The Generalized Railroad Crossing Problem:
An Evolving Algebra Based Solution

Yuri Gurevich, James K. Huggins, and Raghu Mani*

Abstract

We present an evolving algebra based solution for the Generalized Railroad Crossing problem — a
specification and verification benchmark proposed by C. Heitmeyer at NRL. We specify the system as
an evolving algebra and prove that the specification satisfies the desired safety and liveness properties.

1 Introduction

The Generalized Railway Crossing problem involves specifying a system that controls a railway crossing gate
and proving the safety and liveness of the system. The problem statement (taken from [6]) is as follows.

The system to be developed operates a gate at a railroad crossing. The railroad crossing [lies in a region
of interest R, i.e., I C R. A set of trains travel through R on multiple tracks in both directions. A sensor
system determines when each train enters and exits region R. To describe the system formally, we define
a gate function g(t) € [0,90], where g(t) = 0 means the gate is down and g¢(t) = 90 means the gate is
up. We define a set {A;} of occupancy intervals, where each occupancy interval is a time interval during
which one or more trains are in 7. The ith occupancy interval is represented as A; = [, v;], where 7; is
the time of the ith entry of a train into the crossing when no other train is in the crossing and v; is the
first time since 7; that no train is in the crossing (i.e., the train that entered at 7; has exited as have any
trains that entered the crossing after n)

Given two constants ¢ and &2, &1 > 0, & > 0, the problem is to develop a system to operate the crossing
gate that satisfies the following two properties:

Safety Property: ¢t € U;A; = g(t) = 0 (The gate is down during all occupancy intervals.)
Utility Property: ¢ ¢ U;[r; — &1, vi + &2] = g(t) = 90 (The gate is up when no train is in the crossing.)

In order to make this paper self-contained, we describe the evolving algebra (often abbreviated ealgebra
or FA) specification language in section 2. Section 3 contains the EA specification of the system. Section 4
contains some definitions and notations used in our proofs. Section 5 contains the proofs.

2 Evolving Algebras

In this section, we present a brief description of ealgebras. A popular exposition on sequential ealgebras
can be found in [3]; a more complete description can be found in [4]. Examples of EA specifications and
verifications of distributed and time-constrained systems can be found in [2], [5] and [7]; for other papers
involving ealgebras, see [1].

*CSE Technical Report CSE-TR-230-95. EECS Department, University of Michigan—Ann Arbor, Ann Arbor, MI, 48109-
2122, USA. {gurevich, huggins, raghu}@eecs.umich.edu. Partially supported by ONR grant N00014-91-J-1861 and NSF grant
CCR-92-04742.

2.1 States

Every ealgebra has a vocabulary (or signature): that is, a finite collection of function names, each of a fixed
arity. Every vocabulary contains the nullary function names true, false, undef, as well as the names of the
usual Boolean operations and the equality sign.

A state (or static algebra) S of an ealgebra &£ of vocabulary T is a non-empty set X, called the superuni-
verse of S, along with interpretations of each function name in T over X. The interpretations of the nullary
names true, false, and undef are always distinct. The interpretations of the Boolean function names behave
in the usual way over {true, false} and take the value undef otherwise.

Function names may be tagged as ezternal; the idea is that external function names have their values
determined outside of the control of the ealgebra.

The nullary name undef is used to represent partial functions: intuitively, f(z) = undef if Z is a tuple
of values outside the domain of f. Relations are represented as Boolean-valued functions. A boolean-valued
unary function U(z) can be seen to represent a set: namely, the set {z : U(z) = true}. In such a case we
call U a universe. For example, the vocabulary of every ealgebra contains the universe name Bool; in every
state, the universe Bool contains two elements, true and false.

2.2 Transition Rules

Transition rules describe how states of an ealgebra change over time. An update instruction is the simplest

type of transition rule and has the form f(t1,%2,...,4,) := to where f is a function name of arity n and each
t; is a term (as defined in propositional logic).! Executing such an instruction has the expected result: if
ai,...,an and b are the values of #1,... %, and tg in the current state, f(a1,...,a,) = b in the next state.

A block rule is syntactically a sequence of transition rules. To execute a block rule, execute each of the
rules in the sequence simultaneously. Conflicts between rules are not permitted. If a conflict is encountered
in a run, execution stops.

