access router will notice a sudden rise of spoofed traffic. Ei-
ther of the two will inform the network administrator via an
authenticated channel. The administrator can have the ISP
install a packet filter using the HCF table in the ISP’s edge
router. Note that one cannot directly use the HCF table since
the hop-counts (distance) to the web server are different from
those to the router. Thus, all hop-counts need to be decre-
mented by a proper offset equal to the hop-count between the
router and the update server. Once the HCF table is enabled
at the ISP’s edge router, most spoofed packets will be inter-
cepted, and only a very small percentage of the spoofed pack-
ets that slip through HCF, will consume bandwidth. In this
case, having two separable states is crucial since routers usu-
ally cannot observe established TCP connections and use the
safe update procedure.

8 Resource Savings

This section details the implementation of a proof-of-concept
HCF inside the Linux kernel and presents its evaluation on a
real testbed. Our measurement shows that HCF indeed makes
significant resource savings.

8.1 Building the Hop-Count Filter

We implement a test module inside the Linux 2.4.18-3 kernel
to examine the per-packet overhead of HCF and the process-
ing time of normal IP packets. To minimize the CPU cycles
consumed by spoofed IP packets, the HCF checks the legit-
imacy of the source IP address of each packet before doing
more expensive checksum verification. We locate the IP layer
receiving function, ip rcv, and insert the filtering function
before the code that verifies the checksum of the IP header.
Our test module implements the basic filtering data structure
and operations.

The HCF table is based on 24-bit address aggregation dis-
cussed in Section 6.1.1, both as a linear lookup table and as
a 4096-entry hash table with chaining to resolve collisions.
Under the lookup-table implementation, the filtering function
determines the initial TTL value of an incoming packet, com-
putes the actual hop-count, and then uses the first 24 bits of
the source IP address as the index to retrieve the correct hop-
count for comparison. A linear array offers fast lookup and
hence, is suitable for popular servers that receive requests
from many different client IP addresses. A hash table is more
appropriate for servers that have a relatively small number of
clients. In the hash table implementation, we compute the
hash key by XORing the upper and lower 12-bits of the first

24 bits of each source IP address and search. Given the 24-bit
network address space, 4096 is relatively small so collisions
are likely to occur. To optimize for performance, entries on
each chained list could be arranged according to client access
frequencies. To estimate the impact of collision, we hash the
client IP addresses from [9] into the 4096-entry hash table to
find that, on average, there are 11 entries on a chain, with the
maximum being 25.

To implement the HCF-table update, we insert the function
call into the kernel TCP code past the point where the three-
way handshake of TCP connection is completed. For every
k-th established TCP connection, the update function takes
the argument of the source IP address and the final TTL value
of the ACK packet that completes the handshake. Then, the
function searches the HCF table for an entry that corresponds
to this source IP address, and will either overwrite the existing
entry or create a new entry for the first-time visitor.

8.2 Experimental Evaluation

For HCF to be useful, the overhead must be much lower than
the normal processing of IP packets. We examine the per-
packet overhead of HCF by instrumenting the Linux kernel to
time the filtering function as well as the critical path in pro-
cessing IP packets. We use the built-in Linux macro rdtscl
to record the execution time in CPU cycles.

We set up a simple testbed of two machines connected to
a 100 Mbps Ethernet hub. A Dell Precision workstation with
1.9 GHz Pentium 4 processor and 1 GB of memory, is the
victim server where our filter is installed. A second machine
generates various types of IP traffic to emulate the incoming
traffic to the victim server. Instead of emulating DDoS at-
tacks, we generate two types of traffic, TCP and ICMP, to
emulate the flooding traffic used in DDoS attacks. For TCP
flooding, we repeatedly open a TCP connection on the vic-
tim machine and close it right away, which includes sending
both SYN and FIN packets. However, we only time the open
system call to emulate SYN flooding. Linux delays the pro-
cessing of three-way handshake until the final ACK from the
active sender is received. Since we include this in our mea-
surement, the measured overhead may be larger than in an
actual SYN flooding attack. To emulate ICMP attacks, we
ran three experiments of single-stream pings. The first uses
default 64-byte packets, and the second uses 1500-byte Eth-
ernet packets. In both experiments, packets are sent at 10 ms
intervals. The third experiment uses ping flood (ping -f)
with the default packet size of 56 bytes and sends packets as
fast as the system can transmit.

To understand the HCF’s impact on normal IP traffic, we
also consider bulk data transfers under both TCP and UDP.
We then examine the per-packet overhead without HCF, and
the per-packet overhead of the filtering function in per-packet
inspection.

