
A Compressed Memory Hierarchy using an Indirect Index Cache
Erik G. Hallnor and Steven K. Reinhardt
Advanced Computer Architecture Laboratory

EECS Department
University of Michigan

Ann Arbor, MI 48109-2122
{ehallnor, stever}@eecs.umich.edu

Abstract

The large and growing impact of memory hierarchies on overall system performance compels designers to investigate
innovative techniques to improve memory-system efficiency. We propose and analyze a memory hierarchy that increases
both the effective capacity of memory structures and the effective bandwidth of interconnects by storing and transmitting
data in compressed form.

Caches play a key role in hiding memory latencies. However, cache sizes are constrained by die area and cost. A
cache's effective size can be increased by storing compressed data, if the storage unused by a compressed block can be
allocated to other blocks. We use a modified Indirect Index Cache to allocate variable amounts of storage to different
blocks, depending on their compressibility.

By coupling our compressed cache design with a similarly compressed main memory, we can easily transfer data
between these structures in a compressed state, increasing the effective memory bus bandwidth. This optimization further
improves performance when bus bandwidth is critical.

Our simulation results, using the SPEC CPU2000 benchmarks, show that our design increases performance by up to
107% on some benchmarks while degrading performance by no more than 2% on others. Compressed bus transfers alone
account for up to 59% of this improvement, with the remainder coming from increased effective cache capacity. As memory
latencies increase, our design becomes even more beneficial.

 2

1 Introduction

Memory latencies have long been a performance bottleneck in modern computers. In fact, with each
technology generation, microprocessor execution rates outpace improvements in main memory latencies.
Memory latencies are thus having increasing impact on overall processor performance.

The rift between processor and memory speeds is alleviated primarily by using caches. Today’s
microprocessors have on-chip cache hierarchies incorporating multiple megabytes of storage [6]. Increasing the
size of on-chip caches can greatly increase processor performance; for example, increasing the size of the on-
chip tertiary cache from 1MB to 4MB results in a 427% performance increase for the art benchmark on our
simulated configuration. However, the amount of on-chip storage cannot be increased without bound. Caches
already consume most of the die area in high-performance microprocessors. Practical cache sizes are
constrained by the increased fabrication costs of larger die, and ultimately limited by semiconductor
manufacturing technology.

Memory bandwidth is also a scarce resource in high-performance systems. Although recent years have seen
significant advances in signaling and DRAM interface technologies, chip I/O bandwidth is limited by the cost of
packaging technology. Furthermore, many of the techniques being employed by processor designers to deal
with memory latency— e.g., prefetching, multithreaded CPUs, and chip multiprocessors—result in increased
bandwidth demands.

Data compression has long been used to alleviate capacity and bandwidth constraints in several domains.
This paper explores the use of data compression in the processor cache hierarchy. We examine two
applications. First, we store compressed data in the last-level on-chip cache to increase its effective capacity.
Second, by adding a compressed main memory system, such as IBM’s Memory Expansion Technology (MXT)
[1], data can be transmitted across the bus in compressed form, increasing the effective per-pin bandwidth.
Transferring compressed data from memory also removes the need to compress data before loading it into the
cache.

Data compression also tends to reduce power and energy consumption. Fewer bits are required to store and
to transmit a given amount of information, reducing static and dynamic power consumption, respectively. Of
course, these benefits must be weighed against the power cost of the compression/decompression hardware. We
leave analysis of the power/energy impact of our compressed memory hierarchy, along with potential
integration of energy-specific optimizations, for future work.

A key challenge in the design of a compressed data store is the management of variable-sized data blocks.
For example, compressing a 128-byte block to 72 bytes does not increase effective cache capacity if none of the
56 bytes saved can be used for other data. A conventional cache structure, in which each address tag is
associated statically with a single fixed-size data block, is thus inadequate for storing compressed data.

We address this problem using a variation of the Indirect Index Cache (IIC) [5]. The IIC does not associate
a tag with a specific data block; instead, each tag contains a pointer into a data array which contains the blocks.
The original intent of this indirection is to provide a fully-associative cache, amenable to software management.
In this paper, we use this indirection in combination with compression to associate a single tag with a variable
number of data blocks, while allowing unused blocks to associate with other tags. We call our design the
Indirect Index Cache with Compression, or IIC-C.

We evaluate our design using the SPEC CPU2000 benchmark suite. We find that our compressed cache
outperforms a traditional LRU cache by an average 16% at a 1024-byte block size. We also show that as
memory latencies increase, our design improves performance by an even greater margin.

