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Abstract

By using a columnar subnetwork of continuous-time sigmoid activation units as a building
block, hierarchical networks can be constructed that serve as cognitive models of algorithmic
behavior, including goal-directed problem solving. Previous work by Polk et al. [28] demon-
strated the power of a hierarchical composition of local attractor networks for modeling problem
solving in the Tower of London task, but critical timing issues were addressed by non-neural
components. The essential function of the column structure proposed here for addressing tim-
ing issues is to produce a controllable propagation delay in the signal from a column’s input
unit to its output unit. Lateral inhibition between input units and between output units in
different columns forms layered decision-making modules. These modules use winner-take-all
attractor dynamics to compute the results of simple if-then rules applied to the feedforward
outputs of other modules. Strong recurrent excitation in multiple layers of these columnar mod-
ules produces activation-based short-term memory that preserves the symbolic results of these
computations during algorithmic processing. We show that propagation delay between layers
allows the application of timing methods from digital sequential circuit design that solve the
timing problems inherent in the existing Tower of London model without relying on discrete-time
updating or binary values.

1 Introduction

Computational cognitive models of human behavior in complex cognitive tasks have been difficult
to construct in ways that can be plausibly mapped onto the brain. Symbolic models of cognitive
tasks typically rely on computational principles common in computer science: for example, buffers
may preserve symbolic information until overwritten, list and stack data structures may play a
central role, and program state may be updated in a sequence of discrete transitions spaced uni-
formly in time. Because these principles ensure universal computational power [26] and relatively
straightforward construction and interpretation, symbolic cognitive models have formed a concep-
tual paradigm for cognitive psychologists interested in higher cognition [24]. However, it is often
unclear how brain structures could implement these computational principles. Neural models, on
the other hand, have rarely been constructed of complex, algorithmic behavior [27, 5], and when
they have [10, 28], they have not been easily extensible into general models of complex computation
on a par with symbolic systems such as ACT [3].

Our research suggests that the primary obstacle to general symbolic processing functionality
by neural cognitive models is the unmet need for a large degree of control over the time course of



neural activation. This may be considered a virtue of neural approaches, however. Symbolic models
typically rely on implausible assumptions about the temporal aspects of internal representations
that are made possible by the underlying computer architecture: i.e., there is a regular, system-wide
clock pulse which updates all binary-valued memory components in the system synchronously, so
that symbolic representations can be assumed to activate or inactivate instantaneously, with no
‘rise time’ or ‘decay time’. A host of timing problems is eliminated with this assumption, and
discrete mathematics and theoretical computer science can then be applied directly to algorithm
design without reference to low-level hardware issues.

Here we present critical elements of an architecture for neural cognitive modeling that abandons
some traditional symbolic computing principles - particularly discrete time representation and
binary values - while at the same time emulating some of the low-level digital hardware components
upon which symbolic systems are based. Some of these elements are present in an existing model
of the Tower of London task used in cognitive psychology [28]. We briefly review the principles of
this model, which relies on non-neural timing mechanisms for a critical aspect of its operation, and
then demonstrate the replacement of this mechanism with neural timing mechanisms.

2 A Limited Neural Production System in a Hybrid Tower of
London Model

One way to build neural networks that can carry out search in a problem space is to emulate
symbolic production systems [26]: parallel systems of if-then rules in which rules compete for
activation based on the contents of a working memory. In Polk et al. [28], we demonstrate the
utility of the production analogy. There we describe a feedforward composition of locally recurrent
attractor network modules in which each module effectively holds an ‘election’ between all the
candidate representations for which upstream modules are voting (similar to Feldman & Ballard
[14]). When feedforward connections from the units highly active in attractor pattern v of upstream
network U excite the units in downstream network D which are highly active under the symbolic
representation d, the system is said to be implementing the production: if U = u, then D = d.
The downstream network D may then retain an activation-based short-term memory of the value
d after all units in U return to baseline.

We then apply this framework to the Tower of London (TOL) task (similar to the Tower of
Hanoi), shown at the bottom of Fig. 7. This task has been used extensively to assess planning
impairments and is thought to depend crucially on goal management [30, 33]. It is a variant of the
Tower of Hanoi problem and involves moving colored balls on pegs from an initial configuration
until they match a goal configuration (Fig. 7). Unlike the Tower of Hanoi problem, there are no
constraints specifying which balls can be placed on which others, but the pegs differ in how many
balls they can hold at one time (the first peg can hold one ball, the second peg can hold two, and
the third peg can hold three). There is typically one red, one green and one blue ball. Participants
are often asked to try to figure out how to achieve the goal in the minimum number of moves and
are sometimes asked to plan out the entire sequence of moves before they begin.

Modules in Polk et al. are clusters of fully connected, laterally inhibiting, self-exciting ‘grand-
mother cells’ governed by a continuous activation update rule. Considered in isolation from exter-
nal input, these modules are attractor networks with the desirable property that mutual inhibition
within them provides winner-take-all dynamics in many situations [20, 9]. This property makes
them suitable as individual decision makers [1, 14], in addition to their potential role as activation-
based short-term memories [7].

In the model solver, a set of Sensory modules, one for each position of the gameboard, is



initialized to patterns encoding the color of a ball at that position, if any, and these representations
then persist until reinitialized by changes in the environment. They excite the representations of
legal moves in a separate Move module devoted to action representations, and inhibit illegal ones.
Attractor dynamics within the Move module may then result in the selection of a single action
for execution, completing the simulation of a simple production of the form: ‘if the red ball is in
position X, then place it in position Y’.

2.1 Goal-Directed Behavior

In the Tower of London solver, we dedicate one attractor module to the representation of externally
defined goals and another to internally generated subgoals. Activation in the goal modules biases
the competition taking place in the Move module, warping the energy landscape [20] of the module
by widening and deepening the basin of attraction around desired patterns. This biasing is just
another form of production, but the if-condition is semantically special: it represents a desired state
of the environment. Further, the biasing strength of such a production is insufficient to activate its
then-condition without support from some other module, as in the case of the Sensory module just
discussed. Technically then, this Goal — Move excitation should be considered only a component
of a production of the form: ‘if Goal is X and Percept is Y, then Do Z’. By incorporating goal
representation modules, the model in Polk et al. [28] solves problems in a fashion similar to normal
subjects.

2.2 Remaining Issues

The scheme so far described for building problem-solving neural networks addresses critical issues,
but it leaves an important question unresolved: can feedforward compositions of modular attractor
networks themselves form recurrent cycles? The system in Polk et al. [28], for example, is actually
a hybrid neural/symbolic system. It requires a non-neural component to read the output of a
feedforward composition of modules, which emerges in the Move module representing the current
action. If a single, clear winner emerges in this network during voting by Sensory and Goal modules,
the system takes the prescribed action and then reinitializes several modules in the network to new
values. It thereby closes the loop that feeds output information back into the system. However, in
the smoothly continuous systems we propose, such a process cannot be instantaneous: new module
values will have a nonzero rise time, and old values will have a nonzero decay time. Thus a timing
mechanism is required for ensuring proper ‘setup’ of inputs for the next cycle of computation.

