

1

Modeling Computation and Communication Performance
of Parallel Scientific Applications: A Case Study of the IBM SP2

Eric L. Boyd, Gheith A. Abandah, Hsien–Hsin Lee, and Edward S. Davidson
Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science
University of Michigan

1301 Beal Avenue
Ann Arbor, MI 48109-2122

PHONE: 313-936-2917; FAX: 313-763-4617
{boyd, gabandah, linear, davidson}@eecs.umich.edu

Abstract

A methodology for performance analysis of Massively Parallel Processors (MPPs) is presented. The IBM SP2 and some
key routines of a finite element method application (FEMC) are used as a case study. A hierarchy of lower bounds on run time
is developed for the POWER2 processor, using the MACS methodology developed in earlier work for uniprocessors and vector
processors. Significantly, this hierarchy is extended to incorporate the effects of the memory hierarchy of each SP2 node and
communication across the High Performance Switch (HPS) linking the nodes of the SP2. The performance models developed
via this methodology facilitate explaining performance, identifying performance bottlenecks, and guiding application code im-
provements.

1. Introduction

Scientific applications are typically dominated by loop code, floating–point operations, and array references. The perfor-
mance of such applications on scalar and vector uniprocessors has been found to be well characterized by the MACS model, a
hierarchical series of performance bounds. As depicted in Figure 1, the M bound models the peak floating–point performance
of the

M

achine architecture independent of the application. The MA bound models the machine in conjunction with the opera-
tions deemed to be essential in the high–level

A

pplication workload. Hence Gap A represents the performance degradation due
to the application algorithm’s need for operations that are not entirely masked by the most efficient class of floating–point op-
erations. The MAC bound is derived from the actual

C

ompiler–generated workload. Hence Gap C represents the performance
degradation due to the additional operations introduced by the compiler. The MACS bound factors in the compiler–generated

S

chedule for the workload. Gap S thus represents the performance degradation due to scheduling constraints. The performance
degradation seen in the remaining gap, Gap P, is due to as yet unmodeled effects, such as unmodeled cache miss penalties, load
imbalances, OS interrupts, and I/O, that affect actual delivered performance. The bounds are generally expressed as lower
bounds on run time and, along with measured run time, are given in units of CPF (clocks per essential floating–point operation).
The reciprocal of CPF times the clock rate in MHz yields an upper bound on performance in MFLOPS. The

MACS

 model has
been effectively demonstrated and applied in varying amounts of detail to a wide variety of processors. [1][2][3][4][5][6] The
MACS model developed for each SP2 node incorporates a significant additional refinement beyond these earlier studies by in-
cluding the effects of the memory hierarchy.

Scientific applications often exhibit a large degree of potential parallelism in their algorithms, and hence are prime candi-
dates for execution on MPPs. Gap P can become very large and poses the fundamental limit to scalability for parallel applica-
tions. Characterizing the communication performance of an MPP and the communication requirements of an application
achieves a refinement of Gap P that is crucial to modeling and improving the performance of parallel scientific applications that
exhibit moderate to high amounts of communication relative to computation. We demonstrate that coupling the MACS bounds
hierarchy, which models the computation of an individual node, with models of communication, as well as load balancing and
cache effects, to refine Gap P, enables the effective modeling of the performance of scientific applications on a parallel com-
puter such as the IBM SP2. This refinement is begun in this paper with the introduction of a communication model for the SP2.
The MACS model is applied to the SP2 and integrated with this communication model in a case study of a commercial scientific

Figure 1:

MACS Performance Bound Hierarchy

MA MAC MACS
Measured

CPFM
Gap A Gap C Gap S Gap P

This document was created with FrameMaker 4.0.4

2

application.
This methodology could easily be extended to other message passing MPPs, such as the Intel Paragon and the Thinking

Machines CM5. [7][8] We believe that it can also be extended to shared memory MPPs, such as the Kendall Square Research
KSR2, the Convex Exemplar, and the Cray T3D [11][12][13][14], by using techniques to expose and characterize the implicit
communication, as demonstrated in [6][9][10].

All experiments in this paper were run on an IBM SP2 with 32 Thin Node 66 POWER2 processors running the AIX 3.2.5
operating system. An overview of the SP2 architecture is given in Section 2. The single–node SP2 (POWER2) MACS model
is detailed in Section 3, with extensions to include the effects of the memory hierarchy. Section 4 presents the communication
model for the IBM SP2.

