Toward a Dynamical Pick and Place

Robert R. Burridge*, Alfred A. Rizzif, and Daniel E. Koditschek?

Artificial Intelligence Laboratory
University of Michigan
Department of Electrical Engineering and Computer Science

Abstract

This paper presents an initial overview of our attempts to expand our understanding of autonomous
dynamic manipulation. Specifically, it proposes a sample “Dynamical Pick and Place” task and a
hierarchical feedback based control strategy for its execution. Included are a sequence of experi-
mental verifications of the underlying behaviors required.

*Supported in part by the National Science Foundation under grant TRI-9123266 and in part by ARPA under
grant B457.

'Supported in part by the National Science Foundation under grant TRI-9123266 and in part by the University of
Michigan Center for Display Technology and Manufacturing.

{Supported in part by the National Science Foundation under grant TRI-9123266.

1 Introduction

We consider in this paper the problem of sensor driven Dynamical Pick and Place manipulation.
We are interested in constructing a system capable of using a flat paddle to acquire balls thrown
into the workspace; balance or bat them as required through a clutter; loft them into an out of reach
destination receptacle; and resist large unanticipated perturbations along the way. The controllers
required to carry out these tasks autonomously presently exceed the capability of any robot
or programmable mechanism we are aware of (including, of course, our own) and thus present a
suitable challenge to the design principles underlying dynamical dexterity that we have developed
to date [20, 2].

Our past work has resulted in an expanding family of working machines [24, 3] that exhibit
superlative dexterity (arguably superior to that of a human) in a narrow domain, as well as an
immature but growing body of theory to explain how [1, 18]. The problem proposed here focuses
both on enlarging the domain of robot dexterity and on attempting to extract from the algorithms
that confer it a primitive but very robust sort of computational intelligence.

A flexibly deployable robot will undoubtedly be equipped with a general purpose manipulator
capable of handling many differently shaped and sized objects in unstructured environments — it
cannot be optimized for any one. To be efficient such a robot must handle objects in a dynamically
dextrous fashion: most objects are grabbed, batted or thrown, whereas guarded moves and quasi-
static manipulations are reserved only for fragile objects.

1.1 Problem Statement

Our three degree of freedom (nearly spherical kinematics) Biihgler robot (see Figure 1 and [24, 21])
is equipped with a flat paddle and a field rate (60 Hz) stereo camera system [20]. Its workspace
will be cluttered with fixed obstacles — some suspended from the ceiling creating low “doors” and
some protruding from the floor creating high “windows.” The suspended obstacles hang low enough
that the paddle can only just pass through the doors when level with the ground. The protruding
obstacles are high enough that the robot must raise its paddle to pass through.

Figure 1: The Biihgler robot (taken from [20]).

The robot will be thrown a ball without warning into one of the free cells defined by the obstacles.
The robot’s task will then be to deposit the ball into a bowl in one of the other cells. The bowl
will be located out of the robot’s “reach,” so that balls must be tossed in. By design the ball can
not be tossed or batted through the “doors” because of the suspended obstacles: thus the robot
must perform a “carry.” Similarly, the ball must be lofted to get it through a “window” since the
protruding obstacles are so high that it will roll off the paddle if an attempt is made to “carry” it
across: the robot must perform a “toss and catch.” When a ball is initially presented to the machine
it may have unacceptably high horizontal velocity or be heading for an obstacle and require a fast
“rescue.” The robot must be able to distinguish situations where a ball can be saved from those
where it would be too likely to damage itself in the effort to be worth trying. Finally, during the
course of the manipulation the work cell may be “invaded” by disturbances (we will poke at the
ball with a stick as we presently do in the juggling work [23]) that take the ball far off its course
and off the track of the sequence of maneuvers previously planned.

1.2 Background

Let the state of an environment (in our case, the positions and velocities of the unactuated ball)be
represented by b € B, and let u denote the means by which a robot can change the state of the
environment according to the rule

b = f(b,u). (1)
Much work in robotics is concerned with developing plans,
u=1(t;br), (2)

to bring b from a specified initial condition, b; to a desired final condition with time (¢) an explicit
parameter. Unfortunately, II often is very sensitive to by (an open loop move-box-to-pallet procedure
will fail badly if the box is not initially located as assumed) and relies very strongly upon a predictive
model for the world (removing a bottom box from the pallet during the stacking operation may
result in catastrophe). Most implemented robot systems therefore surround (2) with periodic
sensor derived “sanity checks” and include “exception handling.” But no human programmer can
anticipate all the varied ways in which the real world will depart from the model.

We are concerned instead with constructing purely feedback driven time-independent autonomous
systems where

u=®(b). (3)

1.2.1 Robot Task Planning Literature

In recent years there have been a number of promising advances in the robotics literature in a
variety of problem areas of concern to us. We have drawn motivation and inspiration from much
of this work. Yet the literature continues to study problems in isolation that we wish to study in
concert, albeit in greatly simplified form.

Pick and Place in Cluttered Environments Our focus on the dynamical pick and place prob-
lem is inspired in part by the HANDEY system developed by Lozano-Perez and colleagues [9] who
emphasized the importance of developing task planning capabilities suitable for situations where
regrasping is necessitated by environmental clutter (however our setup presents dynamical rather
than quasi-static regrasping problems). Indeed, our emphasis on robustness and error recovery as
the driving consideration in robot task planning derives from their original insights on fine motion
planning [12] and the subsequent literature in this tradition bears a close relation to our concerns
as will be touched upon below.

Comprehensive work by Kak and colleagues [26] has yielded a contemporary quasi-static assembly
environment in the best traditions of Handey. The system builds a plan, (2), based upon sensed
initial conditions, spawns an execution process that senses exceptions to the planned evolution of
states and produces actions to bring the world’s state back to the intermediate situation presumed
by the plan. It is understanding the ways in which this higher level “feedback” (local replanning
is a form of feedback) can be reasoned about and guaranteed to succeed that we wish to examine,
albeit in the drastically simplified setting of the dynamic pick and place problem outlined above.