In many situations, however, an action should never emerge, because no atomic action can
achieve the current goal. In such a case, the network remains near baseline activation, thereby
signaling that a subgoal ought to be generated in order to produce environmental conditions suitable
for taking actions to achieve the parent goal. This raises a second question: for how long should
an election be allowed to continue? Convergence times within attractor networks are difficult if
not impossible to predict in many cases. Further, a locally recurrent network with non-uniform
or asymmetric lateral connections may display complex transient behavior before settling toward
an equilibrium, as we show in section 4, and we would like our timing mechanisms to generalize
to less restrictive assumptions about representation (namely, we would like them to be compatible
with distributed representations as would more likely arise in a system that self-organized through
Hebbian learning [2, 4]).

A simple solution is simply to wait for some period of time after one pattern of activity has
remained approximately unchanged to declare either a winner or convergence to baseline: the
waiting period can be determined by the cost of waiting too long to get a true winner relative to



the cost of responding too quickly with a false winner. If we can sample the activation of a module
only after a ‘safety period’ has elapsed, we can reduce the chance of picking a false winner. If we
are able to construct a timer which is triggered whenever module activity fails to satisfy the criteria
for representing a winner, and which is inactivated by the emergence of a winner, we can produce
a convergence-to-baseline detector that is triggered when the timer reaches a threshold duration
without being inactivated.

Neural mechanisms for cycle timing and convergence detection are presented in the next two
sections. First, two meanings of the word ‘timing’ should be distinguished according to the distinc-
tion between ‘closed-loop’ and ‘open-loop’ control in the control systems literature. In the former,
some control process operates with feedback from the controlled system, and in the latter without
feedback. Cognitive models built with symbolic production systems and sequential logic circuits
can each exhibit both kinds of timing. In production systems, closed-loop timing is exhibited when
a production sets some variable in working memory which is part of the precondition of a second
production, but when the second production must wait to fire until some second precondition is
satisfied - in other words, the system is prepared for an action but is waiting for a ‘go’ signal, a
form of feedback. The same is true at the hardware level when a memory cell in RAM is accessed
by a read signal and an address signal: all memory locations are prepared to output their con-
tents simultaneously, but the temporal order of the address signals determines the output order.
Open-loop timing in production systems is exhibited by any production that, once it fires, initiates
some counting process resulting in an action or change to working memory after a duration that
is a multiple of the production-firing cycle duration. In hardware, the duration of the clock pulse
itself is a form of open-loop timing designed to let the voltages of all physical components settle
to equilibrium values before the next cycle of operation [17]. For our purposes, closed-loop timing
refers to the ability to control the sequential order of events with trigger signals, and open-loop
timing refers to an internal representation of duration. We address closed-loop timing mechanisms
in section 3 and open-loop timing mechanisms in section 4. Section 5 brings these mechanisms
together to replace the non-neural components in Polk et al.

3 Closed-loop Timing: Latches, Gates and Flip-Flops

In order to integrate closed-loop timing mechanisms into the existing problem-solving model, some
details of the model’s operation must be presented. We begin with a general discussion of the
properties of units employing recurrent self-excitation that will also be essential in the discussion
of open-loop timers. These properties also explain the operation of the existing model, as we show.
We then integrate closed-loop timing mechanisms into this model, and conclude with a description
of the entire model minus the convergence detection mechanism added in section 5.

3.1 Neural Activation and Positive Feedback

First we state the neural activation function for single units. The activation of unit ¢, V; € [0,1], is
determined by a standard nonlinear differential equation that is taken to model the firing rate of a
population of neurons, possibly averaged over time so that more recent firing contributes more to
the average than firing that occurred longer ago:

av; 1

dt - _V; + 14+ e—)\(NetIni—ai) (1)

where Netln; = 2?21 w;;V;, and w;; is the synaptic weight on the connection from unit j to unit
i. [9] (See also Wilson & Cowan [35].) A small random noise term is also often added to V;.
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Figure 1: The effective activation function.

Positive feedback within individual units plays an important role in what follows. We define a
self-exciting unit to be a unit ¢ whose output value V; is weighted by a nonzero synaptic strength w;;
and added to the NetIn; term of its own activation function. Non-self-exciting units have w;; = 0.

We now state a fact which is useful for characterizing the behavior of a self-exciting unit under
external excitation or inhibition. First we note that the sigmoid function f(z) = ﬁ is strictly
less than f(z+9), for 6 > 0. Similarly, f(z) > f(z+¢) for 6 < 0. This follows by the monotonicity
of f(z). Now we define the effective activation function fs(x) to be f(x + §). This notation simply
denotes a change of variable on the z axis. Thus fs(z) is f(z) shifted leftward by § when § > 0
and rightward by |d| when § < 0. See Fig. 1.

The following lemma allows us to use a graphical ‘cobweb diagram’ method to characterize both
the equilibrium points and the temporal behavior of self-exciters. Equation (1) is not analytically
solvable due to the form of its nonlinearity, so we have no closed-form expression for the value of a
unit’s activation at any given time. The following tool will, however, allow us to compare the rates
at which two self-exciters will approach their equilibrium points (which always exist in the case
of constant external input, as the cobweb diagram will indicate). This will prove useful when we
construct systems that require one unit to approach its attractor more slowly than another unit.
The analysis depends on separating the contribution of a self-exciting unit’s activation to its own
net input (the internal input: Int; = w;; - V;) from the contributions by other units (the external
input: Ext; = Netln; — Int;).

Lemma 3.1 The time rate of change of V; for a self-exciting unit with constant net external input
Ezxt; from other units is equal to the size of a ‘stair step’ formed between the sigmoid curve f};xti(fnti)

and the positive part of the line wL“ - Int; (hereafter called the reference line), starting at the value
fia, (Inti(to)). (See Fig. 2).

Proof: Each stair step is formed by tracing from f%zti = V; horizontally to the reference
line, and then vertically to ff,, (Int;). The significance of the reference line is that
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Figure 2: Cobweb analysis of weak and strong self-exciting units.

it translates the output of unit 7 into the weighted input it experiences due to its
recurrent self-excitatory connection. An iterated system of stair steps gives a cobweb
diagram which describes the evolution of the related discrete-time difference equation
Viit+1) = Vi(t) + (f%xti(fnti(t)) —Vi(t)) = f%"-??ti (w;;Vi(t)). In this case, to determine
the value of V; at the next time step, we simply need to run the currrent value of V;
weighted by w;; through the effective activation function. The stair step magnitude is
f%‘zti (wi;V;) — Vi, and the discrete-time system increases or decreases rapidly in regions
with large steps upward or downward respectively. The stair step magnitude is also the
righthand side of the continuous time differential equation d(xi =-Vi+ f%'zti (wi;V5), so
when the stair step is large (small), dcxi is large (small), and the continuous-time system
also increases or decreases rapidly in regions with large steps upward or downward
respectively.

It will be useful to divide the family of parameterizations of self-exciting units into two classes
as follows:

Def. 3.1 A weakly self-exciting unit i has wi; < 4/X, or 1/w;; > X/4. A strongly self-exciting unit
has wi; > 4/, or 1/w;; < A/4. We now characterize the stable and unstable equilibria of these two
classes.

