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Abstract

We have analyzed characteristics of sharable resources and developed techniques for intelli-
gently sharing resources—specifically, communication channels—among agents in multiagent
systems. Our techniques allow agents to nearly optimize their communication behavior in a
self-organizing and distributed fashion, involving the use of a microeconomic pricing system
based on economic laws of supply and demand and trading among agents in real-time. Our
analyses are based on three measures of performance: fairness of resource allocation, waiting
time for resources, and utilization of resources. Our initial analysis indicates that fairnessand
utilization are conflicting, in that the best utilization with a fair allocation is equivalent to the
worst utilization with an unfair resource allocation, assuming the allocation policy is statically
defined. To strike a balance in performance, we have developed mechanisms that establish an
artificial economy, where agents can dynamically reallocate goods (resource access) using a
competitive market pricing mechanism. However, unlike more common market-oriented meth-
ods, our approach does not demand convergence to equilibrium, but permits more rapid, heuris-
tic trading, leading to near optimal performance where both buyers and sellers of resources can
benefit. Our studies show that agents employing our mechanisms can dramatically improve
utilization while still providing “fair” access to the resources.

�
This work was sponsored, in part, by ARPA under contract DAAE-07-92-C-R012.
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1 Introduction

In multiagent systems, agents that share an environment can coordinate to solve common problems
cooperatively, or to avoid and resolve conflicts that arise as each pursues its separate goals. In this
paper, we concentrate on the issue of conflict avoidance, focusing on the use of sharable resources
among multiple agents. This type of problem is manifested in many applications involving multi-
agent systems. For example, agents performing cooperative reconnaissance (Lee, Huber, Durfee,
and Kenny 1994) must share their communication resources so that the most important messages
are exchanged without interference or collision. Similarly, mobile robots that use similar active
sensors (such as sonar) could be confused by crosstalk (sensing others’ signals) unless they some-
how avoid the simultaneous use of their sensing resources (Kortenkamp, Huber, Koss, Lee, Wu,
Belding, Bidlack, and Rodgers 1994). In essence, then, the problem we must address is how agents
might make intelligent decisions about the use of shared resources such that each can have a better
chance of using the resources when they are really needed.

In this paper, we present techniques for intelligently sharing resources—specifically, communi-
cation channels—among agents in multiagent systems. Our techniques allow agents to nearly opti-
mize their communication behavior in a self-organizing and distributed fashion, involving the use of
a microeconomic pricing system based on economic laws of supply and demand and trading among
agents. The agents, therefore, allocate resources based on an artificial economy or market (Wellman
1993; Bogan 1994; Kuwabara and Ishida 1992). In work following a similar microeconomic model,
Wellman (1993) states that market-oriented programming refers to the general approach of deriving
solutions to distributed resource allocation problems by computing the competitive equilibrium of
an artificial economy. This approach is distinguished from general search-based approaches such
as Sycara, Roth, Sadeh, and Fox (1990), where agents use sophisticated local control. In fact, the
notion of using microeconomic methods to allocate communication resources dates back at least
to the work of Kurose, Schwartz, and Yemini (1985), which described how a pricing system and a
perfectly competitive market could be used to compute, in a distributed fashion, an optimal solution
to the resource allocation problem.

Kurose’s techniques, and more generally the market-oriented programming approach, rely on
the computation of a market equilibrium to establish resource allocation policies. While potentially
yielding optimal allocation decisions, equilibration can at times require many iterations to converge,
if it ever does so. If, in the meantime, resource requirements change, or in cases where resource ac-
cess must be nearly instantaneous to be useful, waiting for equilibrium might be inappropriate. For
example, the utility sending a message might be very time-dependent, so the communication deci-
sion should be made rapidly. More generally, the communication resource needs of an agent will
vary over time, as it can experience periods of relative quiet, punctuated by bursts of communica-
tion. For such cases, agents in a multiagent system could use less expensive, heuristic algorithms
that guarantee rapid, near-optimal resource allocation based on the constantly evolving resource
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needs of the agents. Our work, as described in this paper, provides a principled set of heuristics
that agents can use in dynamically buying and selling resources among themselves. With regard to
communication resources, this amounts to agents “buying” the silence of others, but those others
can in turn accumulate enough of their own buying power to commandeer resources in exceptional
circumstances. We formalize and operationalize this notion in the remainder of this paper.

