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Abstract 

The large and growing impact of memory hierarchies on overall system performance compels designers to investigate 
innovative techniques to improve memory-system efficiency. We propose and analyze a memory hierarchy that increases 
both the effective capacity of memory structures and the effective bandwidth of interconnects by storing and transmitting 
data in compressed form. 

Caches play a key role in hiding memory latencies. However, cache sizes are constrained by die area and cost. A 
cache's effective size can be increased by storing compressed data, if the storage unused by a compressed block can be 
allocated to other blocks. We use a modified Indirect Index Cache to allocate variable amounts of storage to different 
blocks, depending on their compressibility. 

By coupling our compressed cache design with a similarly compressed main memory, we can easily transfer data 
between these structures in a compressed state, increasing the effective memory bus bandwidth. This optimization further 
improves performance when bus bandwidth is critical. 

Our simulation results, using the SPEC CPU2000 benchmarks, show that our design increases performance by up to 
107% on some benchmarks while degrading performance by no more than 2% on others. Compressed bus transfers alone 
account for up to 59% of this improvement, with the remainder coming from increased effective cache capacity. As memory 
latencies increase, our design becomes even more beneficial. 
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1 Introduction 

Memory latencies have long been a performance bottleneck in modern computers. In fact, with each 
technology generation, microprocessor execution rates outpace improvements in main memory latencies. 
Memory latencies are thus having increasing impact on overall processor performance. 

The rift between processor and memory speeds is alleviated primarily by using caches. Today’s 
microprocessors have on-chip cache hierarchies incorporating multiple megabytes of storage [6]. Increasing the 
size of on-chip caches can greatly increase processor performance; for example, increasing the size of the on-
chip tertiary cache from 1MB to 4MB results in a 427% performance increase for the art benchmark on our 
simulated configuration. However, the amount of on-chip storage cannot be increased without bound. Caches 
already consume most of the die area in high-performance microprocessors.  Practical cache sizes are 
constrained by the increased fabrication costs of larger die, and ultimately limited by semiconductor 
manufacturing technology. 

Memory bandwidth is also a scarce resource in high-performance systems.  Although recent years have seen 
significant advances in signaling and DRAM interface technologies, chip I/O bandwidth is limited by the cost of 
packaging technology.  Furthermore, many of the techniques being employed by processor designers to deal 
with memory latency— e.g., prefetching, multithreaded CPUs, and chip multiprocessors—result in increased 
bandwidth demands. 

Data compression has long been used to alleviate capacity and bandwidth constraints in several domains.  
This paper explores the use of data compression in the processor cache hierarchy.  We examine two 
applications.  First, we store compressed data in the last-level on-chip cache to increase its effective capacity.  
Second, by adding a compressed main memory system, such as IBM’s Memory Expansion Technology (MXT) 
[1], data can be transmitted across the bus in compressed form, increasing the effective per-pin bandwidth.  
Transferring compressed data from memory also removes the need to compress data before loading it into the 
cache. 

Data compression also tends to reduce power and energy consumption.  Fewer bits are required to store and 
to transmit a given amount of information, reducing static and dynamic power consumption, respectively.  Of 
course, these benefits must be weighed against the power cost of the compression/decompression hardware.  We 
leave analysis of the power/energy impact of our compressed memory hierarchy, along with potential 
integration of energy-specific optimizations, for future work. 

A key challenge in the design of a compressed data store is the management of variable-sized data blocks. 
For example, compressing a 128-byte block to 72 bytes does not increase effective cache capacity if none of the 
56 bytes saved can be used for other data.  A conventional cache structure, in which each address tag is 
associated statically with a single fixed-size data block, is thus inadequate for storing compressed data. 

We address this problem using a variation of the Indirect Index Cache (IIC) [5]. The IIC does not associate 
a tag with a specific data block; instead, each tag contains a pointer into a data array which contains the blocks. 
The original intent of this indirection is to provide a fully-associative cache, amenable to software management.  
In this paper, we use this indirection in combination with compression to associate a single tag with a variable 
number of data blocks, while allowing unused blocks to associate with other tags. We call our design the 
Indirect Index Cache with Compression, or IIC-C. 