Theorem 3.1 For a weakly self-exciting unit i, there is a single asymptotically stable equilibrium
value of V; when Ext; is held constant.

Proof: We examine the case in which Fuzt; is held equal to 0, since the result holds for all
values of #;, and thus is independent of leftward and rightward shifts. The slope of the
tangent to the sigmoid component of the activation function is given by the following:

dfi(NetIn;) _ _ he=A(WVetIni—6;)
dNetln; — (14— 2(Netln;=0;))2

Evaluating this derivative at NetIn; = 6; gives the slope of the tangent at the inflection
af* (6;)
> dNetln;

point = A/4. There can be only one intersection of activation sigmoid and



reference line in this case, because, by the definition of weak self-excitation, the reference
line is at least as steep as the tangent to f*(Netln;) at Netln; = 6; — see Fig. 2, part A.

For a weakly self-exciting unit with constant external input Ezt;, the rate of change for
values of V; above the intersection of f%xti and the reference line is negative, and for
values below the intersection is positive. The size of a stair step is itself a differentiable
function of NetlIn; since f};jzti(NetIni) and 1/w;; - NetIn; are both differentiable, and
the stair step size is the difference between those two quantities. Thus stair step size
is a smoothly varying quantity. The step size must also approach 0 as ¢ — oo and V;
approaches the intersection, and it must always maintain the same sign. Thus V; must
approach the intersection value.

The following result for strongly self-exciting units is presented without proof, since the diagram
in Fig. 2, part B, makes the point clear.

Theorem 3.2 For a strongly self-exciting unit i, when Ext; is held constant, there are either two
stable equilibria (attractors) and an unstable one, one stable and one unstable, or a single stable
equilibrium. These situations are illustrated in Fig. 2. All stable equilibria are asymptotically
stable.

There exist two values of Fxt;, B1 and B2, at which a strong self-exciter’s equilibria bifurcate.
For constant Ext; € (—o0, 1), (i-e., when the effective activation sigmoid is far enough to the left)

there is a single stable equilibrium at wL“ - Int; = 1+e*>‘(Emti1+’“’iiVi*9i) = fb(wiVi) ~ 1. Similarly,

for Ext; € (fB2,00), (i.e., the effective activation sigmoid is far enough to the right) there is a single
stable equilibrium at w%l - Int; = ff%t(wiiVi) =~ 0.

For Ext; € [B1, B2], there is a single unstable equilibrium, and one stable equilibrium at w%,—'lnti =
fon(wiiVi) =~ 1, and another stable equilibrium at wL” cInt; = fb,(w;Vi) ~ 0. See Fig. 2.
When Ext; is exactly 81 or (o, then there are exactly two intersection points of the reference line
and effective activation sigmoid. At the bifurcation point Ext; = (31, there is a stable equilibrium
near V; = 1, and an unstable equilibrium closer to V; = 0 resulting from the collision of a stable
equilibrium and an unstable equilibrium as Ext; approaches (1 from above. The other bifurcation
point is similar.

As for the relation between the equilibria of weak and strong self-exciters, when fg(wz-i Vi) at
the intersection points fi(wy; - Vi) = 1/wy; - V; is plotted as a function of both § and wy;, a fold
catastrophe can be seen to occur at wy; = 4/, which is the value that separates the weak from the
strong.

To recap the results of this discussion, the activation of a self-exciter under constant external
input always approaches the intersection of the effective activation curve and reference line whenever
the slope of the reference line is greater than the slope of the activation curve at the point of their
intersection. The behavior of the system therefore depends critically on the ratio of A to w;; and
on #;. Weakly self-exciting units have activation curves that intersect the reference line at only
one point, because the activation curve has slope A\/4 at the point of inflection, and for a weak
self-exciter, this slope is shallower than that of the reference line. Strong self-exciters may have
one, two, or three intersections, depending on the value of 6; and the level of external input Ezt;.

As discussed in section 2, productions are modeled as feedforward excitation or inhibition
projecting from one module to another (connections are allowed to be bidirectional, but the point
is that they are asymmetrically weighted in general). The weights on these connections capture
preference information, and their effects on a downstream module can be best understood now as
shifting the effective activation curves of downstream units. With this formalism, several critical
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Figure 3: Parameterization for a binary decider, C.

behaviors can be gotten from a module: 1) it can be made to respond strongly to a conjunction
of inputs, and then return to baseline when its conjunctive ‘feature’ is no longer present; 2) it can
respond to a feature conjunction, but hold on to its representation indefinitely; 3) it can be made
to ramp up slowly toward its attractor value. We discuss special cases of the first two behaviors
next.

3.2 Binary Deciders

Consider a system of two upstream units, A and B, and one downstream unit C, with feedforward
excitation from A and B to C. It is often useful to have C respond as the neural equivalent of an
AND gate in digital logic: when A and B are both highly active, C should be highly active. If
either A or B are inactive, C' should be inactive. C' should never linger at values that are far from
0 or far from 1.

The following parameterizations, illustrated in Fig. 3, give this behavior. C should be strongly
self-exciting, and 6¢ should be greater than (5, as defined above. This means that without external
input, the effective activation sigmoid intersects C’s reference line only once, near Vo = 0. The
connection strengths from A and B to C should sum to a value sufficient to shift C’s activation
curve leftward so that its point of inflection occurs at a value less than ;. Thus when A and B
are highly active, C’s effective activation curve will have a single intersection with its reference line
at a value near Vo = 1. Without a drop in A or B, C will eventually become highly active. The
time that C takes to become active will depend on how far left of 3, its activation function is
shifted, because this shift determines the size of the first stair steps leading upwards from small
values of Vo toward larger values in the cobweb diagram. For left shifts to points arbitrarily close
to Bi. and less than 3, the cobweb analysis indicates that C’s ramp-up time will be arbitrarily
long. (Strictly speaking, the time to approach an attractor is always infinite, since there are always
infinitely many steps on the way to an attractor. By ‘ramp-up time’ we refer instead to the time
required to approach within some nonzero-diameter neighborhood of an attractor, which happens
in finite time.) Thus faster decisionmaking requires the sum of input from A and B to shift C’s
effective activation sigmoid farther to the left (that is, to excite C' more strongly).



With strong A — C and B — C connections (denoted wca and wep respectively), however,
there is the potential problem that strong activation in only one of A or B will be sufficient to
activate C. In order for C to retain the property of being a conjunction detector, the connection
strength from each of A and B to C must be less than ¢ — B1,. Thus a requirement for faster
conjunction detection requires both that ¢ be larger and that the feedforward connection strengths
be larger and roughly equal, each less than ¢ — B, and with sum greater than 0¢c — (1.

Finally, we note that the connection strengths used in this discussion are approximations. The
unit A in the simulated inverter example will never quite reach an activation of 1. Weights and
0’s must therefore be set with a margin for error that is discovered through trial and error when
building a system (in our experience, this is quite easy to do).

