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Abstract

Distributed file systems benefit greatly from optimistic
replication that allows clients to update any replica at any
site. However, such systems face a new dilemma: Once
data is updated at a replica site, when should it be shipped
to others? In conventional file system workloads, most
data is read by its writer, so it needs to be shipped only
for administrative reasons. Unfortunately, shipping on de-
mand substantially penalizes those who do share, while
shipping aggressively places undue load on the system,
limiting scalability.

This paper explores a mechanism to predict and sup-
port sharing in a wide area file system. This mechanism
uses the observation that updates that invalidate cached
objects elsewhere are likely to be shared, and they should
be propagated. The mechanism is evaluated on its preci-
sion, recall, and F-measure over traces capturing live file
system uses. It reduces data shipped by orders of magni-
tude compared to aggressive schemes, while reducing the
performance penalty of on-demand shipment by nearly a
factor of two.

1 Introduction

Wide-area file systems, particularly those meant for mo-
bile clients [9, 12, 6, 17], have adopted optimistic concur-
rency control. In such systems, copies of files are repli-
cated across many clients and servers, and any client can
update any replica at any time. While this allows the pos-
sibility of conflicting updates, these systems assume that
conflicts are so rare that the infrequent cost of merging
versions is repaid by gains in performance and availabil-
ity. This assumption has been borne out by empirical evi-
dence [15].

When an optimistic update is made at a replica site,
that site must eventually inform others of the new ver-
sion’s existence for consistency. However, sharing is rare

in file system workloads. It is likely that a file written by
a particular user will be read only by that user. Conse-
quently, while the meta-data describing an update needs
to be propagated, the data comprising that update often
need not be. Systems that aggressively propagate the up-
date contents do so at the expense of scalability.

This observation suggests an obvious optimization:
avoid propagating update contents whenever possible. In-
stead of propagating aggressively, replica sites should
move data only for administrative reasons—such as
backup—or in instances of true sharing. This drastically
reduces data movement compared to aggressive schemes,
charging the cost of sharing to those who require it.

Unfortunately, these costs can mount quickly. In a
wide-area deployment, there can be substantial latency
to fetch a file from the replica on which it was last up-
dated. Given the instabilities seen across paths with large
bandwidth-delay products [14], this can have profound ef-
fects in cases of active sharing.

These concerns raise the question of when to propa-
gate data objects. We will show that propagating aggres-
sively wastes server resources, while propagating only on-
demand unduly penalizes clients who share. In this paper,
we explore mechanisms for deciding when to propagate
an update, and their impact on the wide-area file system
Fluid Replication [8].

Our propagation mechanisms are based on the assump-
tion that past instances of sharing are likely to lead to fu-
ture ones. When an update is made at one replica site,
it may invalidate cached copies at others. If so, those
other sites are likely to access the file again, so it should
be propagated in advance. This is called the invalidation
heuristic.

To understand the performance of the invalidation
heuristic scheme and how it compares to the naive ap-
proaches, we used two sets of three-month traces of file
references. The first three-month trace, from the Univer-
sity of Michigan, was collected by observing NFS traffic
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to a file server hosting 86 home directories comprising
over 35 GB of data. The second trace, from Harvard Uni-
versity, contains traffic to and from an NFS server that
serves as the primary home directory for the EECS de-
partment.

Each scheme was given the trace as input, and mea-
sured along two dimensions. The first metric is preci-
sion, the degree to which unnecessary propagations are
excluded. The second metric is recall, the degree to which
necessary propagations are made before they are needed.
The harmonic mean of these two is called F-measure.

We begin by describing Fluid Replication, the system
providing the context for our work. We then describe our
approaches to determining whether or not to propagate
data, and the traces used to evaluate each scheme. The
evaluation shows that the heuristic approach provides the
best balance between precision and recall. This scheme
reduces data shipped by orders of magnitude compared
to aggressive schemes, while reducing the penalty of on-
demand shipment by nearly a factor of two.

2 Fluid Replication

Fluid Replication is a wide-area file system supporting
mobile clients. It follows a two-tier, optimistic replication
model. The ultimate “truth” of a client’s files is stored on
its home server. When the client is in its home domain, it
interacts with its home server as an AFS client does [7].
However, when the client roams outside of its domain, the
latency to the home server imposes a substantial perfor-
mance penalty. Representative workloads can increase by
as much as a factor of two with additional network latency
of only 30 milliseconds [8].

