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Abstract

This 1s a reaction to Lamport’s “Processes are in the Eye of the Beholder.” To illustrate the “in-
substantiality of processes,” Lamport represents a 2-process algorithm and an N-process algorithm by
temporal formulas and proves the equivalence of the two formulas. We analyze in what sense the two
algorithms are and are not equivalent, and give a more direct equivalence proof.

1 Introduction
In “Processes are in the Eye of the Beholder” [7], Leslie Lamport writes:

A concurrent algorithm is traditionally represented as the composition of processes. We show
by an example that processes are an artifact of how an algorithm is represented. The difference
between a two-process representation and a four-process representation of the same algorithm is
no more fundamental than the difference between 24+2 and 1 + 1+ 1+ 1.

To demonstrate his thesis, Lamport uses two different programs for a first-in, first-out ring buffer of
size N, both written in a CSP-like language [4]. The first, shown in Figure 1, operates the buffer using
2-processes; the second, shown in Figure 2, uses N-processes. We call these two programs R.,, and C.p,
respectively (for reasons which shall become apparent). After presenting the programs, Lamport represents
them as formulas in TLA, the Temporal Logic of Actions [6], and proves the equivalence of the two formulas
in TLA.

There are three issues where we disagree with Lamport.

Issue 1: The Notion of Equivalence. What does it mean that two programs are equivalent? The answer
to the question depends on which abstraction you find appropriate. Here are some possible definitions of
equivalence.

1. The two programs produce the same output when given the same input.

2. The two programs produce the same output when given the same input, and the two programs are of
the same time complexity (with respect to your favorite definition of time complexity).

3. The two programs produce the same output when given the same input, and the two programs take
precisely the same amount of time.

4. No external observer of the two programs in execution can detect any difference.
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i, out : channel of Value
buf : array 0.N — 1 of Value
p,¢ : internal Naiural initially 0
_ in 2 .
Receiver = x| P79 # N — in7buf[p mod NJ;
p=p+1

Sender :: *[p—g7£0 - OUt!buf[nglfN];]

g=g+1

Figure 1: A 2-process ring buffer L2, in a CSP-like language.

i, out : channel of Value
buf : array 0..N — 1 of Value
pp,gg : internal array 0..N — 1 of {0, 1} initially 0
Buffer(i: 0.N — 1) =
empty : IsNext(pp,i) — in ? bufli];
ppli] := (pplf] + 1) mod 2;
full: IsNext(gg,i) — out!bufli];
ggi] := (gg[i] + 1) mod 2;

IsNext(r,i) £ ifi=0 then r[0]=r[N —1]
else r[i] # r[i — 1]

Figure 2: An N-process ring buffer Ly, in a CSP-like language.




The reader will be able to suggest numerous other reasonable definitions for equivalence. For example,
one could substitute space for time in conditions 2 and 3 above. In particular, the nature of an “external
observer” in condition 4 is admittedly vague and has several plausible interpretations.

Which notion of equivalence is the best one? Naturally, it depends upon the application. We do not
promote any particular notion of equivalence, but note that there are many reasonable definitions. There 1s
no one definition of equivalence that is best for all situations [1].

Resp and C.sp are indeed “strongly equivalent”; in particular, they are equivalent in the sense of definition
3 above. However, they are not equivalent in the sense of definition 4 for certain external observers, or in
the sense of some space-complexity versions of definitions 2 and 3.

Issue 2: Representing Programs as Formulas. Again, we quote Lamport [7]:

We will not attempt to give a rigorous meaning to the program text. Programming languages
evolved as a method of describing algorithms to compilers, not as a method for reasoning about
them. We do not know how to write a completely formal proof that two programming language
representations of the ring buffer are equivalent. In Section 2, we represent the program formally
in TLA, the Temporal Logic of Actions [6].

We believe that it is not only possible but also beneficial to prove the desired equivalence of programs
directly. We cannot, however, prove the desired equivalence of R.,, and C.,, because the CSP-like language
used lacks a formal semantics. (Actually, the CSP-like language seems to us to be a method for describing
algorithms for humans, not compilers.) Instead, we formalize Lamport’s interpretations of R.,, and Ce,, as
evolving algebra programs R., and C.,. We then define an appropriate notion of equivalence and show that
Req and C., are equivalent in this sense.

