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Abstract— Two ASs are connected in the Internet AS
graph only if they have a business “peering relationship.”
By focusing on the AS subgraph ASPC whose links repre-
sent provider-customer relationships, we present an empirical
study that identifies three crucial causal forces at work in the
design of AS connectivity: (i) AS-geography, i.e., locality and
number of PoPs within individual ASs; (ii) AS-specific busi-
ness models, abstract toy models that describe how individ-
ual ASs choose their “best” provider; and (iii) AS evolution, a
historic account of the “lives” of individual ASs in a dynamic
ISP market. Based on these findings that directly relate to
how provider-customer relationships may be determined in
the actual Internet, we develop a new optimization-driven
model for Internet growth at the ASPC level. Its defining
feature is an explicit construction of a novel class of intuitive,
multi-objective, local optimizations by which the different
ASs determine in a fully distributed and decentralized fash-
ion their “best” upstream provider. We show that our model
is broadly robust, perforce yields graphs that match inferred
AS connectivity with respect to many different metrics, and
is ideal for exploring the impact of new peering incentives or
policies on AS-level connectivity.

I. INTRODUCTION

Internet connectivity at the level of Autonomous Sys-
tems (ASs) reflects existing business relationships among
ASs. Two ASs are connected in an AS graph by a link only
if they have a “peering relationship” between them, e.g.,
provider-customer or peer-to-peer relationship. In princi-
ple, snapshots of the Internet’s AS graph can be inferred
from BGP-derived measurements, but in practice, the re-
sulting graph structures require careful interpretation. For
example, since the measurements consist of a collection
of snapshots of BGP routing tables taken at a few van-
tage points on the Internet over time, private peering links
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and backup connections between ASs generally cannot be
identified, because they remain largely invisible to collec-
tion sites such as the Oregon route server [28]. Thus, the
resulting inferred AS graphs tend to be less densely con-
nected than the actual Internet at the AS level [12], and
the inferred peering relationships are not always accurate.
These difficulties not withstanding, a striking characteris-
tic of various inferred AS graphs (with more or less in-
complete connectivity information) has been the observed
high variability of the AS vertex degrees, parsimoniously
captured by vertex degree distributions of the power-law
type [15], [12]. This power-law finding has led to renewed
interest in network modeling and has motivated the de-
velopment of new topology generators. However, much
of the efforts to date has been either abstract (e.g., gen-
erate a graph with a given vertex degree distribution [1],
[21]) or based on some exogenously imposed mechanisms
(e.g., a presumed preferential-type connectivity rule [2],
[24]). While the resulting models and generators are gen-
erally successful in reproducing and matching the power-
law type node degree distributions of measured AS graphs,
their relevance to networking is seriously hampered by
their generic nature—they are mostly designed to model
all types of networks that show power-law type node de-
gree distributions [7]. As a result, these models completely
ignore any AS-specific factors and criteria inherent in es-
tablishing the very business relationships expressed by AS
graphs. The models’ theoretical appeal is also limited,
mainly because of the models’ exclusive focus on a single
metric (i.e., node degree distribution) and a general inabil-
ity to also match in a parsimonious manner inferred AS
graphs with respect to alternative metrics (e.g., hierarchy-
related or graph evolution-specific measures).

The main objective of this paper is to explore a radi-
cally different approach to modeling and generating In-
ternet topologies at the AS level.1 Instead of relying on

1A similar approach has recently been advocated and outlined in [3]
for modeling Internet connectivity at the router-level, but no results
have been reported to date.
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abstract or artificially imposed mechanisms that yield AS
graphs which manage to attain highly variable node degree
distributions but fail to match other graph characteristics,
we focus here on identifying key causal forces at work in
the fully distributed and decentralized design of AS inter-
connectivity. More specifically, we are mainly concerned
with the subgraph ASPC of the overall AS graph whose
links represent only provider-customer peering relation-
ships, i.e., non provider-customer relationships are not part
of this subgraph. We show that by explicitly incorporat-
ing provider-customer business relationships (or concrete
abstractions thereof) into an appropriate network growth
model, the resulting AS subgraphs automatically match in-
ferred ASPC-specific connectivity with respect to a wide
range of metrics. Furthermore, these subgraphs share a
number of characteristics with the overall AS graphs (e.g.,
highly variable node degree distributions). This finding
demonstrates the importance of the ASPC subgraphs in
gaining a better understanding of the Internet’s overall AS
connectivity and it argues for a detailed study of the prop-
erties and dynamic nature of these ASPC subgraphs.

Our overall approach is motivated by the recently pro-
posed HOT (Highly Optimized Tolerance) concept intro-
duced by Carlson and Doyle [11], [13]. HOT provides a
general framework in which highly variable event sizes, in
systems highly optimized by engineering design, are the
result of tradeoffs between yield, cost of resources, and
the systems’ tolerance to risk. In turn, the HOT frame-
work emphasizes the importance of design, structure, and
optimization in the study of highly engineered and com-
plex systems, such as the Internet. In applying this general
HOT concept to the specific problem addressed in this pa-
per, our work draws heavily on the first explicit attempt
by Fabrikant et al. [14] to cast network design as a HOT
problem.2 In Fabrikant et al.’s generic toy model of net-
work growth, each newly arriving node decides on the par-
ticular node of the existing graph it connects to by solv-
ing a generic multi-objective optimization problem. This
model serves as starting point of our investigation into the
causal forces shaping Internet connectivity at the ASPC

level. That is, following Fabrikant et al.’s model, we at-
tempt to determine a particular class of multi-objective op-
timization problems that reflect the various factors and cri-
teria by which provider and customer ASs determine their
peering relationships with one another.

Our proposed approach to Internet modeling at the
ASPC level has three major novel components. First,
in contrast to the generic Internet growth model of Fab-
rikant et al. that deals with generic nodes and links, we

2Fabrikant et al. also suggested Heuristically Optimized Tradeoff as
a fitting alternative acronym for HOT.

provide the first explicit attempt to cast the design of AS
level connectivity as a HOT problem. In particular, we
develop a new HOT model for ASPC graphs that fully ex-
ploits the networking semantics of the relevant objects—
the graph’s nodes represent businesses (i.e., provider or
customer ISPs) and its links express explicit business re-
lationships among these nodes. Second, we formulate a
novel class of multi-objective optimization problems to
capture the decision process ASs use to determine their
peering or business relationships with other ASs. To ar-
rive at this formulation, we proceed in three steps and
show successively that (i) AS geography, (ii) AS business
model, and (iii) AS evolution define three key criteria that
must be accounted for. We propose concrete abstractions
of each of these criteria and incorporate them one-by-one
into our multi-objective optimization problems. We illus-
trate how these optimization problems shape the forma-
tion of local provider-customer relationships and cause the
“emerging” global characteristics exhibited by the result-
ing ASPC graphs. In addition, we show that a number of
features associated with the overall AS graphs (e.g., high
variability in node degree distributions) are already present
in the corresponding ASPC subgraphs and can therefore
be explained and understood in terms of the causal forces
at work in the design of the ASPC portion of the overall
AS graph. Finally, we illustrate along the way that the pro-
posed HOT model for Internet growth at the ASPC level
has a number of attractive robustness properties with re-
spect to the details of how the three identified key criteria
are abstracted and expressed as objectives that have to be
optimized simultaneously. These insensitivity results en-
hance the overall credibility of the proposed HOT model.
They also make the resulting model especially appealing
for exploring a range of what-if scenarios. For example, if
modifications to existing criteria for establishing provider-
customer relationships, or the introduction of new ones,
may more accurately reflect incentives in future provider-
customer relationships, our model can be used to explore
the impact such modifications or embellishments may have
on the overall AS connectivity.

Due to the generic nature of previous efforts to modeling
Internet topologies, hitherto none of the three key criteria
we propose has played any significant role in modeling the
AS graphs. For the non-generic, networking-centric ap-
proach we propose, the importance of these three criteria
should come as no surprise. Consider for example “AS ge-
ography,” by which we mean the number and geographic
locations of an AS’s Points-of-Presence (PoPs). Clearly,
knowing the geography of intra-AS PoP structures is im-
portant to, say, distinguish between nearby and far-away
providers—with obvious implications in determining con-
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nection costs. Similarly, depending on an AS’s business
model (which may include technological aspects such as
network availability, network reliability, expected perfor-
mance, or support for value-added services, as well as
economic considerations such as pricing plans, projected
network build-out, customer support, etc.), customer ASs
can be expected to behave in a more or less rational man-
ner when establishing upstream connectivity; for exam-
ple, they might choose among competing providers by
implicitly or explicitly satisfying some local Pareto op-
timality criterion with respect to some underlying utility
measure. As for AS evolution, the dynamics of the ISP
market (overall growth amidst ever-present mergers, ac-
quisitions, and bankruptcies) cause or force ASs to pe-
riodically re-examine their peering relationships and, if
necessary, establish new, get rid of old, or modify exist-
ing relationships—with obvious implications on the over-
all connectivity at the AS level.

We hasten to point out that while the generation of re-
alistic AS topologies is also a natural by-product of our
approach, it is not the focus of this paper. In particular, to
extend our approach and develop a HOT model for Inter-
net growth at the overall AS level will require incorporat-
ing peer-to-peer relationships and accounting for ASs that
change from peer to provider/customer or vice versa. In
this sense, the causal forces identified in this paper and ac-
counted for in the proposed HOT model are necessary but
not sufficient for shaping the existing Internet topology at
the overall AS level. For example, while our model suc-
ceeds in explaining the power-law type node degree distri-
butions of inferred AS graphs in terms of AS geography-
related characteristics (i.e., AS size measured in terms of
number of PoPs per AS), it also suggests the presence of
additional causal forces that relate directly to the peer-to-
peer portion of AS graphs. These forces will require care-
ful consideration when extending our approach and devel-
oping a more complete model for Internet connectivity at
the overall AS level. However, we leave the pursuit of such
a modeling effort for future research.

