Modeling Computation and Communication Performance

of Parallel Scientific Applications: A Case Study of the IBM SP2

Eric L. Boyd, Gheith A. Abandah, Hsien—Hsin Lee, and Edv@&iidavidson
Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
1301 Beal Avenue
Ann Arbor, MI 48109-2122
PHONE: 313-936-2917; FAX: 313-763-4617
{boyd, gabandah, lineadavidson}@eecs.umich.edu

Abstract

A methodology for performance analysis of Massively Parallel Processors (MPPSs) is presented. The IBM SP2 and so
key routines of a finite element method application (FEMC) are used as a case study. A hierarchy of lower bounds on run ti
is developed for the POWER?2 processor, using the MACS methodology developed in earlier work for uniprocessors and vec
processors. Significantly, this hierarchy is extended to incorporate the effects of the memory hierarchy of each SP2 node
communication across the High Performance Switch (HPS) linking the nodes of the SP2. The performance models develo
via this methodology facilitate explaining performance, identifying performance bottlenecks, and guiding application code in
provements.

1. Introduction

Scientific applications are typically dominated by loop code, floating—point operations, and array references. The perfc
mance of such applications on scalar and vector uniprocessors has been found to be well characterized by the MACS moc
hierarchical series of performance bounds. As depictéiiirel, the M bound models the peak floating—point performance
of theMachine architecture independent of the application. The MA bound models the machine in conjunction with the oper
tions deemed to be essential in the high—lépglication workload. Hence Gap A represents the performance degradation due
to the application algorithm’s need for operations that are not entirely masked by the most efficient class of floating—point o
erations. The MAC bound is derived from the ac@inpiler—generated workload. Hence Gap C represents the performance
degradation due to the additional operations introduced by the compiler. The MACS bound factors in the compiler—genera
Schedule for the workload. Gap S thus represents the performance degradation due to scheduling constraints. The perform
degradation seen in the remaining gap, Gap P, is due to as yet unmodeled effects, such as unmodeled cache miss penaltie:
imbalances, OS interrupts, and /O, that affect actual delivered performance. The bounds are generally expressed as I
bounds on run time and, along with measured run time, are given in units of CPF (clocks per essential floating—point operatic
The reciprocal of CPF times the clock rate in MHz yields an upper bound on performance in MFLOMBCHBraodel has
been effectively demonstrated and applied in varying amounts of detail to a wide variety of proddg2§83[4][5][6] The
MACS model developed for each SP2 node incorporates a significant additional refinement beyond these earlier studies by
cluding the effects of the memory hierarchy.

Gap A G G Gap P Measured
M i»MA%MACﬂMACSﬂ> CPF

Figure 1: MACS Performance Bound Hierarchy

Scientific applications often exhibit a large degree of potential parallelism in their algorithms, and hence are prime cant
dates for execution on MPPs. Gap P can become very large and poses the fundamental limit to scalability for parallel appli
tions. Characterizing the communication performance of an MPP and the communication requirements of an applicati
achieves a refinement of Gap P that is crucial to modeling and improving the performance of parallel scientific applications tt
exhibit moderate to high amounts of communication relative to computation. We demonstrate that coupling the MACS boun
hierarchy, which models the computation of an individual node, with models of communication, as well as load balancing a
cache effects, to refine Gap P, enables the effective modeling of the performance of scientific applications on a parallel cc
puter such as the IBM SP2. This refinement is begun in this paper with the introduction of a communication model for the SF
The MACS model is applied to the SP2 and integrated with this communication model in a case study of a commercial scient

1

application.

This methodology could easily be extended to other message passing MPPs, such as the Intel Paragon and the Thin
Machines CM5[7][8] We believe that it can also be extended to shared memory MPPs, such as the Kendall Square Resea
KSR2, the Convex Exemplar, and the Cray T3D|[12][13][14], by using techniques to expose and characterize the implicit
communication, as demonstrated6i9][10].