We evaluate our design using the SPEC CPU2000 benchmark suite. We find that our compressed cache 
outperforms a traditional LRU cache by an average 16% at a 1024-byte block size. We also show that as 
memory latencies increase, our design improves performance by an even greater margin. 

The rest of this paper is organized as follows. Section 2 presents previous work in compressed memory 
systems. Our design is presented in Section 3 and evaluated in Section 4. We conclude in Section 5. 
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2 Previous Work 

In this section we present previous work on compression in the memory hierarchy. First we discuss 
previous work in compressed caches, and then present proposed compressed main memory designs that we can 
use to supply compressed data to our cache. 

2.1 Cache compression 

Compression has long been used in the embedded world for reducing code size [9, 12, 13].  This application 
differs significantly from data compression in that no on-line compression is required; code is compressed 
typically at compile time and is read-only during execution. 

Recently, a number of designs for cache data compression have been proposed.  Most of these schemes 
have applied compression for power/energy savings rather than performance. This emphasis allows the use of 
more conventional cache structures, where unused storage cells and wires provide a benefit simply by not 
consuming power. 

The Frequent Value Cache (FVC) [19, 18] replaces the top N frequently used 32-bit values with log (N) 
bits. When built as a separate structure [19], the FVC can increase cache size if an entire cache block is made up 
of frequent values. However, the probability of this situation occurring decreases with larger cache blocks, 
making this scheme most effective at the L1 level. The FVC can also be utilized to decrease cache energy [18]. 
The encoded frequent values are stored in the first bits of the cache line. If the value is marked as compressed, 
only these bits are read, saving the energy of reading the entire line. This power-saving variation does not 
increase the effective size of the cache. 

Another scheme to reduce cache energy is Dynamic Zero Compression (DZC) [16]. In this scheme, each 
zero-valued byte is represented by a single bit. This encoding provides an 8 to 1 reduction in the number of bit 
lines that need to be driven, thus saving energy. 

Kim et al. [8] utilize the knowledge that most of the bits of values stored in a L1 data cache are merely sign 
bits. Their scheme compresses the upper portion of a word to a single bit if it is all 1s or all 0s. These 
compressed sign bits, along with the lower portions of the words, are stored in one cache bank.  This bank is 
accessed first; the second bank containing the uncompressed high-order bits is accessed only if necessary, again 
saving bit-line reads. They also propose adding a second tag per line to allow storage of a separate block in the 
second bank when possible. They find that with an overall increase in storage of 50%, their cache approaches 
the performance of a 100% larger conventional cache. 

Alameldeen and Wood [2] also use the leverage that small values are stored in larger memory blocks to 
create a compression algorithm called frequent pattern compression (FPC). Their cache uses indirection, much 
like the IIC, between tags and data so that a single set can store either 4 uncompressed blocks, or up to 8 
compressed blocks. This allows them to increase the effective size of the cache for only the cost of the extra tag 
storage. 

The Selective Compressed Memory System (SCMS) [11] is closest to ours in spirit, combining a 
compressed L2 cache with a compressed memory and using a general compression algorithm. Cache lines are 
compressed in pairs (where the line address is the same except for the low-order bit). If both lines compress by 
50% or more, they are stored in a single cache line, freeing a cache line in an adjacent set.  However, it becomes 
necessary to check two sets for a potential hit on every access.  SCMS also fails to take advantage of lines that 
compress by less than 50%, and provides at most a 2 to 1 advantage even when lines compress by more than 
50%.  We also evaluate the performance potential of our compression scheme on the entire SPEC CPU2000 
suite using execution-driven simulation, while the SCMS work presented trace-driven evaluation of a subset of 
the SPEC95 benchmarks. 