The rest of the paper is structured as follows. In Sec-
tion II, we describe the two inferred AS graphs that form
the basis of our empirical study and reduce them to simpler
tree topologies that are used in the subsequent sections.
We discuss in Section III the HOT model for generic In-
ternet growth proposed in [14] and demonstrate its short-
comings when applied to the AS graph. The construction
of our HOT model for Internet growth at the ASPC level
is described in Sections IV–VI, where we identify, in suc-
cession, AS geography, AS business model, and AS evo-
lution as key forces at work in the design of Internet AS
connectivity. We conclude the paper with a discussion of

TABLE I
AS RELATIONSHIP INFERENCE RESULT

Number of linksAS graph
All Provider-customer Peer-to-peer Others

Oregon 23,449 21,473 (91.6%) 1,621 (6.9%) 355
Oregon+ 32,759 27,815 (84.9%) 3,919 (12.0%) 1,025

some practical implication of our proposed approach and
the ensuing models and comment on the work’s impact on
network modeling as a scientific discipline.

II. INFERENCE FOR AS GRAPHS

We address in this section some of the challenges re-
lated to inferring AS graphs and describe our approach for
tackling them in ways that are necessarily imperfect, but
still ensure the validity of our results.

A. Inferring AS Connectivity

In principle, to determine whether AS X and AS Y have
a peering relationship with one another, all that is needed
is to collect X’s BGP routing table and check if AS Y
appears in any of the table’s AS-path entries. In prac-
tice, however, only a very limited number of ASs make
their BGP routing tables publicly available. As a result, all
available inferred AS graphs are necessarily incomplete.
While this incompleteness should always be kept in mind
when reporting observed characteristics of measured AS
graphs, it does not necessarily invalidate all of the find-
ings. A particularly attractive method to demonstrate the
general validity of a given AS-related observation despite
the incompleteness property is to illustrate that the result
in question is robust with respect to alternative AS graph
inference techniques or to reliance on additional relevant
data (e.g., more BGP routing tables, Looking Glass infor-
mation, etc.).

To explore the robustness of the findings reported in
this paper, we rely on two inferred AS graphs that have
been studied in detail in [12]. Most importantly, these AS
graphs have significantly different connectivity densities.
One graph, the OREGON AS graph, is constructed exclu-
sively from information contained in the BGP routing ta-
bles collected by the Oregon route server [28]. This AS
graph has been the most widely-used graph in past studies
of the Internet’s AS topology. The one used here is based
on data collected in late May of 2001. The second graph,
the OREGON+ AS graph, relies not only on the Oregon
BGP data, but also makes use of a number of additional
BGP routing tables, BGP summary information obtained
by querying numerous ASs using the Looking Glass tool,
and diligently extracted data from the Routing Registry
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Fig. 1. Node degree distributions of AS (sub)graphs.

TABLE II
AS GRAPH STATISTICS

prov-cust subgraph peer-to-peer subgraphAS graph All
All Largest comp. All Largest comp.

# of nodes 11,183 11,177 11,177 (100%) 512 512 (100%)Oregon
# of links 23,449 21,473 21,473 (100%) 1,621 1,621 (100%)

# of nodes 11,456 11,257 11,257 (100%) 1,365 837 (61.3%)Oregon+
# of links 32,759 27,815 27,815 (100%) 3,919 3,359 (85.7%)

database.3 The data collection period is again late May
2001. While this graph has about the same number of ASs
as the OREGON AS graph, Table II (first column) shows
that it has about 40% more links than the OREGON AS
graph. Realizing that both of these AS graphs exhibit qual-
itatively the same power-law type node degree distribution
(e.g., see Fig. 1, lines labeled “all”) suggests that this fea-
ture is robust with respect to the degree of incompleteness
of the two graphs and can therefore be considered a gen-
uine characteristic of Internet connectivity at the AS level.
It also justifies our pursuit of a careful investigation into
the underlying causes of this striking characteristic.

B. Provider-customer vs. Peer-to-peer Relationships

We are first interested in whether the power-law type
node degree distributions observed in both of our AS
graphs are associated with any specific peering type, in
which case we may simplify our study by removing the
non-causal link types from the graphs. A link between two
ASs in an AS graph typically reflects either a provider-
customer or a peer-to-peer relationship.4 In the former,
one AS plays the role of the customer, while the other is
the provider of Internet connectivity. Internet providers

3The use of selected information from the Routing Registry database
is discussed and justified in [12] and is not essential for the purposes of
this paper.

4Other relationships are possible, for example as backup links be-
tween non-provider ASs, but are relatively rare. They are grouped un-
der “Others” in Table I.

are paid by their customers for providing this service. In
the latter, the ASs see equal benefit in interconnecting
with each other and no financial exchange takes place.
Given the BGP routing tables (plus other information, if
available) used to infer an AS graph, we can annotate the
links in the graph with inferred peering relationships us-
ing heuristics proposed in [17] and [30].5 The results of
augmenting the OREGON and OREGON+ AS graphs with
inferred peering relationships are summarized in Table I.

To determine whether the power-law type node degree
distributions observed in our inferred AS graphs are as-
sociated with any specific peering type, we consider two
separate subgraphs for each of the OREGON and ORE-
GON+ AS graphs. The provider-customer (or prov-cust,
for short) subgraph contains only provider-customer links
(along with their incident ASs), while the peer-to-peer
subgraph consists of peer-to-peer links only (and all their
incident ASs).6 Table II provides details on these sub-
graphs (or their largest connected components).

Fig. 1 compares the node degree distributions of the
original OREGON AS graph (line labeled “all”) and its two
subgraphs (lines labeled “prov-cust subgraph” and “peer-
to-peer subgraph”) in plot (a), and the original OREGON+

5We need to use both heuristics due to limitations of each one of
them. For example, the heuristic proposed in [17] cannot be used on
our OREGON+ graph that contains links inferred from Looking Glass
data but are not present in any of the collected BGP tables.

6In case one of the resulting subgraphs is not connected, we consider
its largest connected component.
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Fig. 2. Node degree distributions of P1 subgraphs.

AS graph and its two subgraphs in plot (b). As can be
clearly seen, in both cases the node degree distributions
of the provider-customer subgraphs are almost identical
to those of the original AS graphs, but those correspond-
ing to the peer-to-peer subgraphs behave qualitatively dif-
ferent. We can conclude that peer-to-peer and other non
provider-customer links are non-causal factors as far as the
power-law type node degree distribution characteristic of
AS graphs is concerned. In turn, Fig. 1 suggests that it
may suffice to focus mainly on the provider-customer por-
tion of the AS graph when attempting to identify some of
the causal forces at work in the design of Internet connec-
tivity at the AS level.

C. Single- vs. Multi-homing

To further simplify our study of AS graph structures,
we next ask if multi-homing has any major impact on the
power-law type node degree distribution.7 Multi-homing
typically refers to a customer AS having more than one
peering link with either the same provider AS or with
different provider ASs. The purpose of multi-homing is
mainly to improve an AS’s reliability or performance (e.g.,
via load-balancing). To gauge the effect of multi-homing
on AS-connectivity, we consider three heuristics for dis-
tinguishing between the primary connection and the sec-
ondary connection(s) of an AS.8 For the first heuristic,
given an AS X , we define its best provider (among its
current providers) to be the AS with the lowest average
hop distance to all the other ASs in the provider-customer
subgraph. The second heuristic redefines the best provider
of AS X to be the one with the largest AS node degree

7The increase in multi-homed networks has been a driving force be-
hind the recent growth in the size of BGP routing tables [20].

8Multi-homing for the purpose of load-balancing may consider all the
multi-homing links as equally important. However, in this paper, we
assume that even in such a case, there still exists one primary upstream
connection carrying a major portion of an AS’s traffic.

among all of X’s current providers, while the third heuris-
tic randomly picks one of AS X’s providers as the best
provider. Thus, by annotating the links of the provider-
customer subgraph as primary (link to best provider) or
secondary, we obtain three different instances of the sub-
graph, one per heuristic.

For each of these three annotated provider-customer
subgraphs, we generate a new subgraph (called the P1 sub-
graph) by removing all secondary links. These “single-
homed” P1 subgraphs of both the OREGON and ORE-
GON+ provider-customer subgraphs have approximately
50% fewer links than their “multi-homed” counterparts,
i.e., their corresponding provider-customer subgraphs.
Fig. 2 depicts the node degree distributions of the in-
ferred provider-customer subgraph (labeled “prov-cust
subgraph”) and its three P1 subgraphs (labeled “prov-cust
subgraph single-homed (hop distance),” “prov-cust sub-
graph single-homed (degree),” and “prov-cust subgraph
single-homed (random)”) of the OREGON and OREGON+
graphs in plots (a) and (b), respectively. The figure
shows that the P1 subgraphs exhibit qualitatively the same
node degree distributions as the corresponding provider-
customer subgraphs, except that the entire distributions
are shifted down, with a slight change in slopes. Being
largely independent of the original AS graph (i.e., ORE-
GON vs. OREGON+) and of the details of defining a cus-
tomer’s “best” provider (i.e., the three instances of the P1
subgraph), Fig. 2 suggests that multi-homing is not respon-
sible for the power-law type node degree distributions and
not a causal force behind this property.

The P1 subgraphs, in which every AS has a single
provider, form forest topologies, possibly with multiple
root nodes. However, it turns out that for both the ORE-
GON and OREGON+ graphs, the largest (connected) tree
contained in their respective P1 subgraphs is rooted at
AS701 (UUNET) and spans about 99% of all of P1’s
nodes. For the remainder of this paper, when exploring
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the causal forces at work in shaping Internet connectivity
at the ASPC level, we will focus mainly on this simplified
AS graph consisting of the largest connected tree topology
rooted at AS701.

III. AS GROWTH—AN OPTIMIZATION-DRIVEN

PROCESS

The orthodox physics views tend to associate the ubiq-
uity of power-law distributions in natural and engineered
complex systems unambiguously with critical phase tran-
sition [6]. However, in the specific case of the Internet,
where power-law type distributions abound, this apparent
connection turns out to be specious and can be directly re-
futed [32]. As a result, the Internet has become a prime
target for testing the validity of alternative views and theo-
ries to explain the ubiquity of power-law type distributions
in nature and engineering. An especially promising and
radically different such alternative view has recently been
proposed by Carlson and Doyle [11], [13] and is based
on the concept of HOT (for Highly Optimized Tolerance).
In this section, we summarize the state-of-the-art of us-
ing HOT-based approaches to model Internet growth and
investigate their relevance for network design at the AS
level.