Discrete Events and Real-Time Computation The difficult question of how to reason about
the interplay between sensing and recovery at the event level in robotics has been considerably stim-
ulated by advent of the Ramadge-Wonham DES control paradigm [15]. In some of the most careful
and convincing of such DES inspired robotics papers, Lyons proposes a formalism for encoding
and reasoning about the construction of action plans and their sensor-based execution [14, 13] but
explicitly avoids the consideration of problems wherein geometric and force sensor reports must be
used to estimate progress and thereby stimulate the appropriate event transitions.

Error Detection and Recovery Despite the many dissimilarities in problem domain, models
and representation, the work proposed here seems to bear the closest correspondence to the “fine-
motion planning with uncertainty” literature in robotics (for example, as expounded in the excellent
text of Latombe [11]) originated by Lozano-Perez and colleagues [12]. Traditionally this literature
focuses on quasi-static problems (generalized damper dynamics [28] with coulomb reaction forces [8]
on the contact set). Furthermore, the possible control actions typically are restricted to piecewise
constant velocity vectors, each constant piece corrupted by a constant disturbance vector of known
(bounded) magnitude and uncertain direction arising from a uniform distribution over the unit

ball.

In contrast, we are interested in Newtonian dynamical models, and our control primitive is not
a constant action but the entire range of actions consequent upon the closed loop policy, @, to
be specified below. Moreover, we never “bother” to develop an explicit disturbance model even
though we are specifically interested in operating in the empirical world with all its uncertainties and
unmodeled phenomena. On the one hand, the theory and experience of building working controllers
[10, 27] teaches us that the inevitable small but persistent disturbances arising from modeling errors,
sensor inaccuracy and slight miscalibration are countered by the local structural stability properties
of stable dynamical systems. On the other hand, large, arbitrary and unanticipated perturbations
should be recoverable as long as they are relatively rare and do not violate the domain of attraction
of every feedback policy at our disposal. In the end, of course, the only acceptable test of one or
another model is to place the finished system in the physical setting for which it was designed.

Differences in models notwithstanding, we have derived considerable motivation from the “LMT”
framework which attempts to match systematically the low level controllers’ goals and capabilities
with the more abstract requirements that characterize a task. In the work of Lozano-Perez and
colleagues [5, 6], high level progress is made through a sequence of controller actions whose successful
termination is ensured via careful choice of compliant motions in the presence of rigid objects. The
sequence itself has been designed via a back chaining of motion pre-images. In our work, the
funneling [6] action of sensorless compliance to rigid objects is replaced by the stability of a general
dynamical system, but we borrow heavily from the notion of pre-image back-chaining, as will be
seen in Section 4.

Unquestionably, our theoretical understanding of such questions in the proposed novel domain
is rudimentary in comparison to the rich body of results that ten years of effort have brought the
fine motion planning literature. For example, we require and are attempting to develop a notion
of progress analogous to that introduced by Erdmann for piecewise constant control policies in
the quasi-static regime [7], specifically we expect our behaviors to ensure some level of certainty
at their termination in much the same way that certainty can be derived by making use of an
inaccurate compliant motion to “push” an object into a rigid corner. Unfortunately we do not
see any “corners” to push against in the dynamic setting beyond those which we can “create”
via control policies. Finally there is clearly a need to carefully explore the design of termination
predicates that are recognizable as discussed by Donald [5] but fit our richer sensor and actuator
models.

Empirical and Conceptual Background The problems explored here address higher level is-
sues of task execution, but there is still a strong relation to previous work in dextrous manipulation,
in particular “robot juggling” performed in our laboratory. Indeed, it is exactly our contention that
these ideas can be extended to build a variety of useful dextrous machines that are similarly single-
minded in their pursuit of the user’s goal behavior and ability to surmount unanticipated obstacles
along the way. [3, 24, 2, 20].

The computational architecture used for the simple demonstrations of concept presented in this
paper (and that we expect to use for the final implementation) is the direct descendant of that
presented in [24].

2 Setup

In the problem with which we are concerned, there is a robot, which we can control directly, and an
environment, which can only be manipulated through contact with the robot. The task will be to
devise a strategy for the robot that drives the environment to a goal state, or set of states. In our
experiments, the environment takes the form of a ball subject to gravity, and the robot manipulates
the ball by batting it with a paddle.

In this section we will first develop some definitions and notation to be used in the sequel, then
describe the experimental apparatus.

2.1 Definitions and Notation

Let b = (b',b6%) € B = IR® be the full state of the ball in Cartesian coordinates. Let r = (r!,7%) €
R = 53 x IR? be the state of the robot in joint space. We use b' and b2 to refer to the position and
velocity of the ball respectively, and similarly ' and 72 will represent the position and velocity of
the robot.

2.1.1 Ball Flight

The ball in flight will be modeled by the Newtonian dynamics:

03x3 0Ozx3

0
0

('): [03)(3 I3><3] b_l_ g) (4)
0

Due to the simplicity of the ball flight dynamics, we can derive a closed form expression for the
ball state at time ¢ in the future as a function of present state:

Of course, we want the robot and ball to interact. We will use the standard restitution model
of collisions between the paddle and the ball. At impact, we will assume that the robot’s velocity
is unchanged, and that the robot imparts an impulse to the ball, instantaneously redirecting the
velocity of the ball. Only the component of the ball’s velocity normal to the paddle is affected!. If
we break the velocity of the ball into the normal part, (62),, and the tangential part, (6%);, then
the post-impact velocity is given by:

(6%)" = (b"): = a(b*)n + (1 + @)(r*)n, (6)

where a € (0, 1) is the coefficient of restitution, and (r?),, is the normal velocity of the robot at the
point of contact. We denote the full state after impact as a function of the ball and robot states
before impact by &' = C'(b,), as specified in (6).