An industrial structural finite element modeling code, FEMC, is used to demonstrate the methodology. This application is
being ported from a vector supercomputer, parallelized, and tuned for the IBM SP2 at the University of Michigan, and hence
represents one scenario of performance modeling. Three performance–limiting FEMC routines are examined. These routines
exhibit low, moderate, and high communication to computation ratios and various patterns of communication. Section 5 gives
a brief overview of the application routines and discusses the performance modeling results. The performance models devel-
oped via this methodology facilitate explaining performance, identifying performance bottlenecks, and guiding application
code improvements.

2. IBM SP2 Architectural Analysis

A typical IBM SP2 contains between 4 and 128 nodes connected by a High–Performance Switch communication intercon-
nect; bigger configurations are possible. Each node consists of a POWER or POWER2 processor and an SP2 communication
adapter. There are three types of POWER2 nodes currently available: Thin Nodes, Thin 2 Nodes, and Wide Nodes. Thin Nodes
have a 64 Kbyte data cache; Thin 2 Nodes have a 128 Kbyte data cache, and Wide Nodes have a 256 Kbyte data cache. Thin 2
Nodes and Wide Nodes can do quadword data accesses, copying two adjacent double words into two adjacent floating point
registers from the primary cache in one cycle.

2.1. POWER2 Architecture

 [15]

Each Thin Node POWER2 operates at a clock speed of 66.7 MHz, corresponding to a 15 ns processor clock cycle time. The
POWER2 processor is subdivided into an Instruction Cache Unit (ICU), a Data Cache Unit (DCU), a Fixed–Point Unit (FXU),
and a Floating–Point Unit (FPU), as shown in Figure 2. The POWER2 processor also includes a Storage Control Unit (SCU)
and two I/O Units (XIO), neither of which are shown or described. Thin Nodes and Thin 2 Nodes also include an optional sec-
ondary cache (1 or 2 Mbytes, respectively), memory (64 Mbytes to 512 Mbytes), and a communication adapter. All experiments
in this paper are run on Thin Nodes with no secondary cache and a 256 Mbyte memory.

The ICU can fetch up to eight instructions per clock cycle from the instruction cache (I–Cache). It can dispatch up to six
instructions per cycle through the dispatch unit, two of which are reserved for branch and compare instructions. Two indepen-
dent branch processors within the ICU can each resolve one branch per cycle. Most of the branch operation penalties can be
masked by resolving them concurrently with FXU and FPU instruction execution. The instruction cache is 32 Kbytes with 128
byte cache lines with a one cycle access time.

The FXU decodes and executes all memory references, integer operations, and logical operations. It includes address trans-
lation, data protection, and data cache directories for load/store instructions. There are two fixed–point execution units which
are fed by their own instruction decode unit and maintain a copy of the general purpose register file. Two fixed–point instruc-
tions can be executed per cycle by the two execution units. Each unit contains an adder and a logic functional unit providing
addition, subtraction, and Boolean operations. One unit can also execute special operations such as cache operations and priv-
ileged operations, while the other unit can perform fixed–point multiply and divide operations.

The FPU consists of three units, a double precision arithmetic unit, a load unit, and a store unit. Each unit has dual pipelines
and hence can execute up to two instructions per cycle. The peak issue rate from the FPU instruction buffers to these units is
thus two double precision floating–point multiply–adds, two floating–point loads, and two floating–point stores per clock.

The DCU includes a four–way set associative multiport write–back cache. The experiments in this paper were performed
on a configuration with a 64 Kbytes data cache with 64 byte cache lines. The DCU also provides several buffers for cache and
direct memory access (DMA) operations as well as error detection/correction and bit steering for all data sent to and received
from memory. The DCU has a one cycle access time. The miss penalty to memory is determined experimentally to be between
16 and 21 processor clock cycles.

2.2. Interconnect Architecture [16][17]

 [18]

The SP2 interconnect, termed the High–Performance Switch (HPS), is designed to minimize the average latency of message
transmissions while allowing the aggregate bandwidth to scale linearly with the number of nodes. The HPS is a bidirectional

3

multistage interconnect (MIN), logically composed of switching elements. It operates at 40 MHz, providing a peak bandwidth
of 40 MBytes/sec in each direction over each full–duplex communication link.