2.2 Memory Compression 

There have been several designs that use compression in main memory to increase effective DRAM 
capacity, reducing the number of disk accesses. Most schemes [10, 14, 17] set up a portion of physical memory 
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to store compressed pages after they are evicted from the uncompressed portion. Virtual memory support is 
used to manage this partition flexibly.  Compression and decompression may be done in software on the CPU or 
with a dedicated hardware assist. 

IBM’s Memory Expansion Technology (MXT) [1] differs in that all main-memory data is stored in 
compressed form.  A hardware engine built into the memory controller manages compression and 
decompression transparently to software.  To reduce decompression latency for misses in the on-chip caches, 
the MXT memory controller includes a large off-chip cache for uncompressed data. 

MXT maps the “real” addresses generated by the processor to the physical addresses of the compressed 
memory using a sector translation table (STT) (see Figure 1). Each entry in the STT maps a 1KB real address 
area. An entry consists of 4 physical address that each point to a 256B sector. A block is typically stored in one 
to four of the 256B sectors depending on its compressibility. If the 1KB block compresses to less than 120 bits, 
termed a “trivial” value, it is stored in the STT entry itself. While some space is lost due to internal 
fragmentation in the 256B sectors, most of the space saved by compression can be accessed by the STT. We 
leverage this design when creating our compressed cache. 

3 Design of the IIC-C 

3.1 The Indirect Index Cache (IIC) 

The Indirect Index Cache with Compression (IIC-C) is based on the Indirect Index Cache (IIC) [5]. The 
basic IIC, shown in Figure 2, consists of a data array containing the cache blocks and a tag store which contains 
the tags for these blocks. Each IIC tag entry holds a pointer to the data block with which it is currently 
associated. This indirection provides the ability to easily manage a fully associative cache. 

Replacements in the IIC are managed by a software algorithm running on an embedded controller or as a 
thread on the main CPU. Our primary algorithm, called Generational Replacement (GEN) [5], maintains 
prioritized pools (queues) of blocks; periodically, referenced blocks are moved to higher priority pools and 
unreferenced blocks are moved to lower priority pools.  Replacements are selected from the unreferenced 
blocks in the lowest priority pool. To reach the highest priority pool, a block must be referenced regularly over 

Figure 1: IBM's Memory eXpansion 

Technology (MXT) (from [1]). 
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an extended period of time; once there, it must remain unreferenced for a similarly long period to return to the 
lowest priority pool.  This algorithm thus combines reference recency and frequency information with a 
hysteresis effect, while relying only on block reference bits and periodic data-structure updates. 

To ensure that adequate replacement candidates are available to deal with bursts of misses, the algorithm 
can identify multiple candidates per invocation and maintain a small pool of replacement blocks. These blocks 
are used by hardware to handle incoming responses, while GEN works in the background to keep this pool at a 
predetermined level. 

The IIC was originally designed to utilize large on-chip caches to achieve better performance over 
traditional LRU caches. With a few minor changes the IIC can also be used to increase the effective size of 
these caches by incorporating compression. 

 

Figure 3: An IIC-C Tag 

3.2 Extending the IIC to Incorporate Compression 

We can leverage the indirection of the IIC to create an STT-like structure for the on-chip cache. We make a 
few simple changes to the IIC tag entry to support compressed data.  First, we modify the IIC tag to contain 
multiple pointers to smaller data blocks to represent a single cache block, just as an MXT SST entry contains 
multiple sector pointers. If the block is compressible, some of these subblock pointers will not be used.  The 
associated data array entries will not be allocated, leaving additional storage for other blocks. We also add two 
status bits to the tag: one to denote whether the block is compressed or not, and another to indicate that the 
compressed value is “trivial” and stored in the subblock pointers themselves.  Figure 3 represents an IIC-C tag 
entry. 
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Figure 2: The Indirect Index Cache 
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We also needed to modify GEN to keep a pool of available sub-blocks instead of just full data blocks. We 
also need to expand the algorithm to check the available blocks on writes as well as misses. This is because 
there is the possibility that a write to a compressed block will decrease the compressibility and need another 
sub-block to store the result. This is a minor change and doesn’t affect the algorithm’s performance noticeably.  