To absorb the cost of wide-area updates, a roaming
client attach itself to a nearby WayStation, a second-tier
replica of the client’s file system. WayStations are pre-
sumed to be well-connected to the network at large, and
given a high level of administrative care and scrutiny. All
read and write requests are satisfied by the WayStation. If
a read requests an uncached file, the WayStation must first
fetch it from the home server.

The server records the list of WayStations that have
cached each file. After accepting an update, the server
informs each caching WayStation that its version is out
of date. This message is asynchronous; it need not be
sent before the update is accepted. Likewise, WayStations
asynchronously inform servers of updates that they have
accepted. Updates are batched for a short time to amor-
tize update bursts [20]. With even a conservative delay
of 15 seconds between accepting an update and inform-
ing other replica sites, conflict rates observed in real file

system workloads are a modest 0.01% [8].

Meta-data, in the form of version invalidation, is prop-
agated quickly. This gives good consistency with mod-
est overhead, since invalidations are small and easily pro-
cessed. In contrast, updated files are large. Shipping them
needlessly incurs substantial costs at the WayStation and
the server, limiting scalability.

To prevent unnecessary propagations, WayStations can
defer shipping updated files. If a client requests a file
that is not at the server, it must be backfetched from
the WayStation storing it. Propagating updated files too
slowly increases client latency, while propagating them
too aggressively increases server load. So we need a way
to propagate updates that balances the two.

3 Simple Propagation Schemes

To put our propagation schemes in context, we first de-
scribe three naive attempts to decide when to ship up-
dates. The first, write-through, aggressively ships all up-
dates as they are made. The second, on-request, ships
them only when they are needed elsewhere. The third,
periodic, batches updates and ships them every t minutes.

One way to propagate updates is to send them as soon
as they are made. We call this the write-through scheme.
Using this scheme, we get the upper bound for the amount
of data propagated from WayStations to the server. Be-
cause all updates are at the server, no file is backfetched.
The drawback is that many updates are propagated unnec-
essarily, increasing server load and network traffic.

At the other end of the spectrum, updates can be propa-
gated only when they are needed elsewhere. This is called
the on-request scheme. Using this scheme, we get the
lower bound for the amount of data propagated, because
files are shipped only when necessary. The drawback with
this scheme is that clients may experience slow response
time when requested files are at remote WayStations.

A simple improvement to the write-through scheme is
to defer propagation, batching updates together and send-
ing them periodically. This scheme is used in many sys-
tems, including our early Fluid Replication prototype [8].
Periodic schemes with long periods can ship substantially
less data than the write-through scheme. This is because
writes are bursty [20]—they tend to be clustered together
in time. If an update is made but not shipped, a later up-
date can overwrite it, which can lead to savings. Unfor-
tunately, these periodic schemes are not very precise, be-
cause they propagate files indiscriminately; many of the
propagated files are never accessed by other clients.
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4 Making Propagation Decisions

The on-request scheme gives rise to backfetches, while
the write-through scheme propagates files needlessly. The
periodic schemes reduce this, but are either still too ag-
gressive or not able to eliminate most backfetches. To
address these problems, we introduce a new propagation
scheme, called invalidation heuristic. We also discuss
briefly two other schemes that we considered but rejected:
Time to Next Use, and Adaptive Time Delay.

4.1 The Invalidation Heuristic Scheme

File accesses tend to have strong temporal locality. If
files were shared in the recent past, they are likely to be
shared in the near future. Based on this observation, up-
dates should be propagated if the file is shared. When
a WayStation informs the server of its updated files, the
server invalidates copies at other WayStations. Updates
that cause invalidations are propagated to the server im-
mediately, because they are likely to be read again where
they have been invalidated. We call this the invalidation-
heuristic (IH) scheme. Note that this scheme requires no
extra state at the server; the list of files to be propagated
can be computed from the same state used to issue invali-
dations.

This simple approach has a drawback. Consider a sce-
nario in which files are always written twice before other
nodes access them. When the WayStation informs the
server of its first write, the server invalidates all the other
copies. At this point, the file is no longer shared. There-
fore, only the first write of two is propagated, and every
read requires backfetching. Figure 1(a) shows this sce-
nario.

To solve this problem, we keep the same sharing status
for a fixed number of bursty writes. This number is called
history and determines how many writes of each burst are
propagated to the server. The burst counter is reset when
another node reads the file or writes to it. We considered
history values from one to four in our evaluation. Fig-
ure 1(b) shows what happens in the above scenario when
history is set to two. Compared to Figure 1(a) where his-
tory is one, the server need not backfetch the update, and
the read request is served faster. Figure 2 summarizes the
decision making process.