A conditional rule has the form

if go then R,
elseif g; then R,

elseif g,, then R,
endif

where the ¢; are Boolean-valued first-order terms and the R; are transition rules. To execute a transition
rule of this form in state S, evaluate guards g; in state S; if any of the g; evaluate to true, execute transition
rule Ry, where gy is true but g; is false for i < k. If none of the g; evaluate to ¢rue, do nothing. (The phrase
“elseif true then R,” is usually abbreviated as “else R,”).

A declaration rule has the form

var r ranges over U

R

where z is a variable and U is a universe name. To execute such a declaration rule in a state in which U
contains n elements, execute n copies of R simultaneously, with z taking a different value in U in each copy.

A program is simply a rule without any undeclared free variables.

Let T be the vocabulary of the ealgebra £. Let T~ denote the set of all internal (i.e. non-external)
function names of &; we call this the internal vocabulary. We define an internal state to be a static T -
algebra. If S is a state of £, then ST denotes the corresponding internal state. An execution or run of a
sequential ealgebra is a sequence of states. If S; and S;11 are consecutive states in a run, then S;,, is the
result of executing the program of £ in S;.

1Except that we treat predicates as functions whose range is always {true, false}. In particular, t; = t5 is a term.

2.3 Distributed Evolving Algebras

We can visualize a sequential program as being executed by an agent that evaluates the rules of the program
and then executes the enabled updates at each step. We can visualize that a distributed program is executed
by a set of such agents, each independently executing a sequential program.

More formally, a distributed ealgebra is specified by a vocabulary T, a set M of sequential programs
called modules, and a set I of initial states. Modules are executed by agents. In the simplest case, a run of a
distributed ealgebra is a sequence of global states. If S; and S;;1 are consecutive states in a sequential run
then S, is the result of executing the enabled updates of some non-conflicting subset of agents in S;. This
suffices for our purposes here; for a more general definition of runs, see [4].

The reader may wonder what an agent is. Included within T is a unary function Mod such that, in each
global state S, the range of Mod consists of the elements of S representing modules. Agents are elements in
the domain of Mod. For more on agents, see [4].

3 The Specification

We specify the system as two modules — one for the gate and one for the controller which directs the motion
of the gate. Trains are not modeled explicitly; instead, we use external functions to model train movements
within the region.

In our specification, we make various assumptions: trains only move in one direction through the crossing
and do not break-down within the crossing, a track contains at most one train at any moment, and so on.
We also treat time at a high level of abstraction. Similar assumptions are made in [6]. These assumptions
can be strengthened or weakened; it is relatively straightforward to adjust the specification and proofs.

3.1 The Vocabulary

Real and Bool are the universes of reals and booleans respectively. (Here and elsewhere, we denote universe
names by printing them in sans-serif.)

An external nullary function C'T : Real (an allusion to the current time) gives the value of the time in a
state according to some external clock. We restrict our attention to runs in which the value of C'T increases
monotonically.

Tracks is the universe of tracks that pass through the crossing. The external function TrackStatus : Tracks
— {coming, in_crossing, empiy} tells us where (if anywhere) a train is on a given track. We assert that
TrackStatus takes the values coming, in_crossing, and empty in that order, possibly repeating this cycle
many times.

The nullary function GateStatus takes valuesin {up, down, going_up, going_down} and gives us the current
position of the gate. The nullary function Dir takes values in {up, down} and is used by the controller to
tell the gate which direction to move.

Deadline : Tracks — Real records the time at which the controller must signal the gate to close because
of an oncoming train.

3.2 Constants and Abbreviations

We use a few timing constants in our specification and proof.

® dpin and dpyg, are lower and upper bounds on the time between the controller detecting the entry of a
train into the region and the entry of that train into the crossing. Naturally, we assume dpin < dimaz-

® diown and dy, are upper bounds on the time taken to lower and raise the gate. We assume dgouwn < dmin;
otherwise, a train could arrive at the intersection before the controller has a chance to close the gate.

SafeToOpen is an abbreviation for “Vt € Tracks(TrackStatus(t) = empty V CT + dyup, < Deadline(t))”;
the intended meaning is that it 1s safe to attempt to open the gate, since any oncoming train is more than
dyp time away from its deadline for closing the gate. If dy,;, is small, this attempt might be aborted.