A. The Generic HOT Model of Fabrikant et al.

The HOT concept introduced in [11], [13] emphasizes
the importance of design, structure, and optimization and
provides a framework in which power-law type event size
distributions in systems optimized by engineering design
are the results of tradeoffs between yield, cost of resources,
and tolerance to risk. Highly Optimized alludes to the
fact that robustness (i.e., the maintenance of some de-
sired system characteristics despite uncertainties in the
behavior of its component parts or its environment) is
achieved by highly structured, rare, non-generic config-
urations which—for highly engineered systems—are the
result of deliberate design. Tolerance emphasizes that this
robustness in complex systems is a constrained and limited
quantity and must be diligently managed.

The first explicit attempt to cast network design, mod-
eling, and generation as a HOT problem was instigated by
Fabrikant et al. [14]. They proposed a toy model of In-
ternet growth in which each newly arriving generic node
establishes connectivity by solving locally identical types
of simple multi-objective optimization problems. A new
node attempts to simultaneously optimize two objectives:
“last mile” connection cost and “node centrality” cost. The
“last mile” connection cost is supposed to capture the cost
of resources associated with connecting to a parent node
and is measured in terms of Euclidean distance. The “node

centrality” cost reflects transmission delays and is mea-
sured in terms of the average hop distance from a potential
parent to all other nodes in the graph. More formally, as-
suming a tree topology, when a node i joins a graph, it
attaches itself to the node j that minimizes the weighted
sum of the two objectives: minj<i(α · dij + hj), where
dij is the Euclidean distance between i and j, and hj is
the average hop distance from j to the entire graph. De-
pending on the relative importance of the two objectives
in this multi-objective optimization, i.e., depending on the
value of the parameter α, the authors prove in [14] that
their HOT model yields three different regimes of graphs
with qualitatively very different hierarchical structures and
node degree distributions. Weighting the transmission de-
lays over the connection cost (small values of α) creates
star-like topologies, centered primarily around a single
node (“hot spot”). If the connection cost dominates over
the transmission delays (large values of α), the resulting
graphs are more like random graphs, with exponential-tail
type node degree distributions. The interesting regime lies
in between (i.e., medium α-values) and consists of graphs
with power-law type node degree distributions.

B. The Generic HOT Model and AS Connectivity

Although never stated explicitly in [14], the HOT model
of Fabrikant et al. is generic in the sense that its nodes
are neither routers nor ASs, and its links express neither
router-level physical connectivity nor inter-AS peering re-
lationships. Since our focus is on AS-level connectivity,
we first ask whether the proposed HOT model is indeed
appropriate and relevant to an AS-centric description of
Internet growth.

When interpreting a graph’s nodes as ASs, the HOT
model of Fabrikant et al. assumes a randomly-chosen point
location for each AS and motivates the particular multi-
objective optimization problem by arguing that in terms of
connection cost, there exists a trade-off between being at-
tracted to the topological core and being geographically
separated from the core. However, a typical AS or ISP
maintains in general multiple Point of Presences (PoPs)
within its networks, and each PoP is a physical access lo-
cation where customer ASs can connect to (e.g., see [18],
[29]). Naturally, for a customer AS choosing among com-
peting upstream providers, important considerations in-
clude: does the provider have a PoP nearby, and how many
PoPs does the provider maintain globally [23]. Further-
more, large ASs close to the topological core can typically
afford to invest more financial resources in their network
infrastructure and by doing so, tend to further increase
their global reach (i.e., number of PoPs and geographic
diversity of PoP locations). Consequently, large ASs near
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Fig. 3. The modified HOT model (α=5 and n=10,000)

the topological core are more likely to also be in closer ge-
ographic proximity to new customers than smaller ASs,
which in addition are predominately located around the
topological edges. This argument illustrates that when ap-
plying the HOT model of Fabrikant et al. directly to Inter-
net growth at the AS level, the two proposed optimization
objectives may no longer be independent—when nodes are
multi-PoP ASs, a candidate node with low transmission
delays has presumably also a low “last mile” connection
cost. As a consequence, in a setting that is more realis-
tic and allows for multi-PoP ASs, the HOT model of Fab-
rikant et al. can be expected to yield star-shaped graphs.

To test this hypothesis, we modify the generic HOT
model of Fabrikant et al. to account for multi-PoP AS
structures as follows. Each existing node u in the graph
has a location list loc list(u), which contains the set of
its locations (as in [14], we work in the unit square, but
as usual, the shape is inconsequential). For a new node
i, loc list(i) is initialized to contain a single randomly
chosen location. To attach the new node i to the graph
with i-1 existing nodes labeled 1 through i-1, instead of
connecting it to target node j that satisfies the generic
HOT criterion, i.e., minj<i(α · dij + hj), we connect it
to target node j that satisfies the modified HOT criterion:
minj<i(α · (minl∈loc list(j)dil) + hj). That is, when a
newly added node searches for a node to attach to, it con-
siders the same optimization problem as for the generic
HOT model, except that each candidate node now has mul-
tiple locations. Thus, for each candidate node, its closest
location has to be found first.

To reflect our intuition that with a growing customer
base, ASs will increase their number of PoPs, and that the
likelihood of a larger AS installing an additional PoP is
greater than that of a smaller AS, after node i attaches to
the graph, each existing node u (nodes 1 to i−1) is given a
chance to increment the number of its PoPs by one. Specif-
ically, with probability ploc(u), each existing node u adds

a new random location to loc list(u); with probability 1-
ploc(u), no new location is added. The probability ploc(u)
is given as K · rank(u)−β , where K and β are positive
constants and rank(u) is the rank of node u when all the
existing nodes in the graph are sorted by the number of
their children nodes in a monotonically decreasing order.
The parameter K constrains the maximum number of lo-
cations per node and satisfies 0 ≤ K ≤ 1; the maximum
number of locations per node increases as K increases. On
the other hand, β governs the decay of the distribution of
the number of locations per node (i.e., exponential type
decay for small β-values, power-law type decay for large
β-values). We call this the modified HOT model for In-
ternet growth at the AS level. In contrast to the generic
model of Fabrikant et al., this modified model allows for
multi-PoP ASs and attempts to capture their evolution in
time. As the connectivity of the graph grows over time,
the internal structure (i.e., the number of PoPs and their
geographic locations) of individual nodes can also expand.

Fig. 3 shows the results of three sample graphs gen-
erated by our modified HOT model (for three different
(K, β) pairs; each graph contains 10,000 nodes). Plot
(a) depicts the frequency plot of the number of locations
per node, and the node degree frequency plot is shown
in plot (b). In all three cases, the node with the high-
est degree (i.e., the highest ranked node in Fig. 3(b)) has
acquired connections to a majority of all the other nodes
(98.7%, 95.8%, 70.7% of all nodes, resp.), a clear indi-
cation that the resulting graphs exhibit a pronounced star-
shaped structure. For comparison, we also plot in Fig. 3(b)
the node degree distribution produced by the generic HOT
model (i.e., a single location per node) and observe that in
this case, the node with the highest degree is connected to
only 14.5% of all nodes. This result confirms our hypothe-
sis and illustrates that the optimization trade-off that is the
basis of the generic HOT model can be seriously defeated
in a more realistic AS networking setting.
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Fig. 4. Parameter (K,β) exploration in the mo dified HOT model (α=5 and n=10,000)

A more careful exploration of the parameter space (i.e.,
(K, β)-values) associated with the modified HOT model
further confirms our conclusion. We define the connec-
tivity concentration ratio (CCR) as the ratio of the largest
node degree over the total number of links in the graph.
Using CCR as a metric for assessing the degree of “star-
shapedness” of a graph (e.g., CCR=1 for a perfectly star-
shaped topology), we examined a set of graphs generated
with a broad range of (K, β)-values. Fig. 4(a) plots the
CCR value of the graphs generated by the modified HOT
model with 0.0001 ≤ K ≤ 0.1 and 0 ≤ β ≤ 2.0. Fig. 4(b)
shows the largest number of locations per node in the cor-
responding graphs. From Fig. 4(a), one can see that irre-
spective of the value of β, CCR converges quickly to 1 as
K increases. In fact, graphs with CCR-values less than 0.5
or so are only possible for small K-values, which, accord-
ing to Fig. 4(b), give rise to graphs where the largest num-
ber of node locations is only about 10 or less. Note that
such limited variability in the numbers of node locations
(small K values) renders the modified HOT model in-
creasingly indistinguishable from the generic HOT model,
where each node has only a single location.

IV. AS GEOGRAPHY AS A CAUSAL FORCE

Motivated by networking reality (e.g., the need to al-
low for multi-PoP ASs with realistic geographies) and the
shortcomings of the HOT model of Fabrikant et al. dis-
cussed in Section III, we describe in the following the first
step of our construction of a new HOT model for Inter-
net growth at the ASPC level. To this end, we distill the
role that AS geography plays in shaping AS connectiv-
ity, formulate a class of single-objective optimizations by
which newly arriving customer ASs select their upstream
provider, and validate the findings against relevant AS-
specific data.

A. The Univariate HOT Model

To account for the multi-PoP structure of real-world
ASs, we rely on the modified HOT model described in Sec-
tion III-B, but redefine the local optimization problem by
which an individual AS connects to the existing AS graph.
In particular, viewing nodes as customer or provider ASs
and links as provider-customer peering relationships and
working as before in the context of a tree topology, we
consider the single-objective optimization criterion con-
sisting of simply minimizing the “last mile” connection
cost. Under this growth model, each newly arriving node
i is originally identified with a single PoP location; upon
arrival, it always connects to the existing node j that con-
tains the PoP location in loc list(j) that minimizes the Eu-
clidean distance to node i.9 As in the case of the modified
HOT model, each existing node u then gets a chance to
enlarge its internal PoP structure by adding a new, ran-
domly placed PoP, increasing thereby the geographic reach
or diversity of u. For each node u, the probability to in-
crease by one the number of its PoPs in loc list(u) is again
given by ploc(u). We call this HOT model with its sin-
gle locality-based connectivity objective the univariate
model for Internet growth at the ASPC level.10 It is ide-
ally suited to test the hypothesis alluded to in Section III-B
that the power-law type node degree distributions of in-
ferred ASPC or AS graphs may simply be due to the pres-
ence of power-law type distributions that capture in a par-
simonious manner the high variability in the geographic
extent of AS infrastructures. To recall, in Section III-B we
argued that due to the proximity to the topological core
of the AS graph and the geographic diversity of their PoP
infrastructure, large ASs are more likely to acquire new
ASs, which in turn enables them to build up their PoP in-

9Being an existing node, node j will in general already possess an
extensive internal PoP structure.