To improve effective pin bandwidth and avoid compressing incoming blocks, our system uses a compressed 
main memory as well. We assume an MXT-like scheme, where we match the compression block size of main 
memory to the cache line size. This equivalence allows us to pass compressed data blocks directly across the 
bus. However, this feature has the side effect of making it impossible to send the critical word first. This penalty 
can be partially offset by overlapping decompression with transmission [11]; we do not include that 
optimization in this paper.  Compressed bus transfers could be used without a compressed main memory by 
compressing/decompressing blocks in the memory controller on each access.  However, once the compression 
logic is moved to the memory controller, it seems worthwhile to keep main memory in a compressed state as 
well.  Otherwise, both the compression and decompression latencies will be added to each cache miss. 

We chose to use LZSS [7] as our compression algorithm since it is also used in MXT. LZSS is a parallel 
version of LZ77 which can be implemented in hardware [3].  The speed of LZSS is dependent on the number of 
simultaneous compressions. Thus designers can increase the speed of compression/decompression by adding 
more hardware. The hardware requirement scales linearly with the degree of parallelism. LZSS also has the 
property that decompression is much faster than compression—by a factor of 4 in the MXT implementation [3]. 
This property is desirable with a write-back cache hierarchy because reads will outnumber writes to our 
compressed cache. Of course, the choice of LZSS is arbitrary; we can use any compression algorithm, such as 
the X-RL used in SCMS [11], as long as it can be efficiently realized in hardware.  

To compensate for the added latency of decompressing blocks, both MXT and SCMS use intermediate 
structures to cache decompressed data. Our design leverages the trend in current high-performance processors to 
have three levels of cache on-chip [6]. With the L3 storing data in a compressed form, the L2 will serve as a 
buffer of decompressed cache blocks.  The L2 thus reduces the impact of the decompression latency by 
reducing the number of accesses to the L3.  The IIC-C itself could serve the same function, storing recently 
accessed blocks uncompressed and others in compressed form; we leave exploration of that design space for 
future work. 

This design does introduce some hardware overheads. The compression/decompression engine takes up 
some die area, which increases linearly with block size, but this area is minimal when compared to a multi-
megabyte L3 [3]. In addition to the basic IIC overheads [5], the IIC-C adds extra subblock pointers to the tag, 
increasing the size by about 6 bytes per tag entry. Extra tag entries are also needed to index the extra space 
made available by compression; however, the base IIC already has more tags than cache lines to improve tag 
lookup performance [5].  We assume the IIC-C has twice the minimum number of tags needed, unchanged from 
the original IIC design. The total of these overheads comes to only 134K for a 1MB IIC-C with 128-byte blocks 
and 64-byte subblocks, and falls to 14K at a 1024-byte block size with 256-byte subblocks. 

The next section presents the evaluation of our compressed memory hierarchy. 

4 Evaluation 

4.1 Methodology 

We used the M5 simulator [4] to evaluate our design. M5 simulates an out-of-order speculative Alpha 
processor with a detailed timing memory hierarchy. The simulation parameters are presented in Table 1. We 
based the cache hierarchy on the McKinley Itanium2 [6], but we increased the cycle delays to match a 2 GHz 
processor.  Although future L3 caches will doubtless be larger than 1MB, the limitations of our SPEC CPU2000 
workload and simulation runtime constraints made it difficult to explore larger cache sizes. 
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Table 1: Simulation Parameters 
 

Parameter Value 
Frequency 2 GHz 
Front-end pipeline 10 cycles fetch-to-decode 

5 cycles decode-to-dispatch 
Fetch bandwidth Up to 8 instructions per cycle, 

Max 3 branches per cycle 
Branch predictor Hybrid local/global (ala 21264) 