2 Communication Resource Allocation

While the approach we develop is applicable to a range of domains that involve the sharing of re-
sources such that no agent benefits if multiple agents attempt to access the resource simultaneously,
the particular domain that we will focus on is communication resource allocation. More specifi-
cally, the domain we are exploring involves port-basedcommunicationsand ��� persistent CSMA
protocols (Tanenbaum 1981) with multiple channels with different communication delays. In this
domain, agent � has ports � to � connected to the corresponding ports of agent 	 . When an agent
becomes ready to send, it senses the channel. If the channel is idle, the agent transmits with prob-
ability � . With a probability 
���
�������� it defers until the next slot. If that slot is also idle, it either
transmits or defers again, with probability � and 
 , respectively. This process is repeated until ei-
ther the message has been transmitted or another agent has begun transmitting. For our analyses,
we further assume that: (1) all messages are of constant length; (2) there are no errors except those
caused by collisions; (3) there is no capture effect (Tanenbaum 1981), so a collision leads to the
loss of all colliding messages; and (4) the state of the channel can be sensed instantaneously.

2.1 The Need to Trade Resource Access

At first, let us consider only onechannel shared by two agents, agent � and agent 	 . Assume that,
when the channel is idle, each agent attempts to send a message with transmission-potential ��� and
��	 , respectively. If each agent has an infinite number of messages in the queue, the utilization of
the channel, � , is thus given by

��
�������������	�������	 ���������!� (1)

If the two agents have the same transmission-potential ( � � 
"� 	 ), Equation 1 becomes #$�%�&�'�(�)� ,
where �*
*���+
,��	 . This relation is shown in Figure 1. The maximumchannel utilization occurs
at �,
.-�/10 , with ��
�-2/10 . That is, half of the time exactly one agent is transmitting. The other half
of the time either both or neither is transmitting, and no communication occurs.

On the other hand, if the sum of transmission-potentials is fixed to a constant, say ���3
*�4�5��	 ,
Equation 1 becomes #6�879�:#$�;�;� , where �,
*���3
<������	 . The shape of the curve is shown in
Figure fig:utilization-b. The minimumutilization occurs at �=
*-2/10 , with ��
*-�/>0 , and maximum
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channel utilization can be achieved by assigning all potential to one agent. That is, if one has all the
potential, it is always transmitting while the other is always quiet, and the channel is always being
used successfully.

In summary, when we assign equal transmission-potentials to the two agents, maximumthrough-
put is achieved by giving them 0.5 transmission-potentials. When the sum of transmission-potentials
is fixed to 1, and agents can have unequal portions, the total throughput becomes minimalat 0.5 by
making the transmission-potentials equal to 0.5 for each agent. From this analysis, we can conclude
that when there are infinite messages to send, the best “fair” allocation of potentials corresponds to
the worst “unfair” allocation.

Throughput, however, is not the only parameter we are interested in. The mean message delay
is also important, especially for messages with deadlines. Unfortunately, high throughput and low
delay are inherently in conflict. Good performance on one of them can be achieved only at the
expense of the other. For example, if one agent has all the potential and the other has none, the
utilization of the channel is maximized to 1 (assuming agents have infinite messages to transmit),
but the mean message delay becomes infinity. The simplest way to overcome this problem is to
alternate transmission potentials between the two agents. In other words, agent � has a transmission-
potential of 1 and agent 	 has 0 potential for a while, and then they switch their potentials.

2.2 Trading Resource Access

Simply swapping 1/0 potentials works very well with infinite messages, but what if the number of
messages to send is not infinity? At this point, we relax the assumption that agents have infinite
messages, and instead assume that the probability that an agent has a message to send is A(� for
agent � and AB	 for agent 	 . In this case, some bandwidth of the channel may be wasted because the
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agent may have no message to send while it is holding all the potential. Rather than having some
static “turn-taking” behavior, the system would be more adaptive if agents could “trade” potential
as needed.