 Each message packet includes routing information that enables each switching element to determine on the fly the next
destination for the packet. Buffered wormhole routing is employed for switch flow control. Unlike standard wormhole routing
algorithms, if a message is blocked within a switching element, it is temporarily buffered in dynamically allocated shared mem-
ory. Each switching element is physically an eight input, eight output device, wired as a bidirectional 4x4 element.

Nodes of the SP2 system are grouped into frames; each frame consists of a switch board, as shown in Figure 3, and 16 nodes.
Each frame incorporates 8 switching elements in two stages of four elements each, plus 8 shadow switching elements to provide
a redundant check. For systems of up to eighty processors, the 16 links of a frame on the far side of the second switch stage are
connected to the far side links of 1 to 4 other frames. SP2 systems with 81 to 128 nodes use intermediate switch boards between
frames.

Messages to be sent between nodes on the SP2 are broken into discrete packets, each containing the required routing infor-
mation. The smallest unit on which flow control is performed on the SP2, a flit, is one byte wide, corresponding to the width of
an output port of the HPS switch elements. Packets vary in length up to 255 flits. Each packet is of length

r

 +

n

 + 1, where the
first flit contains the packet length, the next

r

 flits contain the routing information, and the last

n

 flits contain data and error
checking bytes. On a 32 node system,

r

 = 1 or 2. Experiments show that the first packet can contain up to 216 bytes (or flits) of
useful data. Additional packets can contain up to 232 bytes (or flits) of useful data.

Figure 2:

POWER2 Processor Architecture

Dispatch Unit

Instruction Cache Unit (ICU)

I

nstruction buffers

Fixed Point Unit (FXU)

I

nstruction buffers

Floating Point Unit (FPU)

SyncExecution
Unit without
Multiply/
Divide

Execution
Unit with
Multiply/
Divide

Store
Execution

Unit

Arithmetic
Execution

Unit

Instruction
Cache

Dual
Branch

Processors

Load
Execution

Unit

Memory Unit
Secondary Cache

(Optional)

Data Cache Unit (DCU)
(4 Separate Chips)

4

3. IBM SP2 MACS Model

A lower bound on the computation run time of floating–point applications on the IBM SP2 is given by the MACS model
developed for the POWER2 processor. Only the M bound, MA bound, and MAC bounds are presented below. The MACS
bound is not developed because the POWER2 architecture is implemented with extensive buffering, multiple issue and out–of–
order execution among its functional pipes; hence the schedule is modified dynamically at run time and schedule stalls are great-
ly reduced. Thus, a realistic MACS bound is hard to develop; and would likely be very close to the MAC bound.

3.1. M Bound Equations

The M bound models the peak performance of the POWER2 FPU, independent of the application requirements, the compiler
workload, or the scheduler. The M Bound for the POWER2 is 0.25 CPF since the POWER2 can compute at most four floating–
point operations per cycle (one multiply–add issued to each of 2 pipelines).

3.2. MA Bound Equations

The MA bound models the peak application performance of the POWER2 architecture given the visible workload of the
high level application code. The POWER2 is modeled as five independent functional units: floating–point unit, fixed–point
unit, instruction issue unit, memory unit, and a dependence pseudo–unit. The MA bound,

t

MA

, is calculated as the maximum
CPF bound among the five independent functional units:

t

MA

 = MAX (t

fl

, t

fx

, t

m

, t

i

, t

d

) / (f

a

 + f

m

 + 2 * f

ma

 + 4 * f

div

 + 4 * f

sqrt

) (1)

The CPF bound for each functional unit is calculated as a function of the number of essential operations that must be per-
formed by that functional unit per simulation time step in the high level source code. The bound assumes that each functional
unit need execute only these essential operations, and that it can execute them at its peak rate. The compiler is ‘idealized’ in that
no nonessential operations are considered; the scheduler is ‘idealized’ in that no stalls due to resource constraints and/or sched-
ule dependences are considered. Equation (1) bounds run time by assuming that the busiest functional unit is kept continuously
busy.