Global: 13-bit history, 8K-entry PHT 
Local: 2K 11-bit history regs, 2K-entry PHT 
Choice: 13-bit global history, 8K-entry PHT 

BTB 4K entries, 4-way set associative 
Instruction Queue Unified int/fp, 256 entries 
Reorder buffer 512 entries 
Execution BW Up to 8 insts per cycle 
Function Units 8 int alu, 4 int mul, 4 fp add/sub, 4 fp mul/div/sqrt, 4 data-cache rd/wr port 
Latencies Integer: mul 3, div 20, all others 1 

fp: add/sub 2, mul 4, div 12, sqrt 24 
 all ops fully pipelined exc. div and sqrt 

L1 Icache / Dcache Both: 16KB, 4-way set assoc., 64B block size, 1 cycle latency 
Instr: up to 8 outstanding misses 
Data: up to 32 outstanding misses 

L2 Unified Cache 256KB, 8-way set assoc., 128B block size, 12 cycle hit latency, up to 40 outstanding misses 
L3 Unified Cache 1MB, 8-way set assoc., 128B block size, 26 cycle hit latency, up to 40 outstanding misses 
Memory Bus 500 MHz, 32 byte data path 
Main Memory 150 cycle latency 
 
To keep the tag overhead manageable, we set the number of IIC-C subblocks within a cache line to four. To 

estimate the compressibility of cache blocks, we run the actual program data block contents through the 
sequential LZ77 algorithm. For the range of block sizes we are looking at (128B and up), the sequential 
algorithm has similar compression performance to the parallel LZSS [7]. We also assume that decompression is 
four times faster than compression.  Our experiments use a compression latency of 32 cycles with the 
corresponding decompression latency of 8 cycles. 

Our simulations use the 26 benchmarks from the SPEC CPU2000 benchmark suite. We run each simulation 
starting at the “early single” SimPoint [15] and run for 300M instructions. 

4.2 Benchmark Classification 

We begin by measuring the basic memory behavior of the SPEC CPU2000 benchmarks. We simulated each 
benchmark as described above using fully associative LRU instruction and data caches with 128-byte blocks 
and sizes varying from 128K to 16M. From these runs we were able to estimate the working set size of our 
sample of each benchmark. To estimate the memory bandwidth demand and compressibility of each benchmark 
we also ran with a 1MB, 8-way set-associative LRU cache with 128-byte blocks and measured the number of 
bytes requested from the memory as well as the compressibility of the data requested by the cache. The results 
are presented in Table 2. All the benchmarks had instruction working sets smaller than 128K, so that column is 
not shown.  As can be seen, five of the benchmarks (apsi, eon, equake, fma, and sixtrack) have data working set 
sizes of 1MB or less, and so will not show any benefit from increasing the cache size further. Since the IIC-C 
we model has only twice the minimum number of tag entries, it can at best double the effective size of the 
cache.  Thus only those benchmarks that show a significant decrease in the number of misses when going from 
a 1MB to 2MB cache can show improvements from using our 1MB IIC-C. There are nine benchmarks that 
show a reduction of 100K or more misses in this situation: ammp, art, bzip2, facerec, galgel, mcf, parser, twolf, 
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and vpr. When we present an average, it will be over all 26-benchmarks, however we will focus on these nine 
benchmarks to cope with presentation space and simulation time constraints 

 
Table 2: SPEC CPU2000 Memory Behavior 

Benchmark Data WS 
(bytes) 

Mem BW  
(bytes/inst) 

Data 
Compressibility

 