3.3 Latches, Gates, Flip-Flops and Sources

In some cases, we may wish to have C' act as a conjunction detector as just discussed, but also to
maintain an activation-based memory of the conjunction that persists after the conjunction feature
disappears. By again relying on strong self-excitation and setting 8- to be a value in the interval
(8145 B2¢ ], C will maintain a value near 0 or near 1 under small external input. Net excitatory inputs
of value greater than 6c — 31, will shift the effective sigmoid left past C’s ‘activation threshold’,
and if held on sufficiently long for V¢ to rise past 0.5, V¢ will continue to rise to a value near 1 even
after the excitatory input is reduced to 0: that is, it will latch on to a 1. This is because a return
to net 0 external input will return the effective activation sigmoid to its true position, which, by
equation (1), has its point of inflection centered directly above the value 8¢ , and the value of the
sigmoid at this point is 0.5. In order to reset C, inhibitory input with absolute value greater than
B2, — Oc will shift the effective activation sigmoid right to the point that Vi begins to fall off. If
inhibitory input is held on until V¢ decreases below 0.5, Vo will continue to fall to a value near 0.

C thus has approximately the properties of a latch as it is defined in digital logic design [17].
Latches use feedback to store a bit until reset to store a different value, and thus play a critical
role in almost all digitial logic devices that have memory. They may suffer from an undesirable
oscillatory behavior called a ‘race condition’ when their outputs are fed through combinational logic
elements back into their inputs [17], thus necessitating the use of a clock pulse. The clock pulse,
in combination with a copy of the latch, allows the inputs of a latch to respond to its own outputs
only from their values in the duplicate latch at the end of the previous clock pulse. Thus, at the
end or beginning of a clock pulse, depending on the particular technology, the output of the latch
is deterministic and predictable. Such a clocked latch is termed a flip-flop.

In Polk et al. [28] and the neural model shown in Fig. 7, modules collect and integrate
the outputs of other modules in order to compute their own outputs. But the components of a
circuit may require the synchronous arrival of signals from multiple upstream modules in order
to compute correctly. Timing problems like these are typically handled in digital logic design by
buffering values in flip-flops whose values are updated at each clock pulse, or by using AND gates
that prevent updating until the arrival of a specific ‘enable’ signal (which also typically arrives at
effectively the same time as a clock pulse). Here, we use a latch/gate pair, the first component of
which uses strong self-excitation to buffer its values until inhibited strongly by an external signal.
Modules are latches if 8; € (51,,32;) for every unit ¢ in the module: that is, if the true activation
function has two stable attractors and one unstable equilibrium.

We define a gate to be a copy of an upstream module (which is typically a latch), with one-to-one
feedforward connections from upstream units to their corresponding downstream units. A second



set of inputs to the downstream module is a blanket inhbition of all units that reduces all activity in
the gate to baseline. The purpose of a gate is to allow the effective inhibition of a module without
wiping out its activation-based memory. This allows a module to vote in downstream elections at
only the appropriate times, but allows preservation of the symbolic content of the module itself
by isolating it in the meantime from the gating inhibition. We point out that while neural latches
are analogous to latches in digital systems, gates as we have defined them are distinctly different
than digital components with the same name (AND, NAND, OR gates, etc.). We use this term for
our neural component because it is a common term for mechanisms with the same function in the
cognitive neuroscience literature [15, 7, 12].

Race conditions somewhat similar to those in digital logic can occur in the neural systems
we propose here. The model we discuss below uses the symbolic contents of a latch module called
‘Subgoal’ to compute a new symbol to replace the old one in Subgoal. This is implemented in a loop
which routes output from Subgoal through a feedforward logic circuit back into its own input. But in
practice, the process of computing a new subgoal breaks down just as it begins to take effect. Since
the logic for computing a new subgoal depends on the identity of the old one, as soon as the new
subgoal unit begins to activate, it begins instructing the logic circuit to compute still another new
subgoal. To prevent this, an analogue of digital flip-flops is used, consisting of a latch-gate-latch-
gate sequence (in Fig. 7, the sequence Subgoal-SubgoalGate-SubgoalBuffer-SubgoalBufferGate).
The trigger for a new subgoal computation prevents signal propagation through the loop until the
next trigger signal arrives. We discuss the source of that signal in section 5.

We mention one more class of module that proves useful in practice: a source module, in which
0 < (1, and in which there is only one unit. Without external inhibition, a source module will ramp
up to maximal activation. Sources serve to inject energy into a neural circuit, and are analogous
to permanent connections to high voltage sources in digital systems. Their use is illustrated in the
model below.

3.4 Hybrid TOL Model

We gave a brief overview of the TOL model in section 2. We now explain how the different types
of components just described contribute to it. The structure of the model is illustrated in Fig. 7.
Modules are indicated as winner-take-all modules, latches, sources, delays, or any combination of
these (except for source/latches, since sources are latches by definition). Delays will be discussed
in the next section.

Excluding the influence of goals on behavior, the operation of the model is fairly simple. One
Sense module is devoted to each position on the gameboard, with units for representing the values
‘red’, ‘green’, ‘blue’ and ‘empty’. A simulated environment clamps these modules to the appropriate
values to model perception. Each Sense module is a latch (although constant environmental input
makes this unnecessary). The units in the Move module (also a latch) encode possible moves as
conjunctions of one of three colors and one of six positions. This 3x6 matrix of move encodings
is repeated in several modules in the system. (We note that a permanent, dedicated conjunctive
representation of this form is not a scheme that will scale up well to larger problem spaces as it
is wasteful of neural resources. The most obvious solution to this problem appears to be online
binding of conjunction components, but this is a form of the variable binding problem and is beyond
the scope of this paper.)

The representation of the current configuration (the Sense modules) excites all legal moves in
the Move module with the same degree of preference and inhibits illegal moves. Constructing
connections that encode this excitation and inhibition is a straightforward matter. For example,
the unit encoding ‘red’ in module Sensel will excite Move units encoding moves of the red ball to
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any other position on the board, but will inhibit units encoding moves of any ball to position 1,
since that space is occupied. The ‘empty’ unit in module Sense4 will vote for moves of any ball to
position 4, and will do so more strongly than the ‘empty’ unit in module Sense3.

Binary deciders are used in determining which balls are blocked from moving by balls stacked
on top of them. This information requires input from two Sense modules: the Sense module
corresponding to the ball that may be blocked, and the module corresponding to the position
above it. Thus for each of the blockable positions 2, 4 and 5, there is one module for each of
the three colors. For example, if Sense2 represents ‘red’, then the Red2Block module will be
activated to indicate that the red ball may be blocked in position 2. This module excites the
RedBlocked module, but not enough to activate it. The ‘green’ and ‘blue’ units in Sense3 also
excite RedBlocked. RedBlocked is a neural AND gate that only responds to the conjunction of
Sense2= ‘red’ and (Sense3 = ‘green’ or Sense3 = ‘blue’).

Moves that involve blocked balls are strongly inhibited by the Blocked modules. The possible
legal moves then compete with each other in the Move module via attractor dynamics until one is
selected (i.e., convergence to an attractor pattern is detected using a threshold on Euclidean distance
between previous Move module activity and current activity - this convergence detection is the
element of the hybrid model which is not implemented neurally). Without other sources of input,
the move that is finally selected is random and simply depends on noise. The EnergyRegulator
module also supplies diffuse excitation to the Move module as part of a negative feedback mechanism
that ensures the winner-take-all property of the Move module (that is, if no winner emerges,
EnergyRegulator boosts all Move unit excitations, but does so by ramping up slowly enough to
ensure that the runner-up representation does not also activate along with the winner).