Unless the ball and robot are in continuous contact, it is natural to divide the trajectory of the
ball into epochs of time punctuated by collisions. The k" epoch starts with the ball in state by,
and ends immediately after the next impact, in state bx41. The trajectory of the robot during the
k™" epoch will be denoted rk(b), emphasizing the dependence on b, but not ¢. The duration of the
k' epoch is .

!See Synge and Griffith [25] for a discussion of restitution models.

2.1.2 Interaction with the Environment

Define the contact set, C, as the set of all ball and robot positions such that the ball position is
precisely on the surface of the paddle (here we ignore the diameter of the ball). Define:

p:Bx R—{0,1} =0 «f (b,rYYyecC

=1 otherwise,

(7)

mi = min £ 2 p(b(1), r(b(1))) = 0. (8)

Assuming that our observer and robot controllers are tracking correctly (see below), we may now
express 75 as an implicit function of by:

m = min ¢ 1 p(F*(bg), ri(F" (b)) = 0. (9)

2.1.3 Controllers and Their Induced Return Maps

Since the robot has no effect on the ball except at contact, we would like to ignore from now on
the trajectory of the actuator system, and only consider the state of the robot at the next impact.
We will denote the state of the robot immediately prior to the next impact (9) by the shorthand
ur, = ®(by), and use the collision law (6) to determine the induced effect on the ball.

Given the time to impact, (9), and the flight model, (5), the state of the ball at the start of the
next epoch can now be expressed as a function of the state at the beginning of the previous epoch,
yielding the “return map”,

b1 = f(bg,ur) = C(F™(bg), re(F™(bg))) := fa(br). (10)

Suppose there is an attracting set, G2, arising from iteration of fp. In our methodology, the
specific goal of a controller, @, is encoded by G, and it follows that the domain of attraction of ®
to G is given by

Da(G) = {b € B|fo™(b) € G} . (11)

2.2 The Experimental Apparatus
2.2.1 Mechanism

All of the experimental work described in this paper has been implemented on the Biihgler robot
[20, 24] described above. For sensing, this machine is equipped with 2 CCD cameras located
approximately 3.5m away from the base of the robot, and 2m above the zero plane. A microphone is
attached to the paddle to serve as an impact detector, and provides more precise time measurements
of impact events than is possible with the 60Hz frame rate of the cameras [16].

All parameters for the camera positions and orientations, as well as the kinematic offsets for
the robot itself, are derived by using off-line parameter estimation during a calibration process
undertaken every several months during the operation of the machine [19].

2A closed, invariant set G is attracting if it has the property that there exists an open neighborhood, N(G) D g,
such that fe*°(N) C G.

2.2.2 Sensor System

The basic sensing system is identical to that described in [20] and [17]. However a number of
modifications have been incorporated in support of the less structured tasks we wish to explore.

For the current project, the window managing scheme (which is responsible for choosing where in
an image to look for balls), has been altered from the original to allow a ball to be thrown into the
workspace, rather than “fed” to the machine at a predetermined location. This has led to greater
ease in robot operation, and a more unstructured starting environment.

Furthermore, the system has been altered to “prepare” for the next ball shortly after losing sight
of the last one. This gives the system the ability to “process” balls at some rate, assuming it is
successfully placing them somewhere else at the same rate, or has been programmed to handle more
than one.

Finally, note that the observer (used to produce position and velocity estimates from the incoming
stream of position measurements), has been modified as well. Whenever the ball reappears after
having been absent, the observer uses a “fast and sloppy” method of arriving at the velocity of
the ball quickly, then switches into a slower, more accurate mode. This prevents large velocity
transients associated with initialization from propagating throughout the reminder of the system.
As a result of this change, coupled with the change in window management, it is now possible to
throw balls into the workspace (within a limited range), and have the robot successfully handle
them, as will be described below.

2.2.3 Actuators

The sensing system provides continuous (500Hz to 1kHz) state estimates, which are fed through a
nonlinear transformation to arrive at a desired reference trajectory for the robot. This reference is
in turn passed through a smoothing “follow-through” generator to produce a trajectory that has
continuous velocity (but not necessarily acceleration), and is in some sense “kind” to the robot [16].
Finally, the output of that is passed to a robot controller. The controllers used here are chosen
from the class of inverse dynamics controllers constructed by Whitcomb [27].

For the purposes of this work, we will assume that at the times of impact the observer is suc-
cessfully tracking the ball and the robot controller is successfully tracking the reference trajectory.
Our experiments show that this is very nearly the case.

3 The Constituent Controllers

Following the traditions of Buehler [4], we are interested in programming the robot via “mirror”
laws. A mirror law, when properly tracked, guarantees that the state of the robot is strictly a
function of the current state of the ball. This section presents our present ideas about general-
izing mirror laws to perform additional (other than juggling) “behaviors” as well as a detailed
documentation of our empirical success to date in their implementation.

3.1 Mirror Laws as Fundamental Modes
3.1.1 Initial Design

Originally, the system was only programmed with a direct extension of Buehler’s mirror law [16, 21].
This took the following form:

®b
r=| =5 = (ko t ma(n—m) (O + 5) + roolps = ;o) + Koufy | (12)
K10(Pp — Pb) + K11

where ¢y, 8y, and rp are the cylindrical coordinates of the ball, and 5 is the ball’s vertical energy
[21]:

1.
nZ b, + 553- (13)

3.1.2 Modifications

For the purposes of this work, we have added several new mirror-style reference laws in addition
to (12) (which we will call juggling — ® 7). These result in catching — ®¢, palming — ®p, tossing —
&1, and placing — k.