The rest of this paper is organized as follows. Section 2 presents previous work in compressed memory
systems. Our design is presented in Section 3 and evaluated in Section 4. We conclude in Section 5.

 3

2 Previous Work

In this section we present previous work on compression in the memory hierarchy. First we discuss
previous work in compressed caches, and then present proposed compressed main memory designs that we can
use to supply compressed data to our cache.

2.1 Cache compression

Compression has long been used in the embedded world for reducing code size [9, 12, 13]. This application
differs significantly from data compression in that no on-line compression is required; code is compressed
typically at compile time and is read-only during execution.

Recently, a number of designs for cache data compression have been proposed. Most of these schemes
have applied compression for power/energy savings rather than performance. This emphasis allows the use of
more conventional cache structures, where unused storage cells and wires provide a benefit simply by not
consuming power.

The Frequent Value Cache (FVC) [19, 18] replaces the top N frequently used 32-bit values with log (N)
bits. When built as a separate structure [19], the FVC can increase cache size if an entire cache block is made up
of frequent values. However, the probability of this situation occurring decreases with larger cache blocks,
making this scheme most effective at the L1 level. The FVC can also be utilized to decrease cache energy [18].
The encoded frequent values are stored in the first bits of the cache line. If the value is marked as compressed,
only these bits are read, saving the energy of reading the entire line. This power-saving variation does not
increase the effective size of the cache.

Another scheme to reduce cache energy is Dynamic Zero Compression (DZC) [16]. In this scheme, each
zero-valued byte is represented by a single bit. This encoding provides an 8 to 1 reduction in the number of bit
lines that need to be driven, thus saving energy.

Kim et al. [8] utilize the knowledge that most of the bits of values stored in a L1 data cache are merely sign
bits. Their scheme compresses the upper portion of a word to a single bit if it is all 1s or all 0s. These
compressed sign bits, along with the lower portions of the words, are stored in one cache bank. This bank is
accessed first; the second bank containing the uncompressed high-order bits is accessed only if necessary, again
saving bit-line reads. They also propose adding a second tag per line to allow storage of a separate block in the
second bank when possible. They find that with an overall increase in storage of 50%, their cache approaches
the performance of a 100% larger conventional cache.

Alameldeen and Wood [2] also use the leverage that small values are stored in larger memory blocks to
create a compression algorithm called frequent pattern compression (FPC). Their cache uses indirection, much
like the IIC, between tags and data so that a single set can store either 4 uncompressed blocks, or up to 8
compressed blocks. This allows them to increase the effective size of the cache for only the cost of the extra tag
storage.

The Selective Compressed Memory System (SCMS) [11] is closest to ours in spirit, combining a
compressed L2 cache with a compressed memory and using a general compression algorithm. Cache lines are
compressed in pairs (where the line address is the same except for the low-order bit). If both lines compress by
50% or more, they are stored in a single cache line, freeing a cache line in an adjacent set. However, it becomes
necessary to check two sets for a potential hit on every access. SCMS also fails to take advantage of lines that
compress by less than 50%, and provides at most a 2 to 1 advantage even when lines compress by more than
50%. We also evaluate the performance potential of our compression scheme on the entire SPEC CPU2000
suite using execution-driven simulation, while the SCMS work presented trace-driven evaluation of a subset of
the SPEC95 benchmarks.

2.2 Memory Compression

There have been several designs that use compression in main memory to increase effective DRAM
capacity, reducing the number of disk accesses. Most schemes [10, 14, 17] set up a portion of physical memory

 4

to store compressed pages after they are evicted from the uncompressed portion. Virtual memory support is
used to manage this partition flexibly. Compression and decompression may be done in software on the CPU or
with a dedicated hardware assist.

IBM’s Memory Expansion Technology (MXT) [1] differs in that all main-memory data is stored in
compressed form. A hardware engine built into the memory controller manages compression and
decompression transparently to software. To reduce decompression latency for misses in the on-chip caches,
the MXT memory controller includes a large off-chip cache for uncompressed data.

MXT maps the “real” addresses generated by the processor to the physical addresses of the compressed
memory using a sector translation table (STT) (see Figure 1). Each entry in the STT maps a 1KB real address
area. An entry consists of 4 physical address that each point to a 256B sector. A block is typically stored in one
to four of the 256B sectors depending on its compressibility. If the 1KB block compresses to less than 120 bits,
termed a “trivial” value, it is stored in the STT entry itself. While some space is lost due to internal
fragmentation in the 256B sectors, most of the space saved by compression can be accessed by the STT. We
leverage this design when creating our compressed cache.