The set of essential arithmetic operations includes the minimum number of floating–point assembly operations necessary to
complete a computation (including floating–point additions and subtractions,

f

a

, floating–point multiplications,

f

m

, triad oper-
ations which do both,

f

ma

, division operations,

f

div

, and square root operations,

f

sqrt

). Both division and square root operations
are weighted by a factor of four, as is commonly done for the Lawrence Livermore Fortran Kernels [19] and other benchmarks.
The number of essential floating–point loads, l

fl

, equals the number of distinct values that appear on the right hand side (RHS)
of a high level code statement before they appear on the left hand side (LHS) of a high level code statement. The number of
essential floating–point stores, s

fl

, equals the number of distinct values that appear on the LHS of a high level code statement

Figure 3:

SP2 Switch Board

Connections to
other Frames

Connections to
the 16 Frame

Nodes

Stage 1 Stage 2

5

that are neither temporary values nor scalars which should spend their lifetime in registers. For Thin 2 Nodes or Wide Nodes,
l

fl

 and s

fl

 should be divided by two if the stride equals one, since it is possible to employ quadword loads and stores.
The floating–point functional unit bound,

t

fl

, models the time needed in the FPU to execute the essential arithmetic and
memory floating–point instructions. Since the POWER2 contains three dual–pipelined execution units in the FPU – one for
arithmetic operations, one for loading data, and one for normalizing store data:

t

fl

 = MAX ((f

a

 + f

m

 + f

ma

 + 17 * f

div

 + 27 * f

sqrt

) / 2, s

fl

 / 2, l

fl

 / 2) (2)

Floating–point divide operations require the FPU for 17 cycles and square root operations require 27.
The model’s instruction issue functional unit bound,

t

i

, models the IBM SP2 instruction dispatch bandwidth of the ICU. This
unit can dispatch four floating–point arithmetic or memory reference instructions per cycle. The POWER2 can also dispatch
branch and condition register instructions concurrently with the above, or other fixed-point instructions in place of memory op-
erations; however, since in scientific loop-dominated code they have negligible or no impact on POWER2 performance, these
instructions are not included in the MA bound.

t

i

 = (f

a

 + f

m

 + f

ma

 + f

div

 + f

sqrt

 + l

fl

+ s

fl

) / 4 (3)

Since non-floating–point operations are assumed to have a negligible impact on the performance of scientific applications,
the fixed–point functional unit, t

fx

, models only the impact of the fixed–point unit on floating–point operations. An address cal-
culation is required for each floating–point memory operation. Since the FXU in the POWER2 architecture can begin two float-
ing–point memory operations (either loads or stores) per cycle:

t

fx

 = (l

fl

+ s

fl

) / 2 (4)

In previously published implementations of the MACS model, the memory hierarchy unit, t

m

, has ignored the instruction
cache entirely, and has assumed that all data accesses hit in the data cache. As a result, the memory unit models developed for
other architectures have focused on data cache port bottlenecks only. Since the routines of interest modeled in Section 5 have
working sets that exceed the size of the data cache, a more sophisticated model of memory is required to explain a significant
fraction of runtime. Two ports connect the floating–point unit with the primary data cache in the POWER2 processor, and a
single port connects the data cache to memory. A memory hierarchy unit lower bound on run time is as follows:

t

m

= MAX((load miss time + store miss time), (l

fl

 L

eff

 + s

fl

 S

eff

) / 2) (5)

The first term in Equation (5) models the single port between the data cache and memory. In applications with a high miss
rate, multiple cache misses may occur at the same time, but only one can be serviced by the memory at time due to this single
port bottleneck.

The second term in Equation (5) models the two ports between the FPU and the data cache. In applications with a low miss
rate, there is typically only a single outstanding cache miss at any one time. While the memory services the miss, the other data
cache port can continue to service a single memory access per cycle. The effective number of cycles per floating–point load,
L

eff

, and per floating–point store, S

eff

, is calculated as a function of the number of essential misses. Note that t

m

≥

 t

fx

, and t

m

 =
t

fx

 only if all memory access operations hit in the data cache.
A key issue in evaluating Equation (5) is developing a lower bound on the effective access time of floating–point loads and

stores, given a high level application. For a memory system of

n

 levels, the Effective Access Time, T

eff

, is:

(6)

where f

j

 is the Access Frequency for level

j

, and t

j

 is the Access Time for that level. The access frequency can be calculated as
follows:

f

j

 = m

1

 m

2

 … m

j-1

 (1-m

j

) (7)

where m

j

 is the miss ratio in the

j

th level of the memory hierarchy. SP2 systems have a primary cache, an optional secondary
cache, and main memory, hence Equation (6) can be rewritten:

T

eff

 = (1 - m

1

)t

1

 + m

1

 (1 - m

2

) t

2

 + m

1

 m

2

 (1-m

3

) t

3

 = (1 - m

1

) t

1

 + m

1

 t

3

(8)

assuming no secondary cache (m

2

 = 1) and ignoring page faults (m

3

 = 0). Experimental calibration loops show that t

1l

 = t

1s

 =
1, t

3l

 = 16.3, and t

3s

 = 22.0, hence:

L

eff

 = 1 + 15.3 * m

1l

 S

eff

 = 1 + 21.0 m

1s

 (9)

Thus for our SP2 system, and later experiments, we use:

t

m

= MAX(((l

fl

 (16.3 m

l1

) + s

fl

 (22.0 m

s1

)), ((l

fl

 (1 + 15.3 m

l1

) + s

fl

 (1 + 21.0 m

s1

)) / 2) (10)

Essential misses are classified as either compulsory (

m

comp

) or capacity (

m

cap

). Hence a lower bound on the miss rate,

m

, can
be calculated as follows:

T

eff

f

j

t

j

⋅

j

1=

n

∑

=

6

(11)

A lower bound on the number of compulsory misses equals the number of blocks in the Working Set (

B

), hence:

m

comp

 =

B

(12)

Capacity misses depend on the number of Working Set blocks (

B

), the number of Cache blocks (

C

), the Cache Degree of As-
sociativity (

A

), and the Access Pattern. Assuming a linear access pattern, as is often found in loops, a lower bound on capacity
misses,

m

cap

, can be calculated as follows:

(13)

D

 is the number of degrees of freedom in the access pattern which equals the number of distinct arrays and is restricted to be
between 1 and

A

. The miss ratio is linear in the transition region [2], and

m

cap

 equals the product of

B

 and the miss ratio.
The loop–carried dependence pseudo–unit,

t

d

, models the performance of loops with a recurrence, i.e. a result of one itera-
tion depends on the corresponding result of a previous iteration. Whenever there is such a cycle in the dependence graph of the
floating–point arithmetic operations,

t

d

 is computed as the worst- case recurrence cycle, where each recurrence cycle is calcu-
lated as the total latency of the operations in one tour divided by the number of iterations in that recurrence cycle. The latency
of an operation is related to pipeline depth and is computed as the minimum number of clocks between issuing that operation
and issuing a succeeding operation that uses its result as an operand, hence:

L

r

= total latency of the loop-carried dependence in recurrence cycle

r

(14)

I

r

 = number of iterations in recurrence cycle

r

(15)
t

d

 = MAX

∀

 recurrence cycles r

(

L

r

/

I

r

) (16)

The latency is 1 cycle for floating–point adds and multiplies, 2 for floating–point multiply adds, 17 for floating–point divides,
and 27 for floating–point square roots.

3.3. MAC Bound Equations

The MAC bound for the POWER2 architecture is computed similarly to the MA bound, except that the operation counts are
computed from the compiled assembly code. In the MAC bound equations, counts of the various types of operations are marked
with primes to indicate that they represent the number of operations found in the compiled code, not the minimum number of
essential operations needed in the high–level code.

Furthermore all compiled operations are counted in the MAC model, including fixed–point and branch instructions. The
fixed–point unit can begin two fixed–point operations per cycle, but at most one fixed–point multiplication or division per cycle.
The branch functional unit, which can execute two branch instructions per cycle, is added for the MAC model. L

eff

' and S

eff

' are
calculated as for the MA model, but the miss ratio is computed using the number of actual misses divided by the actual accesses.
For our SP2, t

m

' is calculated as in Equation (10), using the MAC parameter values.

n

FPU

 = number of FPU computation instructions = f

a

' + f

m

' + f

ma

' + 17 * f

div

' + 27 * f

sqrt

' + others (17)
t

fl

' = MAX (n

FPU

 / 2, l

fl

' / 2, s

fl

' / 2) (18)
n

FXU

= number of FXU instructions = l

fl

' + s

fl

' + others (19)
n

FXMD

= number of fixed–point multiplication and division instructions (20)
n

BC

= number of branch and compare instructions (21)
t

fx

' = MAX (n

FXU

 / 2, n

FXMD

) (22)
t

m

' = MAX((load miss time + store miss time), ((l

fx

' + l

fl

') L

eff

' + (s

fx

' + s

fl

') S

eff

') / 2) (23)
t

b

'

