
Sprint-and-Halt Scheduling for Energy Reduction in
Real-Time Systems with Software Power-Down

�

Padmanabhan Pillai and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122, U.S.A.�

pillai, kgshin � @eecs.umich.edu

Abstract

Mobile computing platforms are performing increasingly complex and computationally
intensive tasks. To help lengthen useful battery life, these platforms often incorporate some
form of hardware power-down that is controlled by the system software. Unfortunately, these
often incur substantial transition latencies when switching between power-down and active
states, making them difficult to use in time-critical embedded systems.

This paper introduces a class of sprint-and-halt schedulers that attempt to maximize the en-
ergy savings of software-controlled power-down mechanisms, while simultaneously maintain-
ing hard real-time deadline guarantees. Several different algorithms are proposed to reclaim
unused processing time, defer processing, and extend power-down intervals while respect-
ing task deadlines. Sprint-and-halt schedulers are shown to reduce energy consumption by
40–70% over typical operating parameters. For very large or small state transition latencies,
simple approaches work very close to theoretical limits, but over a critical range of latencies,
advanced schedulers show 10–20% energy reduction over simpler methods.

�
The work reported in this paper is supported in part by the U.S. Airforce Office of Scientific Research under Grant

AFOSR F49620-01-1-0120.

1



1 Introduction

In recent years, there has been a significant shift toward mobile computation and communication
platforms and devices. This shift has occurred in both the realm of general-purpose computing
with the increase in use of laptop computers and PDAs, and in the embedded computing realm
with an increasing number of digital cameras, cellular phones, and portable medical devices run-
ning complex applications and operating systems on embedded microprocessors. Critical to these
systems is the limited stored energy available in a portable form factor. There is a fundamental
trade-off between the weight and size of the device, the processing speed of the processor, and the
useful battery life of device.

Unrelenting market pressures have created increasingly-sophisticated applications in
increasingly-compact devices, such as multimedia and web capabilities on cell phones and gaming
on PDAs. These demanding applications require the use of more powerful processors to provide
the user a responsive experience. This has made the need for power management to minimize
energy waste in such systems critical.

There has been recent interest and significant research on Dynamic Voltage Scaling (DVS) tech-
niques [3, 5, 15] that attempt to trade off performance and battery life by adjusting the operating
frequency and voltage of the processor to match the computational load on the system. As proces-
sors are composed mostly of CMOS logic gates, the energy expended is proportional to the charge
on the gate capacitances, and thus, a quadratic improvement in energy is attained when voltage is
reduced. However, DVS requires software adjustable voltage regulators and clock generators that
may not be available on many platforms.

More generally available is the much simpler concept of a software-controlled power-down
mechanism. This may take a variety of forms. One simple form is a processor halt instruction
that will effectively stop the CPU core, and keep it in a low-power standby state until a subsequent
interrupt. This is a low-overhead, fast operation that can simply be invoked in place of an idle-loop
to reduce wasted energy by the processor. More generally, there may be some mechanism to place
various system components into a standby state, incurring a finite time overhead to power down
and up the system.

This time overhead of switching hardware power states adds complexity to managing power
in embedded devices. In particular, these devices often require strict timeliness guarantees for
executing their resident tasks. In such systems, any adjustment of hardware power states must
ensure task deadlines are not violated while maximizing energy savings.

In this paper, we propose and evaluate a class of sprint-and-halt scheduling algorithms that
provide real-time task scheduling, while maximizing the benefits of software-controlled power-
down mechanisms. The rest of this paper is organized as follows. We will first present our general
model of software-controlled power-down hardware, which is followed by a detailed description
of several algorithms for sprint-and-halt scheduling of real-time systems. We then evaluate these
algorithms with respect to energy savings, before ending with conclusions and a discussion of
future work.

2



2 Background

As power dissipation becomes an increasingly critical limitation in mobile systems, various mech-
anisms have been introduced to help conserve and reduce wasted energy. The most general type
of power conservation mechanism is based on changing the power state of hardware components,
placing them in a low-power or standby state when not actively used. For general-purpose systems,
mechanisms such as APM and ACPI [1] provide interfaces for software-controlled power-down of
the system when not actively used. When explicitly notified by the user, such as when closing the
lid on a laptop computer, or after some timeout interval without user input, the system enters a
low-power state, and computation is halted until a subsequent wake-up event occurs. This works
well in laptops and PDAs, which are usually idle when a user is not directly interacting with the
system. However, most real-time applications are not considered interactive, and generally need to
run continuously over extended periods of time. Battery-operated embedded systems cannot take
advantage of simple timeout-based power-down to conserve energy.

Instead, for such systems, we need to take advantage of power-down mechanisms at much finer
time-scales, halting operations between executions of periodic tasks. One hardware power-down
mechanism that works well here is processor halt operation. Here, a special halt instruction puts
the processor to a sleep mode, turning off the execution pipeline and disabling further computation.
Although power is still supplied to the processor, along with a clock signal, much of the CPU
core is deactivated and power dissipation is very low. A subsequent event, generally a hardware
interrupt, will resume the processor core. Using the halt instruction in place of a more traditional
idle-loop can greatly reduce the wasted energy executing empty spin loops. As the overhead of
executing the halt operation and resuming on interrupt is very low, on the order of a few processor
cycles, this mechanism may be safely employed without significantly affecting execution times or
deadlines.