Juggling, ®;; The underlying control policy used to construct our juggling behavior is exactly
that of (12).

Catching, ®-; We have constructed a preliminary catching behavior based directly on (12) by
choosing a set-point which represents an extremely low juggle (on the order of 10e¢m). This
results in the ball’s energy being quickly dissipated while its lateral position is still well
regulated?.

Palming, ®p; The machine has been endowed with this capability since its inception [22]. Im-
plementation is accomplished by again re-working the template (12). In this case gains are
adjusted such that the hitting portion of the pitch law has been removed. In consequence the
machine does not react to the height of the ball, but only its lateral velocity and displacement.

Tossing, ®1; This behavior is based on the palming behavior, but follows a predefined trajectory
in pitch (and is therefore not a true mirror law) to loft the ball.

Placing, ®x; This behavior takes a post-impact vector as a parameter and causes the robot to
hit a falling ball in such a manner as to achieve it.

The possibility of switching between mirror laws has led to a second sort of follow-through: the
smoothing of the reference trajectory when switching from one to another. This is added after the
other, and we will simply consider the two to be parts of the same law.

#This in contrast to the work of Buehler in [2], where a “catch” was constructed by causing a zero relative velocity
impact between the robot and ball. The difficulty with his approach is that while it does bring the ball to rest on the
paddle, it does not bring both to rest at a desired location — both the ball and paddle continue to move at a non-zero
velocity after contact is established.

3.2 Implementation

The following data should give the reader a feel for the nature of the regulation and accuracy of
the juggling and palming behaviors at various set points around the domain. Since these behaviors
will play an important role in the experiments we perform, it is important to demonstrate (at
least empirically) that they possess a usefully large domain, and that there is a reasonable region
within which we can choose an attracting set point. Because they are still rough and need further
development, we have not presented statistical evidence for catching, tossing, or placing behaviors.
The catch presently works well enough to build the composite behavior of section 4.

There is little yet that can be said analytically about these different controllers and their domains
of attraction or ranges of acceptable “set-points.” The one degree of freedom juggling case has
been analyzed successfully by Buehler and Koditschek [1], and Rizzi and Koditschek [18] have
made progress toward the two and three dimensional cases. We hope to use those results for
characterizations of the juggling behavior and, with some work, to apply them to the other behaviors
based on similar mirror laws. Lacking useful formal results for either the domains of attraction
or ranges of set-points, we are nonetheless encouraged by the empirical results of the following
sections and believe in general that conservative estimates of these characteristics can be derived
either computationally or experimentally, using experiments similar to those described here.

3.2.1 Juggling at a Set Point

125+ 125+
)} -)}
1.00 1.00
£ | w - £ 11— —F— ——
2 0754 2 0754
[=2] (=2
g 0.50 o~ . o g 0.50
<) <)
0.25 0.25
00 f———"— 7 7 T] 00 f———"— 7 7 1]
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Yaw (rad) Yaw (rad)
€) (b)

Figure 2: Juggling around a set point. (a) Average apex positions. (b) Error bars showing twice
the standard deviation of apex positions.

Several set points varying in yaw and e (vertical energy) were chosen from around the workspace,
and ten runs of 30 seconds each (roughly 30 - 60 impacts) were recorded for each point. The radial
set point was 0.7m in every run. In figure 2a, we plot the average apex position for each run in
yaw and z coordinates, where z is the height of the apex above the paddle*. Figure 2b, in the same
coordinates, shows the averages of the collections of points in figure 2a with error bars representing
twice the average standard deviations® of the positions of all the apex points of the runs. Thus, for
each dimension, 96% of all apex points lie within the error bar shown.

*2 has a linear relationship with e.
® Actually, twice the squareroot of the average variance, which is a slightly larger and more meaningful statistic.

10

Because the cameras are pointing down at the workspace, the variance grows larger as the energy
of the set point increases and the ball starts to leave the visual field near its apex. The trajectories
of the ball almost never left the visual field during the runs with the lowest energy, those in the
middle were in the field of view approximately 75% of the time, and the highest energy runs were
visible only 45% of the time. To handle these occurrences, the observer predicts the trajectory of
the ball, and allows the rest of the system to receive uninterrupted ball data. Unfortunately, the
ball model in the observer isn’t perfect, and the characteristics of the juggle suffer somewhat as a
result of not seeing the ball.

Another reason for the errors to increase with energy is that the paddle is not entirely flat.
Although every effort was made to design a flat paddle, there are small irregularities which are
magnified at higher velocities (the ball is moving at around 5 % at contact in the highest energy
runs).

3.2.2 Palming at a Set Point

1.00 . 1.00
' ==
E 075 .) E 075 e
~ 22 ~
E s £ - =
= S 1
";8_ 0.50 '§ 0.50
B ., . 8 '-I-'
3 4. % &
x 0.25- ¢ 0.25-
0.00 T T T T T T T T T T T ! 0.00 T T T T T T T T T T T
-15 -10 05 0.0 0.5 10 15 -10 -05 0.0 05 10
Yaw (rad) Yaw (rad)
@ (b)

Figure 3: Palming around a set point. (a) Average position of the ball. (b) Error bars showing
twice the standard deviation of ball position.

Again, several representative set points were chosen, this time varying in yaw and r. For each set
point, ten runs of 30 seconds were recorded.

Figure 3a shows the average locations of the individual runs, plotted in yaw and r coordinates
this time, while figure 3b has error bars representing twice the average standard deviation® from
the overall averages. This time, there is no particular event, such as an apex, at which to choose a
reading, so these statistics are for the entire traces of each run (which are sampled at 60Hz).

The scatter plots show a much larger dispersion for palming than juggling, which we feel is
attributable to small irregularities on the paddle, magnified by the very small velocities of the ball
near the set point. It is possible for the ball to get caught on a minute bump near the set point and
stay there, or be deflected. This is demonstrated particularly by the run at (-0.3, 0.7), where the
average positions vary considerably from run to run (See figure 3a, in the middle), but the variance
for each run is quite small (See figure 3b,).