= n

BC

 / 2 (24)
t

i

' = (compiled code length – n

BC

) / 4 (25)
t

d

' = MAX

∀

 recurrence cycles r

(

L

r

'/

I

r

) (26)
t

MAC

 = MAX (t

fl

', t

fx

', t

m

', t

b

', t

i

', t

d

') / (f

a

 + f

m

 + 2 * f

ma

 + 4 * f

div

 + 4 * f

sqrt

) (27)

3.4. Automatic MAC Bound Generator

The Automatic MAC Bound Generator is a single pass forward-scanning tool which generates the parameters used in the

m
m

comp

m

cap

+

Number of Essential Accesses
--=

m

cap

0

B C

≤

(cache region)

B
B C

–

DC

()

A

⁄

C B C

1

D A

⁄

+

()≤ ≤

(transition region)

B B C

1

D A

⁄

+

()≥

(memory region)

î





=

7

MAC Bound. [6] It reads a designated region of interest of the IBM POWER2 assembly code as its input and reports statistics
for each loop. Reported statistics include the nesting relationship for each loop and respective values of

t

fl

'

, t

fx

'

, t

b

'

,

and

 t

i

'. This
tool accepts perfectly nested loops and most imperfectly nested loops (forward branches inside the loop body are allowed) as
input. In general, all nested loops written in well-structured programming styles are accepted by this tool. Statistics for outer
loops report only on code not contained in the inner loops, i.e. the

residue

 code; statistics for code spanned by forward branches
are reported separately. Forward branches within loops often complicate the computation of the bounds; however, the tool can
recognize and handle such branches appropriately using weights derived from profiling. These statistics are then combined in
a weighted average, with the weights determined by standard basic block profiling.

4. IBM SP2 Communication Model

Scientific applications executed on MPPs tend to exhibit a large Gap P due to communication overhead, nonessential cache
stalls, load imbalance, other unmodeled effects, and system level phenomena. Extending the parameter–based hierarchical per-
formance bounds modeling methodology into Gap P can begin with developing performance models for communication as a
function of simple performance parameters. One such estimation approach has been applied to a wide variety of parallel ma-
chines with good results. Simple calibration loops were developed to measure latency and bandwidth for internode communi-
cation. [20] Let

r

∞

 be the asymptotic transfer rate of a communication interconnect in units of megabytes/second,

n

 is the
message length in bytes, and

t

o

 is the (asymptotic) zero message length latency in microseconds. This suggests the following
model of communication latency:

(28)

As shown in Section 4.1, Equation (28) works well in characterizing point–to–point communication.
For more complex communication patterns such as one–to–many, many–to–one, many–to–many, combine, and broadcast,

both

t

o

 and

r

∞

 are found to be functions of the number of processors,

p

. We define

t

comm

(

p

) as the setup time and

π

comm

(

p

) as
the transfer time per byte. This suggests the following model of communication latency:

T

comm

(

n

,

p

) =

t

comm

(

p

) +

π

comm

(

p

) •

n

(29)

In the rest of Section 4, we model the performance of the IBM SP2 in the form of Equation (29) for a variety of communication
constructs defined in the message passing library, MPL. Although these models are actually estimates derived from curve–fit-
ting to clean machine primitive test loop performance, we have found their predictive accuracy to be good enough to permit
treating them as performance bounds. Furthermore there is no overlap in our case study between the computation modeled in
the MAC bound and the communication since all the communication patterns are blocking. As of this date, our experiments
show that our SP2 always exhibits blocking behavior even for commands specified as nonblocking. Thus the communication
model can simply be added to the MAC bound.

4.1. Point–to–Point Communication

The cost of point–to–point communication is measured by a classic “ping–pong” experiment. Processor P1 executes a
blocking send, MP_BSEND, to processor P2, and then executes a blocking receive, MP_BRECV, from P2. Meanwhile P2 ex-
ecutes a blocking receive, MP_BRECV, from P1, and then executes a blocking send, MP_BSEND, to P1. Both processors loop
for many iterations, and the minimum time is divided by 2 to determine the latency for a single point–to–point communication
on an otherwise clean system. As shown in Figure 4, Equation (28) applies well if the experimental results are split into four
distinct regions as a function of the message length. The resulting values for

t

o

, and

r

∞

 are shown in Table 1.
The length of a packet is at most 255 bytes, including the actual data, routing information, packet length information, and

error checking bits. This suggests why there is a change in parameter values at

n

 = 217. The length of the FIFO queue is 2
Kbytes, suggesting why they change again at

n

 = 2048. The change in parameter values at

n

= 32 Kbytes is due to the fact that
MPL does one copy of data for messages of size greater than 32 Kbytes, and two copies of data for messages of size less than
or equal to 32 Kbytes. In successive cases, the asymptotic zero message length latency increases, but this effect is immediately
compensated for by the change in the transfer time. As a result, after each transition point, the point–to–point communication
time as a function of the message length is lower than would have been expected from the model(s) of smaller messages.