Once a move is selected, it excites a corresponding unit in the MoveGate module, which is
not a latch. The activity of this module can be thought of as a motor command issued to the
peripheral motor system. It also serves to extinguish the move selected in the Move module, in
order to allow for later move elections to take place, as well as serving to extinguish other short-
term memories related to selecting subgoals that are no longer relevant. Once MoveGate is active
above a threshold value of activation of 0.9, the simulated environment is updated, causing the
representation of the configuration to change accordingly, and the new configuration once again
votes for any legal moves. In short, in the absence of goal direction, the model simply performs
random search using any moves that are legal in the current configuration.

Goals as they are represented in the system correspond to placing individual balls in specific
locations (e.g., getting the blue ball onto the bottom of the third peg). Thus goals are encoded
in the same fashion as moves. The base level goals of the system are represented in the latch
modules Goall through Goal6. The goal configuration of the gameboard is represented there with
six latches, as in the Sense system, by initializing each to the color of the ball that occupies the
corresponding position. Only one component of this goal configuration is worked on at a time, and
this is decided by attractor dynamics within the latch module GoalDecide. Here, weights on the
connections from the Goal modules to GoalDecide were easy to set with a fixed preference ordering
that guaranteed a unique winner at all times. The preference scheme favors moving balls to lower
positions on pegs than to higher positions, since a ball moved to its final position at the bottom
of a peg will never have to be moved thereafter to achieve a complete solution. The output of
GoalDecide is fed to GoalGate, which attempts in turn to guide Move selection when the system
is not already working on some other goal, as we discuss next.

The currently active goal guiding behavior, if any exists, is represented in the latch module
labeled ‘Subgoal’ (the name derives from the fact that this module also represents subgoals gen-
erated by impasses in the problem solving process). The Subgoal module modulates processing in
the Move module by exciting moves that will achieve the current goal and inhibiting moves that
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won’t. This modulation biases the competition in the Move module so that moves that will achieve
the current goal will tend to be selected. If no legal move will achieve the current goal, then no
move is selected (because the current goal will inhibit all legal moves in that case). For some neural
systems, it is possible to dispense with feedforward inhibition by manipulating the 6 parameter
of equation (1) so that patterns not supported by external excitation will fail to activate. Here,
however, external inhibition is critical, because the Move module needs to be able to select a move
even when the Subgoal module sends no signals (either because Subgoal is damaged, or because it
has no information to contribute).

The model also uses latch modules to encode information that is relevant to the current con-
trolling goal, specifically: what is above the ball that the goal refers to (‘AboveSource’), the color
of the ball, if any, in the target position (‘InTarget’), and the lowest free position on the peg that is
neither the source nor the target of the current goal (‘FreePosition’). This information is crucial for
generating subgoals when necessary to get blocking balls out of the way without disrupting progress
toward the current goal, and is computed in a manner similar to that of determining which balls
are blocked, by using a cascade of binary deciders that receive input from the Subgoal module and
the Sense modules.

The selection of a new goal in the Subgoal module can occur in one of two ways. First, if
the current goal has been achieved, then it is inhibited by the Sense modules (e.g., Sensel =
‘red’ inhibits the goal ‘Red to 1’), and the next most important base level goal still unachieved is
retrieved from the GoalGate module. This happens because all units in Subgoal inhibit all units in
GoalGate, so that GoalGate cannot vote for working on a base level goal once progress has begun
on some other goal. Once Subgoal has baseline activation in all units, however, GoalGate is able
to become active for long enough to install a new base level goal in Subgoal. Second, if the current
goal cannot be directly achieved because of some obstruction (either a ball in the target position
or a ball above the ball that we want to move), then a new goal to remove the obstruction will be
proposed via input from ‘Abovesource’, ‘InTarget’, and ‘FreePosition’.

The following algorithm that the hybrid model carries out is a simplified form of that im-
plemented in the hybrid system of Polk et al., which used extra heuristics to deal with difficult
cases:

1. set a goal to move a ball to its final goal position (with preference, in decreasing order, for
moves to position 4, then 5, then 2, then 6, then 3, then 1)

2. if the current goal is not achieved because some ball is blocking the ball to be moved, set
a subgoal to move the blocking ball to the lowest position on the peg which is neither the
source nor the target of the current goal - if there are two such pegs, pick one at random -
then return to step 2; otherwise, make the desired move;

3. as soon as a move is made, return to step 1.

This algorithm relies on non-neural control code that detects approximate convergence to base-
line in the Move module as the trigger for generating a subgoal. Replacing this control functionality
with a neural mechanism is the main focus of the next two sections.

4 Open-loop Timing Mechanisms

Open-loop iming is critical in most digital circuits. In ‘synchronous’ circuits, which currently
predominate in hardware design, a series of flip-flops is used to propagate bits of data toward
their final targets, one flip-flop per clock pulse, so that they arrive at a logic gate only when it is
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appropriate for them to do so. The unvarying duration of individual clock pulses is designed to be
long enough to prevent transient, analog voltages within logic gates and flip-flops from affecting
computations, and otherwise to be as short as possible. The only way for software running on
such systems to measure duration is to count clock pulses. In this section we address open-loop
timing in our neural systems and its role in convergence detection and ‘glitch’ protection. The
neural mechanism we propose plays the same role as a digital clock pulse for preventing transients
from affecting behavior, but it differs in the way in which cognitive models using it may encode
duration. Further, unlike a sequential circuit clock pulse which controls the rest of the circuit, the
mechanism we propose is selectively enabled or disabled by the circuit, which can operate without
it under some conditions.

4.1 Measuring and Encoding Duration

As in digital systems, counting is still an option for continuous systems to measure duration, because
oscillators can be used to implement a clock pulse with a specific frequency. Continuous approx-
imations to finite automata can then be used to count pulse sequence length, or some continuous
quantity can be increased by each pulse in order to measure elapsed time.

Other options exist in real nervous systems. At very fast time scales (tens of milliseconds or
less), the relative spacing of individual action potentials can be used to measure time [19]. Precise
propagation delays along axons can be used, for example, to measure the arrival time of an auditory
signal from the left ear against that of a signal from the right ear in the auditory cortex of a barn
owl in order to localize a sound source with great accuracy [8]. At longer time scales, however, some
other method is necessary. Counting action potentials is a possibility, as is counting lower-frequency
oscillations of a population’s recent average firing rate. Non-counting methods for measuring and
encoding duration include the use of a monotonically increasing quantity, or ‘ramp’, that reaches
a threshold value at the end of an interval. This is arguably the simplest non-counting method
possible.

We choose a combination of ramps and counting for modeling the timing of durations ranging
from roughly half a second to minutes (the time scale of cognitive operations [26]) for the following
reason: if we were to count simulated action potentials with finite automata, intervals of many
seconds would require automata with thousands of states or else depend on neurons with extremely
low firing rates. If the oscillator cycles occurred on a slower time scale than individual spikes, then
they would most likely either have ramps already built in to each cycle or be ‘relaxation oscillations’
with abrupt transitions between otherwise slowly changing values [23]. A brief examination of
the positive feedback analysis of section 2 shows that we already have ramps for free, and that
their durations can be easily modulated through a simple change in synaptic strength. Further, a
combination of counting with these methods is straightforward to implement with a sequence of
ramps, each one of which times the duration of one ‘click’ and initiates the subsequent ramp. We
refer to a sequence of modules that implements this ramp sequence as a timer.