The halt instruction, if available on the processor, is effective for conserving energy, but only
within the processing core. The rest of the system, such as buses, memory, and communication
devices, will continue to draw energy at normal rates even when the processor is halted. With
more sophisticated hardware, a system can provide an interface that allows a larger subset of sys-
tem components to be deactivated under the control of software. Timers, memory controllers, and
communication ports may be powered down to save considerable energy when not in active use.
In particular, turning off the main system clock-generation circuitry will essentially shut off the
processor and memory, and often any communications and I/O subsystems as well, saving consid-
erably more energy than with processor halts alone. Taking this to an extreme, APM and ACPI
suspend modes essentially turn off the entire system after saving all dynamic processor and system
state to persistent storage, dropping power dissipation to zero.

These lower-power modes do not come for free. Unlike the simple processor halt, powering
down external subsystems can incur substantial time and processing overheads for entering and
leaving the low-power modes. In the extreme case of the ACPI suspend operation, the operating
system must iterate through every system device driver, saving the current state, and then copy
all memory to disk before powering down the system. Upon resume, this process is reversed to
restore the system to the exact state it was previously in. The overheads for such operations is
very high, and will typically require on the order of tens of seconds to complete. Although this can
greatly reduce power consumption, it cannot be used in the short intervals between task invocations

3



time

P

Plow

high

Power

t t
down up

idlepower−downactive active active

Figure 1: Parameters of system power model.

time

task i

<C i

t i

release task
completion

re−release
deadline and

time

Figure 2: Periodic real-time task model parameters.

in a real-time system. At the opposite extreme, the halt operation incurs negligible to very low
overheads, on the order of a microsecond, but may not provide significant energy savings in a
system whose energy consumption is dominated by components other than the processor. Trading
off power reduction level for improved switching latencies, a moderately aggressive approach may
require only a few milliseconds of overhead, such as in waiting for the clock circuitry to stabilize on
power-up. Various other software-controlled power-down mechanisms can vary anywhere between
these extremes, trading off power reduction for time overheads.

3 System Model

Regardless of the actual software-controlled power-down mechanism available in a particular hard-
ware platform, its use in a real-time system is primarily affected by the time overheads the mecha-
nism incurs and how this would affect the timeliness of task execution. Therefore, we can general-
ize software-controlled power-down mechanisms and model them as follows. First, for simplicity,
we assume that the platform dissipates power in a bimodal manner, consuming a constant ���������
when in the active state, and �	��

� when in the power-down state. The transition from active to
power-down state takes a constant time, ����

��� . We assume that there exists some time trigger, such
as an external real-time alarm, that can be programmed to reactivate the system at a specific future
time. Once triggered, the transition to active state takes ����� time. The average power dissipation
during the transitions is ����������� , which can be anywhere between ����

� and ��������� , but we will as-
sume the worst case of ��������� �"!#��������� unless noted otherwise. These parameters are illustrated in
Figure 1.

We assume that the system follows the canonical periodic real-time task model. Each task $ is

4



released periodically, becoming ready to execute every ��� time units. The task is also characterized
by a worst-case execution time (WCET) � � , which indicates the maximum processing time it
needs on each release/invocation. The relative deadline is equal to the period, so each task must
complete execution within ��� of its release, i.e., must complete by the time it is re-released for its
next invocation. These parameters are illustrated in Figure 2. The tasks are scheduled according to
either the rate-monotonic (RM) or the earliest deadline first (EDF) priority scheduler. These are the
most extensively-studied real-time scheduling mechanisms and cover a broad range of actual OS
implementations. RM is a preemptive scheduler that assigns fixed priorities among tasks, giving
the highest priority to the most-frequently executed task. EDF, on the other hand, assigns dynamic
priority based on which task has the most imminent deadline, which varies over time. Assuming
preemption and scheduler overheads to be negligible, the latter has a nice schedulability property
that allows one to ensure a set of tasks is schedulable and all deadlines met by simply keeping the
total worst-case processor utilization of the task set below one, i.e., ��� ��� ������� [9].

Using the system models described above, we will in the next section design real-time schedul-
ing algorithms that attempt to maximize energy savings from powering down the system, while
ensuring real-time deadlines are met.

4 Sprint-and-Halt Algorithms

Existing real-time scheduling algorithms were not designed with energy-savings in mind. In partic-
ular, they do not consider how to incorporate software-controlled power-down mechanisms in the
task schedule, and how to deal with the latencies incurred when switching between power states.
In this section, we develop several novel algorithms to take advantage of power-down techniques
while ensuring the schedulability of the real-time task set. These algorithms attempt to rapidly
complete all work in the system (thus the term “sprint”), and then power down the system as long
as possible (thus the term “halt”) to maximize the reduction in energy consumption and amortizing
the transition latencies over long power-down intervals.

4.1 Real-Time Schedulers with Power-down

We first consider the standard RM and EDF schedulers and extend them as minimally as possible
to incorporate power-down control in the task schedule. The goal of this first design is to ensure
schedulability and task deadlines by leaving the actual execution schedule unaltered. Rather, this
algorithm incorporates power-down such that all execution timings are left identical to that of plain
vanilla EDF or RM scheduling.

This algorithm tries to replace any idle time in the schedule with a power-down event while
preserving task timing. However, due to the latency of power-state change, power-down must
be applied only when idle periods in the schedule are sufficiently long to cover the transition
latencies. Based on the model parameters specified earlier, power-down is triggered only when
�������
	�� ����

����
 ������� where �������
	 is the contiguous idle period in the schedule. When power-down is
invoked, the system is set to resume execution in �������
	�� ����� time, ensuring that the system is in the
active state by the time the idle period expires.