6 .
see previous footnote

11

3.2.3 Other Controllers

There are three controllers still “under construction”. These are the catch, toss, and place.

Several varients of a catching controller, & have been developed, the most successful of which
uses a combination of open and closed loop references. Since we are moving toward using mirror-
style controllers for all of our behaviors, the catch demonstrated in section 4 does not yet behave
as well as our earlier one, but is more in line with our philosophy.

Currently, the tossing controller, @7 is completely open loop. This is largely due to the inaccuracy
of the observer, as we do not model the continuous contact mode between the ball and paddle, and
rely on a linear observer instead. In practice, however, this controller adequately performs its duty
of getting the ball off the paddle and projecting it roughly straight up to a height of approximately
half a meter.

The place, ®x, is the hardest of these to implement, as it relies on the accuracy of the robot to
achieve a specific post-impact velocity. We presently have a working algorithm, but inaccuracies in
the calibration of the robot and noise in the observer signal are making it difficult to tune.

All three of these controllers act roughly in the correct way, and we believe that we will shortly
be able to present statistical data documenting them in a fashion that is comparable with the data
for the juggling and palming controllers.

4 A Manipulation Sequence

This section presents initial work on autonomous “sequencing” or “chaining” of the behaviors of
Section 3 in order to accomplish higher level goals. We believe that the general concepts presented
here are sound, but also suspect that certain details may require revision before the logical bugs
are completely worked out. These concepts have been implemented in preliminary form for a very
simple case documented in section 4.1.2, giving us further reason to believe that we’re on the right
track.

4.1 Overview

Presuming that we have a “task goal” and a finite set of behaviors, we wish to develop a directed
graph based on the idea of preparation introduced in 4.1.1. Next, we find a behavior whose goal set
coincides with the task goal (for now, we assume that this is possible). Using a recursive algorithm
similar to preimage backchaining [12], we then set up a partition of the ball’s state space governing
the behavior selection by moving away from the goal node of the graph in a breadth-first manner
and choosing the appropriate subset of the domain of attraction of each controller encountered.

4.1.1 Preparation Graphs and the Partial Ordering of Behaviors

Say that behavior ®, prepares behavior ®4 if the goal set of ®4 lies within the domain of attraction
of behavior 2:

®) = & <= Gg, C Dy, (14)

12

Note that this property may be symmetric or transitive, but need not be. Thus, for any set
of behaviors, § = {®1,®Py,...,Px}, there is a directed (possibly cyclic) graph, Gs induced by
the prepares relation. The nodes of Ggs represent the elements of S, while the links represent the
prepares relation. In general, the prepares relation should not be an easy computation. However,
a fair bit of analysis and experience has already been accumulated for the G and D pertinent to
the classes of controllers we’re working with [2, 18], and the conservative estimates that result have
proven sufficient to develop the experiments of Section 4.1.2.

If the overall task goal set (G) coincides with the goal set of ®;, for some i < N, then by starting
with ®; and recursively tracing the prepares relation backwards through the graph, we can find
S C S, the set of all behaviors from whose domains the goal is achievable were the approprriate
controllers applied at the correct times.

After finding ®;, next choose a partial ordering on Gg which transforms it into an acyclic graph
with all paths leading to ®;. For example, consider a breadth-first search back from ®;, as outlined
in the following steps:

1. Let the OPEN-LIST contain ®;. Let Dy, = Dg,, and Ds,(1) = Dg,.

2. Append to the back of the OPEN-LIST the list of all behaviors which prepare the first
element, and have not previously been placed on the list.

3. Remove the first element of the OPEN-LIST.

4. For ®;, the new first element of OPEN-LIST, let 7:74)] = Dg, — Ds, and let Ds (N + 1) =
DSG(jV) U 'Dq>] .

5. Repeat 2,3 and 4 until OPEN-LIST is empty.

At the end of this process, the regions Dg, will be cells in a partition of Ds,(M), where M is
the number of cells in the partition. The automaton will choose behavior ®; exactly when the ball
state lies within Do, .

The technique proposed here is a variant of the preimage backchaining idea introduced by Lozano-
Perez, Mason, and Taylor [12], although their algorithm was used for compliant motion in the face
of velocity uncertainty with respect to a generalized damper model of dynamics. We choose to
substitute sensory events for the physical transitions that characterized their control sequences.
The domain of each behavior in Ds,, is partitioned in such a manner that the automaton will only
switch to a new behavior if the ball moves into the domain of a behavior which was processed earlier
from OPEN-LIST. Since the attracting goal set of each behavior lies in the domain of another, it
is inevitable that Dg, finally be reached, and thus the goal set will be approached.

The domain of attraction for the goal set can now be considered to be not just Dg,, but Ds, =

4.1.2 Sensor Based Implementation

Using Gs and proceeding in the manner described above, divide § into Sg, the set of behaviors
that can lead to the goal, and Sg, the set of behaviors which can not. Say that all behaviors in Sg,
are OFF, and those in Sg are oN. Further divide the ON behaviors into the one active behavior for
the current epoch, which is ACTIVE, and the rest, which are INACTIVE.

13

Using the partition constructed in the previous section and the output from the sensor, one
may now decide at the beginning of each epoch upon a behavior (from ON) to be followed for the
duration of that epoch.

Pry1 =@, if by € Do,. (15)

When the robot and ball are in continuous contact, we get a new epoch every update from the
sensors.