One means for duration encoding with synaptic weights is illustrated by the following system of
three units, shown in Fig. 4. A latch unit labeled ‘Start’ that encodes a start signal sends excitation
to a second, weakly self-exciting unit, the Ramp unit, which in turn sends excitation to a latch unit
labeled ‘Finish’. The self excitation strength of Ramp should be nearly 4/, so that the reference
line has approximately the same slope as the activation sigmoid at its point of inflection. The ‘bias’
term @pamp is set so that without external excitation, the inflection point of the true activation
sigmoid is to the right of the reference line and the single intersection of the ramp unit’s reference
line and its sigmoid is near 0. The Start — Ramp connection strength should be such that when
Start is highly active, Ramp’s effective activation sigmoid is shifted left so that its inflection point
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is to the left of the reference line. In this case, Ramp will ramp up to a high activity at a rate that is
determined by the size of the first stair steps in the cobweb diagram formed after Start excitation.
The connection strength from Ramp to Finish should be such that Finish is not activated except
by maximal Ramp activation. The effect is that information from Start propagates to Finish after
a delay imposed by Ramp. The length of that delay depends on the size of the first stair steps
in Ramp’s cobweb diagram. Larger initial steps occur when Ramp’s effective activation curve sits
farther to the left, implying faster increase. Thus the connection strength from Start to Ramp
encodes the propagation delay. The time course of activation for this system, shown in Fig. 4,
parts A & B, shows that Ramp gets its name from its gradual, nearly linear increase in strength.
The scheme can be extended to one in which Ramp is a strong self-exciter, as in Jones [22]. In
this case, the Start — Ramp connection strength should be such that Ramp’s effective activation
curve is shifted leftward slightly more than Ogamp — B14,,,,- 1f Ramp is at a low activation when
this occurs, a bottleneck appears at the beginning of Ramp’s increase, which is eventually escaped,
producing a timecourse that looks somewhat like a two-component linear ramp. See Fig. 4, parts

C & D.

At this point we should note that the ramp-up dynamics depend in the first case on at least
part of the actual activation function being approximately linear. In the second case, the dynamics
depend on it having a gradual saturation nonlinearity, or knee shape, at the bottom. Neither
assumption requires the particular form of equation (1), but any activation function which has
neither property is unsuitable for this form of timing. Finally, we note that we can also chain
several ramp units in sequence to create a delay circuit that performs more like counting. Such a
scheme allows us to avoid relying on arbitrarily precise connection strengths for timing very long
intervals, which otherwise would require the proximity of the Ramp sigmoid to its reference line to
be arbitrarily small. Any noise in the system would then disrupt the timing mechanism severely.

4.2 Glitches and Glitch Protection

We noted in our discussion of the role of clock pulses in digital sequential circuits that a critical
function of the clock pulse is to prevent transient voltages from propagating through the system in
a way that causes erroneous computation. Such transients are called ‘glitches’, and while they tend
to dissipate within a system because of time delays imposed by individual logic components, it is
possible for them to disrupt computation to the point that the outputs of a system are incorrect
[17]. A glitch-propagation problem similar to that of digital circuits can occur in our neural systems.

Consider the associative memory system illustrated in Fig. 5. In this system, three latch units,
A, B and C, form an associative memory storing the patterns AB—C and —AB-C. The notation
AB-C stands for patterns of activity in which V4 =~ 1,Vg = 1,V = 0. Whenever V is set to a
value near 1, B will become active, which in turn deactivates C. Whenever A is active, C becomes
active, and the previous process repeats. Thus for the input patterns A-B-(C, AB-C, A-BC
and A-B-(C, the associated stored pattern AB-(C' is retrieved. For patterns ~ABC, -A-BC,
and —AB-C, the pattern —AB-C is retrieved. For input pattern —A—-B-C, that pattern itself,
corresponding to baseline activation in all units, is retrieved. For input pattern A-B-C however,
there is transient activation of the pattern A—=BC, which is not a stored pattern, before AB-C is
retrieved.
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Now consider a set of three binary deciders that detects conjunctions of two features from this
memory: AB, BC, or AC. Considering the associative memory in isolation, it may seem that there
is no need for detection of conjunctions involving C', since C can only be active transiently, but keep
in mind that external inputs to the associative memory can overwhelm internal mutual inhibition
and force retrieval of C'. The deciders pass their computations on to a module that initiates one of
a set of processes depending on the identity of the retrieved conjunction. We make the assumption
that a process, once begun, may continue after the disappearance of the triggering stimulus, and
may sometimes need to continue to completion before responding to the next stimulus. A case like
this is illustrated in the convergence detection circuit discussed in section 5. To model such a case,
the binary deciders are inhibited by the latch supporting the response process. Thus we have the
circuit shown in Fig. 5. In this case, fast propagation of information from the associative memory
to the binary decider results in a response process appropriate for stimulus conjunction A-BC,
rather than the proper response to the equilibrium pattern AB—C, and once initiated, the system
becomes insensitive to the proper conjunction. This is an example of a glitch resulting in erroneous
computation. Sophisticated response-process interrupt circuitry could be developed for cases like
this, but a simpler solution is simply to delay propagation of the associative memory signal by
an interval sufficient to let the associative memory settle into equilibrium. This is precisely what
happens in digital logic, where the clock pulse effectively forces a long enough delay period within
each component for equilibrium to occur [17].

For this purpose, we propose a propagation delay device with a modifiable delay which we build
in to the structure of all modules. However, unlike the equivalent situation in digital circuits, we
do not attempt to calculate or enforce a delay period sufficient for glitch protection in all cases.
Convergence time in a random associative memory is difficult to predict in general, and any fixed
time delay is liable to force the system to slow down unnecessarily in many situations. Furthermore,
glitches may very likely play a role in modeling human errors in psychological tasks. We therefore
use a trial-and-error process of setting delay characteristics for each module individually (this was
easy to do in constructing the TOL model, since most modules required no delay at all).

4.3 Delay in Columnar Networks

A distinctly columnar approach to neural network construction has appeared in work that uses
structured columns in the visual system to perform useful computations [16] as well as work that
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demonstrates the ability of visual cortex to self-organize into columns [11]. Wilson & Cowan [35]
show that different areas of cortex may be modeled by equations similar to (1) and an extremely
simple columnar structure can give rise to forms of activity characteristic of prefrontal, primary
visual and thalamic neurons. There has also been widespread use of model frontostriatal loops in
neural networks [15, 13, 6, 21], in much of which the model loop circuits are topologically similar
to columns.