All experiments in this paper were run on an IBM SP2 with 32 Thin Node 66 POWER?2 processors running the AIX 3.2.
operating system. An overview of the SP2 architecture is givBedtion2. The single—nhode SP2 (POWER2) MACS model
is detailed infSection3, with extensions to include the effects of the memory hiera®gtion4 presents the communication
model for the IBM SP2.

An industrial structural finite element modeling code, FEMC, is used to demonstrate the methodology. This application
being ported from a vector supercomputer, parallelized, and tuned for the IBM SP2 at the University of Michigan, and hen
represents one scenario of performance modeling. Three performance—limiting FEMC routines are examined. These routi
exhibit low, moderate, and high communication to computation ratios and various patterns of commu8etimnb gives
a brief overview of the application routines and discusses the performance modeling results. The performance models de
oped via this methodology facilitate explaining performance, identifying performance bottlenecks, and guiding applicatio
code improvements.

2.1BM SP2 Architectural Analysis

A typical IBM SP2 contains between 4 and 128 nodes connected by a High—Performance Switch communication intercc
nect; bigger configurations are possible. Each node consists of a POWER or POWER?2 processor and an SP2 communic
adapter. There are three types of POWER2 nodes currently available: Thin Nodes, Thin 2 Nodes, and Wide Nodes. Thin Nc
have a 64 Kbyte data cache; Thin 2 Nodes have a 128 Kbyte data cache, and Wide Nodes have a 256 Kbyte data cache. 1
Nodes and Wide Nodes can do quadword data accesses, copying two adjacent double words into two adjacent floating
registers from the primary cache in one cycle.

2.1.POWER?2 Architecture [15]

Each Thin Node POWER2 operates at a clock speed of 66.7 MHz, corresponding to a 15 ns processor clock cycle time."
POWER?2 processor is subdivided into an Instruction Cache Unit (ICU), a Data Cache Unit (DCU), a Fixed—Point Unit (FXU
and a Floating—Point Unit (FPU), as showrFigure2. The POWER2 processor also includes a Storage Control Unit (SCU)
and two 1/O Units (X10), neither of which are shown or described. Thin Nodes and Thin 2 Nodes also include an optional se
ondary cache (1 or 2 Mbytes, respectively), memory (64 Mbytes to 512 Mbytes), and a communication adapter. All experime
in this paper are run on Thin Nodes with no secondary cache and a 256 Mbyte memory.

The ICU can fetch up to eight instructions per clock cycle from the instruction cache (I-Cache). It can dispatch up to s
instructions per cycle through the dispatch unit, two of which are reserved for branch and compare instructions. Two indepi
dent branch processors within the ICU can each resolve one branch per cycle. Most of the branch operation penalties ca
masked by resolving them concurrently with FXU and FPU instruction execution. The instruction cache is 32 Kbytes with 1z
byte cache lines with a one cycle access time.

The FXU decodes and executes all memory references, integer operations, and logical operations. It includes address ti
lation, data protection, and data cache directories for load/store instructions. There are two fixed—point execution units wh
are fed by their own instruction decode unit and maintain a copy of the general purpose register file. Two fixed—point instru
tions can be executed per cycle by the two execution units. Each unit contains an adder and a logic functional unit provid
addition, subtraction, and Boolean operations. One unit can also execute special operations such as cache operations and
ileged operations, while the other unit can perform fixed—point multiply and divide operations.

The FPU consists of three units, a double precision arithmetic unit, a load unit, and a store unit. Each unit has dual pipeli
and hence can execute up to two instructions per cycle. The peak issue rate from the FPU instruction buffers to these uni
thus two double precision floating—point multiply—adds, two floating—point loads, and two floating—point stores per clock.