3 Design of the IIC-C

3.1 The Indirect Index Cache (IIC)

The Indirect Index Cache with Compression (IIC-C) is based on the Indirect Index Cache (IIC) [5]. The
basic IIC, shown in Figure 2, consists of a data array containing the cache blocks and a tag store which contains
the tags for these blocks. Each IIC tag entry holds a pointer to the data block with which it is currently
associated. This indirection provides the ability to easily manage a fully associative cache.

Replacements in the IIC are managed by a software algorithm running on an embedded controller or as a
thread on the main CPU. Our primary algorithm, called Generational Replacement (GEN) [5], maintains
prioritized pools (queues) of blocks; periodically, referenced blocks are moved to higher priority pools and
unreferenced blocks are moved to lower priority pools. Replacements are selected from the unreferenced
blocks in the lowest priority pool. To reach the highest priority pool, a block must be referenced regularly over

Figure 1: IBM's Memory eXpansion

Technology (MXT) (from [1]).

 5

an extended period of time; once there, it must remain unreferenced for a similarly long period to return to the
lowest priority pool. This algorithm thus combines reference recency and frequency information with a
hysteresis effect, while relying only on block reference bits and periodic data-structure updates.

To ensure that adequate replacement candidates are available to deal with bursts of misses, the algorithm
can identify multiple candidates per invocation and maintain a small pool of replacement blocks. These blocks
are used by hardware to handle incoming responses, while GEN works in the background to keep this pool at a
predetermined level.

The IIC was originally designed to utilize large on-chip caches to achieve better performance over
traditional LRU caches. With a few minor changes the IIC can also be used to increase the effective size of
these caches by incorporating compression.

Figure 3: An IIC-C Tag

3.2 Extending the IIC to Incorporate Compression

We can leverage the indirection of the IIC to create an STT-like structure for the on-chip cache. We make a
few simple changes to the IIC tag entry to support compressed data. First, we modify the IIC tag to contain
multiple pointers to smaller data blocks to represent a single cache block, just as an MXT SST entry contains
multiple sector pointers. If the block is compressible, some of these subblock pointers will not be used. The
associated data array entries will not be allocated, leaving additional storage for other blocks. We also add two
status bits to the tag: one to denote whether the block is compressed or not, and another to indicate that the
compressed value is “trivial” and stored in the subblock pointers themselves. Figure 3 represents an IIC-C tag
entry.

TAG OFFSET

TE CHAIN TE TE TE TE CHAIN

TAG

Hit? Hit? Hit? Hit?

DATATAG

Hit?

Data

hash

Figure 2: The Indirect Index Cache

Tag D0 D1 D2 D3Comp? Triv?

 6

We also needed to modify GEN to keep a pool of available sub-blocks instead of just full data blocks. We
also need to expand the algorithm to check the available blocks on writes as well as misses. This is because
there is the possibility that a write to a compressed block will decrease the compressibility and need another
sub-block to store the result. This is a minor change and doesn’t affect the algorithm’s performance noticeably.

To improve effective pin bandwidth and avoid compressing incoming blocks, our system uses a compressed
main memory as well. We assume an MXT-like scheme, where we match the compression block size of main
memory to the cache line size. This equivalence allows us to pass compressed data blocks directly across the
bus. However, this feature has the side effect of making it impossible to send the critical word first. This penalty
can be partially offset by overlapping decompression with transmission [11]; we do not include that
optimization in this paper. Compressed bus transfers could be used without a compressed main memory by
compressing/decompressing blocks in the memory controller on each access. However, once the compression
logic is moved to the memory controller, it seems worthwhile to keep main memory in a compressed state as
well. Otherwise, both the compression and decompression latencies will be added to each cache miss.

We chose to use LZSS [7] as our compression algorithm since it is also used in MXT. LZSS is a parallel
version of LZ77 which can be implemented in hardware [3]. The speed of LZSS is dependent on the number of
simultaneous compressions. Thus designers can increase the speed of compression/decompression by adding
more hardware. The hardware requirement scales linearly with the degree of parallelism. LZSS also has the
property that decompression is much faster than compression—by a factor of 4 in the MXT implementation [3].
This property is desirable with a write-back cache hierarchy because reads will outnumber writes to our
compressed cache. Of course, the choice of LZSS is arbitrary; we can use any compression algorithm, such as
the X-RL used in SCMS [11], as long as it can be efficiently realized in hardware.