Given the real-time assumptions of a task’s relative deadline equal to its period, and a work-

5



Assume � tasks, sorted by deadline:��� � ��� ������� � �
�

/* this is needed for EDF */

upon task release(task $ ):
set 	�
���
 � to 0;
update

�
� to

�
� 
 ��� ;

resort task list by new deadlines;
/* schedule by RM/EDF priority */

upon task completion(task $ ):
set 	�
���
 � to 1;
if (for all � , 	�
���
�� =1) then:

��� 

� = get current time();
if ( � ��� � ��� 

������� ����

��� 
 ������� ) then:

set wakeup timer to
��� � ��� 

� � ����� ;

start power-down;
else idle;

else:
/* schedule by RM/EDF priority */

Figure 3: Real-time scheduling with power-down

conserving RM or EDF scheduler, one can very easily compute � �����
	 online. When some task
completes execution and no other tasks have any computation time remaining, an idle period in the
schedule begins. This idle ends upon release of the next task, which, since the relative deadlines
equal the task periods, will coincide with the earliest deadline among the tasks within the system.
Hence, �������
	 ! ��� � ��� 

� , where

���
is the earliest deadline in the system, and ��� 

� is the current

time when idle would normally start. Figure 3 shows a pseudocode implementation of this algo-
rithm. For EDF scheduling, the set of tasks is already sorted by deadlines, so adding power-down
is trivial. For RM scheduling, one needs to add structures to keep track of the deadlines. In prac-
tice, it is not necessary to actually sort the task set by the deadlines, as a simple scan to find the
earliest deadline is sufficient.

This algorithm is very conservative, avoiding altering any timing from the normal EDF or RM
schedule. However, as a result, it can only reduce power consumption under fortunate circum-
stances when a sufficiently long idle interval occurs in the normal execution of the tasks.

4.2 Work-Idle-Conserving Schedulers

To improve the energy savings of the previous scheduler, one can try to increase the duration of
idle periods to allow longer intervals in low-power mode and amortize switching-time costs over
longer periods. However, care must be taken to ensure that no task will be delayed and miss its

6



time

time

Task k

Task k

t D D

D Dt

C

now

now 1

1 2

2

k

kC

(b)

(a)

Figure 4: Example of deferral of task execution in work-idle-conserving scheduler. (a) Original
execution schedule; (b) After deferral.

deadline.
A class of work-idle-conserving schedulers can help increase such idle durations. While there

are tasks to execute, these schedulers follow the standard work-conserving RM or EDF scheduling
policy. However, once all tasks have completed and the system enters idle, these schedulers be-
comes “idle-conserving” — they attempt to lengthen the idle period by deferring the next arriving
task. This must be done conservatively to ensure future deadlines are not violated.

To this end, a simple algorithm for execution deferral looks ahead to the next arriving task, � ,
and will limit its effects to just this one task. Task � will arrive at time

� �
, the earliest deadline

in the system. Between time
� �

and time
� �

, the next deadline in the system, task � will execute
exclusively. If the WCET of task � , ��� , is less than

� � � ���
, then we can defer the starting time

of task � by
� � � ��� � ��� without affecting its deadline or the execution of any other task. This is

illustrated in Figure 4. Since ��� time is available before
� �

, task � still completes all execution by���
as with the unaltered schedule. Furthermore, the effects of this deferral are local to the interval

� ��� � � � � , so no other task’s execution is affected by the deferral of task � .
There are two caveats when implementing this algorithm. First, it is possible that two tasks

have coinciding deadlines at time
� �

. In this case, two tasks are released simultaneously, and we
should not attempt to defer execution based on an algorithm that assumes just one task executes
exclusively after

���
. This case is handled by simply using

� � ! ���
in case of coinciding dead-

lines. Since ������� for either task, no deferral is performed. The second issue is that the second
deadline,

���
, may actually be for the invocation of task � released at time

� �
. At the time idle

begins (before time
� �

), this invocation of task � has not yet been released, and its deadline has
not yet been added to the system, so this case must be checked when computing

��� � ��� . Figure 5
presents the power-down algorithm for the simple work-idle-conserving RM/EDF scheduler. As
before, in the case of RM, it may be necessary to add structures to keep track of task deadlines.

Essentially, this algorithm conservatively extends the previous algorithm to allow the deferral
of execution for a single task in an attempt to extend idle intervals. Although this will improve
performance over the simple RM/EDF scheduling with power-down described earlier, there is no

7



Assume � tasks, sorted by deadline:��� � ��� ������� � �
�

/* this is needed for EDF */

upon task release(task $ ):
set 	�
���
 � to 0;
update

�
� to

�
� 
 ��� ;

resort task list by new deadlines;
/* schedule by RM/EDF priority */

upon task completion(task $ ):
set 	�
���
 � to 1;
if (for all � , 	�
���
�� =1) then:

��� 

� = get current time();
��� 	�� 	 � = max � 0, min � � � � ��� � � � , � � � � �����
if ( � ��� 
 ��� 	�� 	 � � ��� 

��� � � ����

� ��
 ������� ) then:

set wakeup timer to
��� 
 ��� 	�� 	 � � ��� 

� � ����� ;

start power-down;
else idle;

else:
/* schedule by RM/EDF priority */

Figure 5: Work-idle-conserving scheduler

guarantee that the deferral of the next task alone will provide greatly improved power-down time,
particularly if tasks use significantly less than their WCETs.

4.3 Slack-Stealing Schedulers for Power-down

When tasks consume less than their WCETs, one would like to use the surplus time, or slack, as
effectively as possible for power-down. However, with the simple approach of task deferral shown
above, the slack is not directly taken into account, so a somewhat conservative mechanism is used
to ensure that future deadlines are not violated. If one could accurately track the slack gained due
to tasks completing early, then more aggressive deferral of task execution can be employed, while
still ensuring that future deadlines are met.