The DCU includes a four—way set associative multiport write—back cache. The experiments in this paper were perform
on a configuration with a 64 Kbytes data cache with 64 byte cache lines. The DCU also provides several buffers for cache .
direct memory access (DMA) operations as well as error detection/correction and bit steering for all data sent to and recer
from memory. The DCU has a one cycle access time. The miss penalty to memory is determined experimentally to be betw
16 and 21 processor clock cycles.

2.2.Interconnect Architecture [16][17] [18]
The SP2 interconnect, termed the High—Performance Switch (HPS), is designed to minimize the average latency of mess
transmissions while allowing the aggregate bandwidth to scale linearly with the number of nodes. The HPS is a bidirectior

2

Instruction Cache UniiCU)
Instruction
P Cache
Dual
Branch
; ; Processors
Dispatch Unit >
o T
| Instruction bufers | | I nstruction buflers |
Execution Execution Sync _ , B
Unit without | | Unit with < | Arithmetic Store Load
Multiply/ Multiply/ ExeCL_mon ExeCL_mon ExeCL_mon
Divide Divide Unit Unit Unit
I I I
Fixed Point Unit FXU) Floating Point Unit EPU)
Data Cache Unit (DCU)

(4 Separate Chips)

\/ v
Secondary Cache
(Optional)

Memory Unit

Figure 2: POWER?2 Processor Architecture

multistage interconnect (MIN), logically composed of switching elements. It operates at 40 MHz, providing a peak bandwid!
of 40 MBytes/sec in each direction over each full-duplex communication link.

Each message packet includes routing information that enables each switching element to determine on the fly the r
destination for the packet. Buffered wormhole routing is employed for switch flow control. Unlike standard wormhole routing
algorithms, if a message is blocked within a switching element, it is temporarily buffered in dynamically allocated shared met
ory. Each switching element is physically an eight input, eight output device, wired as a bidirectional 4x4 element.

Nodes of the SP2 system are grouped into frames; each frame consists of a switch board, a§igjure8 end 16 nodes.

Each frame incorporates 8 switching elements in two stages of four elements each, plus 8 shadow switching elements to pro
a redundant check. For systems of up to eighty processors, the 16 links of a frame on the far side of the second switch stag
connected to the far side links of 1 to 4 other frames. SP2 systems with 81 to 128 nodes use intermediate switch boards bet
frames.

Messages to be sent between nodes on the SP2 are broken into discrete packets, each containing the required routing
mation. The smallest unit on which flow control is performed on the SP2, a flit, is one byte wide, corresponding to the width «
an output port of the HPS switch elements. Packets vary in length up to 255 flits. Each packet is ofrlangih where the
first flit contains the packet length, the nextits contain the routing information, and the ladlits contain data and error
checking bytes. On a 32 node system,1 or 2. Experiments show that the first packet can contain up to 216 bytes (or flits) of
useful data. Additional packets can contain up to 232 bytes (or flits) of useful data.

El 2
Connections to : : Connections to
the 16 Frame EI IE other Frames
Nodes ; ;
<7 <>
- <
T T
<3 =
< <
| I
T T
| |
<2 <>
| I
: Stage 1 Stage 2 :

Figure 3: SP2 Switch Board

3.1BM SP2 MACS Model

A lower bound on the computation run time of floating—point applications on the IBM SP2 is given by the MACS mode
developed for the POWER2 processor. Only the M bound, MA bound, and MAC bounds are presented below. The MAC
bound is not developed because the POWER?2 architecture is implemented with extensive buffering, multiple issue and out-
order execution among its functional pipes; hence the schedule is modified dynamically at run time and schedule stalls are gr
ly reduced. Thus, a realistic MACS bound is hard to develop; and would likely be very close to the MAC bound.

3.1.M Bound Equations

The M bound models the peak performance of the POWER2 FPU, independent of the application requirements, the comg
workload, or the scheduler. The M Bound for the POWER?2 is 0.25 CPF since the POWER2 can compute at most four floatir
point operations per cycle (one multiply—add issued to each of 2 pipelines).