3.3 The Program

MODULE Gate
Rule: GateUp
if (Dir = up) then
if (GateStatus = down) V (GateStatus = going_down) then GateStatus := going_up
elseif (GateStatus = going_up) then GateStatus := up
endif
endif

Rule: GateDown

if (Dir = down) then
if (GateStatus = up) V (GateStatus = going_up) then GateStatus := going_down
elseif (GateStatus = going_down) then GateStatus := down
endif

endif

MODULE Controller
Rule: SignalDown
var t ranges over Tracks
if (Deadline(t) = 0o) A (TrackStatus(t) = coming) then Deadline(t) := CT + dmin — ddown
elseif C'T = Deadline(t) then Dir := down
endif

Rule: SignalUp
var t ranges over Tracks
if (TrackStatus(t) = empty) A Deadline(t) < oo then
Deadline(t) := oo
if SafeToOpen A Dir = down then Dir := up endif
endif
endif

For simplicity, we suppose that in the initial state of any run, GateStatus = up, Dir = up, and for all
tracks t, TrackStatus(t) = empty and Deadline(t) = co.

Note that C'T is evaluated within a particular state; time increases from one state to the next. Note
also that our controller attempts to raise the gate more often than strictly necessary; if a train is coming
but there is enough time to raise and lower the gate before the train reaches the intersection, the controller
attempts to raise the gate. Strictly speaking, this is not required by the problem specification.

4 Definitions and Notation

Consider a run p and let @ and b range over states in p. The states of p form a sequence. Accordingly, we
write @ < b if a precedes state b in that sequence. We denote by ¢ — 1 and @ 4+ 1 the immediate predecessor
and successor states to a, if they exist. We denote by [a,b) the interval of states between a and b, including
a but not b. (a,b] and [a, b] are similarly defined.

e becomes truein (a,a + 1) if e is false in a and true in a + 1. e becomes false is defined similarly. CT,
denotes the value of function C'T in state a.

If an expression e; is true in a and there exists b > a such that e; holds in [a,b) and an expression es
holds in b, then we denote by Suce., .,(a) the least such b. If Succ,, .,(a) is defined for every a such that

€1 becomes true in (@ — 1, a), we say ey holds until e5. For example, (TrackStatus(t) = coming) holds until
(TrackStatus(t) = in_crossing), which holds until (TrackStatus(t) = empty). Similarly, Pred., .,(a) is the
latest state b < @ such that ey is true in b and e; is true in (b, a] (if it exists).

If 1 holds until es, a ranges over states in which e; becomes true in (a — 1, a), and b = Suce., ,(a), then

MazTime(ey,ez) = sup,(CTy — CTy) and MinTime(eq,es) = info(CTy — CTy). If €1 does not precede eq,
MaxTime and MinTime are undefined.

Regular Runs p is called a regular run if it satisfies the following constraints:

1.

5

[Activity] A state a;y1 is obtained from its predecessor a; by one or more of the following: executing
the gate module, executing the controller module, or changing TrackStatus.

[Liveness] An agent may not be enabled forever without making a move. Further, if a rule with a guard
(CT = z) is enabled in a state a, it fires in a.

[Train Movement] (TrackStatus(t) = coming) holds until (T'rackStatus(t) = in_crossing), which holds
until (T'rackStatus(t) = empty). That is, once a train arrives on a track, it eventually reaches the
crossing and leaves.

. [Train Detection] (TrackStatus(t) = empty) holds until (Deadline(t) = o). This clarifies our require-

ment that only one train be present on a track at a time. If a train leaves the intersection from track ¢,
the controller must detect its departure and reset Deadline(t) before another train arrives.

[Deadline Timing] (CT < Deadline(t)) holds until (CT = Deadline(t)). That is, if the controller sets
a future deadline time in a particular state, there will be a later state in which that deadline is reached.
[Train Timing]

MinTime(Deadline(t) < oo, TrackStatus(t) = in_crossing) > dmin
MazxTime(Deadline(t) < oo, TrackStatus(t) = in_crossing) < dmay

This clarifies the requirements on d;, and dp, ... Suppose the controller detects an arrival on track ¢
and sets Deadline(t) in (a — 1,a). Let b > a be the first state such that the train has arrived in the
crossing. Then (CTy — CTy) is at least dpin and at most dpgz.

[Gate Timing]

MaxzTime(SafeToOpen, (~SafeToOpen V GateStatus = up)) < dyp
MazTime(CT > Deadline(t),(SafeToOpen V GateStatus = down)) < dgown

This clarifies the requirements on dgown and dyp. (The reader may expect simpler conditions, e.g.
MaxzTime(SafeToOpen,GateStatus = up) < dy,. However, this is not necessarily true, because the
act of opening the gate might be aborted.) The condition asserts that the period of time between the
controller detecting that a change in the gate is desired and the change taking effect, if uninterrupted,
is at most dgown OF dyp, depending on the change being made.