10Univariate refers to the fact that geographic proximity is the only
objective that is being optimized by a newly arriving AS.
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Fig. 5. The univariate HOT model (n=10,000)

frastructure more aggressively than small ASs. Together,
these arguments make it plausible that high variability in
the number of PoPs per AS may well cause AS degrees
themselves to exhibit high variability.

To test this hypothesis for a sensible range of the model
parameters K and β associated with our univariate HOT
model, we generate two sets of graphs, where each graph
consists of 10,000 nodes. One set is produced by setting
β = 0.1 and varying K between 0.0001 and 0.1, the other
set is constructed with β = 1.0 and the same K range.
The top row of Fig. 5 shows the distributions of the num-
ber of locations per node in plot (a) and the distributions
of node degrees in plot (b) for the first set of graphs (i.e.,
β = 0.1). The bottom row of the figure shows the cor-
responding information in plots (c) and (d) for the second
set of graphs (i.e., β = 1.0). Clearly, none of the distri-
butions associated with the first set of graphs exhibit high
variability or power-law type tails. In fact, all the distribu-
tions show extremely limited variability, fully consistent
with exponential-type distributions. In particular, we ob-
serve that for graphs with β = 0.1, the exponential-type
distributions for the number of locations per node are in-
capable of producing highly variable node degree distribu-
tion. However, graphs with β = 1.0 (bottom row) give
rise to a more interesting behavior. As the value of K
increases from 0.0001 to 0.1, not only does the number

of locations per node become more highly variable, but
the corresponding node degree distributions also change
from exhibiting very limited variability (exponential-type)
to showing high variability of the power-law type. In par-
ticular, for the larger K-values (e.g., 0.01 ≤ K ≤ 0.1),
there is a striking resemblance between the distributions
of the number of locations per node and the node degrees.
From this experiment, we conclude that our hypothesis has
merit; that is, the geographic extent of existing nodes (as
measured by the number of locations) can indeed be a con-
trolling force in determining the characteristics of node de-
gree distributions. This finding motivates a careful investi-
gation into the geographic properties of existing ASs, with
the ultimate goal of validating the high variability of AS
size (measured in terms of the number of PoPs per AS)
through elementary, geography-related measurements.

B. On Validating the Univariate HOT Model

The proposed univariate HOT model for Internet growth
at the ASPC level suggests that the high variability of the
AS sizes as measured by the number of PoPs is an expla-
nation for the striking power-law type AS degree distri-
butions of inferred ASPC graphs and, in turn, of the AS
graphs themselves. To validate this aspect of the model
and “close the loop” in the sense of [32], we provide be-
low empirical evidence for the ubiquity of high variability
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in the geographic extent of existing ASs. In particular, we
present and discuss in the following the types of measure-
ments and analysis methodologies that enable us to charac-
terize various aspects of existing AS geographies, includ-
ing the distribution of the number of PoPs per AS.

To infer AS size in terms of the number of PoPs, we
first need to infer the geographic locations of the PoPs of
the different ASs. To this end, we first collected a set of
address prefixes from the Oregon route-views BGP data.
Since BGP-advertised address prefixes can contain over-
lapping address space, to be able to associate address space
with geographic location, we converted any overlapping
address prefixes to a set of disjoint address blocks by re-
cursively splitting in half any prefix that contains a sub-
prefix. For example, given the overlapping address space
128.182.0.0/16 and 128.182.64.0/18, the recursive split-
ting procedure generates the three disjoint address blocks
128.182.128.0/17, 128.182.64.0/18, and 128.182.0.0/18.
With 110,281 BGP-advertised address prefixes from the
Oregon BGP data, after applying the recursive splitting,
we were left with a total of 197,841 disjoint CIDR blocks.

Next, to associate a geographic location with each of
these disjoint CIDR blocks, we randomly picked an IP
address from each of the 197,841 blocks and queried the
NetGeo database, a public repository of geographic infor-
mation associated with address prefixes [10], for its geo-
graphic location. The NetGeo server responded with geo-
graphic location records for about 97% of all the queries
we made. Relying on all these NetGeo records, we then
map each of the geographically known IP address/CIDR
block to its corresponding AS, thereby producing the geo-
graphic mapping information for the individual ASs.

While measuring the geographic extent of existing ASs
by the number of their distinct NetGeo-inferred loca-
tions, we found that the geographic granularity of the Net-
Geo data is inconsistent, both with respect to (longitude,
latitude) coordinates and (city/state/country) informa-
tion.11 To ensure that our inference methods are not biased
or invalidated by these inconsistencies, we use a more flex-
ible and practical definition of geographic granularity by
relying on the following heuristic. For each AS, using the
corresponding inferred geographic mapping information,
we first obtain the (longitude, latitude) coordinates of all
of its distinct locations. Then we merge locations whose
pairwise geographic distances are below a given threshold

11For example, since NetGeo infers US locations from zip code or
phone area code information (typically of finer granularity than city
names), San Francisco has 40 distinct (longitude, latitude) locations
in the NetGeo data set, but they differ only slightly from one another.
On the other hand, for most non-US cities, NetGeo assigned only a
single geographic location.

TABLE III
ROCKETFUEL VS. NETGEO

Number of PoPsAS Name
Rocketfuel NetGeo (τ = 100 mi)

1221 Telstra 61 16
1239 Sprintlink 43 302
1755 Ebone 25 13
2914 Verio 121 51
3257 Tiscali 50 3
3356 Level3 52 42
3967 Exodus 23 36
4755 VSNL 10 35
6461 Abovenet 21 23
7018 AT&T 108 245

distance τ into one cluster or location-group and use the
arithmetic mean of the (longitude, latitude) coordinates
of the individual locations that got merged as the cluster’s
new coordinates. Thus, by clustering closely linked ge-
ographic locations, our method is expected to recover, at
least to a first order, the actual physical facilities of existing
ASs. We will use in the following the number of inferred
location-groups per AS as our estimate for AS size.

A number of recent studies have been concerned with
inferring the geographic locations of existing network-
related entities such as Internet hosts, IP routers, PoPs,
ISPs, or ASs [26], [22], [29], [19], [10]. Of particular
relevance is [29], where the authors, as part of obtain-
ing some of the most complete currently available pub-
lic router-level maps for 10 existing ASs, also inferred the
number of PoPs for those same 10 ASs. To compare, Ta-
ble III shows the inferred number of PoPs reported in [29]
(left column) and obtained using our NetGeo-based ap-
proach (right column). Clearly, the differences are sig-
nificant and beg an explanation. Consider, for example,
an extreme case like AS 1239 (SprintLink), where [29]
reports 43 PoPs while our method yields 302 (with τ =
100 mi). To understand why such differences are to be ex-
pected, first note that the geographic granularity of the two
methods is different. While [29] uses city names, the geo-
graphic granularity of our method can be finer or coarser,
depending on the choice of the threshold distance parame-
ter τ . Second, a design feature of SprintLink is that small
city customers tend to be back-hauled to far away PoPs
(typically located in the major cities) through geographi-
cally close-by layer-2 switches which remain invisible to
the approach pursued in [29], but which are likely to in-
flate the number of inferred PoPs when using our method
(i.e., our method may wrongly infer the locations of such
layer-2 switches as actual PoP locations).12

12It could be argued that for the purposes of this paper, layer-2
switches in a SprintLink-like network design should be viewed and
counted as PoPs.
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Fig. 6. AS size distribution (size = number of PoPs).

One way to mitigate the inherently difficult problem
of inferring geographic locality information for network
elements (e.g., number of PoPs per AS) from BGP- or
traceroute-derived measurements is to demonstrate that the
obtained information is broadly robust. To illustrate, con-
sider the inferred AS size obtained using our NetGeo-
based technique. Plot (a) in Fig. 6 depicts the distributions
of the inferred AS sizes for different values of the thresh-
old distance parameter τ (i.e., 10, 20, 50, and 100 mi) and
shows that AS size distribution as measured by the num-
ber of PoPs per AS is largely insensitive to the choice of
τ . Plot (b) in Fig. 6 demonstrates an even stronger ro-
bustness property of the AS size distribution. To explicitly
account for possible PoP count inflation (as in the case of
SprintLink) or deflation (e.g., too coarse of a geographic
granularity), we assume that Rerr% of all the ASs have
their sizes wrongly inferred by our NetGeo technique. We
randomly mark half of them as having their sizes inflated,
with the other half having deflated sizes. For each AS with
an inflated size, we “adjust” its size by multiplying it by
1/ε, where ε is randomly chosen from [1, εmax] and where
εmax is a parameter indicating some maximum margin of
error. On the other hand, for each deflated AS, we “mod-
ify” its size by multiplying it by a factor of ε, where ε is
again picked at random from [1, εmax]. For example, if the
inferred size of AS X is 100 and εmax = 4, the adjusted
size of AS X can vary between 25 and 100 if X is con-
sidered inflated, and between 100 and 400 if it is marked
deflated. Assuming that the inferred AS size can deviate
from the (unknown) “true” size by as much as a factor of
4 (i.e., εmax = 4), plot (b) in Fig. 6 testifies to the ro-
bustness of the power-law type behavior of the AS size
distribution with respect to a wide range of misspecifica-
tions of AS sizes (i.e., Rerr = 20%, 40%, 60%, 80%, and
even for Rerr = 100%). Note that such robustness prop-
erties indicate an enormous resilience to ambiguity of the
unknown underlying distribution (e.g., ambiguity with re-

spect to precisely how AS size is defined or measured) and
essentially imply that the latter must be of the power-law
type [9]. Based on these empirical findings, we conclude
that the power-law type distribution for AS sizes that has
been identified by our univariate HOT model for Internet
growth at the ASPC level as an explanation for the power-
law type node degree distributions of inferred ASPC and
AS graphs is fully consistent with data derived from geo-
graphic mapping information for the individual ASs.

C. Some comments on using the NetGeo database

[22] reports on a study of the geographic population of
Internet routers that were discovered by traceroute prob-
ing. That work relies on proprietary geographic location
databases to infer the coordinates of all router interface
addresses. The work described here differs from [22] in
a number of ways. For one, as discussed in Section 4.2
above, instead of considering an inevitably incomplete set
of router addresses obtained from traceroute probing, we
examine the locations associates with all existing address
prefixes. Second, we rely on a public repository of geo-
graphic information for IP address prefixes, i.e., the Net-
Geo database [10].