3.2.MA Bound Equations

The MA bound models the peak application performance of the POWER2 architecture given the visible workload of tF
high level application code. The POWER2 is modeled as five independent functional units: floating—point unit, fixed—poir
unit, instruction issue unit, memory unit, and a dependence pseudo—unit. The MAthgumslcalculated as the maximum
CPF bound among the five independent functional units:

tma = MAX (tﬂ’ tix, tmo G, 1:d) / (fa + fm +2* fma +4* fdiv +4* fsqrt) (1)

The CPF bound for each functional unit is calculated as a function of the number of essential operations that must be
formed by that functional unit per simulation time step in the high level source code. The bound assumes that each functic
unit need execute only these essential operations, and that it can execute them at its peak rate. The compiler is ‘idealized’ in
no nonessential operations are considered; the scheduler is ‘idealized’ in that no stalls due to resource constraints and/or st
ule dependences are considefgglation(1) bounds run time by assuming that the busiest functional unit is kept continuously
busy.

The set of essential arithmetic operations includes the minimum number of floating—point assembly operations necessar
complete a computation (including floating—point additions and subtractjpflsating—point multiplicationsf,,, triad oper-
ations which do bottf, division operationd,, and square root operatiofig,y). Both division and square root operations
are weighted by a factor of four, as is commonly done for the Lawrence Livermore Fortran Ké&jreatsl other benchmarks.

The number of essential floating—point loagseljuals the number of distinct values that appear on the right hand side (RHS)
of a high level code statement before they appear on the left hand side (LHS) of a high level code statement. The numbe
essential floating—point storeg, ®quals the number of distinct values that appear on the LHS of a high level code statemer

that are neither temporary values nor scalars which should spend their lifetime in registers. For Thin 2 Nodes or Wide Nod
lg and g should be divided by two if the stride equals one, since it is possible to employ quadword loads and stores.

The floating—point functional unit bount,, models the time needed in the FPU to execute the essential arithmetic and
memory floating—point instructions. Since the POWER2 contains three dual—pipelined execution units in the FPU — one 1
arithmetic operations, one for loading data, and one for normalizing store data:

th = MAX ((fa+ T+ fra + 17 * 4 + 27 *) /1 2, 9 /2, 1 / 2) (2)
Floating—point divide operations require the FPU for 17 cycles and square root operations require 27.

The model’s instruction issue functional unit boufjdnodels the IBM SP2 instruction dispatch bandwidth of the ICU. This
unit can dispatch four floating—point arithmetic or memory reference instructions per cycle. The POWER?2 can also dispat
branch and condition register instructions concurrently with the above, or other fixed-point instructions in place of memory o
erations; however, since in scientific loop-dominated code they have negligible or no impact on POWER2 performance, the
instructions are not included in the MA bound.

ti = (fa + fm + fma + fdiv + fsqrt + IfI + Sﬂ) 4 (3)

Since non-floating—point operations are assumed to have a negligible impact on the performance of scientific applicatio
the fixed—point functional unityg models only the impact of the fixed—point unit on floating—point operations. An address cal-
culation is required for each floating—point memory operation. Since the FXU in the POWER?2 architecture can begin two floe
ing—point memory operations (either loads or stores) per cycle:

=g +s)/2 (4)

In previously published implementations of the MACS model, the memory hierarchy,jihiistignored the instruction
cache entirely, and has assumed that all data accesses hit in the data cache. As a result, the memory unit models develop
other architectures have focused on data cache port bottlenecks only. Since the routines of interest IBedeted inave
working sets that exceed the size of the data cache, a more sophisticated model of memory is required to explain a signifi
fraction of runtime. Two ports connect the floating—point unit with the primary data cache in the POWER?2 processor, and
single port connects the data cache to memory. A memory hierarchy unit lower bound on run time is as follows:

t,,= MAX((load miss time + store miss time); U + § Sp) / 2) (5)

The first term inEquation(5) models the single port between the data cache and memory. In applications with a high mis:
rate, multiple cache misses may occur at the same time, but only one can be serviced by the memory at time due to this si
port bottleneck.