We use the column concept to address our need for a means of encoding variable propagation
delays within modules. The columnar version of a module is schematically depicted in Fig. 6.
Instead of a single, fully connected recurrent network, a module now consists of two identical copies
of such a network. One copy functions as the input interface to the module, and the other functions
as the output interface. Each input layer unit Input; sends a feedforward excitatory connection
to its counterpart Qutput; in the output layer. The Output; unit is inhibited by a self-exciting
unit Delay,; that also receives inhibitory input from Input;. The Delay; unit serves to prevent
rapid transmission to Qutput; of large jumps in the activation of Input;. The rate of transmission
from Input; to Output; is determined by how strongly Input, inhibits Delay,. Variable delay
characteristics derive from the fact that strong inhibition from Input shifts the Delay; effective
activation sigmoid to the right. Typically, Opeiay, causes the activation curve to sit far enough to
the left so that it has a single intersection with the reference line very near Vzerorqaich; = 1 when
Input; =~ 0. When Input, sends inhibition to Delay;, that shifts it back rightward. In the case of a
weakly self-exciting Delay;, the shift should be sufficient to move the inflection point of the curve
to a position close to, but to the right of, the reference line (see Fig. 2, part A). In the case of a
strongly self-exciting Delay, the shift should be sufficient to shift the effective activation sigmoid by
an amount slightly greater than 5, — 0peiay- In both cases, a large number of small stair steps
near the beginning of the trajectory indicates slow decay of Delay,;, and therefore slow transmission
of changes from low activation to high activation in Input; to Output;. Slow transmission of high
to low changes in Input can be accomplished by making sure that the true activation sigmoid for
Delay also sits close to the reference line.

5 Neural Convergence Detection and Subgoal Generation

The only remaining issue not addressed in section 3 in constructing a fully neural cognitive model
of the TOL task was the need to detect convergence to equilibrium of the Move module. The hybrid
model in Polk et al. simply waits until a Move unit is active above some threshold and is relatively
unchanging in value, and until all other units are inactive before it considers a move to have been
selected. If no move is selected after a duration exceeding some threshold, the symbolic control
code determines that the model has reached an impasse in the solution process, and it generates a
subgoal to move a blocking ball out of the way (a blocking ball is the only source of impasses in
this task). When multiple moves emerged in the Move module, which was rarely, the control code
simply reinitialized the Move module and let a new election take place.

In cases in which the Subgoal module is inhibiting moves that would not help achieve the current
goal, connection strengths are such that the Move module will never select a winner. In this case,
a timer circuit will be triggered by lack of activity in the Move module. This is the purpose of the
‘NoMove’ timer chain in Fig. 7.
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The NoMove timer chain starts with a single-unit source module that has very small 8, so that it
will tend to activate without external inhibition. It ramps up slowly, and when it finally activates,
it prevents any move from emerging and begins a timed process for generating a subgoal. The
purpose of this recurrent inhibition is to make the decision to generate a subgoal final, and to stop
any later Move activity that would disrupt the generation process or cause moves that would make
the ultimately generated subgoal inappropriate for the resulting configuration of the gameboard.

Once activation reaches the final timer module in the NoMove timer chain, the Generate module
is activated. This module allows information about the current goal to flow through SubgoalBuffer-
Gate and chokes off information about the current goal from flowing through SubgoalGate. The
purpose of this is to prevent a race condition as discussed in section 3, and therefore the Generate
signal should be seen as the analogue of a single digital clock pulse for the neural flip-flop formed
by the chain of modules: Subgoal, SubgoalGate, SubgoalBuffer, SubgoalBufferGate. At this point,
a cascade of binary deciders uses information about the current subgoal and the current Sense
configuration to determine which ball, if any, is above the ball to be moved under the current goal,
which ball is in the target position of the ball to be moved, and which peg is able to hold moved
blockers. These three values then vote for appropriate subgoals in the Subgoal module.

The successful generation of a subgoal will be signalled by the elimination of the old Subgoal
pattern, followed by the activation of a new one. This process is detected in the sequence of
modules Compare and GenerateSuccess. Compare detects activation in Subgoal, but only after it
has been enabled by CompareEnable. CompareEnable itself cannot be active until the first goal
pattern in Subgoal has been extinguished. This subgoal generation process is ended as soon as a
successful generation is detected by Compare, which simply responds to any significant activation
in the Subgoal module. If a second subgoal-selection timer expires, then this indicates that there
is no appropriate subgoal to generate. In this case, one of the heuristics implemented in Polk et
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Figure 7: A completely neural model of the Tower of London task.
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al. [28] should be used to select a subgoal according to different logic than that encoded in the
binary decider cascade. However, at the time of writing, we have not yet completed the neural
implementation of this heuristic (which is to try to move the ball to the shortest peg instead of its
previous target - due to the constraints imposed by the peg lengths, moving a ball to the first peg
is typically the optimal step in getting it to its ultimate destination after an impasse).

With these mechanisms, the symbolic components of the model described in section 3 can be
replaced, resulting in a completely neural problem solver.

6 Performance of the Model

Here we show the performance of the model in one problem, simulated in Matlab with the Runge-
Kutta(4,5) ordinary differential equation solver. Timecourses of activation in most of the model’s
components are shown in Fig. 8. The problem, shown at the bottom of Fig. 7, requires five moves
for solution and therefore requires that some balls be moved to positions other than their final, goal
positions. Thus it requires the internal generation of subgoals for efficient solution. The GoalDecide
module can be seen to hold an election for the first goal to control behavior. The goal ‘Red to 4’,
which is the most important unachieved goal according to the preference scheme for moving balls
to the lowest possible positions, wins at approximately time 25 (labeled A in the figure), and this
information is transmitted through the GoalGate module to the Subgoal module, which responds
to it at label B. (In the meantime, in order to prevent the premature generation of a subgoal in
response to Move module inactivity, the Start module inhibits the NoMove timer system.) The
Sense modules, like the Goal modules, are initialized at the beginning of the simulation and excite
potentially legal moves at the same time as the Blocked modules compute which balls are blocked.
Finally, a winner, ‘Red to 4’ is selected at time point C, and the corresponding unit in MoveGate
is caused to rise to threshold, achieving the move and wiping out the move-generating command
in Move. At this point, the simulated environment causes an update of the Sense modules (point
D), which in turn extinguish any goal or subgoal activation pattern in the Goal system or Subgoal
which represent goals to create the current environmental configuration (point E). This allows the
next most preferred goal to be retrieved and worked on, as can be seen in Subgoal at point F. At
no point is the clock circuit involved.