Issue 3: The Formality of Proofs. Continuing, Lamport writes [7]:

We now give a hierarchically structured proof that II; and Iy [the TLA translations of R.sp
and C.sp — GH] are equivalent [5]. The proof is completely formal, meaning that each step is a
mathematical formula. English is used only to explain the low-level reasoning. The entire proof
could be carried down to a level at which each step follows from the simple application of formal
rules, but such a detailed proof is more suitable for machine checking than human reading. Our
complete proof, with “Q.E.D.” steps and low-level reasoning omitted, appears in Appendix A.

We prefer to separate the process of explaining a proof to people from the process of computer-aided
verification of the same proof [2]. An important benefit of this separation of concerns is that a human-oriented
exposition is much easier for humans to read and understand than expositions attempting to satisfy both
concerns at once. Writing a good human-oriented proof is the art of creating the correct images in the mind
of the reader. Such a proof is amenable to the traditional social process of debugging mathematical proofs.
Granted, mathematicians make mistakes and computer-aided verification may be desirable, especially in
safety-critical applications. But the two concerns can and should be treated separately.

These disagreements do not mean that our position on “the insubstantiality of processes” is the direct
opposite of Lamport’s. We simply point out that “the insubstantiality of processes” may itself be in the eye
of the beholder. The same two programs can be equivalent with respect to some reasonable definitions of
equivalence and inequivalent with respect to others.

This paper is self-contained. In Section 2, we describe Lamport’s first-in, first-out ring buffer example.
Section 3 contains a brief introduction to evolving algebras, culminating with the evolving algebra programs
Req and C.q to be compared. In Section 4, we define a strong version of lock-step equivalence and prove that
Req and C., are equivalent in that sense. Finally, we discuss the inequivalence of R., and C., in section 5.



2 The Ring Buffer Example

The problem we consider is a first-in, first-out ring buffer of size N. The buffer is implemented as an array
of N elements. Input number ¢ (starting with ¢ = 0) is stored in position ¢ mod N until it is sent out as
output number ¢. Input number ¢ and output number j may occur concurrently only if ¢ # j mod N. Items
may be placed in the buffer if the buffer is not full; of course, items may be sent from the buffer if the buffer
s not empty.

Each input or output action is dependent upon other actions within the system. Input number 7 cannot
occur until all previous inputs have occurred and either z < N or output number i — N has occurred. Output
number 7 cannot occur until all previous outputs and input number ¢ have occurred. These dependencies
are illustrated pictorially in Figure 3, where circles represent the actions to be taken and arrows represent
dependency relationships between actions.

Resp decomposes this graph into two rows, each row representing one of the processes of the algorithm.
Similarly, C.s, decomposes this graph into columns. Figures 4 and 5 show this decomposition.

3 Evolving Algebras

We recall only as much of evolving algebra theory [3] as needed in this paper. The term evolving algebra is
often abbreviated ealgebra or FA. Those already familiar with ealgebras may wish to skip ahead to section
3.6, in which the ealgebras for R., and C., are given.

3.1 States

A wocabulary is a finite collection of function names, each of fixed arity. Every vocabulary contains the
nullary function names true and false and (the names of) the usual Boolean operations.

A state s of vocabulary T is a nonempty set X, the superuniverse of S, together with interpretations of
the function names in T on X. An r-ary function name is interpreted as a function from X" to X. The
interpretations of function names true and false are always distinct and are operated upon in the usual way
by the Boolean operations. We denote the value of a term ¢ in state s by ;.

A Boolean-valued function f may be viewed as the set of tuples where it evaluates to true. If f is unary
it can be viewed as a special universe. For example, we may have a universe nodes and declare a binary
relation Edge over the universe of nodes; Edge(z,y) will hold only if both z and y belong to nodes. Such
universes allow us to view states as many-sorted structures.