The second term iBquation(5) models the two ports between the FPU and the data cache. In applications with a low mis
rate, there is typically only a single outstanding cache miss at any one time. While the memory services the miss, the other
cache port can continue to service a single memory access per cycle. The effective number of cycles per floating—point Ic
L, and per floating—point storeg5is calculated as a function of the number of essential misses. Notg#igt nd f, =
tq, only if all memory access operations hit in the data cache.

A key issue in evaluatingquation(5) is developing a lower bound on the effective access time of floating—point loads and
stores, given a high level application. For a memory systenteviels, the Effective Access TimeggT is:

n
T = 5 f;0 (6)
j=1
where fis the Access Frequency for leyeaind fis the Access Time for that level. The access frequency can be calculated as
follows:
fj=mm ... my (1-m) (7
where mis the miss ratio in thggh level of the memory hierarchy. SP2 systems have a primary cache, an optional secondar
cache, and main memory, hereguation(6) can be rewritten:
T =L -mhty +m (1-mp) o +rmmy (I-my) t=(1-m) t, + my tg (8)
assuming no secondary cache, éml) and ignoring page faults ¢rs 0). Experimental calibration loops show thattt;s =
1, 3 = 16.3, and4; = 22.0, hence:

Lg=1+153*m, Sk=1+21.0m (9)
Thus for our SP2 system, and later experiments, we use:
tn=MAX(((I7 (16.3 my) + 5 (22.0 my)), ((ly (1 +15.3 m) + 5§ (1 +21.0 ng)) / 2) (10)

Essential misses are classified as either compulsggy,f) or capacity ifie,p). Hence a lower bound on the miss ratecan
be calculated as follows:

m m

+
— comp cap
m= Number of Essential Access (11)
A lower bound on the number of compulsory misses equals the number of blocks in the Workit)greeice:

Meomp = B (12)
Capacity misses depend on the number of Working Set biBrkghé number of Cache blockS)(the Cache Degree of As-
sociativity (), and the Access Pattern. Assuming a linear access pattern, as is often found in loops, a lower bound on capa
missesmg,p,, can be calculated as follows:

E 0 B<C (cache region)
_ B—C o .
Megp = EB—(DC) X C<B<C(1+D/A) (transition region) (13)
B B>=C(1+D/A) (memory region)

D is the number of degrees of freedom in the access pattern which equals the number of distinct arrays and is restricted t
between 1 ané. The miss ratio is linear in the transition regj2h andm,, equals the product & and the miss ratio.

The loop—carried dependence pseudo—tpimodels the performance of loops with a recurrence, i.e. a result of one itera-
tion depends on the corresponding result of a previous iteration. Whenever there is such a cycle in the dependence graph ¢
floating—point arithmetic operationt, is computed as the worst- case recurrence cycle, where each recurrence cycle is calct
lated as the total latency of the operations in one tour divided by the number of iterations in that recurrence cycle. The late
of an operation is related to pipeline depth and is computed as the minimum number of clocks between issuing that opera
and issuing a succeeding operation that uses its result as an operand, hence:

L, = total latency of the loop-carried dependence in recurrencercycle (14)
I, = number of iterations in recurrence cycle (15)
td = MAXp recurrence cycles r(Lr/Ir) (16)

The latency is 1 cycle for floating—point adds and multiplies, 2 for floating—point multiply adds, 17 for floating—point divides,
and 27 for floating—point square roots.

3.3.MAC Bound Equations

The MAC bound for the POWER?2 architecture is computed similarly to the MA bound, except that the operation counts a
computed from the compiled assembly code. In the MAC bound equations, counts of the various types of operations are mai
with primes to indicate that they represent the number of operations found in the compiled code, not the minimum number
essential operations needed in the high—level code.