A typical NetGeo record is shown below and contains
(city/state/country) information and the (latitude/longitude)
coordinates for the (target) IP address in question.

LONG: -77.11
LAT: 38.87
STATE: VIRGINIA
NAME: CHY-WAN-65-121-98A
STATUS: OK
COUNTRY: US
LAT_LONG_GRAN: City
TARGET: 65.121.98.28
NUMBER: 65.121.98.0 - 65.121.98.255
CITY: ARLINGTON
NIC: ARIN
LAST_UPDATED: 14-Nov-2001
LOOKUP_TYPE: Block Allocation
DOMAIN_GUESS: qwestip.net
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The geographic location records of the NetGeo database
originate from the ARIN/APNIC/RIPE whois servers. The
NetGeo database server extracts geographic information
such as city, state, country names from the text of whois
records. It also leverages US zip codes, phone area codes,
or email addresses with 2-letter top-level domains (TLDs)
country code where possible. For large, geographically-
dispersed transit providers for which the whois-based tech-
nique is not sufficient for location mapping, the NetGeo
obtains geographical hints from DNS lookup as well.

Given that NetGeo’s inference engine exploits various
geographic cues, we performed a careful analysis to cal-
ibrate its mapping accuracy. The following are the main
conclusions of our assessment of the reliability of the Net-
Geo data.
• Comparison with Geotrack (US sites only): Using 1,000
US university sites with known geographic locations, com-
paring their NetGeo-inferred locations with the corre-
sponding locations inferred by the Geotrack method (see
for example [26]), we found that the NetGeo-based loca-
tions are slightly more accurate than those produced by
Geotrack (while the median difference between the former
and the actual locations was 0, it was about 80 miles for
the Geotrack-related differences).
• Comparison with Geotrack (random sites): Using 660
randomly chosen IP addresses whose actual geographic
locations are typically not known, we observed that the
NetGeo- and Geotrack-inferred locations vary widely,
with as many as 40% of the IP addresses having NetGeo-
and Geotrack-inferred locations that are more than 1,000
miles apart from one another. It turns out that the rea-
son for this extreme discrepancy between the two infer-
ence methods is that Geotrack has a tendency to associate
the geographic location of networks that reside outside the
US with the location of US cities where the the networks’
international circuits originate or terminate.
• Comparison with Geotrack (random US sites): When
considering only those random IP addresses (out of the
above 660) which – according to NetGeo – are located
within the US, we found that the NetGeo- and Geotrack-
inferred locations are now more comparable, with a me-
dian difference of about 100 miles.

As described in Section 4.2, because of inconsistencies
in the geographic granularity of the NetGeo data, we con-
sider a flexible and very practical definition of geographic
granularity that essentially ignores location information
that is too fine-grained (i.e., below a threshold distance of
τ miles). As a by-product, this definition can also mitigate
the problem whereby portions of address space belonging
to an ISP X may be delegated to other business customers
that obtain their network access from X without running
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Fig. 7. Location density distribution (density = number of ASs).

BGP themselves (e.g., managed hosting service clients or
small dial-up/broadband access sites). In this case, the
NetGeo data set may associate the locations of such re-
assigned address blocks with those of these business cus-
tomers, causing the location of ISP X to be wrongly ex-
tended to the locations of those customer sites. We predict
that such business clients would typically be located in ge-
ographic proximity to their provider ISP’s actual locations
due to the economic incentive of laying shorter lines or the
ease of administrative contact. In any case, the heuristic is
likely to track the locations of the physical facilities of a
given AS with reasonable accuracy.

We conclude this section with another example of how
the NetGeo data can be used to study interesting fea-
tures associated with AS geography. Recall that the de-
velopment of our locality-basd HOT model for Internet
growth at the ASPC level was partly motivated by the ar-
gument that large multi-PoP ASs are more likely to ac-
quire new customers than single-PoP or small multi-PoP
ASs. Knowing the geographic concentration of existing
ASs (i.e., the number of different ASs per geographic lo-
cation) would shed light on the validity of the above ar-
gument. Thus, to obtain the number of ASs per geo-
graphic location, we first collect from our NetGeo data
set the (longitude, latitude) coordinates of all the dis-
tinct geographic locations that are associated with at least
any one AS. As before, depending on the threshold dis-
tance τ , we group all the pairwise close geographic lo-
cations into one cluster or location-group and then asso-
ciate individual ASs with the different location-group as
follows: AS i is associated with a given location-group
if and only if AS i has at least one geographic location
that is contained in the location group. When equating the
number of ASs per location with the inferred number of
ASs per location-group, Fig. 7 shows the resulting distri-
butions for four different values of the threshold distance
τ (i.e., τ =10, 20, 50, and 100 miles). Additional details
about the top-10 locations in terms of the number of ASs
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TABLE IV
TOP-10 LOCATIONS (τ = 10 MILES)

Location Rank Location Name Number of ASs

1 New York City, NY, US 508
2 Herndon, VA, US 411
3 Amsterdam, NL 366
4 Fairfax, VA, US 316
5 Englewood, CO, US 313
6 Seoul, KR 310
7 Palo Alto, CA, US 269
8 Atlanta, GA, US 245
9 Los Angeles, CA 225
10 London, UK 211

present can be found in Table IV. Not surprisingly, the
top-10 locations correspond mainly to large cities or ma-
jor urban areas, with high population densities and signif-
icant economic activities.13 From Fig. 7 we can conclude
that the geographic concentration of existing ASs exhibits
high variability (ranging over 3 orders of magnitude) and
is largely insensitive to the details of defining geographic
granularity (i.e., specific choice of τ ).

V. AS BUSINESS MODEL AS A CAUSAL FORCE

Building upon our univariate HOT model, we describe
in the section the second step of or construction of a new
HOT model for Internet growth at the ASPC level. In par-
ticular, we explore here in detail the role that the decision
making processes by which the different customer ASs en-
ter into business relationships with their provider ASs play
in shaping Internet AS connectivity.

A. Inter-AS Peering in the Commercial Internet

By our univariate HOT model, the variability in AS size
roughly determines the variability in AS node degrees (see
Fig. 5). However, while inferred AS graphs of the actual
Internet (e.g., Fig. 1) typically show 3 to 4 orders of mag-
nitude variability in node degrees, the variability of the
inferred number of PoPs per AS (i.e., AS sizes) tends to
range over only 2 to 3 orders of magnitude (see Fig. 6).
While this suggests that managing ASs with too many
PoPs is economically or technically not a viable business,
it is also a clear indication that our univariate HOT model
has only identified a necessary but by no means sufficient
condition for explaining the high variability of inferred
AS node degrees. The model’s claim is fully consistent
with elementary, AS geographic measurements, but it does
not rule out the existence of factors other than geographic
proximity at work in shaping AS connectivity.

One such factor is how a new customer AS X es-
tablishes Internet connectivity when there are numerous

13As we vary τ from 10 miles to 100 miles, we notice a slight re-
ordering among the top-10 ranking, but the ASs remain the same.

provider ASs within the same (or comparable) geographic
proximity of X , all vying to become AS X’s provider.14

In such situations, it is reasonable to assume that AS X
will evaluate the competing providers by several criteria
other than geographic proximity (including for example
the availability, reliability, and performance of the net-
works, available pricing plans, existing customer support,
number of value-added services, geographic reach and
projected network build-out, prior acquaintance between
the parties involved, etc. [23]) and then make a more or less
rational decision to choose a provider that is “best” or “op-
timal” with respect to some, possibly AS-dependent, util-
ity measure. To formalize this admittedly over-simplified
process by which new customer ASs select their upstream
provider, we view the above criteria as being part of an ab-
stract object called AS X’s business model. Aside from
the above mentioned criteria, the business model of an AS
can include any other factors that may play a role in how
AS connectivity is established. In Section V-B below, we
present a concrete mathematical formulation of such toy
business models, flexible enough to account for a range of
different business objectives among the various ASs.

B. The Bivariate HOT Model

In incorporating an AS’s business model into our pro-
posed HOT model, we assume that a newly arriving
AS first identifies within its geographic neighborhood all
provider ASs offering service. The candidate providers are
then evaluated based on a set of criteria in the AS’s busi-
ness model. Finally, the “best” upstream provider for the
new AS is selected as the result of the AS’s locally optimal
business decision. More formally, we start with the uni-
variate model defined in Section IV-A, where each node i
has a list loc list(i) that provides geographic information
about its internal PoP structure (the number of PoPs and
their geographic coordinates). To define node i’s business
model, we augment node i with an N -dimensional vec-
tor xi = (xi,1, xi,2, ..., xi,N ) and a non-empty set Si ⊂
{1,2,...,N}. We call xi node i’s score vector. An instan-
tiation of xi is obtained by assigning each of its compo-
nents xi,n a uniform random number taken from [0,1]. Si

is node i’s selection set and and is randomly chosen from
2{1,2,...,N} \ {φ}. The pair (xi, Si) forms node i’s busi-
ness model. Intuitively, the score vector indices represent
the possible criteria that enter into the decision making
processes by which competing ASs are evaluated against.
The individual vector-components xi,j quantify how AS i

14The importance of this factor in establishing provider-customer
peering relationships among ASs is emphasized by the observed highly
variable AS density per geographic location as discussed at the end of
Section IV-B.
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Fig. 8. The bivariate HOT model (n=10,000, K=0.05, β=1.0, neighborhood radius=0.1, N=3)

is measured up with respect to criterion j, 1 ≤ j ≤ N .
The selection set Si defines the subset of criteria that AS
i deems relevant when choosing its upstream provider.
Hence in making its choice for a provider, a new AS i
matches up its selection set against the score vector of each
candidate provider. The selection set is generally different
from one AS to another.