Another optimization is to consider spatial locality. If
many files are backfetched from a particular WayStation,
the server should prefetch other files that have been up-
dated then, but not yet propagated. This mechanism is
especially effective for producer-consumer relationships;
one node has updated many files, and others read them
later. More specifically, pending writes are prefetched if

Writer-WS Server Reader-WS

inform

invalidatepre-propagate

read

backfetch

inform

(a) History = 1
Writer-WS Server Reader-WS

inform

invalidatepre-propagate

read

inform

pre-propagate

(b) History = 2

This figure shows a reader accessing a file after a writer
updates it twice. With history of one, a backfetch occurs
since only the first update to the file is propagated. With
history of two, a backfetch is avoided since the first two
updates are propagated to the server.

Figure 1: Example of IH Scheme

the number of backfetches to the WayStation, b, exceeds
the number of writes overwritten by the WayStation, o, by
a certain limit, L:

b − o > L

When this condition is met for a WayStation, pend-
ing writes that happened within the last 30 minutes are
propagated to the server. We call this modified scheme
invalidation-heuristic-with-spatial-locality (IHSL).

4.2 Other Schemes Considered

Rather than using past sharing to predict future sharing,
one can use the times of recent accesses to predict the next
time that a read or write might occur. The time-to-next-
use (TTNU) scheme decides whether to propagate or not
based on the past history of file access patterns. The basic
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Figure 2: Decision Making in the IH Scheme

idea is that a modified file should be propagated if the
expected time to the next read by another node is earlier
than the expected time to the next write by the current
node. The expected next access times are computed based
on the past access pattern using exponentially weighted
moving average filters.

Another scheme we considered is called the adaptive-
time-delay (ATD) scheme. Static periodic schemes can be
too aggressive, not effective, or both. This is because a
single, static period is not capable of capturing the differ-
ent access patterns between files and over time. ATD is
based on the periodic scheme; it maintains a period esti-
mate for each file, and adjusts this estimate based on the
utility of past propagation decisions. By observing the
benefit of prior propagation decisions, this feedback con-
troller produces per-file estimates of need.

5 Evaluation

5.1 Trace Collection

To understand how propagation schemes work in a real
environment, we used two sets of traces, one from the
University of Michigan (UM) and another from Harvard
University. The first set of traces was collected on an NFS
server in our department from April to June of 2002. This
machine serves the home directories for 86 users; they oc-
cupied 35.7 GB as of August 12, 2002. Using tcpdump,
we collected NFS requests to the server and the corre-
sponding responses. Then, we used nfstrace [2] to
convert the traces to user level file system commands
(reads and writes).

The second set of traces is from the EECS department
at Harvard University [4]. They were taken from Septem-
ber to November of 2001. The NFS server is the pri-

Month Read Write Machine File

UM Trace
4 95,427 301,905 197 98,588
5 88,295 211,058 199 96,687
6 180,448 306,233 197 57,793

Harvard Trace
9 439,256 895,804 117 276,494
10 434,259 945,294 108 285,848
11 254,019 854,775 142 312,049

Table 1: Summary of Traces

mary file system for the department. Because traces are
not available for all of these days, we use two consecu-
tive weeks from each month to evaluate the propagation
schemes.

Table 1 shows the number of reads and writes, the num-
ber of distinct machines that accessed the NFS server in
question, and the number of files accessed during each
month. The number of writes is equal to the number of
propagations if we use the write-through scheme. Note
that for the UM traces, the number of different machines
that accessed the NFS server during each month is big-
ger than the number of user accounts which have home
directories at the server. This is likely due to users using
different machines from one session to another.

In applying these traces, we assume that each client
machine is in a different location, and uses a different
WayStation. This will tend to over-emphasize the costs
of wide-area operations. A discrete event simulator re-
played the traces, counting updates, reads, propagations,
and backfetches. One can apply this simulator to different
propagation policies, measuring their potential gain.

Using these file system traces, we set out to answer the
following questions:

• What percentage of writes are read by others?

• How much does a client suffer from sharing when
the on-request scheme is used?

• What is distribution of sharing over machines?

• For each scheme, how many files are propagated
compared to write-through?

• For each scheme, how many files are backfetched
compared to on-request?

• How effective is each scheme in terms of precision
and recall?