To compensate for the added latency of decompressing blocks, both MXT and SCMS use intermediate
structures to cache decompressed data. Our design leverages the trend in current high-performance processors to
have three levels of cache on-chip [6]. With the L3 storing data in a compressed form, the L2 will serve as a
buffer of decompressed cache blocks. The L2 thus reduces the impact of the decompression latency by
reducing the number of accesses to the L3. The IIC-C itself could serve the same function, storing recently
accessed blocks uncompressed and others in compressed form; we leave exploration of that design space for
future work.

This design does introduce some hardware overheads. The compression/decompression engine takes up
some die area, which increases linearly with block size, but this area is minimal when compared to a multi-
megabyte L3 [3]. In addition to the basic IIC overheads [5], the IIC-C adds extra subblock pointers to the tag,
increasing the size by about 6 bytes per tag entry. Extra tag entries are also needed to index the extra space
made available by compression; however, the base IIC already has more tags than cache lines to improve tag
lookup performance [5]. We assume the IIC-C has twice the minimum number of tags needed, unchanged from
the original IIC design. The total of these overheads comes to only 134K for a 1MB IIC-C with 128-byte blocks
and 64-byte subblocks, and falls to 14K at a 1024-byte block size with 256-byte subblocks.

The next section presents the evaluation of our compressed memory hierarchy.

4 Evaluation

4.1 Methodology

We used the M5 simulator [4] to evaluate our design. M5 simulates an out-of-order speculative Alpha
processor with a detailed timing memory hierarchy. The simulation parameters are presented in Table 1. We
based the cache hierarchy on the McKinley Itanium2 [6], but we increased the cycle delays to match a 2 GHz
processor. Although future L3 caches will doubtless be larger than 1MB, the limitations of our SPEC CPU2000
workload and simulation runtime constraints made it difficult to explore larger cache sizes.

 7

Table 1: Simulation Parameters

Parameter Value
Frequency 2 GHz
Front-end pipeline 10 cycles fetch-to-decode

5 cycles decode-to-dispatch
Fetch bandwidth Up to 8 instructions per cycle,

Max 3 branches per cycle
Branch predictor Hybrid local/global (ala 21264)

Global: 13-bit history, 8K-entry PHT
Local: 2K 11-bit history regs, 2K-entry PHT
Choice: 13-bit global history, 8K-entry PHT

BTB 4K entries, 4-way set associative
Instruction Queue Unified int/fp, 256 entries
Reorder buffer 512 entries
Execution BW Up to 8 insts per cycle
Function Units 8 int alu, 4 int mul, 4 fp add/sub, 4 fp mul/div/sqrt, 4 data-cache rd/wr port
Latencies Integer: mul 3, div 20, all others 1

fp: add/sub 2, mul 4, div 12, sqrt 24
 all ops fully pipelined exc. div and sqrt

L1 Icache / Dcache Both: 16KB, 4-way set assoc., 64B block size, 1 cycle latency
Instr: up to 8 outstanding misses
Data: up to 32 outstanding misses

L2 Unified Cache 256KB, 8-way set assoc., 128B block size, 12 cycle hit latency, up to 40 outstanding misses
L3 Unified Cache 1MB, 8-way set assoc., 128B block size, 26 cycle hit latency, up to 40 outstanding misses
Memory Bus 500 MHz, 32 byte data path
Main Memory 150 cycle latency

To keep the tag overhead manageable, we set the number of IIC-C subblocks within a cache line to four. To

estimate the compressibility of cache blocks, we run the actual program data block contents through the
sequential LZ77 algorithm. For the range of block sizes we are looking at (128B and up), the sequential
algorithm has similar compression performance to the parallel LZSS [7]. We also assume that decompression is
four times faster than compression. Our experiments use a compression latency of 32 cycles with the
corresponding decompression latency of 8 cycles.

Our simulations use the 26 benchmarks from the SPEC CPU2000 benchmark suite. We run each simulation
starting at the “early single” SimPoint [15] and run for 300M instructions.