In this next approach, called slack-stealing scheduling for power-down, the goal is to maintain
an accurate count of the extra computing time (i.e., slack), and use this to generate longer idle
intervals in the execution schedule. Existing slack-stealing techniques [8] use slack to provide time
to real-time aperiodic tasks, increased execution time to variable runtime tasks, e.g., increasing
rewards for increasing service (IRIS) [4], or to execute best-effort, non-real-time tasks. In this
case, the computed slack time is used to determine the maximum period over which one can
delay the execution of tasks (i.e., stay in an idle-coserving mode) to ensure the execution starting

8



1

1

2

2

3

3

1

1

2

1 2 3 1

Dt now 1

time

Dt now 1

time

Dt now 1

time

D2

D2

D2

(c)

(a)

(b)

Figure 6: Slack-stealing scheduler example scenario. ��� 

� is current time, where system enters
idle. (a) Execution schedule for work-conserving scheduler indicates execution resumes at time

� �
when task 1 is released; (b) Canonical schedule assuming tasks always use exactly their WCETs
indicates next invocation of task 1 would start after time

� �
; (c) Slack-stealing power-down sched-

ulers defer task 1 until the time indicated by the WCET schedule.

time is not delayed beyond that in the EDF or RM execution schedule assuming WCETs for all
tasks. As long as the starting time for any part of a task occurs no later than in the EDF or RM
WCET schedule, then task completion no later than in the WCET schedule is guaranteed, and,
therefore, all deadlines are ensured to be met. The only exception to executing tasks no later than
in the WCET schedule is that the single task deferral used in the previous work-idle-conserving
schedulers is also applied when possible, which, as discussed earlier, will not cause any task to
violate its deadlines.

As in the previous approach, the scheduling first proceeds in a work-conserving fashion. When
an idle period is reached, the mode is switched to idle-conserving, and tasks that arrive in the
future are deferred in a non-work-conserving manner. Once execution of a delayed task begins, the
scheduler resumes work-conserving operation. While tasks are executing, the execution schedule,
assuming WCETs for all tasks, is computed, so when idle occurs, the actual slack relative to the
WCET schedule can be computed. This is used to determine the maximum duration over which
the system may be powered down to ensure arriving tasks will begin no later than they would have
in the WCET schedule. This is illustrated in the example in Figure 6.

The actual algorithm for slack-stealing EDF and RM scheduling is outlined in Figure 7. There
are two general functions performed in the algorithm. First, a set of data structures is maintained
that simulate the execution timing under the EDF or RM scheduler assuming WCETs for all tasks.
These structures are updated while tasks are executed in a work-conserving manner. One should

9



Assume � tasks, sorted by deadline:� ��� � ����������� � �

upon task completion(task 	 ):
simulate execution();
set 
��
��� � to 1;
if (for all � , 
������ � =1) then:� � 

� = get current time();

simulate forward();� � 	 � ����	 = max � � � ��� , min � � ����� � , � ��� � ����� �! " 
if ( # � � 	 � �$��	 � � � 

��%�& # � ��

��� � � ���'% ) then:

set wakeup timer to
� � 	
� �$��	 � � � 

� � � ��� ;

start power-down;
else idle;

else: /* schedule by RM/EDF priority */

simulate release(task 	 ):
set 
��
��� � to 0;
set ()( � to

� � ;
update

� � to
� � � � � ;

resort task list by new deadlines;

simulate execution():� � 
 � = get current time();
repeat while

� � �*�,+ � � 

� :
find task - such that ()( �/.021 and for all � ,

� �3+ � � implies ()( � 021
/* for RM, replace

� �3+ � � with
� �4+ � � in line above */

if - exists, then:� � � � = min �5()( � , � � 

� -
� � �*� ,

� �
-
� � �*�  

;
set ()( � to ()( � � � � � � ;

else
� � � � = min � � � 

� -

� � �*� ,
� �

-
� � ���  

;
set

� � �*� to
� � �*� � � � � � ;

for all � such that
� � � � � �*� , simulate release( task � );

simulate forward():
loop:

find task - such that ()( �/.021 and for all � ,
� �3+ � � implies ()( � 021

/* for RM, replace
� �3+ � � with

� �4+ � � in line above */
if - exists, then:

if 
��
��� � 021 jump out of loop;� � � � = min �5()( � , � � - � � �*�  
;

set ()( � to ()( � � � � � � ;
else

� � � � =
� �

-
� � �*� ;

set
� � �*� to

� � �*� � � � � � ;
for all � such that

� � � � � �*� , simulate release( task � );
end of loop;

Figure 7: Slack-stealing scheduler for power-down

10



note that the release times of tasks in the actual execution and the simulated schedule are identical,
but in the actual execution, tasks will complete earlier than in the WCET schedule. The second
function is triggered when some task completes and no further work is immediately available.
Then, the algorithm simulates the continued execution of the WCET schedule forward in time,
including the future releases of tasks, and determines the earliest time at which the WCET schedule
indicates that a future-released task commences execution. The difference between this time and
the current time essentially constitutes the available slack generated by tasks using less than their
WCETs. The power-down interval is selected to terminate at this future time, or at the deferred
start time computed by the previously-described work-idle-conserving mechanism, whichever is
later. The system will then resume work-conserving execution until the next idle interval.

With this deferral technique, the system can guarantee timely execution of tasks (i.e., all tasks
complete by their deadlines) by ensuring that execution occurs no later than in the WCET schedule,
and that any greater deferral is limited to a single task with local effects that do not extend beyond
any deadline (i.e., the work-idle-conserving mechanism described in previous section). Hence, the
schedulability of the system and deadline guarantees are identical to the system with ordinary RM
or EDF scheduling. This algorithm, although still an example of a bimodal work-idle-conserving
scheduler, is more aggressive and has greater time scope than the previous schedulers, as it does
permit deferral beyond multiple deadlines, allowing the deferral of multiple ready tasks.