Our approach is thus to have an agent trade surplus transmission-potential if another agent is
willing to purchase more potential. In our model, each agent has a initial budget, and a regular
income. The agent pays the channel for delivering messages, but it does not pay when the messages
collide. The priceof the channel is changed periodically by economic laws of supply and demand.
Since the budget is limited by the initial budget and the regular income, and each agent has to pay
the channel to send messages, one agent cannot hold the entire transmission-potential all the time.

In the following sections, we investigate issues involved with our trading model. Section 3 ex-
amines the properties of transmission-potential in detail. Section 4 investigates the pricing mecha-
nism of the channels. Section 5 deals with the issues related with the income of the agents. Section 6
explains the algorithm for trading transmission-potential. Section 7 describes our preliminary and
planned evaluation and Section 8 outlines the current status of this work and our ongoing research.

3 Transmission Potential

In Section 2.1, we analyzed the simple communication model on the assumption that each agent
has infinite messages to send. Now suppose that the probability that an agent has a message to send
is AB� for agent � and AB	 for agent 	 . The utilization is now expressed in terms of A(� and A(	 :

��
,A � � � ���3�:A 	 � 	 ����A 	 � 	 �&�C��A � � � � (2)

Figure 3, 4, 5 show the contour lines of utilization, � , versus ��� and ��	 for simple cases where
A 
,AB�3
,AB	 . Figure 3 shows that for A D"-2/10 the best utilization is achieved by keeping both
of the agents’ transmission-potential at 1.0. In other words, ���E�;��	 can be 2.0 for A D*-�/>0 . For
A F;-�/>0 , the contour lines in Figure 4 and 5 show that there are two separate regions with �HG"-2/10 ;
that is, an upper left region and a lower right region. Let I be the boundary value of � � and � 	 of
these regions, IJ
K�!L6�M#6A,� . The upper left region is bounded by � � DNI and � 	 GNI and the
lower right region is bounded by � � GOI and � 	 D;I . Let us define these regions as goal-regions.
Once again, from the location of goal-regions, we can see that the more we bias the transmission-
potential, the higher utilization we can achieve. Note that the goal-regions are convex and thus have
ridges. In other words, the utilization at the ridge of the region is relatively higher than the rest of
the region. We can approximate these ridges using a curve P

���3
,���3���)Q�RTS�U�V 7	 � QWRTS�U�X!Y[Z �\-�/>0]D^I`_,�a/1-$� (3)
b
The curve can expressed by cedf)g c�dh�iBj , and this equation has to pass kmlonpl2q ; that is, l2d g l2d iBj . This leads

to r its8u1vxwzy�{ .
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� 
 �3�	
� ��

� �m� P� 
 �&��� � Q�RTS�U V 7 � Q�RTS�U X Y (4)

� �m� P	 
 � ����� � QWRTS�U V 7 � Q�RTS�U X Y (5)

Figure 7: Calculations of New Potential

which passes three points (0,1), �pI Z I�� and (1,0), and lies in the goal-regions. Let us call this curve
the potential-ridge. Figure 6(a) shows potential-ridges for IB
�-�/>0 Z -2/�| , and 0.9 from left to right.

From these graphs, a simple heuristicfor computing the total transmission-potential of a port,�
, can be derived. Let us suppose that the agents agree that the overall utilization of channels should

be greater than 0.5. If the probability that the agents have messages to send is greater than 0.5, then�
can be as low as 1.0 7 , and if the probability is less than 0.5,

�
can be as high as 2.0 since each

agent can hold 1.0 of transmission-potential. In other words, we can say �a/1-�D � 
,���W�B��	eD�#�/>-
and

�
is a function of I .

Since in real networks the value of A is not readily available, the value of I is not available,
either. Nevertheless, we can measure the past demand for the channel to approximate I . The total
demand for a channel is increased whenever agents attempt to use the channel. Hence, if two agents

�
A fair strategy might assign 0.5 potential to each agent, and a biased strategy might assign 1.0 and 0.0 potential to

each agent, respectively.
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try to send messages at once (i.e. collision), the demand for the channel is increased by 2, and if only
one agent attempts to use the channel the demand is increased by 1. The demand-ratioof a channel,�

, is the number of demands per unit time. From the heuristicfor the value of
�

, the demand-ratio
(0,2) can be mapped to

�
(2,1) by the following simple transformation equation,

� 
.#�� � L�# . Once
the value of

�
is derived, we have a potential-ridge corresponding to the new

�
. Since

� 
�#!I , we
can derive the estimated value of I as I5
 � L!# .