Certain function names in T are called ezternal; the idea is that the values of external functions will be
determined outside of the ealgebra. External functions can be used, for example, to model input provided
by the external world. Non-external function names are called internal.

If T is a vocabulary, T~ is the set of internal function names of T. If s is a state of vocabulary T, s~ is
the state of vocabulary T~ which agrees with s over all functions in T—.

3.2 Updates

A location of state S is a pair £ = (f, ), where f is a function name and Z is a tuple of elements of S whose
length equals the arity of f. An update of a state S is a pair a = (£,y), where £ is a location of S and y is
an element of S. To fire & at S, put y into the location ¢; that is, if £ = (f, Z), redefine S to interpret f(z)
as y; nothing else is changed.

An update set over a state S is a set of updates of S. A set of updates is consistent at S if no two updates
in the set have the same location but different values. To fire a consistent set at S, fire all its members
simultaneously; to fire an inconsistent set at S, do nothing.
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Figure 4: Moves of R, and R.,.

Figure 5: Moves of C.;p and Ceq.




3.3 Transition Rules

Executing a rule R at state S is equivalent to executing an appropriate update set. There are three types of
basic transition rules.
An update wnstruction R is an expression

f(tl,... ,tr) Z:to

where f is a non-static function name of arity r and each ¢; is a term. The update set of R at state S has a
single element (£, y), where y = (t9)s and £ = (f, (21, ..., 2,)) with 2; = (¢;)s.

A block rule R is a sequence of transition rules. The update set of R at S is the union of the update sets
of the rules in the sequence at S.

A conditional rule R is an expression

if go then Ry
elseif g; then R;

elseif g; then Ry
endif

where the g; are terms and the R; are rules. (If g = true, we usually write “else R;”.) The update set of
R at S is the update set of R; at S, where g; is true in S but every g; with j < ¢ is false in S. If no such :
exists, the update set is empty.

3.4 Distributed Evolving Algebras
A distributed evolving algebra A consists of the following;:

e A finite indexed set of modules, each of which is a transition rule. Intuitively, a module is the program
to be executed by one or more agents. Each module is assigned a unique nullary function name.

e A vocabulary T containing all functions used in the modules of A, except for the nullary function Me.
(Me will be interpreted differently by each agent and thus must be treated separately.) T also contains
an additional unary function name Mod.

e A collection of YT-states, called initial states.

Structure S of signature Y is a state of A if module names are interpreted as different elements of S and
only finitely many elements a (called agents) exist such that Mod(a) equals some module name.

Viewy(S) is the reduct of S to the functions mentioned in the module Mod(a), expanded by interpreting
Me as a. Think about View,(S) as the local state of agent a corresponding to the global state S. To fire a
at S, fire Mod(a) at View,(S).

3.5 Runs
A run p of a distributed ealgebra A of vocabulary T from initial state Sy can be defined as a triple (M, A, o)

satisfying the following conditions.
1. M, the set of moves of p, is a partially ordered set where every {y : y < z} is finite.
Intuitively, z < y means move z completes before move y begins.
2. A assigns elements of Sy to moves in such a way that every non-empty set {z : A(z) = a} is linearly
ordered.

Intuitively, A(2) is the agent performing move x; every agent acts sequentially.



3. o maps finite initial segments of M (including () to states of A.

Intuitively, o(X) is the result of performing all moves of X; o(0) is an initial state.

4. Coherence. If 11 is a maximal element of a finite initial segment ¥ of M, and X =Y — {u}, then A(u)
is an agent in ¢(X) and o(Y)~ is obtained by firing A(x) at o(X).

Given a finite initial segment Y with a maximal element p and X =Y — {u}, one may want to associate
the state o(X) with g. One particular choice of X is {v : v < p}. We define A(p) = Aa(p) = o({v v < pu}).

3.6 Evolving Algebras for the Ring Buffer Problem

Here we present evolving algebras R = R., and C = C.,4, corresponding to R.,, and C.;p, respectively.