To determine the comparative desirability of provider
ASs, we define node dominance on a set P as follows.
Given two nodes i and j and a non-empty set P ⊂
{1, 2, ..., N}, node i is said to dominate node j on set
P if xi,n ≥ xj,n, for all n ∈ P , and xi,m > xj,m, for
some m ∈ P . To illustrate, consider the following sim-
ple example whereby three competing provider ASs, AS
X , Y , and Z, are evaluated by a newly arriving customer
AS i in terms of two (N = 2) criteria: network reliabil-
ity and unit bandwidth cost. AS X reportedly has 99%
network reliability, AS Y 98%, and AS Z 97%. They
charge $100/mon., $150/mon. and $50/mon. per unit band-
width, respectively. If the new customer AS i considers
unit bandwidth cost as the only relevant criterion in choos-
ing a provider (i.e., Si = {unit bandwidth cost}), then it
will choose AS Z. However, a new customer AS j that
deems both network reliability and unit bandwidth cost
important when selecting its upstream provider (i.e., Sj =
{network reliability, unit bandwidth cost}) will not select
AS Y , since AS Y is dominated by AS X . It will choose
either AS X or Z, for neither is dominated by the other
(ties can be broken as j pleases). Note that in this process,
the score vector of a newly arriving customer itself is not
needed, but its selection set is crucial; at the same time,
any newly arriving customer AS needs to know the score
vector xu and geography data loc list(u) of each existing
provider AS u in the graph.

According to this model, the graph grows as follows.
When a new node i arrives, it is assigned the trivial list
loc list(i) (consisting of i’s coordinates only) and an in-

stantiation of its selection set Si. Node i first initializes
its candidate set candidate(i) with all existing nodes that
have a PoP location within a pre-defined Euclidean dis-
tance from node i, the so-called neighborhood of i. Next,
for each pair of nodes in candidate(i), if one of the nodes
is dominated on the set Si by the other node, the new node
i marks that dominated node. Subsequently, all marked
nodes are eliminated from candidate(i). The new node
then randomly picks one of the nodes left in candidate(i)
as the target node and establishes a connection to that node.
Finally, node i is given an instantiation of its score vector
xi, and—as in the multi-PoP univariate HOT model—each
existing node u is given a chance to increments the number
of its PoP locations in loc list(u) by 1, with probability
ploc(u); with probability 1−ploc(u), loc list(u) is left un-
changed. We call this HOT model in which two objec-
tives (i.e., geographic proximity and economic utility)
are optimized simultaneously the bivariate model for In-
ternet growth at the ASPC level. This model differs from
the previously considered univariate model in that a new
AS i, instead of finding the geographically closest AS, now
considers all the ASs with PoP locations “close-by,” i.e.,
located within its neighborhood. More importantly, when
trying to narrow down its choices among multiple locally
accessible candidate provider ASs, the new AS i avoids se-
lecting a provider that is dominated by some other compet-
ing provider in terms of the criteria present in its selection
set Si. The model ensures that the final selection of up-
stream provider by each new AS i is Pareto optimal [16]
in the sense that no other “close-by” provider AS domi-
nates the chosen provider on the set Si. This HOT formu-
lation is a truly multi-objective optimization, combining
geography- and economic-specific objectives. Moreover,
it defines a fully distributed and decentralized design of
Internet connectivity at the ASPC level, typically with dif-
ferent optimization problems (as a result of the different
AS-specific selection sets) solved by the different ASs.
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Fig. 9. The bivariate HOT model (n=10,000, K=0.05, β=1.0) – (a) the effect of neighborhood radius (for fixed N=3), (b) the

effect of the dimension of the score vector (for fixed neighborhood radius=0.1).

To demonstrate the potential of this bivariate HOT
model, Fig. 8 illustrates some of the features of the re-
sulting graphs (as always, each graph consist of 10,000
nodes). In particular, defining the neighborhood of a given
node to be a disk of radius 0.1 centered at a node, setting
K = 0.05, β=1.0, and N = 3, plot (a) of Fig. 8 depicts
the distribution of the number of locations per node, and
plot (b) gives the node degree distribution of the generated
graphs. On the same plots, we also show the results cor-
responding to the graph generated by the univariate model
(same parameters: K = 0.05, β=1.0, 10,000 nodes). Fi-
nally, for comparison, plot (b) also contains the node de-
gree distribution corresponding to one of the single-homed
provider-customer subgraph of the OREGON+ AS graph
(i.e., the largest tree topology rooted at AS701; see Sec-
tion II-C). Fig. 8 provides convincing evidence that while
the univariate and bivariate HOT models yield comparable
AS size distributions, the latter has a clear impact on the
distribution of node degrees. In fact, it can increase the
variability of node degrees by at least one order of mag-
nitude beyond what the univariate model is capable of,
closely matching the node degree distribution of inferred
AS (sub)graphs.

Next we illustrate that both objectives in the formula-
tion of our bivariate HOT model (i.e., geographic proxim-
ity and locally Pareto-optimal business decision) are nec-
essary for creating graphs with Internet-like features. We
first examine in plot (a) of Fig. 9 how the geography-
related factor, i.e., the neighborhood of a node, impacts
the node degree distribution of the resulting final graph. To
this end, we set K=0.05, β=1.0, and N=3, but vary the ra-
dius of a node’s neighborhood from 0.01, 0.1, 0.2, 0.5, and
some large number. As can be observed, as the neighbor-
hood size decreases to a disk of radius 0.01, the resulting
node degree distributions exhibit less variability and be-
come comparable to those generated by similarly parame-
terized versions of our univariate models (see for example,

Fig. 8(a)). On the other hand, too large of a neighbor-
hood size (e.g., neighborhood sizes ≥ 0.2) results in degree
distributions that are qualitatively different from those de-
rived from the actual Internet. These observations suggest
that a certain degree of geographic locality is needed to
model Internet-like ASPC graphs with our bivariate HOT
model.

To examine how the business-related criterion affects
node degree distributions, we parameterize our model with
K = 0.05, β=1.0, and a neighborhood radius of 0.1, but
vary the parameter N , the dimension of the score vector,
from 1 to 9. N captures the complexity of the business-
related aspect of provider selection and is therefore a nat-
ural parameter to consider for the purposes of this experi-
ment. Plot (b) of Fig. 9 shows the node degree distributions
of a 10,000-node graph, for the different values of N . As
the value of N increases, the variability of node degrees
tends to decrease. This observation agrees with the intu-
ition that a small N -value creates more opportunities for
some nodes to be favored over the others during the growth
process of the graph, which in turn increases the variabil-
ity of node degrees. Small N -values reflect the regime
whereby relatively simple business decisions are involved
in selecting the “best” provider. If complex business deci-
sions are allowed (large N -values), the cardinality of the
Pareto-optimal candidate set is likely to be large, caus-
ing individual node degrees to be more evenly distributed
among existing nodes, thereby reducing the overall node
degree variability.

C. On the Robustness of the Bivariate HOT Model

Our bivariate HOT model for Internet growth at the
ASPC level attempts to capture the local decision pro-
cesses performed by individual ASs within an abstract but
intuitive framework. In accordance to the model valida-
tion framework advocated in [32], the natural next step
would be to empirically validate the model using rele-
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Fig. 10. Primary vs. secondary criteria

vant data. However, at this point it befuddles us how
to collect the appropriate data; in fact, we are not even
sure what sort of data might be available that could shed
some light on the validity of the proposed model, espe-
cially as far as the assumed toy business model is con-
cerned. Fully realizing this dilemma, the next-best ap-
proach in support of the overall viability of the model is
to assess its sensitivity to changes in the underlying toy
business model (xi, Si) associated with AS i. The explo-
ration of the impact of such changes or of related what-
if scenarios is typically motivated by real-world inter-AS
peering considerations and inevitably complicates the re-
sulting business model beyond our intuitive but naive toy
model, where—in the absence of empirical evidence to the
contrary—the assignments of score vectors and selection
sets are completely left to chance (i.e., independent and
uniformly random). For the viability of our proposed bi-
variate model, it is therefore important to understand what
sort of changes, refinements, or modifications to our toy
business model result in qualitatively the same graph struc-
tures, and which disturbances give rise to qualitatively very
different topologies.

Primary vs. secondary criteria To illustrate, the fol-
lowing refinement of the bivariate HOT model is motivated
by the observation that when evaluating different provider
ASs, customer AS i may be more concerned with some
criteria (e.g., unit bandwidth cost) than others (e.g., cus-
tomer support). This then suggests considering selection
sets Si for AS i that are not necessarily randomly cho-
sen from 2{1,2,...,N} \ {φ}. To achieve this goal, we as-
sociate with a given node i an N -tuple of weights ∆(i) =
(δi,1, δi,2, ..., δi,N ), 0 ≤ δi,n ≤ 1, where δi,n is the weight
with which the node i indicates its preference to have
criterion n included in its selection set. We then define
the probability that the node’s selection set Si is instanti-
ated with a particular subset X in 2{1,2,...,N} \ {φ} to be
((

∏

u∈X δi,u)(
∏

v/∈X (1 − δi,v)))/(1 −
∏N

w=1 (1 − δi,w)).

By varying the weight-vector ∆(i), we are able to explic-
itly control the relative preference for including certain cri-
teria (or indices of the score vector) in a selection set over
others. For example, setting all weights equal to 0.5 cor-
responds to the purely random choice of selection sets as-
sumed in our original formulation of the bivariate model.
On the other hand, having δi,n larger than δi,m gives rise
to selection sets that are more likely to contain criterion
n than m. Given a weight-vector ∆(i), we next classify
the score vector indices or criteria (but not the actual val-
ues of the components of the score vector) into primary
and secondary indices, depending on whether δi,n ≥ 0.5
or δi,n < 0.5, resp. That is, a primary index represents a
criteria that an AS deems important when choosing its up-
stream provider; secondary indices correspond to criteria
that the AS considers to be relatively unimportant.

In our experiment, we tested a special case where ∆(i)
= ∆(j) = ∆ for every pair of node i and j (i.e., the same
weight-vector ∆ for every node), and all primary indices
are assigned equally high weights (i.e., 0.8) and all sec-
ondary indices equally low weights (i.e., 0.2). The number
of primary and secondary indices in ∆ is then denoted by
Np and Ns respectively, where Np + Ns = N . Under this
setting, we generated a set of graphs varying Np from 1
to 5 and Ns from 0 to 5. Fig. 10(a) shows the inferred
α-values (i.e., estimated tail-index of power-law distribu-
tions of the form P [X > x] ∼ x−α, for large x) of the
degree distributions of these generated graphs, where the
α-estimates are the slopes of least squares fits on log-log
scale). Fig. 10(b) plots their connectivity concentration ra-
tios (CCRs) introduced in Section III-B. The reported val-
ues in both figures are averages taken over ten realizations
that were generated for each pair of (Np, Ns)-values. For
comparison, we added to the figures the inferred α- and
CCR-values of the P1 subgraph of OREGON AS graph (la-
beled “Internet”).
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Fig. 11. Regenerative vs. degenerative criteria

Fig. 10(a) suggests that as Np or Ns increases, the slope
of the degree distribution becomes steeper.15 The rea-
son for this behavior is similar to what explains Fig. 9(b).
Due to different selection preferences for primary and sec-
ondary criteria, however, an increase of Ns has much less
of an effect on the degree distribution than an increase
of Np. In addition, Fig. 10(b) shows that if Np > 1,
the CCR of a generated graphs falls short of that of the
Internet AS graph. From this experiment, we conclude
that when allowing for a separation of the score vector
into components representing primary and secondary cri-
teria, Internet-like node degree distributions are typically
achieved with higher-dimensional score vectors than in our
original model. Furthermore, to retain an Internet-like hi-
erarchical structure (as measured in terms of the connec-
tion concentration ratio CCR), the value of Np is required
to be smaller than the dimension of the score vectors in
our original model.