4.2 Benchmark Classification

We begin by measuring the basic memory behavior of the SPEC CPU2000 benchmarks. We simulated each
benchmark as described above using fully associative LRU instruction and data caches with 128-byte blocks
and sizes varying from 128K to 16M. From these runs we were able to estimate the working set size of our
sample of each benchmark. To estimate the memory bandwidth demand and compressibility of each benchmark
we also ran with a 1MB, 8-way set-associative LRU cache with 128-byte blocks and measured the number of
bytes requested from the memory as well as the compressibility of the data requested by the cache. The results
are presented in Table 2. All the benchmarks had instruction working sets smaller than 128K, so that column is
not shown. As can be seen, five of the benchmarks (apsi, eon, equake, fma, and sixtrack) have data working set
sizes of 1MB or less, and so will not show any benefit from increasing the cache size further. Since the IIC-C
we model has only twice the minimum number of tag entries, it can at best double the effective size of the
cache. Thus only those benchmarks that show a significant decrease in the number of misses when going from
a 1MB to 2MB cache can show improvements from using our 1MB IIC-C. There are nine benchmarks that
show a reduction of 100K or more misses in this situation: ammp, art, bzip2, facerec, galgel, mcf, parser, twolf,

 8

and vpr. When we present an average, it will be over all 26-benchmarks, however we will focus on these nine
benchmarks to cope with presentation space and simulation time constraints

Table 2: SPEC CPU2000 Memory Behavior

Benchmark Data WS
(bytes)

Mem BW
(bytes/inst)

Data
Compressibility

Miss Rate # of misses
eliminated

by incr from
1M to 2M

% of misses
eliminated

ammp 2M 0.40 12.12% 20.94% 117,194 78.36%
applu 4M 1.42 3.08% 76.48% 17,522 0.32%
apsi 1M 0.07 95.59% 45.44% 0 0%
art 4M 9.79 57.49% 72.44% 33,841,778 87.93%

bzip2 8M 0.15 3.96% 27.17% 393,950 69.88%
crafty 2M 0.01 66.75% 9.22% 24,059 61.31%
eon 128K 0.00 40.91% 100% 0 0%

equake 128K 0.00 92.43% 100% 0 0%
facerec >16M 0.59 4.55% 34.31% 176,216 7.58%

fma 128K 0.00 28.50% 100% 0 0%
galgel 8M 0.42 30.55% 49.71% 3,282,158 97.45%
gap >16M 0.06 56.78% 49.37% 2 0%
gcc 4M 0.02 31.37% 0.46% 46 0.06%
gzip 2M 0.01 6.30% 25.75% 83 0.16%
lucas >16M 1.15 81.32% 65.62% 7,317 0.16%
mcf >16M 7.89 44.68% 57.27% 691,126 2.24%
mesa 8M 0.04 88.98% 43.45% 2,041 1.25%
mgrid >16M 0.53 15.16% 49.40% 20,025 0.98%
parser >16M 0.17 37.01% 30.42% 277,233 41.04%
perl 8M 0.26 60.45% 77.74% 34,931 13.37%

sixtrack 1M 0.01 35.24% 4.36% 0 0%
swim 16M 1.58 11.95% 73.38% 860 0.01%
twolf 2M 0.39 35.25% 20.24% 1,497,484 99.16%
vortex 4M 0.03 77.50% 14.96% 18,949 19.49%

vpr >16M 0.36 22.86% 38.56% 688,982 49.97%
wupwise 8M 0.16 46.71% 73.00% 8,974 1.41%

4.3 Results

Because the IIC-C design builds on the IIC, we establish our baseline by comparing the performance of a
plain 1MB IIC to an 8-way set-associative LRU cache of the same capacity. Figure 4 presents the relative
performance for the nine benchmarks identified above, as well as the average over all the benchmarks. Except
for ammp, the IIC results are similar to the 8-way LRU results. Ammp suffers from a number of conflict misses
in the LRU case which the IIC removes. To account for the additional area overhead of the IIC-C, we also
include the performance of a 9-way conventional LRU cache (roughly a 13% area increase).

To factor out the impact on performance of varying block sizes, we will present our IIC-C results below
relative to the performance of an uncompressed IIC using the same block size. To understand the impact of
block size on absolute performance, we show the IPC for the base IIC configuration at various block sizes,
relative to a 128-byte block size, in Figure 5. The effect of increasing block size is quite varied: ammp, art,
bzip2, and galgel suffer from pollution at large block sizes, while mcf and twolf benefit from prefetching
effects. Since the memory bandwidth remains fixed the large blocks take longer to transmit. At 1024 byte
blocks this latency slightly diminishes the benefit from prefetching in MCF.