Each ealgebra has universes of data, integers, inty (integers modulo N), and int2. As usual, we identify
elements of inty with their representatives 0,1,...N — 1 (and similarly for ints). The buffer is represented
by a unary function Buffer: inty — data.

Following Lamport (but using different names), we model the input and output channels with signaling
bits InBit, OutBit: inly and functions InData, OutData: data. InBit and InData are external functions;
when the external world places a new datum into InDatum, InBit is also flipped. MyBit: inty reflects the
most recent value of InBit that has been seen by the algorithm.

Algorithms perform arithmetic over integers, inty and ints; we use the standard arithmetic functions
with their conventional notations.

3.7 R: The Rows Evolving Algebra

FEalgebra R describes the 2-process algorithm for the ring buffer. One agent (called T) reads data into the
buffer; the other (called O) sends data from the buffer. (I and O are different elements of R, e.g. 0 and 1.)

R uses counters First, Last: integers to indicate the current buffer slot to be used for input or output;
initially, First = Last = 0. The two modules are given in Figure 6.

Module: Input
if MyBit # InBit and First — Last # N then

Buffer(First mod N) := InData, MyBit := 1 - MyBit, First := First + 1
endif

Module: Output
if Last # First then

OutData := Buffer(Last mod N), OutBit := 1 — OuiBit, Last := Last + 1
endif

Figure 6: R: A 2-process ring buffer algorithm.

For any run (M, A, o) of R, we call a move p an input move (respectively, an output move) if A(p) =1T
(resp. O). We call a move p a k-slot move if either p is an input move and First = k in state A(u) or p is
an output move and Last = k in state A(p).

Lemma 3.1 Let Y be a finite initial segment of M, pu a mazimal element of Y, and X =Y — {u}. If pu is
a k-slot input (respectively, output) move, then we have modulo N:

1. First,xy = k (resp., Last,(x) = k)



2. First,iyy = k+1 (resp., Last,cyy = k+1)

Proof: We prove the property for input moves; the proof for output moves is similar. Condition 2 follows
from condition 1 by definition of .

Obviously A(x) C X. Since p is a k-slot input move, First,(a¢u)) = k mod N. Any v € X —{p' : p' < p}
is incomparable with g and therefore is an output move. Let sg = A(p),s1,...,8, = 0(X) be a sequence
of states of R such that every s, is obtained from s,, by executing a move of X — {u' : p’ < pu}. Since
output moves do not alter First, Firsi,(xy = Firsty(,. O

3.8 (: The Columns Evolving Algebra

Ealgebra C describes the N-process algorithm for our ring buffer. The universe of agents is simply inty. It
uses two nullary functions get and put with different values (e.g. 0 and 1).

Functions InCount, OutCount: iniy — iniy are used to count (modulo 2) the number of input and output
operations performed; initially, both have the value 0 for each agent. Function Mode: iniy — modes notes
whether each agent is receiving input (when Mode(z) = get) or producing output (when Mode(z) = put).
Initially, Mode(z) = get for all agents z.

We present in Figure 7 the module used by all agents, which contains a block of two rules.

Rule: Get

if MyBit # InBit and Mode(Me) = get and INPUTTURN (Me) then
Buffer(Me) := InData, MyBit := 1 - MyBit
InCount(Me) := 1 — InCount(Me), Mode(Me) := put

endif

Rule: Put
if Mode(Me) = put and OUTPUTTURN(Me) then
OutData := Buffer(Me), OutBit := 1 - OutBit
OutCount(Me) := 1 — OutCount(Me), Mode(Me) := get
endif

Abbreviations:
INPUTTURN(Me) = (Me = 0 and InCount(0) = InCount(N-1))
or (Me # 0 and InCouni(Me) # InCount(Me-1))
OUTPUTTURN (Me) = (Me = 0 and OutCount(0) = OutCount(N-1))
or (Me # 0 and OutCouni(Me) # OutCount(Me-1))

Figure 7: C: An N-process ring buffer algorithm.