4.2 Mode Switching: Tying Behaviors Together

Having shown that our behaviors are reasonably robust in Section 3.2, we now move on to tying
them together to achieve a more abstract goal according to the method described above. The task
is simply to bring the ball to rest on the paddle at a desired location, (—0.3,0.7,0.0). There are no
obstacles, and we have a controller, ® p, whose goal set is exactly the task goal point. In addition,
we choose our catching behavior to have a goal at the goal point, and our juggle set point is 0.8m
above the goal point. This small set of possible behaviors was obviously chosen to be advantageous
to the task. At this stage we merely seek to test the feasibility of our abstract algorithm.

The choice of behavioral mode at any given moment is entirely based on the state of the ball
according to the partition algorithm described above. In this simple case it is obvious how to “tune”
the individual controllers such that the ball’s phase space is divided into three cells, each of which
will be associated with a particular controller from the state ® 7, &<, and ®p. The implementation
of this partition is still fairly ad hoc, based upon our crude approximations for the domains of
attraction, D, for the various behaviors. Palming is only acceptable when the ball has little vertical
motion, and is low. Thus we define n = gz + %732, and the domain for palming is given by n < Kj.

Catching, on the other hand, can handle much larger vertical energies (but not every mag-
nitude), but is sensitive to lateral errors in both position and velocity. Thus we define ¢(b) =

\/(m —24)?+ (y — yy)?, and k(b) = \/($ —24)?2 + (¥ — 9yy)%, where z,,y,, etc. are understood to
be the Cartesian coordinates of the goal point. The domain for catching mode is given by n < Ko,

o(b) < K3, and k(b) < Kjy.

For convenience, we will let the domain of juggling be the entire state space of the ball that is
reachable by the robot.

All of the cut-off constants, K;, are chosen by educated guess, as described above. Following the
algorithm outlined in the previous section, we start with ®p and backchain through our small set
of behaviors. In the language of section 3, we can now say:

o Dp = Dp = {b € Bn(b) < K1}
e Gp=(-0.3,0.7,0.0)= G
Do = {b € B|K1 < n(b) < Kq,8(b) < K3,r(b) < K4}

Ge = (~0.3,0.7,0.0) = Gp € Dp
Dy ={be B|Ky < n(b),¢(b) > K3 or r(b)> K4}

14

1.0 1.0 1.0
0.8 0.8 - 0.8
w T w T »w T
5 06- o 06 5 06
] J o] J 2]
E 04- E 04 E 044
N | N | N |
0.2 0.2 - 0.2 h
0.0 0.0 0.0
2 2 2 4
() (] ()
8 14 8 14 8 14
= s ﬂ =
0 ' T ' | 0 — T T OrTrrrrrTrrTrirT
0 2 4 0 2 4 6 8 0 2 4 6 8101214161820222426
Time (seconds) Time (seconds) Time (seconds)
@ (b) (©

Figure 4: Behavior switching. (a) A quick example. (b) Several mode switches. (c) four attempts
before success.

e Gy =(-0.3,0.7,0.8) € D¢

In figure 4, we show three traces of the vertical position of the ball as a function of time, coupled
with the behavioral mode of the system. In the mode traces, 0 represents juggling, 1 catching, and
2 is the palming mode.

In figure 4a, the ball is dropped into the workspace from above the goal point. As a result, the only
criterion keeping the system in juggling mode is the energy maximum for the catch. Immediately
after the first collision, the energy is low enough for the system to try to catch the ball. At the
second collision, however, the observer predicts the post-impact conditions incorrectly, which sends
the system back to juggling (due to lateral error, not shown). The observer quickly corrects to the
actual ball trajectory, which has low enough 7 to send the system straight to palming, where the
ball quickly loses its remaining energy.

In figure 4b, the ball is not introduced so nicely, and the robot juggles it a few times before the
lateral errors are small enough for an attempted catch. This time, the observer takes too long to
notice the second bounce, predicting that the ball has fallen further than it did in reality. Thus, 5
falls low enough for palming to be switched on, but the revised ball data quickly send the system
back to juggling. The lateral errors briefly dip low enough for the system to switch to catching,
then back to juggling, but finally catching turns on, and then palming.

In figure 4c, the system tries to catch three times and fails before finally bringing the ball down
to the paddle on the fourth attempt. Once the system is in palming mode and the ball has settled
on the paddle, it will remain there.

The third example shown here demonstrates the robustness of this approach to planning. The
system has no memory, and no “plan” in the traditional sense. It will jump from any node to any
other based on the sensed ball state, regardless of how or whether those nodes are connected in Ggs.
A traditional planner might need pre-programmed exception handling to go from palming mode
back to catching or juggling, as such jumps violate the world model. The physical stability of each
of our behaviors guarantees that the system will continue to be inexorably drawn toward the goal
state regardless of any unexpected changes in state.

15

5 Controller Deployment

5.1 Automatic Tuning

For each behavior, ®;, there are parameters which must be adjusted: set points, gains, etc. We will
refer to each vector of parameters as §; € =;, and denote the dependence of ®; upon & by ®,(&;).

—_
— -

Call a particular £ € Z = =1 X Z3 X ... X Zps a deployment.

It may be the case that some set of initial states important to us is not within Ds,. For example,
we might desire global attraction to G. In such cases our only option is to tune the parameters of
our behaviors. Such adjustments tend to lead to different domains for the behaviors (for instance,
changing the control gains might collapse the domain to a single point!), and may likely lead to
different topologies for the graph Ggs.

We would like to develop a method for moving the deployment within = in such a manner as to
alter the connectivity of Gg in our favor. It seems likely that G is locally constant in =, but that
significant perturbation will change its topology —perhaps favorably, perhaps not. In the long run,
we hope to develop some insight into an offline deployment algorithm, and ultimately an online
algorithm for doing so as well.