• Which scheme produces the best overall perfor-
mance?
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Month File Backfetch Backfetch to write

UM Trace
4 1,223 2,438 0.81%
5 463 1,142 0.54%
6 738 1,648 0.54%

Harvard Trace
9 12,273 34,595 3.86%
10 6,808 29,419 3.11%
11 3,477 23,361 2.73%

Table 2: Backfetch

5.2 Aggressive Propagations

Table 2 shows backfetches when the on-request scheme is
used. The second column shows the number of distinct
files that are backfetched; the last column shows the ra-
tio of backfetches to writes. There are two things to note
about this data. First, the number of distinct backfetched
files is smaller than the number of backfetches. From this,
we can infer that the files that are shared once are likely to
be shared again. Second, less than 4% of writes are read
by others. So propagating all updates introduces unneces-
sary network traffic between the server and WayStations.
In short, the write-through scheme is too aggressive.

5.3 Passive Propagations

Our goal for propagation schemes is to help those clients
who suffer under passive propagations due to sharing. Be-
fore exploring new schemes, we need to consider whether
clients actually suffer or not under the on-request scheme.
To answer this, we chose one hour with substantial shar-
ing from the Harvard traces and one from the UM traces,
and measured the time a client spends to fetch updated
files from other nodes.

The network condition between the server and WaySta-
tions are slow (latency of 82.15 ms and bandwidth of
3 Mb/s), while that between WayStations and clients are
fast (100 Mb/s). The WayStations are connected to the
server via a trace modulated network. Trace modulation
performs emulation of a slower network over a LAN [16].
To get the latency and bandwidth parameters, we ran
ping from a machine in our department to a machine at
Hewlett Packard with different packet sizes. The average
round trip time with packet size of 20 MB was 217.9 ms;
the time with packet of eight bytes was 164.3 ms. We used
half of 164.3 ms, which is 82.15 ms, as the one-way la-
tency. This gives us bandwidth of 3 Mb/s using the equa-
tion delay = latency + size/bandwidth [3]. Figure 3
shows the experiment setup.

Server with
Trace Modulation WayStation

Client

WayStation

Client

82.15ms; 3Mb/s

100Mb/s100Mb/s

82.15ms; 3Mb/s

Figure 3: Experiment Setup

Count Size(MB) Time(s)

UM Trace
Read-hit 0 0 0
Fetch-from-server 5 0.0287 2.2
Backfetch 138 0.2132 197.8
Total 143 0.2419 200.0
Backfetch-to-total 98.9%

Harvard Trace
Read-hit 487 0.8761 0.077
Fetch-from-server 1607 1.0762 696.5
Backfetch 1808 30.2044 2382.1
Total 3092 32.1567 3078.7
Backfetch-to-total 77.4%

Table 3: Total Fetch and Backfetch Time

Using the traces, we measured the time that one client
spent fetching files. Updated file data is never sent to the
server unless other nodes request it, causing backfetches.
The goal of this experiment is to find the percentage of
time spent backfetching files from other WayStations.

Table 3 shows the time with cold cache; no files are
cached at the WayStation. Read-hit shows the time to
fetch files cached locally. Fetch-from-server shows the
time to fetch files at the server. Backfetch shows the time
to fetch files that require backfetching from the writer, be-
cause the server does not have the up-to-date copy. Back-
fetch time is thus the time to ship a file from a remote
WayStation to the server, plus the time to ship the file to
the local WayStation, and finally to the client. In the UM
trace, the client spent 98.9% of total fetch time waiting
for the files that needed to be backfetched. It spent 77.4%
in the Harvard trace. So the on-request scheme penalizes
highly the clients who share.

With a warm cache, no file will be fetched directly from
the server; the files that required fetching from the server
with a cold cache will be at the local WayStation with a
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at the client for individual files under latency of 82.15 ms
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Figure 4: Fetch and Backfetch Time for Individual File

warm cache. So the total time will be less while the back-
fetch time remains the same. Therefore, we can predict
that the ratio of backfetch to total time will be even higher
with a warm cache than with a cold cache.

Figure 4 shows the fetch and backfetch times measured
at the client for individual files. Backfetching takes about
three times longer than fetching from the server, for files
of the same size.

5.4 Burstiness

Figure 5 shows the distribution of backfetches over ma-
chines. The x-axis shows the number of machines; the
y-axis shows the number of backfetches each machine
experienced. The machines that did not experience any
backfetches are excluded from these graphs.

The backfetches are not distributed evenly over all ma-
chines. They are highly concentrated among a few ma-
chines. For the UM trace, the top three machines are
responsible for more than one third of all backfetches:
34.7%, 37.1% and 35.6% for the months of April, May,
and June, respectively. For the Harvard trace, the top three
are responsible for more than one fourth: 29.3%, 26.9%,
and 30.4% for the months of September, October, and
November, respectively. Thus, most machines experience
no or few backfetches, while some machines experience
many.