4.4 Improved Slack-Stealing EDF

The slack-stealing EDF scheduler works well when the WCET schedule indicates a greatly de-
ferred start time for tasks released in the future due to continued worst-case execution of currently
released tasks. When the system is heavily-loaded (i.e., very little idle time in WCET schedule),
this method can help greatly. However, when the system is lightly-loaded, there will be idle periods
in the WCET schedule, and, as this simulated schedule is work-conserving, it may greatly limit the
deferral time and, consequently, the power-down intervals.

This next approach modifies the slack-stealing EDF scheduler slightly to improve the deferral
time and power-down intervals when the system is under-utilized. The goal is to defer task execu-
tion farther than the WCET EDF schedule would indicate, but still ensure deadlines of the tasks.
This is accomplished by creating a specification of an alternate task set that fully utilizes the sys-
tem, and using this in the simulation of the WCET schedule. For each actual task $ , there is a task
$�� in the alternate set with an identical period, ��� . The WCET of task $�� , ���� is such that ���� � � � .
Since the period, and therefore deadlines, of task $�� are identical to those of the real task $ , and
since the WCET is at least as long, any schedule that can guarantee the timely execution of task $ �
will also suffice for $ . As this is true for all tasks, as long as the alternate task set is schedulable, so
is the real task set using the same execution schedule.

To create a schedulable alternate task set for an EDF scheduler, assuming negligible preemption
and scheduler overheads, one needs to simply ensure that the total utilization does not exceed 1,
i.e., � � � � � ��� � � [9]. Figure 8 shows the algorithm to generate a schedulable alternate task set
that fully utilizes the system. First, the worst-case utilization of the given task set is computed as�

. For an under-utilized system, this value is strictly bounded, ���
�
� � . For a fully-utilized

system,
� ! � , so the alternate task set is constructed to ensure this. Each alternate task is given

the same period as its real counterpart, but its WCET is multiplied by a factor of � � � . Now, this

11



Assume � tasks
Each task $ has period ��� and WCET �"�

At startup:
Compute

�
!�� � � � � � �

For each task $ :
create alternate task $ �
set � �� to ���
set ���� to � � � �

Proceed with slack-stealing EDF scheduling
but use alternate task set for simulated WCET schedule

Figure 8: Improved slack-stealing EDF scheduler for power-down

alternate task set is used for the simulated WCET schedule in the slack-stealing EDF scheduler. As
this alternate schedule has the same deadlines and greater execution time available for each task
than needed for the given task set, ensuring all tasks execute no later than in this alternate WCET
schedule suffices to guarantee task deadlines. Again, the one exception to starting a task no later
than in the WCET schedule is when the work-idle-conserving EDF scheduler’s single task deferral
is applied, but its effects are localized to the single task and do not cross deadlines, so task deadline
guarantees are maintained.

By using an alternate task set that fully utilizes the system, has the same deadlines, and has
greater execution time required for each task than the given task set as the reference for task start
times, greater deferral times, longer power-down intervals, and lower energy consumption can be
achieved by the improved slack-stealing EDF algorithm.

4.5 Handling Multiple Power-down States

The sprint-and-halt algorithms as discussed support hardware with a two power states: active and
power-down. However, often, there may be multiple power-down states available on a platform.
These states will have varying power-consumption rates, as well as latencies to resume active-
state operation. For example, a system may have a low-latency processor halt mechanism that
moderately reduces power consumption, as well as a system power-down mode that greatly reduces
power, at the expense of a longer resume latency.

It is possible to modify all of the algorithms introduced here to support more than one power-
down state. First, one needs to determine the power model of the system with two or more power-
down states. To keep everything consistent, assume simply that each power state � has its own
constant power-consumption rate, �	� 

��� � . Furthermore, only transitions between each low-power
state and the active state are considered, i.e., do not transition from one power-down mode to
another directly. Each state � has transition latencies ������� � and ����
 ����� � to switch to and from active
state. During the transitions, an average of power of �	������� ��� � is dissipated.

12



Given this model, the algorithms need to choose the power state that requires the lowest energy
cost for any power-down interval � � � . The energy consumed by state � ,

�
� , is expressed as a

function of the power-down interval, � � � , as:

�
� � � � � � ! � ����

��� � � 
 ������� ����� ����������� � 
 � � � � � ����

� ��� ��� ������� ��������

� � �

Assuming two states, � and � , where � ����

� ��� � 
 ������� � � � � ����

� ��� � 
 ������� � � and ����

� � � � ��� 
 � � � , i.e., � is
a lower-power, longer-latency state than � , it is better to switch to state � when

�
� � � � � ��� �

� � � � � � .
Solving this for � � � , it is better to use state � when:

� � � � � ����

� ��� � 
 ������� � � � � ������� ��� � � ����

� � � � � � ����
 ����� � 
 ����� � ��� � ����������� � � � ����

� � ���
��� 
 � � ��� ����

��� � �

The right-hand side of the inequality depends only on system parameters, so it can be computed
ahead of time and used as a constant, called �����	�
��� . So, to support two power-down states, the
algorithms simply decide based on the power-down interval:


��
��� � � � � � � ����
 ����� � 
 ����� � ���
������� � �

� � � � ��� ��� � � ����

� ��� � 
 ������� � � � �������
��� �
���	��� � �

� � ��� �! �"#
 � �

With a larger number of low-power states, one can similarly use the energy computation above and
solve the inequality for � � � to determine the range of � � � for which one state is better than another.
Using all such boundary values of � � � for all possible pairs of states, and the minimum �
� � that
allows the use of each state, one can find a simple static mapping from � � � to the power state that
results in the lowest energy dissipation.