Furthermore all compiled operations are counted in the MAC model, including fixed—point and branch instructions. Th
fixed—point unit can begin two fixed—point operations per cycle, but at most one fixed—point multiplication or division per cycle
The branch functional unit, which can execute two branch instructions per cycle, is added for the MAC gyi@ohel. 3 are
calculated as for the MA model, but the miss ratio is computed using the number of actual misses divided by the actual acces
For our SP2t,,' is calculated as iBquation(10), using the MAC parameter values.

Nepy = NUMber of FPU computation instructions,=Hf ' + f' + 17 * {3,/ + 27 * f, + others (17)

th' = MAX (Nepy / 2, 1"/ 2, 91 2) (18)

Nexy = NumMber of FXU instructions 7'+ ' + others (29)

Nexup = NUMber of fked—point multiplication and division instructions (20)
Ngc = number of branch and compare instructions (21)

te' = MAX (Nexy / 2, Nexp) (22)

t, = MAX((load miss time + store miss time),((F ly") Les' + (S + §') Sir) / 2) (23)
ty = Ngc/ 2 (24)

t;' = (compiled code length) / 4 (25)

tdl = MAXj recurrencecyclesr(l—r./lr) (26)

tmac = MAX (tg', ' tm's T 0 tg) / (fat B + 2% fg + 4% By + 4 %) (27)

3.4. Automatic MAC Bound Generator
The Automatic MAC Bound Generator is a single pass forward-scanning tool which generates the parameters used in

MAC Bound.[6] It reads a designated region of interest of the IBM POWER2 assembly code as its input and reports statisti
for each loop. Reported statistics include the nesting relationship for each loop and respective tjaltygstgf andt;'. This

tool accepts perfectly nested loops and most imperfectly nested loops (forward branches inside the loop body are allowed
input. In general, all nested loops written in well-structured programming styles are accepted by this tool. Statistics for ow
loops report only on code not contained in the inner loops, i.ecditieie code; statistics for code spanned by forward branches
are reported separately. Forward branches within loops often complicate the computation of the bounds; however, the tool
recognize and handle such branches appropriately using weights derived from profiling. These statistics are then combine
a weighted average, with the weights determined by standard basic block profiling.

4.1BM SP2 Communication Model

Scientific applications executed on MPPs tend to exhibit a large Gap P due to communication overhead, nonessential ce
stalls, load imbalance, other unmodeled effects, and system level phenomena. Extending the parameter—based hierarchica
formance bounds modeling methodology into Gap P can begin with developing performance models for communication a
function of simple performance parameters. One such estimation approach has been applied to a wide variety of parallel
chines with good results. Simple calibration loops were developed to measure latency and bandwidth for internode commt
cation.[20] Letr,, be the asymptotic transfer rate of a communication interconnect in units of megabytestsésdhd,
message length in bytes, agds the (asymptotic) zero message length latency in microseconds. This suggests the following
model of communication latency:

n
Teomm(M = tg+ Co (28)

As shown inSection4.1, Equation(28) works well in characterizing point—to—point communication.

For more complex communication patterns such as one-to—many, many—to—one, many—to—many, combine, and broadt
botht, andr,, are found to be functions of the number of procespoi/e definet.,y(P) as the setup time amg,(p) as
the transfer time per byte. This suggests the following model of communication latency:

Tcomm(n7 p) = tcomm(p) + n(-:omm(p) °n (29)

In the rest oBectiond4, we model the performance of the IBM SP2 in the forfamfation(29) for a variety of communication
constructs defined in the message passing library, MPL. Although these models are actually estimates derived from curve-
ting to clean machine primitive test loop performance, we have found their predictive accuracy to be good enough to peri
treating them as performance bounds. Furthermore there is no overlap in our case study between the computation models
the MAC bound and the communication since all the communication patterns are blocking. As of this date, our experimel
show that our SP2 always exhibits blocking behavior even for commands specified as nonblocking. Thus the communicat
model can simply be added to the MAC bound.