 9

Figure 4: Performance Relative to a 1M LRU Cache

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

amp art bzp fac gal mcf par twf vpr avg

LRU
LRU 1.1
IIC

Figure 5: Performance of the IIC relative to the 128-byte block

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

amp art bzp fac gal mcf par twf vpr avg

LRU
LRU 1.1
IIC

 10

4.3.1 Cache compression
Figures 6 and 7 present the performance and miss rate of the IIC-C relative to the IIC in a stand-alone

environment (neither the bus nor main memory use compression). We again vary the L3 block size from 128B
to 1024B to explore the effect of larger blocks on performance. The compression block size is set equal to the
L3 cache line size and varied from 128B to 1024B.1 Because larger blocks provide more context for the
compression algorithm, they typically enable higher compression ratios. Recall that we normalize our IIC-C
results to an IIC with matching block size to factor out other block-size effects. As can be seen, on average our
compressed cache outperforms the traditional IIC for all block sizes. For 128B blocks, we get our largest gain
(57%) on art, while our worst loss is only 1%. Averaged across all the benchmarks, the compressed cache
improves performance over by 4-7% depending on the block size, while increasing the average effective cache
size by 47%.

Of the nine benchmarks we identified in Section 4.2 with potential savings, only 6, showed significant
improvement at any block size. Art shows huge wins because the IIC-C is able to eliminate up to 50% of its
33M misses. It suffers at 1024B blocks, despite doubling the effective cache size to 2M, because the
prefetching effect of the large block eliminates most of the misses that compression removed at lower sizes.
Mcf shows modest performance improvement and modest miss rate reduction, however it also doubles the
effective cache size at 512B and 1024B blocks. Galgel, and twolf all show massive reductions in miss rates, up
to 96%, but these reductions do not translate to as large gains in performance. Ammp shows improvement

1 With the same compression hardware, the compression latency will increase with the block size. We assume that

compression hardware scales to keep the same compression latency across all block sizes. With LZSS, this scaling is linear

as discussed in Section 3.2.

Figure 6: Performance of the stand alone IIC-C relative to the IIC with the same block size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

amp art bzp fac gal mcf par twf vpr avg

128
256
512
1024

 11

because the larger block sizes are more compressible allowing more to be stored, eliminating its pollution
problem. This same factor is seen in a smaller magnitude for vpr at a 1024B block size.

The other benchmarks fail to show significant performance improvements for a number of reasons. Bzip2
and facerec both increase the effective size of the cache by less than 10% at the lower block sizes, which leads
to lower gains. Even when facerec increases the effective size by 47% at 1024B blocks the large improvement
there is not an appreciable performance gain, but we do see a 5% improvement in miss rate. Parser sees large
miss rate reductions, but these are not translated into a similar performance gain.

4.3.2 Bus compression
To isolate the performance impact of transmitting compressed data across the bus, we simulated a system

with a compressed main memory and compressed bus transfers, but with no on-chip compressed cache. Data is
thus decompressed on-chip immediately after being received from main memory. Figure 8 presents the
performance of this scheme for each block size relative to an uncompressed IIC with the same block size. Art
sees large benefits at every block size due to its high memory bandwidth requirements (see Table 2). The
benefit increases with block size since we use a fixed bus bandwidth; larger block sizes incur longer delays,
resulting in more potential savings when blocks are compressed. These results show that compression can be
used to utilize the existing bus bandwidth more effectively, especially for long-latency transmissions. However,
compressed bus transfers do decrease performance by up to 4% on twolf at 1024 byte blocks. This decrease
comes both from the added latency of decompression and from the inability to send the critical word first in
compressed data. For some benchmarks, these losses can be covered partially by reduced miss rates when
storing the data in a compressed form.

Figure 7: Miss rates of the stand alone IIC-C relative to those of an IIC with the same block size

0

0.2

0.4

0.6

0.8

1

1.2

amp art bzp fac gal mcf par twf vpr avg

128
256
512
1024

 12

Figure 9: Performance of the IIC-C when sending compressed blocks over the bus, relative to an IIC with the same

block size

0

0.5

1

1.5

2

2.5

amp art bzp fac gal mcf par twf vpr avg

128
256
512
1024

Figure 8: Performance of sending compressed blocks over the bus relative to an IIC with the same block size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

amp art bzp fac gal mcf par twf vpr avg

128
256
512
1024

 13

4.3.3 Combining cache and bus compression
We can further improve system performance by combining the IIC-C with a similarly compressed main

memory and transfer data in a compressed form. Figure 9 presents our results for this system. As can be seen,
combining the two solutions improves performance beyond either design alone. The maximum improvement of
107% is achieved by art at 256 byte blocks. All 26 benchmarks have an average improvement of 4% at 128 byte
blocks, and 16% at 1024 byte blocks.