Proving Safety and Utility

All proofs are performed over regular runs.

5.1 Preliminaries

Lemma 1 (Dir = down) holds until ((GateStatus = down) V (Dir = up)).

Proof: Suppose (Dir = down) becomes true in (a,a + 1). Rule SignalUp might execute (Dir := up) in
some b > a, which would satisfy the lemma. Suppose this does not happen; since SignalUp is the only rule
which can execute (Dir := up), (Dir = down) for every b > a.

What is the value of GateStatus in state a + 17

e If GateStatus = down, we’re done.

o If GateStatus = going_down, rule GateDown is enabled, and will remain so until executing (GateStatus :=
down), which must happen (by our liveness assertion). This yields the desired condition.

e Otherwise, rule GateDown is enabled. Tt will remain enabled until executing (GateStatus := going_down).
By the previous argument, this eventually leads to a state satisfying the desired condition. O.

Lemma 2 (Dir = up) holds until ((GateStatus = up) V (Dir = down)).
Proof: Parallel to that of the last lemma. O
Lemma 3 (SafeToOpen) holds until (=SafeToOpen V GateStatus = up).

Proof: Suppose (SafeToOpen), i.e. ¥Vt € Tracks(TrackStatus(t) = empty V CT + dyp < Deadline(t)),
becomes true in (a,a + 1) and holds for every b > a. We need to show that there exists some ¢ > a such
that (GateStatus = up) holds in c.

What occurred between a and a + 1 to make (SafeToOpen) true? Since CT monotonically increases
from state to state, we must have had either Deadline(t) set to a sufficiently large value or T'rackStatus(t)
set to empty for some tq, ..., 1.

Deadline(t) can be changed in two ways. Rule SignalDown can change Deadline(t) from oo to a finite
value for a given ¢; this is obviously a decrease in Deadline(t). Rule SignalUp can change Deadline(t) from
a finite value to co. The guard of SignalUp ensures that (TrackStatus(t) = empty) when this change is
made; consequently, this change in Deadline(t) could not have contributed to SafeToOpen becoming true.

Thus, (SafeToOpen) became true in (a,a + 1) through (TrackStatus(t;) = empty) becoming true for
some tracks ¢;. By our train detection assertion, there exists a state b > a + 1 such that (Deadline(t;) = o)
becomes true in (b,b 4+ 1). This is the result of rule SignalUp firing in state b. If (Dir # up) in state b,
SignalUp will also execute (Dir := up). Consequently, (Dir = up) is true in (b + 1).

Lemma 2 implies that there exists ¢ > b such that ((GateStatus = up)V (Dir = down)) becomes true in
(¢,c+1). Since (SafeToOpen) is true in [b, ¢], rule SignalDown cannot execute (Dir := down) within that
interval, as its guard contradicts (SafeToOpen). Thus (GateStatus = up) becomes true in (¢,c+ 1). O.

Lemma 4 (CT > Deadline(t)) holds until (Deadline(t) = co V GateStatus = down)).

Proof: We are specifically interested in proving that a state in which (CT = Deadline(t)) is followed closely
by a state in which (Deadline = oo V GateStatus = down). But the nature of the “holds until” relation
requires us to use this form.

Suppose (CT > Deadline(t)) becomes true in (a — 1,a). By our deadline timing assertion, (CT =
Deadline(t)) becomes true in (a — 1, a). By our liveness assertion, rule SignalDown executes (Dir := down),
and (Dir = down) becomes true in (a,a+ 1).

By Lemma 1, there exists b > a such that ((GateStatus = down)V (Dir = up)) becomes true in (b, b+1).
If (GateStatus = down) becomes true, we're done. Otherwise, (Dir = up) becomes true in (b,b+ 1), by the
execution of rule SignalUp. Rule SignalUp also executes (Deadline(t) := co) at the same time, yielding the
desired condition. O.

Lemma 5 (Deadline(t) < co) holds until (TrackStatus(t) = in_crossing).

Proof: Suppose (Deadline(t) < oo) becomes true in (a,a + 1). This is caused by rule SignalDown exe-
cuting, which requires (TrackStatus(t) = coming), in state a. Deadline(t) can only be set to oo by rule
SignalUp, which requires (TrackStatus(t) = empty). Before (TrackStatus(t) = empty) can become true
(TrackStatus(t) = in_crossing) must become true. O

Lemma 6 In any state in which (TrackStatus(t) = in_crossing), (Deadline(t) < co).