4.1.Point—to—Point Communication

The cost of point—to—point communication is measured by a classic “ping—pong” experiment. Processor P1 execute
blocking send, MP_BSEND, to processor P2, and then executes a blocking receive, MP_BRECYV, from P2. Meanwhile P2 «
ecutes a blocking receive, MP_BRECYV, from P1, and then executes a blocking send, MP_BSEND, to P1. Both processors |
for many iterations, and the minimum time is divided by 2 to determine the latency for a single point—to—point communicatic
on an otherwise clean system. As showRigure4, Equation(28) applies well if the experimental results are split into four
distinct regions as a function of the message length. The resulting valgesfalr ,, are shown imablel.

The length of a packet is at most 255 bytes, including the actual data, routing information, packet length information, a
error checking bits. This suggests why there is a change in parameter valuwe2Bi. The length of the FIFO queue is 2
Kbytes, suggesting why they change agaim=a048. The change in parameter values=aB2 Kbytes is due to the fact that
MPL does one copy of data for messages of size greater than 32 Kbytes, and two copies of data for messages of size less
or equal to 32 Kbytes. In successive cases, the asymptotic zero message length latency increases, but this effect is immed
compensated for by the change in the transfer time. As a result, after each transition point, the point—to—point communicat
time as a function of the message length is lower than would have been expected from the model(s) of smaller messages.

Additional experiments indicate that the difference between intra—frame (nearby node) and inter—frame (remote node) cc
munication latencies is approximatelpd, independent of message length; this is less than 3% of the total latency for the small-
est messages. This effect is negligible for larger messages.

4.2.0ne—to—Many Communication
The cost of a scatter operation, implemented as a one—to—many communication, is measured by having one processor
distinct messages ®other processors by executing a non-blocking send, MP_SEND, to each in turn. At the end of every it

7

1 1 1]
10000—;,— //
g 1000—? }//
) i
£ 7
(== 1004
3 Hi3—3
10
1-llll|'l‘lllllqlll T 1T LA T 11T TTTT
— o o

}
S 8

i
— o
—

100000004

Message Length (Bytes)

Figure 4: Point-to—Point Communication Time

n o | Mo

n<217 47]23.
217 n< 2048 | 55(22.6
2048 <n< 32768 74|29.3
32768 <n 399(36.2
Table 1: Point-to—Point Communication Parameters

eration MP_WAIT is called to ensure that all of the sends have completed. This series of operations is done for a large nurr
of iterations; the total time is measured and averaged for a single iteration. Each receiving processor executes a blocking rec
MP_BRECYV, per iteration. As shown igure5, Equation(29) applies fairly well over a range pfandn values iftopnm = —

5.5 + 15.5 *p andggym = 0.031p. As a result:

(30)

The setup time is 10405 for a single destination, and 1p$for each additional destination, apparently due to the added over-
head of managing more than one ongoing messageinkseases toward 64 Kbytes, the overall transfer rate goes to 32 MB/s.

4.3.Many-to—One Communication

The cost of a gather operation frétrprocessors to one, implemented as a many—to—one communication, is measured b
havingP processors execute a blocking send, MP_BSEND, to one other processor. This series of operations is done for a I
number of iterations. The receiving processor executes a non-blocking receive, MP_RECYV, for each source every iteration
the end of every iteration MP_WAIT is called to ensure that all of the sends have completed. The total time is measured
averaged for a single iteration. As showrrigure6, Equation(29) applies fairly well to the range pfandn values ift o =
3.0 + 13.3 *p and rggym, = 0.0285p. As a result:

(31)

As with a one—to—many communication, as the message lemgths towards 64 Kbytes, the overall transfer rate approaches