Figure 10 shows the effect of increasing the cache size from 1M to 4M. As expected, as the cache size
grows greater than the working set size the usefulness of compression decreases. For art, the 2M IIC-C performs
as well as a 4M IIC, but the compression penalties decrease performance by 5% at 4M. Twolf shows similar
behavior at 2M. Mcf, on the other hand, shows increasing benefit from compression as more and more misses
are removed by increasing the effective cache size. Galgel is interesting because while its working set is 8M, it
too drops off at a 2M cache size. Referring back to Table 2, this is expected since 97% or the misses are
removed by going to a 2M cache.

There is an inherent tradeoff on the number of subblocks (better compression resolution) and hardware
overhead (more bits in the tags). To save space we tried reducing the number of subblocks from 4 to 2,
effectively halving the overhead. Figure 11 presents the performance of a 2 subblock IIC-C relative to the 4
subblock IIC-C. Since a block needs to be compressed by 50% or more to be stored compressed with 2
subblocks we would expect the performance to decrease. Most of the benchmarks show a decrease in
performance up to 24%. Facerec, mcf, nd parser actually show a slight increase in performance, for some block
sizes. This is due to the fact that data that is stored compressed in the 4 subblock case is now stored
uncompressed, removing the decompression latency from any access to that data. Increasing the number of
subblocks to 8 or more should actually improve performance, at the expense of doubling or more the overhead.
We considered the increased cost to be to great to explore this option.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

amp art bzp fac gal mcf par twf vpr avg

1M
2M
4M

Figure 10: Performance of the IIC-C for various cache sizes, relative to an IIC of the same size

 14

Figure 11: Performance of the IIC-C with 2 subblocks relative to one with 4 subblocks

0

0.2

0.4

0.6

0.8

1

1.2

amp art bzp fac gal mcf par twf vpr

128
256
512
1024

Figure 12: Performance of the IIC-C for various compression latencies

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

amp art bzp fac gal mcf par twf vpr avg

0
32
64
128

 15

To test the sensitivity of our results to the compression/decompression latency, we ran experiments where
we varied the compression latency from 0 to 128 cycles with a block size of 128B, keeping the decompression
latency at ¼ of the compression latency. As can be seen in Figure 12, these experiments showed the expected
trend that performance decreases with higher compression latencies. Bzip actually showed a very slight
increase in performance as the latency increases due to the fact that it is thrashing in the L1 data cache; this
effect is reduced at longer L2 miss latencies. It should be noted that, even with extremely long latencies, our
scheme still shows a very slight improvement, with a maximum 7% decrease in performance.

As we head into the future, memory latencies will increase in terms of processor cycles. To evaluate how
compression will perform with these longer latencies, we varied the memory latency from 150 cycles to 1200
cycles with a 128B block size. While the cache will undoubtedly grow in future processors, we kept the on-chip
cache latencies and sizes fixed, due to the limitations of our SPEC CPU2000 benchmark suite.

Figure 13 presents the performance of the compressed cache relative to a traditional LRU cache for the four
memory latencies. As the memory latency increases the cost of an off-chip miss becomes more expensive. This
decreases the impact of the compression latency while increasing the importance of a higher hit rate in the
cache. These changes mean that compression becomes more and more desirable. Ammp, galgel, and twolf
illustrate this as their performance increases from an average 23% to 127% as the latency increases. Mcf shows
only a very slight increase in performance since the miss rate is reduced only by 6%, so the remaining misses
drive the performance. Art is an anomaly. While compression still improves performance at all latencies, its
performance falls off at a faster rate than the baseline. Further study is needed to unravel this anomaly.

5 Conclusion

In this paper we presented IIC-C, a feasible design for an on-chip compressible cache using the IIC. The IIC
uses indirection to translate cache block addresses into the physical indexes in a data store where these blocks
are held. Using this indirection, combined with sub blocking the cache, allows us to store these blocks in

Figure 13: Performance of the IIC-C for increasing memory latencies (in processor cycles)

0

0.5

1

1.5

2

2.5

3

3.5

4

amp art bzp fac gal mcf par twf vpr

150
300
600
1200

 16

compressed form while using the saved space to store other blocks. This allows the cache to effectively increase
its size when storing compressed data.

We evaluated the IIC-C using the SPEC2000cpu benchmark suite. Figure 14 presents a summary of our
results for 128 byte cache blocks. The performance is normalized to a traditional LRU cache. We also compare
to a 1.1M LRU cache to compare with the IIC-C area overhead. The IIC-C improves performance over a
traditional LRU cache by up to 94% with an average improvement of 7%. We also find that using a compressed
memory in concert with the IIC-C can help to alleviate bus contention by shipping compressed data. The IIC-C
continues to increase its performance gains as the latency of memory increases, making it even more desirable
in future processors.