The question arises as to how many different copies of (essentially) the same behavior are desir-
able. The set point for palming, for example, may be placed almost anywhere in the workspace.
Each set point technically gives rise to a new behavior, yet it seems natural to consider the entire set
as a single behavior with a varying set point. We would like to be able to reason about driving the
set point for a single behavior around the workspace, an activity we demonstrate in the following
section. For example, if the workspace is divided by obstacles into many similar cells (such as a
maze), it seems much more natural to have a few behaviors that are tuned depending on which
obstacle cell the system is in, rather than a new behavior from each class in each cell.

It may also be the case that our task goal is not contained within the goal set of any particular
behavior, or that it is described in terms of a limit cycle of parallel behaviors (such as two-juggling).
In such cases the first problem may be finding a representation for the goal set.

We find the fact that different regions in = give rise to distinct classes of behavior (such as juggling
or palming) to be intriguing and exciting. Although we don’t understand in what manner, we believe
that there is a connection between navigation within = and rudimentary artificial intelligence.

5.2 Palming Around a Moving Set Point

Here we demonstrate the ability of the palming behavior to follow a moving set point. We present
this meta-behavior to demonstrate that we are moving toward the ability of online deployment, as
discussed above. Although we have no formal analysis, it seems clear that the palming behavior is
robust to this sort of activity.

Having shown that the palming behavior has a healthy steady-state about a fixed point, we now
start moving the set point and require the palming algorithm to track it. It should be emphasized
that the algorithm is still simply trying to regulate about a set point, and has no “idea” that the
set point might be in motion. We could have given anecdotal evidence similar to these figures for
the juggling behavior, but chose to show only the palming traces due to space constraints.

16

The trajectory of the set point is a rectangular loop in joint space, with two sides at constant
yaw (at -1.3 and 0.4), and the other at constant r (at 0.4 and 0.8). Because this behavior is difficult
to capture with averages or error bars, we demonstrate it with two anecdotal traces of four minutes
each. Note that these figures clearly show the annular nature of the actual robot’s workspace.

1.00 4 1.00 4
0.75 0.75
E 050 E 050
c o
= =
2 2
0.25 0.25
> >
0.00 000 % .
&-‘-’-ﬁéﬁ; a4
-0.25 : . : . : . : . : , -0.25 : . : . : . : . T ,
-1.00 -0.75 -0.50 -0.25 0.00 0.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25
X Position (m) X Position (m)
@ (b)

Figure 5: Palming around a moving set-point: (a) a slow reference trajectory, (b) a fast reference.

In figure 5a, the robot is asked to regulate the ball to a set point moving clockwise around the
loop drawn in solid lines. The constant-r sides take 10 seconds each, and the constant-yaw sides
take 7 seconds each. The actual trajectory of the ball is shown by the dotted lines. In figure 5b,
the set point is following the same pattern, but this time the constant-r sides take only 5 seconds,
and the other sides are 3 seconds.

At the slower rate, the robot is able to keep the ball close to the desired track, but allows the
ball to wander a little. On the other hand, because the ball is moving faster in figure 5b, there
is considerable overshoot in the radial direction, but the ball trajectories are more uniform. The
radial overshoot is exacerbated by coriolis forces at the higher velocities, and the robot has weaker
control over the ball in that direction than in the angular direction. These plots also demonstrate a
systematic error in the yaw position of the ball relative to the set point. This error is also evident
in the other plots (e.g., the column in the middle of figure 2a should all have yaw = —0.3), and
can be attributed to a zeroing error in the third (roll) degree of freedom.

6 Conclusion: Looking Ahead to Dynamical Obstacle Avoidance

Although we have alluded to the presence of obstacles in this paper, the reader will have observed
that there has been as yet no mention of how to cause a ball to avoid them. We are indeed
developing versions of each of the controllers mentioned in this paper that will perform a similar
manipulation primitive yet insure that the ball does not penetrate an obstacle at the same time.

17

Since these controllers are not yet complete at the time of this writing, we have no empirical results
to report. For the time being, we simply report on the notion of safety that provides the key
ingredient in their design.

6.1 Obstacles and Safety

Let the set of all ball states which are unacceptable be denoted by (3. This set includes the positions
where the ball is in a physical obstacle (or close enough that the robot can not manipulate it without
penetrating the obstacle), as well as all states where the ball is beyond the cylinder of the workspace,
or too fast to be viewed by the current vision system.

We define the time of flight until the ball hits the obstacle by

To(b) = mint : F'(b) € O. (16)
The time to impact for a particular behavior, ®, is given by 7

T6(b) = 1 — (m:by, — 720) /9. (17)

We call a behavior @ safe if there can be found an open set Dgs C Do satisfying the following
criteria:

Daos C {b € D@qu)(b) < To(b)} (18)
fo(Pss) C Dos (19)

Assuming that the robot is acting according to @, then the first criterion requires that the domain
not contain any ball states from which the trajectory of the ball will lead to the obstacle before the
next contact. The second criterion — invariance to impacts — implies that once in the safe domain
the robot will never knock the ball out (again assuming that the robot continues in ®). Together,
these criteria insure that once a ball is in Dgg, it will neither leave nor hit an obstacle as long as
the robot remains in .

6.2 Future Work

The previous definition is not utterly vacuous, as it is easy to provide examples of safe domains for
certain controllers faced with certain types of obstacles. Consider, for example, the juggler, ® ;, and
the domain, V of all those ball states that are positioned directly at the correct horizontal position
of the specified juggle apex with no horizontal velocity. We have demonstrated in previous work
[18] that V' is an invariant submanifold, fs,V C V. Moreover, it is clear that no ball in V' will ever
hit an obstacle that does not intersect the vertical line through the specified apex point. Thus, V
is a safe domain for our existing juggler. Obviously, V is a disappointingly small set and we would
be hard pressed to achieve any safe progress toward horizontally displaced goals were that our only
safe behavior. What could be done with a larger safe domain and more safe behaviors?

"We use 7:(b) to refer to the vertical velocity component of b.