Regenerative vs. degenerative criteria Another type
of refinement to our toy business model concerns the ac-
tual values assigned to the ASs’ score vectors. This re-
finement reflects an aspect of networking reality whereby
for example network reliability of a customer AS cannot
be higher than that of its upstream providers’, mainly be-
cause network access failures inevitably propagate through
downstream customer networks. We call criteria whose
quality for the customer AS is provider dependent degen-
erative criteria. In contrast, an AS’s quality of customer
support is a criterion that is not necessarily determined by
its upstream providers’; we call such provider-independent
criteria regenerative criteria. The introduction of degen-
erative criteria leads us to consider the impact of score
vectors that are not necessarily independent across differ-
ent ASs and whose components are not necessarily cho-
sen uniformly between 0 and 1. In our original bivariate

15In all cases reported in the figures, the quality of the linear fit is
very high with correlation coefficient > 0.98.

model, the score vector xi of node i is determined inde-
pendently of that of its parent node j’s. If criterion m hap-
pens to be degenerative, then the value of the score vector
component xi,m is chosen uniformly from [0, xj,m] (i.e.,
it depends on the particular AS j chosen as i’s provider
and on j’s score vector). Regenerative criteria are assigned
random values in [0, 1] as in the original bivariate model,
independent of everything else. The number of degener-
ative and regenerative criteria are denoted by Nd and Nr

respectively, where Nd + Nr = N .
To explore the parameter space associated with this sec-

ond refinement of our original bivariate model, we vary
Nr from 1 to 5 and Nd from 0 to 5 and consider the case
of uniformly random selection sets. Fig. 11(a) is consistent
with our earlier observations that higher dimensional score
vectors result in steeper degree distributions. In addition,
one can see that increasing Nd while fixing N does not
change the slope of the degree distribution significantly.
For example, the four dots corresponding to N = 4 remain
close to the horizontal reference line. Fig. 11(b) indicates
that a higher Nd yields a graph with a higher CCR value.
The effect of changing Nd is more dramatic when N is
fixed. For example, incrementing Nd from 0 to 3 with
N = 4 causes the CCR of a generated graph to increase
from 0.05 up to 0.5. With more degenerative criteria, cus-
tomer ASs are more likely connect directly to nodes closer
to the root, resulting in an overall topology that becomes
more star-shaped from the root node outward. The main
finding from this set of experiments is that the presence of
degenerative qualities or criteria provides a direct “dial”
for impacting the growth dynamics of the graphs’ cores as
measured by the CCR metric.

Two refinements in combination Finally, we also ex-
perimented with combining the previous two refinements
and allowed ASs to classify their criteria to be primary or
secondary and, at the same time, degenerative or regener-
ative. Out of Np primary criteria, Npd criteria have de-
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Fig. 12. Primary regenerative vs. primary degenerative criteria

generative property and the rest of Npr criteria have re-
generative property (Npd + Npr = Np). Likewise with Ns

secondary criteria (Ns = Nsd + Nsr). Fig. 12 shows the α-
estimates of the degree distributions and the CCR-values
of graphs generated with Np = 2 and 0 ≤ Ns ≤ 5. Pri-
mary criteria are provided with either degenerative or re-
generative property, but all secondary criteria are classified
as regenerative by default (i.e., Ns = Nsr).16 Fig. 12(b)
shows that if all primary elements have degenerative prop-
erty (i.e., (Npr,Npd)=(0,2)) and Ns is small, the resulting
graphs tend to favor a pronounced star-shaped topology.
On the other hand, if all primary criteria have the regener-
ative property (i.e.,(Npr,Npd)=(2,0)), the CCR of a gener-
ated graphs fall short of that of the Internet AS graph. In
short, neither of the two extreme cases yields the Internet-
like hierarchical structure expressed by CCR. As long as
we avoid such extreme cases, the refined model results in
the Internet-like node degree distribution and hierarchical
structure (e.g., (Npr,Npd)=(1,1) and Ns = 2). We made
similar observations for Np > 2 as well.

The main conclusions from experimenting with these
refinements, either individually or in combination, are that
the qualitative aspects of the resulting graphs (as captured
for example by the node degree distribution or the connec-
tivity concentration ratio CCR introduced in Section III-
B) by and large agree with those obtained using the orig-
inal bivariate model. Quantitatively, the graphs differ in
very intuitive and predictable ways as a result of fine-
tuning their growth dynamics through particular choices
of the parameters associated with each refinement; that
is, the number of primary and secondary, or degenerative
and regenerative criteria. Note that these parameters pro-
vide explicit “knobs” for manipulating the sizing of the

16We also tested the cases where some secondary criteria have degen-
erative property. However, as far as secondary criteria are concerned,
whether they are degenerative or regenerative does not make much dif-
ference.

AS-specific sets of Pareto-optimal candidate nodes, which
in turn determines node degree variability and hierarchi-
cal structure of the resulting graphs. For example, when
allowing for degenerative and regenerative criteria, with
more degenerative criteria, customer ASs are more likely
to connect directly to nodes closer to the root, resulting in
an overall topology that becomes more star-shaped, with
the root at the center. On the other hand, when ASs are
given the choice to classify their criteria to be regenera-
tive or degenerative and, at the same time, primary or sec-
ondary, we find that when customer ASs select among a
number of competing provider ASs, neither the primary
regenerative nor the primary degenerative criteria of the
providers dominate the local decision processes of cus-
tomer ASs, but instead, both types of criteria are actively
considered in their decision-making processes.

VI. AS GRAPH EVOLUTION AS A CAUSAL FORCE

The third and final step of our construction of a new
HOT model for Internet growth at the ASPC level con-
cerns primarily the graph growth process itself. This step
is motivated by the observation that while the bivariate (as
well as the univariate) model is purely incremental in na-
ture (i.e., nodes are added to the graph one by one, and
once added, they stay forever, and so do all the added
links), the historical evolution of AS-related connectivity
is obviously more dynamic, given the business dynamics
of the ISP market.

A. The Multivariate HOT Model

In incrementally grown graphs like the ones generated
by our bivariate HOT model, the parent (or ancestor) node
of any given node i is always added to the graph before
node i. In the Internet, however, existing ASs can and do
disappear as a result of, for example, bankruptcies, often
times leaving their customers scrambling for new provider
ASs. To account for such change-of-provider scenarios
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in our model, we consider the bivariate HOT model de-
fined in Section V-B and introduce node death events that
trigger a particular change-of-provider mechanism. More
precisely, every time Pd new nodes have been added to
the graph, one of the existing nodes u in the graph is ran-
domly selected and removed from the graph (together with
all its incident links). In turn, all of node u’s children (if
any) become orphans and have to select a new parent node
to re-establish graph connectivity. When determining its
new provider, the local decision process of a given orphan
node i is similar to the one by which a newly arriving
node connects to the graph in our bivariate HOT model,
but differs in two important ways. First, when an orphan
node i chooses its set of “close-by” candidate providers,
none of the potential new parent nodes can be descendants
of node i. Second, the definition of geographic proxim-
ity needs to be modified because in contrast to a newly
arriving node u that is assigned a loc list(u) containing
a single PoP location, the orphan node i’s internal PoP
structure as described in loc list(i) may have grown sub-
stantially since node i’s birth. To account for this lat-
ter complication, we define the geographic proximity be-
tween an orphan node i and a potential new parent node j
to be (

∑

k∈loc list(i)(minl∈loc list(j)dkl))/|loc list(i)|, the
expected minimum distance between nodes i and j. If
the orphan node i happens to have only a single loca-
tion, this expression reduces to minl∈loc list(j)dil, the orig-
inal definition of geographic proximity used in our uni-
variate/bivariate model. We call this final HOT model
with its multi-faceted objectives (i.e., AS geography,
AS business model, and AS evolution) the multivariate
model for Internet growth at the ASPC level.

To judge the impact of allowing for evolutionary
changes through the introduction of node death events and
its associated change-of-provider mechanism, we gener-
ated two graphs (each with 10,000 nodes).17 The first
graph was generated using our bivariate HOT model (with
K = 0.05, β = 1.0, and N = 3); the second graph
resulted from an identically parameterized version of our
multivariate HOT model, where in addition, we set Pd =
5.18 While the node degree distributions of the resulting
graphs are practically identical (not shown), the scatter-
plots of node age vs. node degree depicted in Fig. 13 illus-
trate the impact that the introduction of change-of-provider
events has on the graph growth process itself. We observe

17To generate a graph with N final nodes using the multivariate
model, we need to add N ·

Pd

Pd−1
nodes, out of which N

Pd−1
nodes

will be removed during the growth process.
18The chosen value of Pd is an approximate ratio of AS birth fre-

quency and AS death frequency that are empirically observed from the
Oregon data sets described in Section VI-B.

that by allowing for these specified evolutionary changes,
the multivariate model in plot (b) introduces, as expected,
more randomness between node ages and node degrees
than the bivariate model in plot (a), thereby reducing the
correlation between node age and degree to be more con-
sistent with that observed in inferred ASPC graphs. Note
that in the case of these generated graphs, node age was
calculated based on an empirically derived AS birth rate
(see appendix for details).