Miss Rate # of misses 
eliminated 

by incr from 
1M to 2M 

% of misses 
eliminated 

ammp 2M 0.40 12.12% 20.94% 117,194 78.36% 
applu 4M 1.42 3.08% 76.48% 17,522 0.32% 
apsi 1M 0.07 95.59% 45.44% 0 0% 
art 4M 9.79 57.49% 72.44% 33,841,778 87.93% 

bzip2 8M 0.15 3.96% 27.17% 393,950 69.88% 
crafty 2M 0.01 66.75% 9.22% 24,059 61.31% 
eon 128K 0.00 40.91% 100% 0 0% 

equake 128K 0.00 92.43% 100% 0 0% 
facerec >16M 0.59 4.55% 34.31% 176,216 7.58% 

fma 128K 0.00 28.50% 100% 0 0% 
galgel 8M 0.42 30.55% 49.71% 3,282,158 97.45% 
gap >16M 0.06 56.78% 49.37% 2 0% 
gcc 4M 0.02 31.37% 0.46% 46 0.06% 
gzip 2M 0.01 6.30% 25.75% 83 0.16% 
lucas >16M 1.15 81.32% 65.62% 7,317 0.16% 
mcf >16M 7.89 44.68% 57.27% 691,126 2.24% 
mesa 8M 0.04 88.98% 43.45% 2,041 1.25% 
mgrid >16M 0.53 15.16% 49.40% 20,025 0.98% 
parser >16M 0.17 37.01% 30.42% 277,233 41.04% 
perl 8M 0.26 60.45% 77.74% 34,931 13.37% 

sixtrack 1M 0.01 35.24% 4.36% 0 0% 
swim 16M 1.58 11.95% 73.38% 860 0.01% 
twolf 2M 0.39 35.25% 20.24% 1,497,484 99.16% 
vortex 4M 0.03 77.50% 14.96% 18,949 19.49% 

vpr >16M 0.36 22.86% 38.56% 688,982 49.97% 
wupwise 8M 0.16 46.71% 73.00% 8,974 1.41% 

4.3 Results 

Because the IIC-C design builds on the IIC, we establish our baseline by comparing the performance of a 
plain 1MB IIC to an 8-way set-associative LRU cache of the same capacity. Figure 4 presents the relative 
performance for the nine benchmarks identified above, as well as the average over all the benchmarks. Except 
for ammp, the IIC results are similar to the 8-way LRU results. Ammp suffers from a number of conflict misses 
in the LRU case which the IIC removes. To account for the additional area overhead of the IIC-C, we also 
include the performance of a 9-way conventional LRU cache (roughly a 13% area increase). 

To factor out the impact on performance of varying block sizes, we will present our IIC-C results below 
relative to the performance of an uncompressed IIC using the same block size.  To understand the impact of 
block size on absolute performance, we show the IPC for the base IIC configuration at various block sizes, 
relative to a 128-byte block size, in Figure 5.  The effect of increasing block size is quite varied: ammp, art, 
bzip2, and galgel suffer from pollution at large block sizes, while mcf and twolf benefit from prefetching 
effects. Since the memory bandwidth remains fixed the large blocks take longer to transmit. At 1024 byte 
blocks this latency slightly diminishes the benefit from prefetching in MCF. 
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Figure 4: Performance Relative to a 1M LRU Cache 
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Figure 5: Performance of the IIC relative to the 128-byte block 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

amp art bzp fac gal mcf par twf vpr avg

LRU
LRU 1.1
IIC



 10

4.3.1 Cache compression 
Figures 6 and 7 present the performance and miss rate of the IIC-C relative to the IIC in a stand-alone 

environment (neither the bus nor main memory use compression). We again vary the L3 block size from 128B 
to 1024B to explore the effect of larger blocks on performance. The compression block size is set equal to the 
L3 cache line size and varied from 128B to 1024B.1  Because larger blocks provide more context for the 
compression algorithm, they typically enable higher compression ratios.  Recall that we normalize our IIC-C 
results to an IIC with matching block size to factor out other block-size effects. As can be seen, on average our 
compressed cache outperforms the traditional IIC for all block sizes. For 128B blocks, we get our largest gain 
(57%) on art, while our worst loss is only 1%. Averaged across all the benchmarks, the compressed cache 
improves performance over by 4-7% depending on the block size, while increasing the average effective cache 
size by 47%. 