Additional experiments indicate that the difference between intra–frame (nearby node) and inter–frame (remote node) com-
munication latencies is approximately 1

µ

s, independent of message length; this is less than 3% of the total latency for the small-
est messages. This effect is negligible for larger messages.

4.2. One–to–Many Communication

The cost of a scatter operation, implemented as a one–to–many communication, is measured by having one processor send
distinct messages to

P

 other processors by executing a non–blocking send, MP_SEND, to each in turn. At the end of every it-

T

comm

n

()

t

o

n
r

∞

------+=

8

eration MP_WAIT is called to ensure that all of the sends have completed. This series of operations is done for a large number
of iterations; the total time is measured and averaged for a single iteration. Each receiving processor executes a blocking receive,
MP_BRECV, per iteration. As shown in Figure 5, Equation (29) applies fairly well over a range of

p

 and

n

 values if

t

comm

 = –
5.5 + 15.5 *

p

 and

π

comm

= 0.031

p

. As a result:

(30)

The setup time is 10.0

µ

s for a single destination, and 15.5

µ

s for each additional destination, apparently due to the added over-
head of managing more than one ongoing message. As

n

 increases toward 64 Kbytes, the overall transfer rate goes to 32 MB/s.

4.3. Many–to–One Communication

The cost of a gather operation from

P

 processors to one, implemented as a many–to–one communication, is measured by
having

P

 processors execute a blocking send, MP_BSEND, to one other processor. This series of operations is done for a large
number of iterations. The receiving processor executes a non–blocking receive, MP_RECV, for each source every iteration. At
the end of every iteration MP_WAIT is called to ensure that all of the sends have completed. The total time is measured and
averaged for a single iteration. As shown in Figure 6, Equation (29) applies fairly well to the range of

p

 and

n

 values if

t

comm

 =
3.0 + 13.3 *

p

and

π

comm

= 0.0285

p

. As a result:

(31)

As with a one–to–many communication, as the message length

n

 goes towards 64 Kbytes, the overall transfer rate approaches

r

Figure 4:

Point–to–Point Communication Time

n t

o

r

∞

n

 < 217 47 23.5
217

≤

n

≤

 2048 55 22.6
2048 <

n

≤

 32768 74 29.3
32768 <

n

399 36.2

Table 1:

Point–to–Point Communication Parameters

1 1 1 1 1 1 1 1
1
1
1
1

1
1

1

1

1

1

1

10

100

1000

10000

100000

1 10 10
0

10
00

10
00

0

10
00

00

10
00

00
0

10
00

00
00

T
im

e
(µ

s)

Message Length (Bytes)

1 Time (µs)

Model

T

1

M

n p

,() 5.5– 15.5

p

⋅

+

()

0.031

p

()

n

+=

T

M

1

n p

,() 3.0 13.3

p

+

()

0.0285

p

()

n

+=

9

35 MB/s.

4.4. Many–to–Many Communication

The cost of a many–to–many communication is measured by having each of P processors send a distinct message to each

Figure 5:

One–to–Many Communication Time

Figure 6:

Many–to–One Communication Time

B B B B B B B
B
B
B
B
B
B
B

J J J J J J J
J
J
J
J
J
J
J

H H H H H H H
H
H
H
H
H
H
H

F F F F F F F
F
F
F
F
F
F
F

� � � � � � �
�
�
�
�
�
�
�

� � � � � � �
�
�
�
�
�
�
�

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

T
im

e
(µ

s)

Message Length (Bytes)

B P = 1

J P = 2

H P = 4

F P = 8

� P = 16

� P = 31

B B B B B B B B
B
B
B
B
B
B

J J J J J J J
J
J
J
J
J
J
J

H H H H H
H H

H
H
H
H
H
H
H

F F F F F F F
F
F
F
F
F
F
F

� � � � � �
�
�
�
�
�
�
�
�

� � � � �
� �

�
�
�
�
�
�
�

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

T
im

e
(µ

s)