B. On the Historical AS Evolution

Unfortunately, inference for historical AS evolution
(i.e., AS birth, AS death, change-of-provider, becoming
a peer or customer AS, etc.) is compromised by the ab-
sence of reliable AS meta-data. This difficulty not with-
standing, we rely on a hand-crafted approach for obtaining
qualitative rather than quantitative evidence in support of
including AS evolution into our multivariate HOT model.
In particular, relying on the daily data sets from the Oregon
route server which span the period Nov. 1997 to May 2001
and applying a previously reported methodology for iden-
tifying actual AS births (see [12]), we carefully extracted
a set of ASs that were born during this period.19 For those
newly born ASs that were still alive at the end of our data
collection period (May 26, 2001), we calculated their ages
with respect to May 26, 2001. For the ASPC subgraph in-
ferred from the Internet AS topology of May 26, 2001, we
obtained the actual ages of 8,799 ASs. The age difference
between provider-customer pairs when both ASs belong to
these 8,799 ASs can be easily computed. For ASs born be-
fore the start of Oregon’s data collection effort (Nov. 1997)
and whose exact age information is therefore not available,
we set their ages to the maximum age of the 8,799 ASs.

Given an AS X , if all the current parent ASs of X are
younger than X , X is considered to have undergone a
change-of-provider. By this criterion, almost 3% of the
ASs present in the May 26, 2001 provider-customer sub-
graph have changed provider at least once during their life-
time. With a less stringent definition of what constitutes a
change-of-provider (i.e., a fraction of AS X’s parent ASs
are younger than X), some 15% of all the ASs present in
the May 26, 2001 subgraph may have undergone a change
of providers. As to age-degree correlation, plot (c) in
Fig. 13 shows the scatter-plot for those 8,799 AS for which
we have actual age information and which are part of the

19We also experimented with using AS number as a substitute for AS
age, but found that due to AS number recycling and the specifics of AS
number allocation (e.g., disjoint AS number ranges are allocated to the
different Regional Internet Registries, which in turn assigned individual
AS numbers sequentially), inferring AS age form AS number may be
too crude of an approximation.
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(single-homed) provider-customer subgraphs of the ORE-
GON+ AS graph. As can be seen, there is no pronounced
correlations between the two quantities; many of the older
ASs have degree one or two, and the age of those ASs with
degree bigger than, say, 10 ranges widely across the entire
x-axis. While this plot agrees qualitatively with that of
our multivariate HOT model in plot (b)—in that both sug-
gest little correlation between AS age and AS node degree,
they also show a discrepancy in the range of node degrees.
We conjecture that the absence of 100+ degree nodes in
plot (c) is due to the fact that in the real Internet, high-
degree customer ASs will attempt to become peers of their
providers. This aspect of AS evolution has been explicitly
ignored by our deliberate focus on the provider-customer
portion of the AS graph, but arises at this point as a natural
next step in the development of a genuine HOT model for
Internet growth at the AS level as a whole. The develop-
ment of such a more complete HOT model that also ac-
counts for peer ASs (i.e., their historical evolution and ap-
propriate business models) and peer-to-peer relationships
is beyond the scope of this paper and is left as future work.

VII. DISCUSSION AND OUTLOOK

One of the features of the proposed multivariate HOT
model for Internet growth at the ASPC level is that by
explaining the striking power-law type node degree dis-
tributions of inferred AS graphs and subgraphs in terms
of power-law type distributions for inferred AS size (i.e.,
the number of PoPs per AS), it confirms a previously re-
ported conjecture in [31], namely that “the highly vari-
able degree distribution may arise merely from its corre-
lation with a highly variable size distribution.” Naturally,
such an explanation can be rightly criticized as answer-
ing one question (i.e., what causes power-law type AS
degree distributions?) with another question (i.e., what
causes power-law type AS size distribution?) To respond
to this criticism, first note that our explanation has shifted
the focus from an abstract concept (i.e., node degree) to

a concrete object (i.e., AS). Moreover, by viewing ASs as
genuine businesses or firms, we can now bring to bear an
extensive existing literature on empirical studies of firm
size distributions that provide compelling evidence of the
ubiquity of power-law type distributions of firm sizes, ir-
respective of how firm size is measured (e.g., number of
employees, revenues, sales volume, customer base, num-
ber branch offices or outlets). In this sense, the situation
is comparable to explaining the high variability or power-
law type distributions exhibited by the constituent compo-
nents of aggregate network traffic (e.g., sizes or durations
of TCP connections, IP flows, macro-flows, etc.) in terms
of power-law type distributions for the sizes of files on file
servers or the sizes of Web documents on Web servers.
The latter have proven to be a broadly robust properties
over time and across different servers, despite often drastic
changes in user behavior or application design. Similarly,
firm sizes, measured variously, have been shown to consis-
tently exhibit power-law type behavior, over many years
and decades and for different nations, despite constant
merger and acquisition activities, as well as bankruptcies
(see for example [5], [27] and references therein). Thus
our approach is to take the high variability of firm sizes
for granted, just as we have come to accept the power-law
type distributions for file or Web document sizes. How-
ever, we also want to point out that studies that attempt to
explain the power-law type behavior of file sizes or firm
sizes are of interest in their own right and have attracted
considerable attention (e.g., [33], [14], [25], [4]).

A major contribution of this paper is make the AS busi-
ness model concept a vital part of the multivariate HOT
model for Internet growth at the ASPC level. By abstract-
ing the vague concept to an intuitively appealing but ad-
mittedly naive mathematical toy model, we demonstrated
its potential for exploring some simple what-if scenarios
through a systematic investigation of the model’s low-
dimensional parameterization. For example, our findings
in Section V-C suggest that in today’s Internet, the eco-
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nomics of establishing provider-customer relationships is
not very complex and appears to be based on a relatively
small number of basic criteria and objectives. In turn, our
toy AS business models also predict that if an ISP’s pri-
mary task in the future is no longer simply to amass ad-
equate resources to build out its infrastructure to fuel the
Internet’s overall growth, but becomes more sophisticated
due to emerging refinements of interconnection business
structures, we can expect to see qualitative changes in the
resulting AS graph structures. However, a careful inves-
tigation of the full potential of the business model con-
cept, including more sophisticated, elegant, and versatile
abstractions is left for future research.

We emphasize that while the proposed multivariate
HOT model has been designed to explicitly describe In-
ternet growth at the ASPC level and not at the overall
AS level (i.e., including peer-to-peer relationships), it is
nevertheless capable of explaining observed phenomena in
inferred (overall) AS graphs, provided the essential char-
acteristics of these phenomena are already present in the
ASPC subgraphs. The high variability of AS node degrees
is one such characteristic. To develop a HOT model for
Internet growth that applies to the entire AS graph and not
just to the portion corresponding of the ASPC subgraph
would require an appropriate treatment of peer-to-peer re-
lationships, either within the framework of our current AS
business model or by modifying the present model to ex-
plicitly account for the possibilities of customer ASs be-
coming peers and peers turning into customers (see for
example our conjecture in Section VI). In either case,
the resulting HOT model can be expected to lend itself to
easy generation of realistic topologies at the AS level, with
the appealing property that Internet-like AS connectivity is
obtained and guaranteed by imitating the very distributed
and decentralized approach that underlies the design of AS
connectivity in the actual Internet. All the model param-
eters have physical meaning, and using them as “knobs”
results in predictable and intuitively easy-to-grasp refine-
ments of the resulting graphs’ overall structures.

Finally, within the broader context of Internet model-
ing as a science and in light of an extensive literature that
advocates the orthodox physics view that power-law type
behavior is unambiguously related to critical phase transi-
tion [6], our approach suggests a simple recipe for separat-
ing sound from specious claims and theories: use domain
knowledge and check against appropriate measurements.
For example, when comparing the scale-free models for
Internet growth at the AS level introduced in [8], [2] with
our multivariate HOT model, we find that the former is
void of any domain knowledge and can be easily refuted
using available measurements about the network’s histor-

ical evolution [12], [32]. In contrast, the latter not only
thrives on domain knowledge and incorporates it explic-
itly into the model formulation, but is also fully consistent
with a number of available measurements that provide rel-
evant information about all different aspects of the model.
Given such an attractive alternative, it will be difficult to
argue for the networking relevance of models and theories
that can be easily refuted, both analytically as well as em-
pirically.
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APPENDIX

I. ON INFERRING AS BIRTH RATE

Fig. 14(a) and (b) plot daily AS birth rate (i.e., the num-
ber of ASs born per day) and the total number of ASs born
since Nov. 1997, respectively. According to Fig. 14(a),
AS birth rate has remained flat till day 600 or so, after
which it started to ramp up till around day 800, and has
been stable ever since. Fig. 14(b) confirms this AS birth
rate transition. That is, the “total number of births” curve
in Fig. 14(b) can be approximated by concatenating two
linear lines that meet around day 700. Based on this ob-
servation, we characterize historical AS birth rate by two
distinctly constant values, which is

birth rate(t) =

{

C1, if 0 < t < T0;

C2, if t ≥ T0,
(1)

where t = 0 is the time when the Internet AS graph
came into being, t = T0 is the time when the transition of

AS birth rate occurred, and C1 and C2 are positive con-
stants with C1 < C2.20

Calculating the slopes of the curve of Fig. 14(b) in two
separate time periods [0,700] and [700,1200] yields C1 =
5.4274 and C2 = 13.1. In order to approximately determine
T0, we note that:

# of ASs at T0 = # of AS births during [0,T0] - # of AS
deaths during [0,T0] = (1- 1

Pd
)C1T0,

where Pd is the ratio of the number of AS births and the
number of AS deaths during [0,T0]. However, since the AS
birth/death history data is available only from Nov. 1997,
we approximate Pd with P̃d, which is the ratio of the num-
ber of AS births and the number of AS deaths during
[Nov. 1997,T0]. This approximation yields T0 = 1,390,
which translates the birth time of the Internet to Jan. 1996.

If the node birth rate as shown in (1) is assumed in our
multivariate model, the age of node i in a graph where the
maximum node id is N can be characterized as:

age(i) =

{

( N
C2

− i
C1

) + C2−C1

C2
· T0, if i < C1T0;

N−i
C2

, if i > C1T0.
(2)

Node ages calculated by the above formula have the
same time unit as in the Internet AS graph (i.e., the num-
ber of days), and therefore node ages and AS ages can be
directly compared.

20Note that the available historical AS data sets do not date back to
t = 0. The start date (Nov. 1997) of the date sets lies between t=0 and
t=T0. For the purpose of this paper, we assume that AS birth rate for
the period [0, Nov. 1997] has remained the same as that for the period
[Nov. 1997, T0].
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