Of the nine benchmarks we identified in Section 4.2 with potential savings, only 6, showed significant 
improvement at any block size.  Art shows huge wins because the IIC-C is able to eliminate up to 50% of its 
33M misses.  It suffers at 1024B blocks, despite doubling the effective cache size to 2M, because the 
prefetching effect of the large block eliminates most of the misses that compression removed at lower sizes.  
Mcf shows modest performance improvement and modest miss rate reduction, however it also doubles the 
effective cache size at 512B and 1024B blocks.   Galgel, and twolf all show massive reductions in miss rates, up 
to 96%, but these reductions do not translate to as large gains in performance.  Ammp shows improvement 

                                                      
1 With the same compression hardware, the compression latency will increase with the block size. We assume that 

compression hardware scales to keep the same compression latency across all block sizes.  With LZSS, this scaling is linear 

as discussed in Section 3.2. 

Figure 6: Performance of the stand alone IIC-C relative to the IIC with the same block size 
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because the larger block sizes are more compressible allowing more to be stored, eliminating its pollution 
problem. This same factor is seen in a smaller magnitude for vpr at a 1024B block size. 

The other benchmarks fail to show significant performance improvements for a number of reasons. Bzip2 
and facerec both increase the effective size of the cache by less than 10% at the lower block sizes, which leads 
to lower gains. Even when facerec increases the effective size by 47% at 1024B blocks the large improvement 
there is not an appreciable performance gain, but we do see a 5% improvement in miss rate. Parser sees large 
miss rate reductions, but these are not translated into a similar performance gain. 

4.3.2 Bus compression 
To isolate the performance impact of transmitting compressed data across the bus, we simulated a system 

with a compressed main memory and compressed bus transfers, but with no on-chip compressed cache.  Data is 
thus decompressed on-chip immediately after being received from main memory.  Figure 8 presents the 
performance of this scheme for each block size relative to an uncompressed IIC with the same block size. Art 
sees large benefits at every block size due to its high memory bandwidth requirements (see Table 2). The 
benefit increases with block size since we use a fixed bus bandwidth; larger block sizes incur longer delays, 
resulting in more potential savings when blocks are compressed.  These results show that compression can be 
used to utilize the existing bus bandwidth more effectively, especially for long-latency transmissions. However, 
compressed bus transfers do decrease performance by up to 4% on twolf at 1024 byte blocks.  This decrease 
comes both from the added latency of decompression and from the inability to send the critical word first in 
compressed data.  For some benchmarks, these losses can be covered partially by reduced miss rates when 
storing the data in a compressed form. 

Figure 7: Miss rates of the stand alone IIC-C relative to those of an IIC with the same block size 
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Figure 9: Performance of the IIC-C when sending compressed blocks over the bus, relative to an IIC with the same 
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Figure 8: Performance of sending compressed blocks over the bus relative to an IIC with the same block size
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4.3.3 Combining cache and bus compression 
We can further improve system performance by combining the IIC-C with a similarly compressed main 

memory and transfer data in a compressed form. Figure 9 presents our results for this system. As can be seen, 
combining the two solutions improves performance beyond either design alone. The maximum improvement of 
107% is achieved by art at 256 byte blocks. All 26 benchmarks have an average improvement of 4% at 128 byte 
blocks, and 16% at 1024 byte blocks. 

Figure 10 shows the effect of increasing the cache size from 1M to 4M. As expected, as the cache size 
grows greater than the working set size the usefulness of compression decreases. For art, the 2M IIC-C performs 
as well as a 4M IIC, but the compression penalties decrease performance by 5% at 4M. Twolf shows similar 
behavior at 2M. Mcf, on the other hand, shows increasing benefit from compression as more and more misses 
are removed by increasing the effective cache size. Galgel is interesting because while its working set is 8M, it 
too drops off at a 2M cache size. Referring back to Table 2, this is expected since 97% or the misses are 
removed by going to a 2M cache. 