18

If one re-reads this paper and substitutes for each ® the safe version, ® g and substitutes for Dg
the induced restriction dynamics fg|p, ., then all the same definitions and algorithmic procedures
are applicable. Clearly, however, the domains, Dgg, can be expected to be much smaller, and the
corresponding problem of deployment much more difficult.

In the near future we plan to consider the “obstacle” of all those ball states that can never again
be batted because they are out of reach, or unalterably becoming so. We will attempt to build a
“containing” version of the sequenced manipulation of section 4. In this scenario, a ball would be
thrown into the workspace and the robot would first insure that it is brought “under control” so
as not to fly out of reach before settling into its descent toward the palming goal. Moreover, the
robot would be capable of containing balls that we try to poke out of its workspace.

More realistic obstacles will raise even more interesting versions of the deployment problem. We
hope to work on doors and windows in the near future.

References

[1] M. Biihler and D. E. Koditschek. From stable to chaotic juggling. In Proc. IEEFE International
Conference on Robotics and Automation, pages 1976-1981, Cincinnati, OH, May 1990.

[2] M. Biihler, D. E. Koditschek, and P. J. Kindlmann. Planning and control of a juggling robot.
International Journal of Robotics Research, 13(2):101-118, 1994.

[3] M. Biihler, D. E. Koditschek, and P.J. Kindlmann. A family of robot control strategies for
intermittent dynamical environments. IEFE Control Systems Magazine, 10:16-22, Feb 1990.

[4] Martin Biihler. Robotic Tasks with Intermittent Dynamics. PhD thesis, Yale University, New
Haven, CT, May 1990.

[5] Bruce R. Donald. Error Detection and Recovery for Robot Motion Planning with Uncertainty.
PhD thesis, MIT, 1987.

[6] M. A. Erdmann and M. T. Mason. An exploration of sensorless manipulation. IFFFE J. Rob.
and Aut., 4(4):635-642, Aug 1988.

[7] Michael Erdmann. Towards task-level planning: Action based sensor design. Technical Report
CMU-CS-92-116, Carnegie Mellon University, Pittsburgh, PS, Feb. 1992.

[8] Michael A. Erdmann. On motion planning with uncertainty. Technical Report AI-TR-810
(MS Thesis), MIT AI Lab, Aug 1984.

[9] Tomas Lozano-Pérez et al. Handey: A robot systems that recognizes, plans, and manipulates.
In Proceedings IFEF Int. Conf. Robotics and Aut., pages 843-849, 1987.

[10] Daniel E. Koditschek. Robot control systems. In Stuart Shapiro, editor, FEncyclopedia of
Artificial Intelligence, pages 902-923. John Wiley and Sons, Inc., 1987.

[11] Jean-Claude Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

19

[12] Tomdas Lozano-Perez, Matthew T. Mason, and Russell H. Taylor. Automatic synthesis of
fine-motion strategies for robots. The International Journal of Robotics Research, 3(1):3-23,
1984.

[13] D. M. Lyons and A. J. Hendriks. Planning by adaption: Experimental results. In Proceedings
IEFFE International Conference on Robotics and Automation, pages 855-860, 1994.

14] Damian M. Lyons. Representing and analyzing action plans as networks of concurrent pro-
g g
cesses. IEEE Transactions on Robotics and Automation, 9(3):241-256, June 1993.

[15] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.
SIAM J. Control and Optimization, 25(1):206-230, Jan 1987.

[16] A. A. Rizzi and D. E. Koditschek. Further progress in robot juggling: The spatial two-juggle.
In IFEFE Int. Conf. Robt. Aut., pages 3:919-924, May 1993.

[17] A. A. Rizzi and D. E. Koditschek. An active visual estimator for dexterous manipulation.
IEEE Transactions on Robotics and Automation, (submitted), 1994.

[18] A. A. Rizzi and D. E. Koditschek. Further progress in robot juggling: Solvable mirror laws.
In Int. Conf. Rob. and Aut., pages 2935-2940, 1994.

[19] Alfred Rizzi and Daniel E. Koditschek. Preliminary experiments in robot juggling. In Proc.
Int. Symp. on Ezperimental Robotics, Toulouse, France, June 1991. MIT Press.

[20] Alfred A. Rizzi. Dexterous Robot Manipulation. PhD thesis, Yale University, 1994.

[21] Alfred A. Rizzi and D. E. Koditschek. Progress in spatial robot juggling. In IFFFE Int. Conf.
Robt. Aut., pages 775-780, Nice, France, May 1992.

[22] Alfred A. Rizzi and Daniel E. Koditschek. Preliminary experiments in robot juggling. In
IEFFE International Conference on Robotics and Automation Video Proceedings, Sacramento,

CA, USA, 1991.

[23] Alfred A. Rizzi and Daniel E. Koditschek. Dynamically dexterous robotics: The two-juggle.
In IFFEFE International Conference on Robotics and Automation Video Proceedings, Atlanta,

GA, USA, 1993.

[24] Alfred A. Rizzi, Louis L. Whitcomb, and D. E. Koditschek. Distributed real-time control of a
spatial robot juggler. IEEE Computer, 25(5), May 1992.

[25] J. L. Synge and B. A. Griffith. Principles of Mechanics. McGraw Hill, London, 1959.

[26] C. P. Tung and A. C. Kak. Integrating sensing, task planning and execution. In Proceedings
IEFFE International Conference on Robotics and Automation, pages 2030-2037, 1994.

[27] Louis L. Whitcomb, Alfred Rizzi, and Daniel E. Koditschek. Comparative experiments with

a new adaptive controller for robot arms. IFEFE Transactions on Robotics and Automation,
9(1):59-70, 1993.

[28] D. E. Whitney. Force feedback control of manipulator fine motions. ASMFE J. Dyn. Syst.,
98:91-97, June 1977.

20