Proof: From Lemma 5, we have that (Deadline(t) < oo) at the moment that (T'rackStatus(t)) changes
from coming to in_crossing. Only rule SignalUp can set Deadline(t) to oo; it must wait until some state
b in which TrackStatus(t) = empty. Consequently, (Deadline(t)) will remain unaltered in all intermediate
states in which (TrackStatus(t) = in_crossing). O

Lemma 7 If (Deadline(t) < co A TrackStatus(t) = coming) is true for some trackt in state a, then

b= SuccTrackStatus(t):coming,TrackStatus(t):m_crossmg(a)
is defined and (Deadline(t) + dgown < CTy < Deadline(t) + daown + dmaz — dmin)-

Proof: Suppose (Deadline(t) < oo A TrackStatus(t) = coming) is true in some state a’. Let a =
Predpeadiine(t)<oco,Deadline(t)=o0(@’); that is, (Deadline(t) < oo) becomes true in (a,a 4+ 1). By our train
timing assertion and Lemma 5, the desired state b > @’ > a exists and dpin < CTy — CTy < dmar. Rule
SignalDown sets (Deadline(t)) to (CTy + dmin — ddown) in (@, a+ 1); substitution for C'Ty yields the desired
result. [I.

5.2 The Main Results
Theorem 1 ¢ € A; = g(t) = 0 (The gate is down during all occupancy intervals.)

First, we restate the claim in our terminology. Fix an i. Let z be the state such that (3¢ € Tracks)
(TrackStatus(t) = in_crossing) becomes true for the ith time in (z — 1,z), and let y > x be the earliest
state such that (3t € Tracks)(TrackStatus(t) = in_crossing) is false. Thus CT, = 7; and CT, = v;. Then
for every state a € [,y], (GateStatus = down).

We first show that our translation of the desired property is accurate. Let ¢ € A;. There exists a
state @ € [z,y] such that either CT, =t or CT, < t < CTyy1. In the former case, it suffices to prove
(GateStatus = down) at a. In the latter case, it suffices to prove (GateStatus = down) at a and a + 1.
Suppose by contradiction that the above holds but g(¢) # 0. Since g(CT,) = 0, rule GateUp must fire at a
to execute (GateStatus := going_up). But then (GateStatus = going,p) would hold at @ + 1, the first state
after a. This contradicts our assertion that (GateStatus = down) holds at a + 1.

Proof of the Theorem. We have that (TrackStatus(t) = in_crossing) becomes true in (z — 1, z). By
Lemma 6, e = (Deadline(t) < oo) is true in state z. Let b = Pred. -.(z); thus, (Deadline(t) < oo) is
true in (b, z]. Since (Deadline(t) = oo) in the initial state, b is well defined. By our train timing assertion,
(CTy — CTy) > dmin.

In state b, rule SignalDown sets Deadline(t) to CTy 4+ dmin — ddown; since dmin > dgown, We have
Deadline(t) > CTy. Thus, by our deadline timing assertion, there exists a ¢ > b such that C7T, =
Deadline(t). By our liveness assersion, SignalDown fires in ¢, performing (Dir := down). Thus, (Dir =
down) in ¢+ 1 and (CTy — CTe) > dgown-

By Lemma 4, (CT > Deadline(t)) (which becomes true in (¢ — 1,¢)) holds until (Deadline(t) = co V
GateStatus = down). By our gate time assertion, the earliest state a in which (Deadline(t) = oo V
GateStatus = down) holds satisfies (CT, — CT,) < dgown. Consequently, a < z.

(Deadline(t) = co) can only become true if rule SignalUp fires, which requires (TrackStatus(t) = empty).
Since (TrackStatus(t) = coming) over [c,a) (and therefore over [c,z]), this cannot occur. Thus, rule
GateDown must execute (GateStatus := down) in (a — 1, a).

Within (a, y], GateStatus can only be changed if rule (Dir = up) becomes true somewhere in that interval.
This can happen only if rule SignalUp executes (Dir := up), which requires (TrackStatus(t) = empty).
This condition will not be true until after state a, when (TrackStatus(t) = in_crossing) becomes true.
Consequently, (GateStatus = down) in state a and every succeeding state until (TrackStatus(t)) becomes
empty. O

Two constants =1, 25 are used in the original problem description. In our terms, 21 = dmaz — dmin + ddown
and Hy = dyp. The appropriateness of these definitions should become clear in the proof of the following
theorem.