The increase or decrease in
�

is shared by the agents. The ratio of sharing is determined by the
current ��� , ��	 and the new potential-ridge. The new transmission-potentials of the agents, � �m� P�
and � �m� P	 at time ����� are the contact point of the new potential-ridge and the line which connects
the origin (0,0) and the point of previous transmission-potentials ��� �� Z � �	 � . This relation is shown
in Figure 6, and the equations for the new potentials in Figure 7. These equations guarantee that
the new transmission-potentials are on the potential-ridge, and hence in the goal-regions. �

4 Prices of Channels

Until now, we have analyzed the model where two agents share only one communication channel.
Now let us return to the our original model of multiple channels. There are � different channels and
each channel has a different service-rate and price. Whenever an agent sends a message, the agent
has to pay the chosen channel for delivering the message. The payment is determined by the price
of the channel. The price of a channel rises as the demand for that channel increases, and falls as
the demand decreases. The price, � �� , of the channel � connected to the port � at time � can be defined
as the demand-ratio

� �� of channel � at time � (Section 3), � �� 
 � �� . Recall that the demand-ratio
has value in the range of (0,2). This equation exactly represents the economic laws of supply and
demand. �

Changing prices of channels has two important effects. First, in our model where multiple chan-
nels are shared by two agents, the pricing mechanism affects load-balancing between multiple chan-
nels because the agents try to select a channel which can send a message at the lowest price within
a deadline. Second, if the prices of all channels go up as the demand for channels increases, only
agents who can afford the increased prices can send messages. This is a very important feature of
the pricing mechanism, and it will be discussed more in Section 6.

�
Note that simply increasing or decreasing transmission-potentials at the ratio of current transmission-potentials can

cause one agent to have more than 1.0 potential, which does not make sense.�
We may introduce a sensitivity-factor� to make �'�� i �6�E�� for some real constant � . In this case, the price has

value between 0 to { � .
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5 Income of the Agents

In the previous sections, we have seen that the best utilization of channels can be achieved by a
biased allocation of transmission-potentials between agents, but a biased allocation can cause in-
definite transmission delays. Our approach to solving this problem is to give each agent a regular
“income” over time and to have an agent spend from its budget for transmitting messages. When-
ever an agent transmits a message, the agent has to pay the channel, and the payment is determined
by the price of the channel. The agents are allowed to sell their surplus transmission-potential to
other agents who need more potential, in return for some of the income of those agents. By selling
potential, an agent enlarges its budget so that it can buy a lot of potential when it needs to in the
future.

In our distributed communication model, the role of the budget is very important. While the
channel prices balance the loads on the channels, the budgets of the agents promote trading poten-
tials and sharing channels. Another important issue is to maintain a proper budget level for each
agent. If both agents always have enough budget to send all messages and the income is also suf-
ficient, then trading transmission-potential may not occur. Maximal benefit of trading potentials to
properly utilize the channels only comes about if the total budget of the agents is just enough to use
the capabilities of the channels.

One way of avoiding excessive budget is adjusting the income of the agents on the basis of
the “channels’ income” which is the same as the budget paid by the agents. The model we have
employed is a kind of “zero-sum” society where the total worth of the system is basically preserved.
Let us specify the system parameters of our model in detail before the equations for the new budget
and the income of the agents are presented.

� Trading occurs periodically, and the length of the period is � . In our notation, superscript �
or ���;� means the current period and the next period, respectively.

� The system has � ports from port P to port � for each agent and each port is connected to �
channels from channel P to channel � . channel � has � � message service-rate (messages/time).
channel � ’s price at time � is � �� .

� Utilization goal, -�/>-,D����^D ��/1- is defined by the system and specifies the system-wide
maximum utilization goal of all channels. Recall that higher ��� values lead to longer average
message delays.

� Virtual service-rate, � ��
�¡ ��}¢ P � � is the total service-rate of all channels.