5 Evaluation

To evaluate the potential energy savings provided by the various sprint-and-halt scheduling algo-
rithms described so far, one can use a system simulation to predict energy dissipation across a
broad range of scenarios. The following subsection describes the simulator developed to eval-
uate the power-down scheduling techniques and the assumptions made in its design. Following
this, some simulation results are presented to provide insight into the system parameters affecting
energy savings in a real-time system with software-controlled power-down capabilities.

5.1 Simulation Methodology

The sprint-and-halt algorithms are evaluated using a simulator developed using C++ that mod-
els the operation of hardware capable of software-controlled power-down under a wide range of
system characteristics. The simulator takes as input a task set, specified with the period and com-
putation requirements of each task, as well as several system parameters, and provides the energy
consumption of the system for each of the algorithms presented earlier. Real-time schedulers
without any power-down support are also simulated for comparison. Parameters supplied to the

13



simulator include the hardware specification, i.e., � ������� , ��� 

� , ����������� , ����
 ��� , and ����� , and a specifi-
cation of the fraction of the WCET that the tasks should actually consume. This latter parameter
can be a constant (e.g., 0.9 indicates that each task will use 90% of its specified worst-case com-
putation cycles during each invocation), or can be a random function (e.g., uniformly-distributed
random multiplier for each invocation).

The simulation assumes the bimodal system power model described in Section 3. Each simu-
lated cycle used for task execution or idle consumes a constant energy quantum, derived from ��������� ,
while each cycle in the power-down state consumes energy based on � ��

� . Although the simulator
can use arbitrary ����������� values, in the evaluations, the worst-case situation where ����� ��� � ! ��������� is
assumed. With this model, variations due to different types of instructions executed are not taken
into account. This simplification eliminates the need for actual execution traces, and a simpler cy-
cle counting approach can be used to determine energy consumption. The simulator only considers
the time/energy overheads of switching into and out of the power-down state. In particular, it does
not consider preemption and task-switch overheads, or the overheads of executing scheduler code.
However, these are small relative to the range of power-state switching latencies considered, so
there is no loss of generality from these assumptions. Besides, the relative energy performance of
different scheduling algorithms will not be affected by this assumption.

The real-time task sets are specified using a pair of numbers for each task, indicating its period
and worst-case execution time. The task sets are generated randomly as follows. Each task has
an equal probability of having a short (1–10 ms), medium (10–100 ms), or long (100–1000 ms)
period. Within each range, task periods are uniformly distributed. This simulates the varied mix of
short- and long- period tasks commonly found in real-time systems. The computation requirements
of the tasks are assigned randomly using a similar 3-range uniform distribution. Finally, the task
computation requirements are scaled by a constant chosen such that the sum of the utilizations
of the tasks in the task set reaches a desired value. This method of generating real-time task sets
has been used previously in the development and evaluation of a real-time embedded microkernel
[16]. Averaged across hundreds of distinct task sets generated for several different total worst-case
utilization values, the simulations provide a relationship of energy consumption to the worst-case
utilization of the task sets, or to the power-down-power-up latencies.

5.2 Results

The simulator described above permits the energy consumption comparison of the sprint-and-halt
schedulers to each other as well as against real-time scheduling without power-down support. In
addition, the schedulers are also compared to a theoretical lower bound on energy. This lower
bound is computed based on the observation that the highest frequency task in the system limits
the maximum duration of the power-down state. Considering just this one task, and assuming
actual execution times are known, then it is possible to execute this task as late as possible so it
completes exactly at its deadline, and then its next invocation is released and executed immediately.
The system can power down until sufficiently before the following invocation’s deadline to execute
the task. As a result, at best, one power-down interval can span at most 2 periods of the highest
frequency task. The lower bound energy is computed assuming all of the idle time is lumped
together and divided into power-down intervals exactly 2 times the length of the period of the
highest frequency task. All of the execution time is likewise lumped together at the start of the

14



(a)

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

E
ne

rg
y 

(n
or

m
al

iz
ed

)

tup+tdown (ms)

EDF
EDF+PD
WIC EDF

SS EDF
SS EDF+

bound

(b)

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

E
ne

rg
y 

(n
or

m
al

iz
ed

)

tup+tdown (ms)

EDF
EDF+PD
WIC EDF

SS EDF
SS EDF+

bound

(c)

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

E
ne

rg
y 

(n
or

m
al

iz
ed

)

tup+tdown (ms)

EDF
EDF+PD
WIC EDF

SS EDF
SS EDF+

bound

Figure 9: Effects of varying power-down hardware specifications: (a) � ������� � ��� 
 � ! � ;
(b) ��������� � ��� 
 � ! � � ; (c) ��������� � ��� 
 � ! � � �

15



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y 

(n
or

m
al

iz
ed

)

Worst case utilization

EDF
EDF+PD
WIC EDF
SS EDF
SS EDF+
bound

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y 

(n
or

m
al

iz
ed

)

Worst case utilization

EDF
EDF+PD
WIC EDF
SS EDF
SS EDF+
bound

actual=0.33*WCET actual=0.66*WCET

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y 

(n
or

m
al

iz
ed

)

Worst case utilization

EDF
EDF+PD
WIC EDF

SS EDF
SS EDF+

bound
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y 

(n
or

m
al

iz
ed

)

Worst case utilization

EDF
EDF+PD
WIC EDF
SS EDF
SS EDF+
bound

actual=1.00*WCET actual=uniform(0,WCET)

Figure 10: Effects of varying workload parameters

lower-bound simulation. This lower bound is in practice unachievable, but does give some insight
into limitations on further energy improvements. We limit the experiments to the EDF versions of
the sprint-and-halt algorithms.