5.5 Files Propagated and Backfetched

We built a simulator to compare the different propaga-
tion schemes. The simulator takes traces as input and re-
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This figure shows the distributions of backfetches over
machines. The x-axis shows the number of machines; the
y-axis shows the number of backfetches each machine ex-
perienced.

Figure 5: Backfetch Distribution

turns a summary of data transferred between the server
and WayStations.

To evaluate the family of periodic schemes, we sub-
jected several of them to our traces. We tried periods of
15 seconds, 1 minute, 1 hour, and 1 day. Figure 6 shows
the percentage of propagations normalized over the write-
through scheme, and the percentage of backfetches nor-
malized over the on-request scheme. Note that the propa-
gations include both propagations done before the data is
actually needed elsewhere (pre-propagations) and prop-
agations caused by backfetches. The x-axis shows the
month that the trace was taken; 4 to 6 denote the UM
traces and 9 to 11 represent the Harvard traces. The hori-
zontal dotted lines in Figure 6(a) represent the values for
the on-request scheme that serve as the lower bounds.

The periodic-15-second scheme propagates only

6



Month

4 5 6 9 10 11

P
ro

pa
ga

tio
n 

(%
)

0

20

40

60

80

100

15−sec

1−min

1−hr

1−day

(a) Propagations

Month

4 5 6 9 10 11

B
ac

kf
et

ch
 (

%
)

0

20

40

60

80

100

15−sec

1−min

1−hr

1−day

(b) Backfetches

This figure shows the percentage of propagations normal-
ized over the write-through scheme, and the percentage of
backfetches normalized over the on-request scheme. Up-
dates are propagated every 15 seconds, 1 minute, 1 hour,
and once a day. The dotted lines denote lower bounds.

Figure 6: Performance of Periodic Scheme

slightly less than the write-through scheme for the UM
trace; it propagated 99.7% of the write-through scheme
on average. It does better for the Harvard trace, propa-
gating 72.4%. The periodic-1-day scheme sends much
less data, but causes almost as many backfetches as the
on-request scheme. Specifically, this scheme propagates
25.5% and 29.7% on average for UM and Harvard traces
respectively, but these are still much more than the
on-request scheme, which propagates 0.6% and 3.2%.

Figure 7 shows total propagations and backfetches dur-
ing each month for the invalidation-heuristic-with-spatial-
locality (IHSL) scheme with history values ranging from
one to four. For the UM trace, IHSL propagates less than
1.5% of the data shipped by the write-through scheme.
For the Harvard trace, it propagates less than 8%. This
scheme propagates less data than the 1-day periodic
scheme, but leaves fewer backfetches to clients.

The on-request scheme propagates the minimum
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This figure shows the percentage of propagations to the
write-through scheme and the percentage of backfetches
to the on-request scheme. Performance of the IHSL
scheme with history of 1, 2, 3 and 4 is shown. The hori-
zontal dotted lines denote lower bounds.

Figure 7: Performance of IHSL Scheme

amount of data—two orders of magnitude less than the
write-through scheme—but penalizes clients with sub-
stantial sharing. In contrast, IHSL propagates less than
twice that of the on-request scheme for all months except
for November, but reduces backfetches by 43.5% on av-
erage. For November, the IHSL scheme with history of
three and four propagated a little more than twice that of
the on-request scheme.

All IHSL schemes with different history values out-
performed the simple schemes (write-through, on-request
and periodic), but it is hard to compare them to each other
because schemes with fewer propagations often cause
more backfetches. How can we tell which scheme is best?
In the following section, we introduce a new metric to
compare our propagation schemes.
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5.6 Effectiveness

Our goal is to minimize both server load and client re-
sponse time, but improving one often penalizes the other.
For example, a scheme that propagates aggressively may
reduce client response time, but increase server load. So
it is difficult to tell which propagation scheme is best.

To measure effectiveness, we introduce two metrics,
precision and recall, which are often used in information
retrieval. In the context of information retrieval, precision
is the fraction of the relevant documents that has been re-
trieved, and recall is the fraction of the retrieved docu-
ments that is relevant [1].

In our system, precision refers to the fraction of ac-
cessed file versions which has been pre-propagated, and
recall refers to the fraction of pre-propagated files which
has been accessed. Note that we use the term version to
refer to a file at a specific time. We excluded all the ac-
cesses that did not require propagations. In other words,
we do not include reads to files that are never updated or
reads to files that are only updated locally.