3.9 Remarks

One may argue that InBit and OutBit are not used in R.,;, and C.,, and should not be used in R., and
Ceq. It is easy to avoid using InBit and OutBit and make the input and output channels implicit, as in
Resp and Cesp. Lamport uses a trick with bits to model his input and output channels, and we followed him
(though we altered the trick insignificantly for elegance). Note that both algorithms use identical input and
output mechanisms; thus, different presentations of this mechanism do not affect the equivalence of the two
algorithms.

One the other hand, one may wish to make the actions of the external world explicit in R., and C.,. It
is easy to do this, but is not needed for our purposes here.



4 Equivalence

Here we define a strong version of lock-step equivalence for ealgebras which, for brevity, we call simply
lock-step equivalence. We also define an even stronger version of lock-step equivalence which we call strict
lock-step equivalence.

4.1 Strict Lock-Step Equivalence

Let A and B be two ealgebras with the same superuniverse.

Suppose h is a one-to-one mapping from states of A onto states of B, such that if A(s) = ¢, then s and ¢
coincide on function names common to .4 and B. A sequential run (s; : i < ) of A is strictly h-similar to
a sequential run (s} : j < f) if a = § and s} = h(s;) for every i < a. A partially ordered run (M, 4, ) of A
is strictly h-similar to a partially ordered run (M’, A’, ¢') of B if there is an isomorphism n : M — M’ such
that for every finite initial segment X of M, h(c(X)) = o/(Y), where Y = {n(p) : u € X}. (Note that we
permit X = ), in which case Y = ) as well.)

A and B are strictly h-similar if every run of A is strictly h-similar to a run of B, and every run of B
is h~'-similar to a run of A. We say A and B are strictly lock-step equivalent if A and B are h-similar for
some h.

Ideally, this is the type of equivalence we would like to use. However, this is not possible. R uses functions
(First, Last) which have infinitely many possible values while their counterparts in C (InCount, OutCount)
have only finitely many values. Imagine that the universe of data is finite. Then R has infinitely many states
while C has only finitely many states. A one-to-one mapping i will not be possible in this case.

We can easily re-write either R or C to make them strictly lock-step equivalent. (For example, it suffices
to modify C to perform math on InCount and OutCount over integers instead of int5.) However, a slightly
weaker version of this equivalence will do.

4.2 Lock-Step Equivalence

Let 2 be an equivalence relation over states of an ealgebra A. Let Result(a,s) denote the state resulting
from agent a firing at state s. We call =2 a congruence if for any states s; and s; and any agent a,
$1 = s9 — Result(a, s1) = Result(a, s3). We call the equivalence classes of 2 configurations (with respect to
=), and denote by [s] the configuration to which state s belongs.

Let A and B be ealgebras with congruences =4 and =g, respectively. (We will drop the subscripts on =
when no confusion arises.) We assume that .4 and B have the same superuniverse and =4 and =g preserve
the interpretation of function names common to A and B. In other words, if f is a common function name,
p and ¢ are both states of A (or both states of B), and p 2 ¢, then f, = f;; that is, f(2), = f(Z), for all z.

Let h be a one-to-one mapping from the set of configurations of .4 onto the set of configurations of B such
that for every function name f common to A and B, if A([p]) = [s], then f, = f,. A partially ordered run
(M, A, o) of Ais h-similar to a partially ordered run (M’, A’, ') of B if there is an isomorphismn : M — M’
such that for every finite initial segment X of M, h([o(X)]) = [¢/(Y)], where Y = {n(p) : p € X }.

A and B are h-similar if every run of A is h-similar to a run of B, and every run of B is h~!-similar to a
run of A. A and B are lock-step equivalent (with respect to =4 and =) if A and B are h-similar for some
h.

Note that strict lock-step equivalence is a special case of lock-step equivalence, where =4 and =g are
both the identity relation.

We will show that R is lock-step equivalent to C with respect to the congruences defined below. We
assume that R and C have the same superuniverse.

Definition 1 For states st of C, s =¢ t if s =1.

Since each configuration of C has only one element, we identify a state of C with its configuration.