Effects of power-down specifications: The first set of experiments determines the effects of
varying the specifications of the power-down hardware. Figure 9 shows the energy dissipation for
each sprint-and-halt EDF-based algorithm, normalized with respect to EDF scheduling without
power-down support. Here, the task sets all contain 8 random tasks as described earlier, such that
the total worst-case processor utilization is 0.95. The tasks’ actual execution times are fixed to
WCET/3. The average energy for the task sets is plotted for varying values of power-down latency,
i.e., ����

��� 
 ����� , which are shown on a log scale. The three separate plots correspond to different
��������� � ����

� ratios.

One should immediately note that all of the algorithms can potentially save significant amounts
of energy, particularly when the power-state transition latencies are small. In addition, the actual
ratio of ��������� to ��� 
 � does not affect the relative performance of the schedulers or the general trend
of the curves significantly. Only the maximal achievable savings is affected. Finally, at the extreme
range of power-state transistion latencies, the algorithms perfrom very close to the computed lower
bound on energy. Between these extremes, the improved slack-stealing EDF (SS EDF+) scheduler

16



0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y 

(n
or

m
al

iz
ed

)

Worst case utilization

EDF+PD
WIC EDF

SS EDF
SS EDF+

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 1 10 100 1000

E
ne

rg
y 

(n
or

m
al

iz
ed

)

tup+tdown (ms)

EDF+PD
WIC EDF

SS EDF
SS EDF+

� ��� � � ��

��� =10 ms Worst case utilization=0.95

Figure 11: Relative performance of sprint-and-halt algorithms

performs the best, followed by slack-stealing EDF (SS EDF) and work-idle-conserving EDF (WIC
EDF) schedulers. Even the simple EDF with power-down (EDF+PD) scheduler performs much
better than plain vanilla EDF scheduling.

Effects of workload parameters: The next set of experiments fix the harware specification and
vary instead the task set parameters. In Figure 10, ��������� � ��� 

� is set to 20, and ����

� � 
 ����� set to
10 ms. There are still 8 tasks in each random task set, but now the worst-case utilization of the
task sets is varied, and resulting average energy across the task sets plotted. The actual execution
times for the task is also varied, set to 0.33, 0.66, and 1.0 times the WCET for the first three
subplots. The fourth plot uses a unform random distribution for the actual execution times of each
task invocation.

Overall, the average energy profiles of the schedulers across multiple random task sets seem to
vary fairly linearly with the worst-case utilization of the task sets. The one interesting exception is
the simple slack-stealing EDF (SS EDF) scheduler. For most of the range of utilization, it performs
nearly identically to the work-idle-conserving (WIC EDF) scheduler. However, at very high worst-
case utilizations, it performs better than WIC EDF. This is due to the fact that at high utilizations,
WCET EDF schedules have very little idle time, so the algorithm, attempting to pace execution to
the WCET schedule, is capable of much longer deferrals. It is this very effect that motivates the
improved slack-stealing approach (SS EDF+).

The change in actual execution times affects the slope of the average energy response as worst-
case utilization is varied. Using uniformly-distributed random execution times (between 0 and
WCET for each task invocation) does not significantly change the average energy curves. As the
average execution times are generally much smaller than the WCETs for most real-time task sets,
the first plot is closest to what one can deem as typical. Here, with the reasonable assumption
of 20:1 ��������� to ����

� ratio and 10 ms power-down latency, the sprint-and-halt schedulers achieve
40–70% energy reduction over EDF without power-down support.

Relative performance of power-down schedulers: Although all of the power-down schedulers
perform much better than ordinary EDF without power-down support, it is interesting to see how

17



well the more complex techniques perform relative to the simple EDF with power-down added.
Figure 11 shows this relationship, assuming actual task execution times are 0.33*WCET. The first
plot indicates that with a power-down latency of 10 ms, the improved slack-stealing approach re-
duces average energy by approximately 10–20% over EDF+PD as the task set worst case processor
utilizations vary. In the second plot, the worst-case utilization is fixed to 0.95, and the power-down
latency is varied across the log scale. At the extremes, is very little improvement over EDP+PD.
However, in the middle of the range, where the power-down latency is comparable to the task
periods, the more advanced techniques show up to 10% energy reduction relative to the simple
EDF+PD scheduler.

6 Related Work

Reducing power consumption in mobile devices is a very active area of research. The authors of
[2, 10] enumerate and survey a wide variety of approaches to energy reduction on mobile platforms
from a high-level perspective. A variety of techniques for powering down subsystems, including
display backlight, disk drives, and communication channels, and applying circuit tricks to reduce
power are cited. However, little work has been done in the context of powering down systems
(including the processor) when real-time constraints are present.

Although not intended for real-time systems, the authors of [7] developed techniques for pow-
ering down systems that execute event-driven (i.e., user-interactive) applications. Using idle his-
tory, future idle durations are predicted. This, unfortunately, cannot provide the timing guarantees
needed for real-time systems. This work also proposes a pre-wake technique that reactivates the
system early to compensate for wake-up latencies and improve responsiveness. A similar mecha-
nism is used in all of the sprint-and-halt algorithms, as this is necessary in order to ensure deadline
guarantees.

Focusing on powering down I/O subsystems, the authors of [11] attempted to maximize the
effectiveness of power-down by increasing the duration and amortizing switching overheads. This
is similar in concept to the sprint-and-halt algorithms, but it is meant for I/O, not the processor.
Furthermore, it involves reordering tasks to coalesce common device accesses, which would affect
timings of tasks and preclude its use in real-time systems.