8

10000
03 B P=1
: P=2
100004
E H P=4
J P=8
& 1000
=1 : P =16
(4] . I
£ - P=31
[100+ .
E HHHHHH
10 5 Sl D 2= B
1 ||||||IT| ||||||IT| T ||||I'I'I'| T ||||I'I'I'|_I_I'I'I'I'I1'I'
1 10 100 1000 10000 100000
Message Length (Bytes)
Figure 5: One—to—Many Communication Time
10000
03 B P=1
1 P=2
100004
§ H P=4
J P=8
- 1000
=1 3 P=16
= i
F 1004 P-st
10~
1 ||||||I1'| ||||||I1'| T ||||I'I1'| T ||||I'I1'|_I_I'I'I'I'I1'I'
1 10 100 1000 10000 100000

Message Length (Bytes)

Figure 6: Many—to—One Communication Time

35 MB/s.

4.4.Many—to—Many Communication
The cost of a many—to—many communication is measured by having each of P processors send a distinct message to

9

of the other processors. Each processor executes a hon—blocking send, MP_SEND, to every other processor. Each proc
then executes a non-blocking receive, MP_RECYV, from every other processor. At the end of every iteration MP_WAIT
called to ensure that all of the sends have completed. This series of operations is done for a large number of iterations. The
time is measured and averaged for a single iteration. As shdvigure7, Equation(29) applies to a range gfandn values

if teomm = 43 + 40 p — 2) andrggyy, = 0.057 + 0.062((— 2). As a result:

Tym(NP) = (43+400(p-2)) + (0.057+0.0620(p—2)) [h (32)
100000
i e
1000004 // P=4
] H P=8
10000 A P16
D . /
S 10004 —— W P =32
() = = -
S 3
=] HH—H—H—M
100+ :
] Bt+B—BB
104
1 ||||||I'I'| ||||||I'I'| T ||||I'I1'| T ||||I'I'I'|_I_I'I'I'I'I'I'I'
1 10 100 1000 10000 100000

Message Length (Bytes)

Figure 7: Many-to—Many Communication Time

For large messages, the bidirectional rate for a processor3&de!B/s, implying good communication scalability even when
the HPS is highly saturated.

4.5.Combine Communication
The cost of a combine operation, implemented using an MPL collective communication routine, is measured by having e

of P processors execute MP_COMBINE. This results in a vector of double precision operands being sent to one processor.
receiving processor performs a double precision addition reduction and broadcasts the results back to the P processors.
operation is done for a large number of iterations and the total time is measured and averaged for a single iteration. As shi
in Figure8, Equation(29) applies to a range pfandn values as follows:
97D + (0.11D) n n<217
Teg (n,p) = 114D + (0.12D) n 217<n< 2048 (33)
(=50+191D) + (0.09D) n 2048<n

where D = ngz(p)J

4.6.Broadcast Communication
The cost of a broadcast operation, implemented using an MPL collective communication routine, is measured by havi

every processor execute a broadcast, MP_BCAST, specifying the same source, PO. This series of operations is done for a
number of iterations. The total time is measured for PO, and averaged for a single iteration. As BigpwadnEquation(29)

applies to a range gfandn values as follows:

10

1000005

= B P=2
. P=4
100004
: H P=8
T P=16
- 10004
=1 3 . P =32
o] H
£ I
= 1004—=8
10
1 ||||||IT| ||||||I1'| T ||||I'I'I'| T ||||I'I'I'|_I_I'I'I'I'I'I'I'
1 10 100 1000 10000 100000
Message Length (Bytes)
Figure 8: Combine Communication Time
(9.6+14[D) + (0.0083+ 0.015[D) n n<217
Tecln p) = {
(6.0+12[D) + (0.0250+ 0.026[D) n n=217 (34)

where D = ngz(p)J

Broadcasting to P processors takes about the same time as broadcasting to the nearest lowest integer power of 2 proce
suggesting that broadcast is done using a recursive doubling algorithm.

5. Performance Evaluation and Improvement of FEMC

This section analyzes the performance of three important routines drawn from FEMC, an indust