Definition 2 For states p,q of R, p =z q if:

o Last, = Last, mod 2N

e (First — Last), = (First — Last),

o fp = f, for all other function names f.

Let div represent integer division: ¢ div j = |i/j].
Lemma 4.1 If p = q then we have the following modulo 2:

o Furst, div N = Fursty div N

o Last, div N = Last, div N

Proof: We prove the desired property for First; the proof for Last is similar.

By the definition of 2%, we have modulo 2N that First, = Last, + (First - Last), = Last, + (First -
Last), = First,. Thus, there are non-negative integers 1, 22, 3 such that First, = 2Nz, + Nzs + 3 and
zy < 1and 3 < N. Since First, = First, mod 2N, there exists a non-negative integer y; such that First, =
2Ny1 + Nxy + x3. Hence Furst, div N = 2%y + x5 and Firsty, div N = 2y; + x3, which are equal modulo
2.0

We define a mapping h from configurations of R onto configurations of C.

Definition 3 If h([p]) = s, then

InCount(i), = (Fz'rstp' div ]\() mod 2 ifi > FiTstp mod N
1 — (First, div N) mod 2 otherwise
OutCount(i), = (Last, div N) mod 2 if t > Last, mod N

1 — (Last, div N) mod 2 otherwise

and for all other common function names f, f, = fs.

Thus, h relates the counters First and Last used in R and the counters InCount and OuiCount used in
C. We have not said anything about Mode because Mode is uniquely defined by the rest of the state (see
Lemma 4.7 in section 4.3) and is redundant. We only include Mode in our specification for C because we
wish the translation of C.;, to C to be more faithful.

We now prove that R and C are h-similar.

4.3 Properties of R
Lemma 4.2 For any state ¢ of any run of R, 0 < (First, — Lasty) < N.

Proof: By induction. Initially, First = Last = 0.
Let X be a finite initial segment of a run with maximal element z, such that 0 < First — Last < N holds
inp=o0(X —{z}). Let ¢ = o(X).

o If  is an execution of rule Input, (First - Last), < N. Input increments First and does not alter Last;
thus, 0 < (First — Last); < N.

o If z is an execution of rule Output, Last, < First, (i.e. 0 < (First — Last),). Output increments Last
and does not alter First; thus, 0 < (F'irst — Last), < N. O
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Lemma 4.3 Fiz a non-negative integer k < N. For any run (M, A, o) of R, the k-slot moves of M are
linearly ordered.

Proof: By contradiction, suppose that two k-slot moves u, v are incomparable. Since all input moves are
comparable and all output moves are comparable, one of these moves (say p) is an input move while the
other (that is, ) is an output move.

Let X ={¢:{<poré<vl,p=0(X), Y =XU{u},and 7 = X U{v}. By the coherence condition
applied to Y and p, A(p) = I is enabled in X; consequently, First, = k mod N and First, - Last, # N. By
the coherence condition applied to Z and v, A(v) = O is enabled in X; consequently, Last, = k mod N and
First, - Last, # 0. Combining with Lemma 4.2, we have 0 < Flirst, — Last, < N and First, = Last, mod
N, which is impossible. O

4.4 Properties of C
Lemma 4.4 For any state t of any run of C, there is an agent k = In(t) < N such that:

e INPUTTURN (Me) is true for agent k and for no other agent.
e Foralli <k, InCouni(i) = 1 - InCount(k).
o Forallk <i< N, InCount(i) = InCouni(k).

Proof: By induction. Initially, agent 0 (and no other) satisfies INPUTTURN (Me} and InCount(Me) = 0 for
all agents. Thus, if ¢ is an initial state, In(t) = 0.

Let Y be a finite initial segment of a run of C with maximal element y, such that the requirements hold
in s = oY —{y}). Let t = o(Y). Since rule Put does not modify InCount, it cannot affect the three
requirements.

The desired In(t) = In(s) + 1 mod N. This is obvious in the case that In(s) < N-1. If In(s) = N-1, then
all values of InCount are equal in ¢, so In(t) = 0 satisfies the three requirements. O

Lemma 4.5 For any state t of any run of C, there is exactly one agent k = Out(t) < N such that:
e OUuTPUTTURN(Me) is true for agent k and no other agent.
o Foralli <k, OutCouni(i) = 1 - OuiCount(k).
o Forallk <i< N, OutCount(i) = OutCouni(k).