There is an inherent tradeoff on the number of subblocks (better compression resolution) and hardware 
overhead (more bits in the tags). To save space we tried reducing the number of subblocks from 4 to 2, 
effectively halving the overhead. Figure 11 presents the performance of a 2 subblock IIC-C relative to the 4 
subblock IIC-C. Since a block needs to be compressed by 50% or more to be stored compressed with 2 
subblocks we would expect the performance to decrease. Most of the benchmarks show a decrease in 
performance up to 24%. Facerec, mcf, nd parser actually show a slight increase in performance, for some block 
sizes. This is due to the fact that data that is stored compressed in the 4 subblock case is now stored 
uncompressed, removing the decompression latency from any access to that data. Increasing the number of 
subblocks to 8 or more should actually improve performance, at the expense of doubling or more the overhead. 
We considered the increased cost to be to great to explore this option. 
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Figure 10: Performance of the IIC-C for various cache sizes, relative to an IIC of the same size 



 14

 
 

 
 
 

Figure 11: Performance of the IIC-C with 2 subblocks relative to one with 4 subblocks 
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Figure 12: Performance of the IIC-C for various compression latencies 
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To test the sensitivity of our results to the compression/decompression latency, we ran experiments where 
we varied the compression latency from 0 to 128 cycles with a block size of 128B, keeping the decompression 
latency at ¼ of the compression latency.  As can be seen in Figure 12, these experiments showed the expected 
trend that performance decreases with higher compression latencies.  Bzip actually showed a very slight 
increase in performance as the latency increases due to the fact that it is thrashing in the L1 data cache; this 
effect is reduced at longer L2 miss latencies.  It should be noted that, even with extremely long latencies, our 
scheme still shows a very slight improvement, with a maximum 7% decrease in performance. 

As we head into the future, memory latencies will increase in terms of processor cycles. To evaluate how 
compression will perform with these longer latencies, we varied the memory latency from 150 cycles to 1200 
cycles with a 128B block size. While the cache will undoubtedly grow in future processors, we kept the on-chip 
cache latencies and sizes fixed, due to the limitations of our SPEC CPU2000 benchmark suite. 

Figure 13 presents the performance of the compressed cache relative to a traditional LRU cache for the four 
memory latencies. As the memory latency increases the cost of an off-chip miss becomes more expensive. This 
decreases the impact of the compression latency while increasing the importance of a higher hit rate in the 
cache. These changes mean that compression becomes more and more desirable. Ammp, galgel, and twolf 
illustrate this as their performance increases from an average 23% to 127% as the latency increases. Mcf shows 
only a very slight increase in performance since the miss rate is reduced only by 6%, so the remaining misses 
drive the performance. Art is an anomaly. While compression still improves performance at all latencies, its 
performance falls off at a faster rate than the baseline. Further study is needed to unravel this anomaly. 

5 Conclusion 

In this paper we presented IIC-C, a feasible design for an on-chip compressible cache using the IIC. The IIC 
uses indirection to translate cache block addresses into the physical indexes in a data store where these blocks 
are held. Using this indirection, combined with sub blocking the cache, allows us to store these blocks in 

Figure 13: Performance of the IIC-C for increasing memory latencies (in processor cycles)

0

0.5

1

1.5

2

2.5

3

3.5

4

amp art bzp fac gal mcf par twf vpr

150
300
600
1200



 16

compressed form while using the saved space to store other blocks. This allows the cache to effectively increase 
its size when storing compressed data. 

We evaluated the IIC-C using the SPEC2000cpu benchmark suite. Figure 14 presents a summary of our 
results for 128 byte cache blocks. The performance is normalized to a traditional LRU cache. We also compare 
to a 1.1M LRU cache to compare with the IIC-C area overhead.  The IIC-C improves performance over a 
traditional LRU cache by up to 94% with an average improvement of 7%. We also find that using a compressed 
memory in concert with the IIC-C can help to alleviate bus contention by shipping compressed data. The IIC-C 
continues to increase its performance gains as the latency of memory increases, making it even more desirable 
in future processors. 
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