Theorem 2 ¢ ¢ U;[r; — &1, v + &2] = g(t) = 90 (The gate is up when no train is in the crossing.)
The statement above is equivalent to the following three statements:

1. Let ¢y be the value of C'T in the initial state of the run. Then (o <t < 7) implies g(¢) = 90.
2. For any i, (v; + E3 < t < tau;41 — =1) implies g(¢) = 90.
3. If there is a final occupancy interval Ay, ¢ > vy + E2 implies g(¢) = 90.

We consider only the most interesting case, case 2. The proof for cases 1 and 3 is similar.

Again, we translate the statement to be proven into our terminology. Fix an i. Let a, b be states such that
CT, = v; and CTy = 1341. Thus (Vt € Tracks)(TrackStatus(t) # in_crossing)) becomes true in (a — 1, a)
and false in (b—1,b). Then at every state y € [a,b) (CTo+&2 < CT, < CTy—¢&;) implies (GateStatus = up).

Again, we must show that this is a faithful translation of the desired property; the proof is similar to
that for Theorem 1. Fix a ¢t in the range of interest. If there exists an x such that C'T; = ¢, it suffices to
prove the property for z. Otherwise, there exists an z such that CT,; <t < C'Ty41 and it suffices to prove
the property for z and z + 1, since if g(CTy) = 90 but g(¢) # 90, then g(CTy41) # 90, a contradiction.

Proof of the Theorem. We assume that (CTy — CT, > &1 + £2); otherwise, there is nothing to prove.

We claim that (SafeToOpen) becomes true in (a — 1,a). By assertion above, for every train ¢, either
(TrackStatus(t) = empty) (which is compatible with SafeToOpen) or (TrackStatus(t) = coming) is true
in a. If (TrackStatus(t) = coming) in a, either (Deadline(t) = co) (which is compatible with SafeToOpen)
or (Deadline(t) < c0). If (Deadline(t) < oo), Lemma 7 implies (CTy < Deadline(t) + ddaown + dmaz — dmin)-
Since (CTy — CT, > & + &2), we have (CT, < Deadline(t) — dy,), satisfying (SafeToOpen). So in any
event, SafeToOpen becomes true in (a — 1, a).

By Lemma 3, there exists ¢ > a such that (=SafeToOpenV GateStatus = up) becomes true in (¢ — 1, ¢),
and by gate timing, CT._1 — CTa_1 < dyp. (=SafeToOpen) could only occur if (CT,_1 = Deadline(t));
yielding (CTi—1 — CTy—1) > dyp, a contradiction. So (GateStatus = up) becomes true in (¢ — 1,¢) and
(CTech < CTy + dyp).

(GateStatus) cannot be altered again until (Dir = down). The earliest this can occur is when SignalDown
fires before the arrival of the train in state b; by Lemma 7, the state ¢/ in which this occurs is such that
CTe > CTy — (dmaz — dmin + ddown). Thus, (GateStatus = up) must remain true in [e, ¢']. ¢ and ¢ satisfy
the desired constraints. O

References

[1] E. Borger. “Annotated Bibliography on Evolving Algebras.” In E. Borger, editor, Specification and Val-
tdation Methods, Oxford University Press, 1995.

[2] E. Borger, Y.Gurevich, and D.Rosenzweig. The bakery algorithm: Yet another specification and verifi-
cation. In E. Borger, editor, Specification and Validation Methods. Oxford University Press, 1995.

[3] Y. Gurevich, “Evolving Algebras: An Introductory Tutorial”, Bulletin of European Assocation for Theo-
retical Computer Science, February 1991. Slightly revised and reprinted in “Current Trends in Theoretical
Computer Science”, Eds. G. Rozenberg and A. Salomaa, World Scientific, 1993, 266-292.)

[4] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide”, in Specification and Validation Methods, ed. E.
Borger, Oxford University Press, 1995.

[5] Y. Gurevich and R. Mani. Group Membership Protocol: Specification and Verification. In Specification
and Validation Methods, Ed. E. Borger, Oxford University Press, 1995.

[6] C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A Case Study in Formal Verification of
Real-Time Systems. Technical Report 7619, Naval Research Laboratory, Washington DC, 1994.

[7] J. Huggins, “Kermit: Specification and Verification”, in Specification and Validation Methods, ed. E.
Borger, Oxford University Press, 1995.