Now the next goal, ‘Blue to 2’, which is unachievable, has been selected, and this in turn gen-
erates a subgoal to remove an obstacle. Once a subgoal is selected (‘Green to 5’, since Green is
in the target position of the blue ball, at time point G), the first element of the NoMove timer
sequence begins to ramp up, and finally maximal activation reaches the last timer in the sequence
at time H (this also happens for the previous goal). This activates the Generate module for gener-
ating a subgoal. This in turn enables testing for generation success by activating CompareEnable
while also allowing the information about the current goal to filter into the subgoal computation
modules through SubgoalBufferGate, at time I. Generate activation chokes off SubgoalGate so that
information about the new subgoal cannot propagate until the next generation process, at time J,
and also wipes out the current Subgoal pattern. Finally, the subgoal generation logic computes
that the ball above the green source ball is blue, at time K, and that the lowest position on a peg
which is neither the source nor the target of the goal is position 5 at time L, and Subgoal responds
to this voting at time M. The model continues on in this way until eventually solving the problem
in 5 moves, as is shown in the sequence of gameboard configurations selected by the model.
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Figure 8: Time courses of activation in most modules of the neural Tower of London problem solver.
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7 Conclusion

We obtain continuous neural systems compatible with the principles of Polk et al. [28] that also
have the required convergence detection and sequencing functions by employing neural mechanisms
at five levels of hierarchical composition. At the lowest level is the firing rate model of a unit or
population given in eq. 1. At the next level is the column mechanism disscussed in section 4.
Columns are themselves composed through lateral, inhibitory connections into modules, which
are in many respects identical to the attractor networks used in Polk et al [28]. Columns turn
out to be essential for controlling the rate of signal propagation in order to support sequencing
and convergence detection. Modules can themselves be composed with feedforward connections to
implement a neural form of productions. The highest layer of organizational abstraction allows
construction of complete cognitive models with characteristic combinations of storage and gating
modules. All of these mechanisms are consistent with known cortical and subcortical organization,
since they require only structured vertical arrangements of densely connected neurons with lateral
connections to other columns, along with long-distance, vertical projection axons [34].

A host of issues remains unaddressed in this paper. For example, how do these complex circuits
self-organize? How do they learn what the appropriate delays are? How do they acquire a notion
of goals online? How do they generate plans which can be stored, and then executed only at a later
time? Can they implement goal stack structures?

We conclude with speculations on some issues, and pointers to previous work on others. As
for self-organization, preliminary work suggests that Hebbian learning is the key [18], and that the
column structure automatically provides a means for sequential organization if the Output unit
of one column can be held on at the same time as the Imput unit of another column. A form of
Hebbian learning may be suitable for learning the Input to Delay connection strength within a
module in order to acquire a duration encoding. Much research into the neural basis for reward
prediction and anticipation suggests a prominent role for temporal difference learning methods in
acquiring reward predictors [29, 25], which may provide a means for learning what goals ought to
be in new tasks. Finally, we have implemented goal stack structures [31] and list structures [32] in
other networks of this type, and in future work we intend to incorporate them in the architecture
described here.

References

[1] S. Amari. Dynamics of pattern formation in lateral-inhibition type neural fields. Biological
Cybernetics, 1977.

[2] S. Amari. Neural theory of association and concept-formation. Biological Cybernetics, 1977.

[3] J. Anderson and C. Lebiere. The atomic components of thought. Lawrence-Erlbaum Associates,
1998.

[4] J. A. Anderson. Cognitive and psychological computation with neural models. IEEE Trans-
actions on Systems, Man and Cybernetics, 1983.

[6] M. Arbib. The Handbook of Brain Theory and Neural Networks. MIT Press, 2003.

[6] G. S. Berns and T. J. Sejnowski. A computational model of how the basal ganglia produce
sequences. Journal of Cognitive Neuroscience, 1998.

22



[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

T. S. Braver, D. M. Barch, and J. D. Cohen. Cognition and control in schizophrenia: a
computational model of dopamine and prefrontal function. Biological Psychiatry, 2000.

C. E. Carr and M. Konishi. Axonal delay lines for time measurement in the owls brainstem.
Proc Natl Acad Sci USA, 1988.

M. Cohen and S. Grossberg. Absolute stability of global pattern formation and parallel memory
storage by competitive neural networks. IEEFE Transactions on Systems, Man and Cybernetics,
1983.

S. Dehaene and J. Changeux. A hierarchical neuronal network for planning behavior. Proceed-
ings of the National Academy of Science, USA, 1997.

Ch. Von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex.
Kybernetik, 1973.

M. Djurfeldt, O. Ekeberg, and A. Graybiel. Cortex-basal ganglia interaction and attractor
states. Neurocomputing, 2001.

P. F. Dominey and M. A. Arbib. A cortico-subcortical model for generation of spatially
accurate sequential saccades. Cerebral Corter, 1992.

J. A. Feldman and D. H. Ballard. Connectionist models and their properties. Cognitive Science,
1982.

M. J. Frank, B. Loughry, and R. C. O’Reilly. Interactions between frontal cortex and basal
ganglia in working memory: a computational model. Cognitive, Affective and Behavioral
Neuroscience, 2001.

S. Grossberg. How does the cerebral cortex work? development, learning, attention, and 3d
vision by laminar circuits of visual cortex. Behavioral and Cognitive Neuroscience Reviews, in
press.

J. Hayes. Introduction to digital logic design. Addison-Wesley, 1993.
D. O. Hebb. The organization of behavior. Wiley, 1949.

J. J. Hopfield and C. D. Brody. What is a moment? transient synchrony as a collective
mechanism for spatiotemporal integration. Proceedings of the National Academy of Sciences,
USA, 2000.

J.J. Hopfield. Neurons with graded response have collective computational properties like those
of two-state neurons. Proceedings of the National Academy of Sciences, USA, 1984.

J.C. Houk and S.P. Wise. Distributed modular architectures linking basal ganglia, cerebellum
and cerebral cortex: their role in planning and controlling action. Cerebral Cortex, 1995.

M. Jones. Temporal information and adaptive rationality. PhD thesis, University of Michigan,
2003.

D. W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations. Oxford University
Press, 1999.

23



[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

R. Lachman, J. Lachman, and E. Butterfield. Cognitive Psychology and Information Process-
ing: An Introduction. Lawrence Erlbaum Associates, 1979.

P. R. Montague, P. Dayan, and T. J. Sejnowski. A framework for mesencephalic dopamine
systems based on predictive hebbian learning. Journal of Neuroscience, 1996.

A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

R. O’Reilly and Y. Munakata. Computational Ezplorations in Cognitive Neuroscience. MIT
Press, 2000.

T. A. Polk, P. A. Simen, R. L. Lewis, and E. G. Freedman. A computational approach to
control in complex cognition. Cognitive Brain Research, 2002.

W. Schultz, P. Apicella, E. Scarnati, and T. Ljungberg. Neuronal activity in monkey ventral
striatum related to the expectation of reward. Journal of Neuroscience, 1992.

T. Shallice. Specific impairments in planning. Philosophical Transactions of the Royal Society
of London, Ser. B, 1982.

P. A. Simen, T. A. Polk, R. L. Lewis, and E. G. Freedman. Goal management in a recurrent
neural network. In Proceedings of the 6th Joint Conference on Information Sciences, 2002.

P. A. Simen, T. A. Polk, R. L. Lewis, and E. G. Freedman. Universal computation by networks
of model cortical columns. In Proceedings of the International Joint Conference on Neural
Networks, 2003.

G. Ward and A. Allport. Planning and problem-solving using the five-disc tower of london
task. Q. J. Ezp. Psychol. Sect. a: Hum. Exp. Psychol., 1997.

E.L. White. Cortical circuits: Synaptic organization of the cerebral cortez, structure, function,
and theory. Birkhauser, 1989.

H. R. Wilson and J. D. Cowan. A mathematical theory of the functional dynamics of cortical
and thalamic nervous tissue. Kybernetik, 1973.

24