Let Set A be the accessed file versions that are modi-
fied elsewhere, and Set B be the file versions that are pre-
propagated to the server. Figure 8 illustrates these basic
sets. Precision (p) and recall (r) are defined as follows:

p =
|A ∩ B|
|B| (1)

r =
|A ∩ B|
|A| (2)

One way to combine precision and recall is the har-
monic mean of two, called the F-measure. F-measure was
introduced by van Rijsbergen [18], and is an established
metric for information retrieval. The degree to which two
sets do not match is defined as E-measure. It is the shaded
area in Figure 8. With normalization, it is written as:

E =
|A ∪ B − A ∩ B|

|A| + |B| (3)

In term of p and r, E is written as:

E = 1 − 2rp

r + p
(4)

Then, F-measure is defined as 1 − E. It denotes area of
A ∩ B in Figure 8.

F =
2rp

r + p
(5)

Figure 9 shows the precision-recall for six months. It
does not include the on-request scheme because precision

Accessed
File Versions

A

Propagated
File Versions

B

Accessed file versions
that have been propagated

A    B

Figure 8: Precision-Recall Diagram

is undefined; nothing is propagated in advance for the on-
request scheme.

As expected, the write-through scheme has recall equal
to one, but precision close to zero. For the periodic
scheme, as the period increases from 15 seconds to 1
day, recall decreases; precision is very low for all peri-
ods. The periodic scheme with 15-second period depicts
results similar to the write-through scheme. The periodic
scheme with 1-day period has both low precision and low
recall, meaning it propagates many files without reduc-
ing the number of backfetches compared to the on-request
scheme.

For the IHSL scheme, we tried history values ranging
from one to four. Increasing history improves recall but
reduces precision; it is more liberal in deciding which files
to ship. IHSL provides better overall performance by de-
tecting when sharing no longer holds.

Figure 10 shows the F-measure. For all months, the rel-
ative performance of propagation schemes remains about
the same. Different history values in the IHSL scheme did
not make much difference in performance, but histories of
two and three worked slightly better than one and four. In
short, our experiments show that the IHSL scheme with
history value of two or three provides the best balance be-
tween recall and precision.

6 Related Work

All of our data-propagation schemes depend on predict-
ing future file access patterns. This is similar to prefetch-
ing algorithms developed to reduce file access latencies.
But, most previous work tries to predict file accesses from
a single node while our work focuses on predicting fu-
ture sharing of files between different nodes. Griffioen [5]
developed a prefetching algorithm based on a probabil-
ity graph where each node represents a file and a di-
rected arc represents access order. Each arc is weighted
by the number of times that the target is accessed after
the source. Lei [13] used access trees to capture the re-
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This figure shows the precision-recall graphs. For the periodic schemes, as the period increases recall decreases;
precision is very low for all periods. For the IHSL scheme, increasing history improves recall but reduces precision.

Figure 9: Precision and Recall
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Figure 10: F-Measure

lationships among files. Access trees are maintained for
each program; when a program is re-executed, the current
access tree is compared against the saved access trees.
Kroeger [10] suggested a last-successor model, which
predicts that each file access will be followed by the same

file that followed the last time. Kuenning [11] used se-
mantic distance between files to choose which files should
be hoarded; hoarded files are used later when mobile users
are disconnected.

Distributed databases also face the data migration prob-
lem, but have very different access patterns—a lower de-
gree of locality but a higher incidence of sharing. Mari-
posa applies an economic model for data migration [19].
Each query has a budget allocated to it, and it tries to min-
imize expenditures. Each replica site can either process a
query or ship tuples; both actions accrue revenue but cost
resources. By attempting to maximize revenue given fixed
resources, Mariposa allocates data efficiently.

7 Conclusion

Wide-area file systems benefit greatly from optimistic
concurrency. The low incidence of sharing allows such
systems to simplify their consistency mechanisms, with
substantial performance benefits. However, one must then
decide when to propagate updated data from one replica
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site to others. Simple schemes either ship many unneeded
files, or suffer from long backfetch delays, or both.

In this paper, we have presented the IHSL scheme to in-
telligently decide whether or not to propagate an update.
It depends on the past predicting the future. It ships up-
dates whenever they cause invalidations elsewhere. This
simple heuristic ships two orders of magnitude less data
than aggressive schemes, while reducing the penalty of
on-demand shipment by nearly a factor of two.
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