� Virtual service-price, � �£ 
 ¡ ��}¢ P � � � �� La� � is the average price per message over all channels
(price/messages).
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� Each agent has initial budget, ¤)¥ , before it enters the system, ¤)¥�
N���§¦¨�,¦`� � ¦`�)¥£ L!#
where � ¥£ is the initial virtual service-priceof the channels which is the function of the initial
channel prices.

� Incomeof the channels, © �ª¬« is the sum of the budget paid by both agents for the previous
period.

� Incomeof anagentfor the next period, © �m� P�­� 
,© �ª¬« L!# is the dividend of the channels’ income
for the previous period.

Note that agents can calculate all of these values without any communication with the other agent.
For example, the income of the channels, © �ª¬« and their prices, � �� , can be obtained just by monitoring
the busy status of channels.

6 Trading Transmission Potential

A trade of transmission-potential occurs only when trading benefits both agents and they agree to
do so. Agents communicate periodically with all the necessary information to trade potentials. ®
The necessary information is called ¤�¯°A . ¤ represents the Budget available for the next period,
which has been derived in the previous section. ¯ represents the transmission Capacity calculated
in budget units, and A represents the budget required to send all expected Messages for the next
period. In other words, ¤ is how much an agent can spend, ¯ is how much an agent would spend to
use its full potential, and A estimates how much an agent needs to spend to send all the messages.
Note that we have transformed the ¤�¯%A information to the same “budget” units. To derive the
equations for ¯ and A , we need to define more system parameters as follows:

� An agent has �C�� transmission-potential for port � at time � .
� Estimatedmessage-generationrate, ± � ² 
O³�± � Q P² �´�&�2�%³���± � Q Pµ of an agent is a weighted sum

of past and current message-generation rates. The message generation rate, ± � Q Pµ is measured
by counting the number of messages generated during the previous period. The constant ³ ,
for example 1/2, determines how quickly the agent reacts to recent history.

� Expenditure for a port� , ¶ �� 
·� � � �� � �� is the expected budget of sending infinite number of
messages with the current transmission-potential at the current price of channel � .

¸
Agents send a message for trading to each other, and the deal occurs at both sides at once. Since the deal is deter-

ministic, agents need not communicate again.
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Case Action Amount
���¹�&¯ Z A G"¤ Sell potential ��¯;��¤���L!# Z if ��¯.��A,�9Dº��A ��¤��

��¯;��A»� Z if ��¯.��A,�9F,��A ��¤��
�M#6�&¤ Z A G,¯ Buy potential ��¤���¯°��L!# Z if ( ¤���A,�9D*��A ��¯°�

��A ��¯°� Z if ��¤���A,�9F,��A �:¯°�
�M¼6�&¤ Z ¯�G�A Sell potential ��¯;��A»�

Table 1: Heuristic Criteria for Trading Decision

C M B

(C − B) / 2

Figure 8: ��¯���A,�9D,��A ��¤��

C M B

(C − M)

Figure 9: ��¯.��A,�9F,��A �½¤��

Now ¤�¯%A information can be derived as follows:

¤ �¾� P�
�¤ � �^© �m� P�­� ¯ �m� P�
"�;¦ ¡ ��}¢ P ¶ ��
A;�m� P 
"�)�£ ¦B����¦t±C�² � # of messages in the queue �

Note that each agent calculates its ¤�¯°A values independently, and the agents exchange this infor-
mation to decide on trades. Table 1 shows heuristic criteria for trading decisions of agents based on
the ¤�¯%A information. A trade occurs only when one agent wants to sell transmission-potential
and another agent is willing to buy it. If the amount of the trading offer of each agent is differ-
ent, the agents trade only the minimumamount of their trading offers. As mentioned earlier, trad-
ing can benefit both agents. For example, if an agent has ¯¿FÀA FÀ¤ , the agent has sufficient
transmission-potential and channel capacity ¯ to send all messages A , but its budget ¤ is insuffi-
cient to use all of its capacity. Hence the agent should trade away its some of its unusable capacity to
get more budget. If ��¯Á��A,�9D,��AÂ�´¤�� (Figure 8), the best deal for the agent is selling ��¯Á�´¤��&L!# ,
thereby increasing its budget by that much. If the deal is made, the agent uses its larger budget to
send more. If ��¯^�:A,�9F,��A �:¤�� (Figure 9), the agent can improve its throughput by ��A �`¤��
by selling all surplus transmission-potential, ��¯<�ºA»� . Other cases in Table 1 can be explained
similarly. Especially, case (3) is interesting. In case (3), the agent has enough budget and capacity
to send all expected messages, but it tries to sell its extra potential to increase its budget for future
use. Consider a scenario where each agent has the same amount of budget. Initially, agent � gen-
erates many messages to send and agent 	 does not. By the trading heuristic given in the Table 1,
agent 	 sells some of its potential to increase its budget. Later, agent � is still generating many mes-
sages but now agent 	 also starts to generate many messages. Since both agents are more likely to be
sending messages at the same time, contentions for the channel drives up its price. Now since their
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incomes are limited, only agents who have accumulated higher budgets (such as agent 	 ) can afford
the raised prices, while agents that have been spending their budgets (such as agent � ) have to sell off
transmission-potential in order to build up their budgets. This is the reason that each agent tries to
keep as high a budget as possible. Once the amount of trading is determined, each agent increases
or decreases its transmission-potential for each port in the ratio of the current transmission-potential
assignment.

In summary, each agent calculates the ¤�¯°A values using only local information. Each agent
then attempts to maximize its throughput by trading with other agents. An effective global through-
put of the system is thus achieved indirectly through the selfish behavior of each agent.

7 Evaluation Summary

A simulation program for testing the effectiveness of our approach has been built using the CLOS
(COMMON LISP Object System). Using the simulation program, we have been testing the correct-
ness of our algorithms and analyzing the pricing and trading heuristics. We are also planning to con-
duct comparative experiments with other knowledge-poor, systematic approaches such as the sim-
ple turn-taking method and the binary exponentialbackoffprotocol heuristic (Tanenbaum 1981).
Such comparative experiments have proven problematic because of the many communication pa-
rameters that need to be specified, including message generation characteristics, message utilities
and deadlines, channel service rates, etc.

We have focused on measuring performance along the dimensions of fairness, resource utiliza-
tion, and agent utility from the resource (factoring in message delivery delay). Our preliminary
evaluations have highlighted how, with fair incomes among agents, agents that are more taciturn
receive higher utility when they do communicate; that selling their usual silence leaves them with a
high budget to get messages through when they need to. A more talkative agent, on the other hand,
has a greater access to the communication channels most of the time. This has been contrasted to
either of the two “fair” static approaches described earlier: either each agent holds an equal fraction
of the channel potential (so that the one that has more to say does not say it as frequently, and chan-
nel utilization is poor); or agents flip-flop between them (for equal amounts of time), such that, once
again, one has more resource than it needs and the other cannot make use of the excess resource.
Our ongoing work is in using our simulation results to quantify performance improvements in well-
characterized scenarios, and incorporate measures of trading overhead into our assessments.
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8 Conclusion

In this paper, we have examined an approach towards intelligently sharing communication resources
in multiagent systems based on models and methods from the field of economics. We showed how
to map the resource sharing problem into artificial economy model, defined what to trade and how
to trade, and experimentally shown how trading between agents allows a beneficial solution for
multiple parties.

Our model and algorithm is relatively cheap and simple, and thus applicable for dynamic real-
time communications where other market-oriented mechanisms requiring equilibration among agents
would be infeasible. Because coordination over resource use occurs dynamically, run-time com-
munication overhead must be considered, but in our algorithm the number of communication slots
used for trading transmission-potentials is only one per trade, and other necessary information for
adapting to new communication situations is obtained by the usual monitoring of channels.

Our preliminary analyses and the model presented in this paper need many extensions and much
evaluation to be used in real multiagent systems. First of all, more complete experimentation is
needed. Second, our analysis here is based on interactions between two agents, for simplicity. With
more agents, the trading heuristics will become more complex, but the underlying philosophy will
continue applying. Third, in highly competitive settings, protocols for revealing less information,
or that enforce truthful revelation (Rosenschein and Zlotkin 1994), must augment or replace the
¤�¯°A information exchange presented here.
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