References

[1] B. Abali, H. Franke, S. Xiaowei, et.al., “Performance of Hardware Compressed Main Memory”, The Seventh International
Symposium on High-Performance Computer Architecture, 2001, (HPCA 2001), pp. 73-81.

[2] A. Alameldeen, D. Wood, “Adaptive Cache Compression for High-Performance Processors”, To appear in the 31st Annual
International Symposium on Computer Architecture, June 2004.

[3] S. Arramreddy, D. Har, K. Mak, et al, “IBM X-Press Memory Compression Technology Debuts in a ServerWorks NorthBridge”,
HOT Chips 12 Symposium, Aug. 2000

[4] N. Binkert, E. Hallnor, S. Reinhardt, ”Network-Oriented Full-System Simulation using M5”, Sixth Workshop on Computer
Architecture Evaluation using Commercial Workloads (CAECW), February 2003

[5] E. Hallnor, S. Reinhardt, “A Fully Associative Software-Managed Cache Design”, In the proceedings of the 27th Annual
International Symposium on Computer Architecture, pages 107--116, June 2000.

[6] G. Hammond, S. Naffziger, “Next Generation Itanium Process Overview”, Intel Developers Forum, 2001

[7] P. Franaszek, J. Robinson, J. Thomas, “Parallel Compression with Cooperative Dictionary Construction”, In the Proceedings of the
Data Compression Conference, 1996, pp. 200 – 209.

Figure 14: Summary of the IIC-C performance relative to a 1MB LRU cache

0

0.5

1

1.5

2

2.5

amp art bzp fac gal mcf par twf vpr avg

LRU 1M
LRU 1.1M
IIC-C

 17

[8] N. Kim, T. Austin, T. Mudge, “Low-Energy Data Cache using Sign Compression and Cache Line Bisection”, 2nd Annual Workshop
on Memory Performance Issues, May 2002

[9] D. Kirovski, J. Kin, W.H. Mangione-Smith, “Procedure Based Program Compression”, In the proceedings of the 30th annual
IEEE/ACM International Symposium on Microarchitecture, 1997, pp. 204 – 213.

[10] M. Kjelso, M. Gooch, S. Jones, “Design and Performance of a Main Memory Hardware Data Compressor”, In the proceedings of
the 22nd EUROMICRO Conference, Beyond 2000: Hardware and Software Design Strategies, 1995, pp. 423 – 430.

[11] J.S. Lee, W.K. Hong, and S. D. Kim, “An on-chip cache compression technique to reduce decompression overhead and design
complexity,” Journal of Systems Architecture, vol. 46, Dec. 2000, pp. 1365-1382.

[12] C. Lefurgy. E. Piccininni, T. Mudge, “Evaluation of a High Performance Code Compression Method”, In the proceedings of the
32nd Annual International Symposium on Microarchitecture, 1999, (MICRO-32), pp. 93 – 102.

[13] H.Lekatsas, W. Wolf, “Code Compression for Embedded Systems”, In the proceedings of the 35th Design Automation Conference,
1998.

[14] S. Roy, R. Kumar, M. Prvulovic, “Improving System Performance with Compressed Memory”, In the proceedings of the 15th
International Parallel and Distributed Processing Symposium, Apr 2001, pp. 630 – 636.

[15] T. Sherwood, E. Perelman, G. Hamerly, B. Calder. “Automatically Characterizing Large Scale Program Behavior,” In the
proceedings of the Tenth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2002), October 2002. San Jose, California.

[16] L. Villa, M. Zhang, K. Asanovic, “Dynamic Zero Compression for Cache Energy Reduction”, In the proceedings of the 33rd
International Symposium on Microarchitecture, Dec 2000.

[17] P. R. Wilson, S. F. Kaplan, Y. Smaragdakis, “The Case for Compressed Caching in Virtual Memory Systems”, In the proceedings
of USENIX 1999.

[18] J. Yang, R. Gupta, “Energy Efficient Frequent Value Data Cache Design”, In the proceedings of the 35th Annual International
Symposium on Microarchitecture, 2002, (MICRO-35)

[19] Y. Zhang, J. Yang, R. Gupta, “Frequent Value Locality and Value-Centric Data Cache Design”, In the proceedings of the Ninth
International Conference on Architectural Support for Programming Languages and Operating Systems, Nov. 2000