Message Length (Bytes)

B P = 1

J P = 2

H P = 4

F P = 8

� P = 16

� P = 31

10

of the other processors. Each processor executes a non–blocking send, MP_SEND, to every other processor. Each processor
then executes a non–blocking receive, MP_RECV, from every other processor. At the end of every iteration MP_WAIT is
called to ensure that all of the sends have completed. This series of operations is done for a large number of iterations. The total
time is measured and averaged for a single iteration. As shown in Figure 7, Equation (29) applies to a range of

p

 and

n

 values
if

t

comm

 = 43 + 40 (

p

 – 2) and

π

comm

= 0.057 + 0.062 (

p

 – 2). As a result:

(32)

For large messages, the bidirectional rate for a processor node

≈

 32 MB/s, implying good communication scalability even when
the HPS is highly saturated.

4.5. Combine Communication

The cost of a combine operation, implemented using an MPL collective communication routine, is measured by having each
of P processors execute MP_COMBINE. This results in a vector of double precision operands being sent to one processor. The
receiving processor performs a double precision addition reduction and broadcasts the results back to the P processors. This
operation is done for a large number of iterations and the total time is measured and averaged for a single iteration. As shown
in Figure 8, Equation (29) applies to a range of

p

 and

n

 values as follows:

(33)

4.6. Broadcast Communication

The cost of a broadcast operation, implemented using an MPL collective communication routine, is measured by having
every processor execute a broadcast, MP_BCAST, specifying the same source, P0. This series of operations is done for a large
number of iterations. The total time is measured for P0, and averaged for a single iteration. As shown in Figure 9, Equation (29)
applies to a range of

p

 and

n

 values as follows:

Figure 7:

Many–to–Many Communication Time

T

MM

n p

,() 43 40

p

2–

()⋅

+

()

0.057 0.062

p

2–

()⋅

+

()

n

⋅

+=

B B B B B B B B B
B
B
B
B
B

J J J J J J J J
J
J
J
J
J
J

H H H H H H H H
H
H
H
H
H
H

F F F F F F F F
F
F
F
F
F
F

� � � � � � � �
�
�
�
�
�
�

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000

T
im

e
(µ

s)

Message Length (Bytes)

B P = 2

J P = 4

H P = 8

F P = 16

� P = 32

T

CB

n p

,()

97

D

0.11

D

()

n

+

n

217

<

114

D

0.12

D

()

n

+ 217

n

2048

≤ ≤

50– 191

D

+

()

0.09

D

()

n

+ 2048

n

<
î



=

where

D lg

2

p

()

=

11

(34)

Broadcasting to P processors takes about the same time as broadcasting to the nearest lowest integer power of 2 processors,
suggesting that broadcast is done using a recursive doubling algorithm.

5. Performance Evaluation and Improvement of FEMC

This section analyzes the performance of three important routines drawn from FEMC, an industrial finite element code. All
the modeling data shown is collected from a single (typical) simulation time step. The calculated miss ratio for the MA bound
assumes cache lines are accessed with a stride of one, which serves as a lower bound. The MAC bounds were calculated using
the miss ratios calculated for the MA bound. (PLEASE NOTE: Although this can be used as a lower bound, for the final draft
of the paper we will use the actual cache miss counts using the POWER2 Performance Monitor. [21]) An additional bound,
MA_PC, is also shown since t

m

 dominates the MA and MAC bounds for all of the modeled routines and it is interesting to ex-
amine the bottlenecks masked by the memory component of the bound. This MA_PC bound is the MA bound with a perfect
cache (hit ratio of 100%) assumption.

5.1. Routine A

Routine A exhibits the longest execution time of the three routines. It is characterized by large amounts of computation and
communication. The communication pattern is many–to–many and is nonuniformly distributed throughout the routine. It em-
ploys MP_SEND and MP_BRECV communication primitives.

Figure 10 shows the measured run time and modeled behavior of Routine A for each processor in an eight processor run.
While the modeled behavior can be seen to exhibit very good load balancing, particularly with regard to computation, the mea-
sured performance exhibits somewhat more unbalanced, although acceptable, behavior. The large unmodeled gap between the
MAC + Communication model and the measured time can be attributed to unmodeled data cache misses, unmodeled aspects
of communication (e.g. nonzero processor wait times dur