Extending this to real-time systems, the authors of [14] presented a device power-scheduling al-
gorithm that preserves real-time guarantees. Deadlines are preserved by keeping the task execution
schedule unaltered and fitting power-down events for I/O devices whenever possible. In contrast,
sprint-and-halt scheduling does alter the task execution schedule, while preserving deadlines, and
can power down the processor.

Finally, there has been much research on dynamic voltage scaling of the CPU to conserve
energy since the earliest papers on this topic appeared [3, 5, 15]. These mechanisms have also
been extended to work in real-time systems [6, 12, 13]. DVS algorithms try to execute tasks as
slowly as possible to spread out work and eliminate idle time, while in contrast, sprint-and-halt
techniques try to coalesce work and execute it as fast as possible to allow longer power-down
intervals. Hence, these real-time scheduling algorithms approach energy conservation with directly
opposite philosophies.

18



7 Conclusions

This paper has presented a class of sprint-and-halt scheduling algorithms that attempt to make
best use of software-controlled power-down to reduce energy expenditure, while meeting hard,
real-time constraints. Several algorithms of increasing complexity have been developed to better
amortize energy costs due to the transition latencies to and from low-power states. Extensive
simulations show that with some typical system parameters, the power-down techniques can save
40–70% of the energy dissipated in an unmodified system, while preserving all real-time deadline
guarantees. Sensitivity experiments show that for very large (100’s of ms) and very small (100’s
of � s) power-down latencies, the simplest power-down scheduling techniques suffice, as all of the
methods approach a theoretical lower bound. However, for moderate power-down latencies, the
advanced techniques provide 10–20% lower energy consumption relative to the simplest sprint-
and-halt schedulers.

Future research directions related to this work include extending sprint-and-halt scheduling
to less restrictive real-time paradigms. A probabilistic real-time approach may provide greater
flexibility in using power-down techniques and allow greater energy savings. Integration of sprint-
and-halt with other power-reduction techniques, such as dynamic voltage scaling, may also be
possible in a hybrid solution that switches between the two depending on workload characteristics
and available idle time.

References

[1] ADVANCED CONFIGURATION AND POWER INTERFACE. http://www.acpi.info/.

[2] BENINI, L., BOGLIOLO, A., AND MICHELI, G. D. A survey of design techniques for
system-level dynamic power management. IEEE Transactions on VSLI (June 2000), 299–
316.

[3] BURD, T. D., AND BRODERSEN, R. W. Energy efficient CMOS microprocessor design. In
Proceedings of the 28th Annual Hawaii International Conference on System Sciences. Volume
1: Architecture (Los Alamitos, CA, USA, Jan. 1995), T. N. Mudge and B. D. Shriver, Eds.,
IEEE Computer Society Press, pp. 288–297.

[4] DEY, J. K., TOWSLEY, D. F., KRISHNA, C. M., AND GIRKAR, M. Efficient on-line pro-
cessor scheduling for a class of iris real-time tasks. In SIGMETRICS (1993), pp. 217–228.

[5] GOVIL, K., CHAN, E., AND WASSERMANN, H. Comparing algorithms for dynamic speed-
setting of a low-power CPU. In Proceedings of the 1st Conference on Mobile Computing and
Networking MOBICOM’95 (Mar. 1995).

[6] GRUIAN, F. Hard real-time scheduling for low energy using stochastic data and DVS proces-
sors. In Proceedings of the International Symposium on Low-Power Electronics and Design
ISLPED’01 (Huntington Beach, CA, Aug. 2001).

19



[7] HWANG, C., AND WU, A. C.-H. A predictive system shut-down method for energy saving
of event-driven computation. In Proc. Intl. Conf. on Computer-Aided Design (1997), pp. 28–
32.

[8] LEHOCZKY, J., AND THUEL, S. Algorithms for scheduling hard aperiodic tasks in fixed-
priority systems using slack stealing. In Proceedings of the IEEE Real-Time Systems Sympo-
sium (1994).

[9] LIU, C. L., AND LAYLAND, J. W. Scheduling algorithms for multiprogramming in a hard
real-time environment. J. ACM 20, 1 (Jan. 1973), 46–61.

[10] LORCH, J. R., AND SMITH, A. J. Software strategies for portable computer energy man-
agement. IEEE Personal Communications Magazine 5, 3 (June 1998), 60–73.

[11] LU, Y.-H., BENINI, L., AND MICHELI, G. D. Low-power task scheduling for multiple
devices. In International Workshop on Hardware/Software Codesign (May 2000), pp. 39–43.

[12] PERING, T., AND BRODERSEN, R. Energy efficient voltage scheduling for real-time op-
erating systems. In Proceedings of the 4th IEEE Real-Time Technology and Applications
Symposium RTAS’98, Work in Progress Session (Denver, CO, June 1998).

[13] PILLAI, P., AND SHIN, K. G. Real-time dynamic voltage scaling for low-power embed-
ded operating systems. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (Banff, Alberta, CA, Oct. 2001), pp. 89–102.

[14] SWAMINATHAN, V., CHAKRABARTY, K., AND IYENGAR, S. S. Dynamic i/o power man-
agement for hard real-time systems. In Proc. Intl. Symposium on Hardware/Software Co-
Design (CODES) (2001), pp. 237–242.

[15] WEISER, M., WELCH, B., DEMERS, A., AND SHENKER, S. Scheduling for reduced CPU
energy. In Proceedings of the First Symposium on Operating Systems Design and Implemen-
tation (OSDI) (Monterey, CA, Nov. 1994), pp. 13–23.

[16] ZUBERI, K. M., PILLAI, P., AND SHIN, K. G. EMERALDS: A small-memory real-time
microkernel. In Proceedings of the 17th ACM Symposium on Operating System Principles
(Kiawah Island, SC, Dec. 1999), ACM Press, pp. 277–291.

20