To make our tests more realistic under the hash-table im-
plementation, we randomize each hash key to simulate ran-
domized IP addresses in order to hit all possible entries in the
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Lookup Hash without HCF
scenarios avg min avg min avg min

TCP open 218 88 1266 136 36342 3700
ping 64B 91 88 411 128 20194 3604
ping 1500B 89 88 288 108 35925 2436
ping flood 88 88 339 172 20139 3616

TCP bulk 91 88 444 124 6538 3700
UDP bulk 91 88 424 144 6524 3628

Table 2: CPU overhead of HCF and normal IP processings.

table. For each hash-table search, we manually traverse a list
of 11 entries to emulate the behavior observed from actual
measurement. Although we are not able to draw definitive
conclusions on the HCF’s performance, we can confirm that
the HCF makes significant resource savings.

We present the recorded processing times in Table 2. The
columns under ’Lookup’ and ’Hash’ list the execution times
of the filtering function under the two implementations. The
column under ‘without HCF’ lists the normal packet process-
ing times without HCF. Each row in the table represents a sin-
gle experiment, and each experiment is run with a large num-
ber ( � 40,000) of packets in order to compute average cycles.
We present both the minimum and the average number of cy-
cles consumed for each experiment. Note that there is a differ-
ence between average cycles and minimum cycles for two rea-
sons. First, some packets take longer to process than others,
e.g., a SYN/ACK packet takes more time than a FIN packet.
Second, the average cycles include more lower-level interrupt
processing, such as receiving an Ethernet frame, than mini-
mum cycles. We observe that, in general, the filtering func-
tions use much fewer cycles than the emulated attacking traf-
fic, often at least one order of magnitude less. Clearly, the
HCF can make significant resource savings by detecting and
discarding spoofed traffic. In case of bulk transfers, the dif-
ferences are also significant. We attribute this to TCP header
prediction and UDP’s much simpler protocol processing. It is
fair to say that the filtering function adds only a small over-
head to the processing of legitimate IP traffic. However, this
is by far more than compensated by the savings from not pro-
cessing spoofed traffic.

Table 2 also shows us that the lookup table offers excel-
lent performance with extremely small per-packet process-
ing overhead, while the hash table efficiently utilizes storage
space and achieves reasonably good performance.

To illustrate the potential savings in CPU cycles, we would
like to know how much CPU resource savings we can achieve,
while an attacker launches a spoofed DDoS attack against a
web server. Assuming the division between attack and legit-
imate traffic is aX and bX , with X being the total number
of packets per unit time. The CPU cycles consumed without
HCF is: aX � tD � bX � tL, where tD and tL are the per-packet
processing time of attack and legitimate traffic, respectively.
The CPU cycles consumed when the HCF is present is:

� 1 � α � aX � tDF � αaX � tD � bX � � tL � tLF �

with tDF and tLF being the filtering overhead for spoofed and
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Figure 17: Resource savings by HCF.

legitimate traffic, respectively, and α the percent of spoofed
traffic that we cannot filter. Let’s assume that the attacker uses
56-byte ping traffic to attack the web server that implements
the HCF as a hash table. The results for various a, b, and α
parameters are plotted in Figure 17. The x-axis is the percent-
age of total traffic contributed by DDoS attacks, or a. The
y-axis is the resource savings as the percentage of CPU cy-
cles consumed without HCF. The figures shows a number of
plots, each corresponding to an α value. Since the per-packet
overhead of DDoS traffic (20194) is much higher than TCP
bulk transfer (6538), the percentage of DDoS traffic HCF can
filter, � 1 � α � , essentially becomes the sole determining fac-
tor in resource savings. As the composition of total traffic
varies, the percentage of resource savings remains essentially
the same as � 1 � α � .

9 Conclusion and Future Work

In this paper we presented a hop-count-based filtering scheme
that detects and then removes spoofed IP packets to save sys-
tem resources. Based on the analysis using actual network
measurements, we showed that HCF can remove about 90%
of spoofed traffic. Moreover, even if an attacker is aware
of HCF, he cannot easily circumvent HCF. Our experimental
evaluation demonstrates that HCF can be efficiently imple-
mented inside the Linux kernel.

Our analysis and experimental results indicate that HCF is
a simple and effective solution in protecting network services
against spoofed IP packets. Furthermore, HCF can be read-
ily deployed in end-systems since it does not require network
support.

There are several issues that warrant further investigation.
For example, we need a systematic procedure for setting the
parameters of HCF, such as the frequency of dynamic up-
dates. We also need to study the effectiveness of HCF against
replicated actual attacks from real attacking traces. These and
others are matters of our future inquiry.
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