Proof: Parallel to that of the last lemma. O

Lemma 4.6 For any run (M, A, o) of C, the set {u : A(p) executes rule Get in A(u)} is linearly ordered,
as is the set {p : A(p) executes rule Put in A(p)}.

Proof: We prove the claim for Get; the proof for Put is similar. By contradiction, suppose that are two
incomparable moves p, v such that Get is enabled in both A(y) and A(v).

Let X ={¢:{<poré<v),p=0(X), Y =X U{u},and 7 = X U{v}. By the coherence condition
applied to Y and p, A(u) fires at p; by Lemma 4.4, In(p) = A(p). Similarly, A(v) fires at p and In(p) =
A(v). Thus, g and v must be moves of the same agent k. But all moves of the same agent are ordered, so
p and v cannot be incomparable. O

Lemma 4.7 In any state t of any run of C, for any agent k,

get if InCount(Me) = OutCouni(Me)

Mode(Me) =
ode(Me) {put if InCount(Me) = 1 - OutCount(Me)

11



Proof: We fix a k and perform an induction over runs. Initially, Mode(Me) = get and InCount(Me) =
OutCount(Me) = 0 for every agent.
Let Y be a finite initial segment of a run with maximal element y. Thus, the required condition holds in

s=o(Y — {y}).
If move Y is executed by any agent other than k, no functions named in the required condition are
affected. If agent k£ does execute move y, there are two cases.

o If y is an execution of rule Get, the guard ensures that Mode(Me) = gei. Get sets Mode(Me) to put
and executes InCount(Me) := 1 - InCount(Me), maintaining the requirement.

o If y is an execution of rule Put, the guard ensures that Mode(Me) = pui. Put sets Mode(Me) to get
and executes QutCouni(Me) := 1 - OutCouni(Me), maintaining the requirement. O

Remark. This lemma shows that function Mode i1s indeed redundant. The only substantial difference
between the signatures of R and C is the presence of First and Last in ‘R and the presence of InCount and
OutCount in C.

4.5 Proof of Equivalence
Lemma 4.8 If h([p]) = s, then In(s) = First, mod N and Out(s) = Last, mod N.

Proof: Recall that In(s) is the agent k for which INPUTTURN (%), holds. Lemma 4.4 asserts that InCount,
has one value everywhere below k and another value everywhere else. By definition of A, this “switch-point”
in InCount occurs at First, mod N. The proof for Oui(s) is similar. O

Lemma 4.9 Rule Input is enabled in state p of R iff rule Get is enabled in state s = h([p]) of C for agent
In(s).

Proof: Let k£ = In(s), so that INPUTTURN(k), holds. Both Input and Get have MyBit # InBit in their
guards. It thus suffices to show that (First — Last), # N iff Mode(k); = get. By Lemma 4.7, it suffices to
show that (First — Last), # N iff InCount(k), = OutCount(k),.

Suppose (First — Last), # N. There exist non-negative integers a1, as, as, a4 such that First, = a1 N +as,
Last, = asN + a4, and as,as < N. (Note that by 4.8, k = First, mod N = as.)

By Lemma 4.2, 0 < (First — Last), < N. There are two cases.

e a1 = ay and a3 > as4. By definition of h, we have that, modulo 2, InCount(as), = First, div N = a;
and QutCount(i); = Last, div N = a, for all i > Last, mod N = a4. Since az > as, (OutCount(az) =
as = a1 = InCouni(as));.

e a1 = (az + 1) and a3 < as. By definition of h, we have that, modulo 2, InCount(as), = First, div N
= a1 and QutCount(i); = 1 - (Last, div N) = as + 1 for all i < Last, mod N = a4. Since az < aa,
(OutCount(az) = as + 1 = a; = InCouni(as));.

On the other hand, suppose (First - Last), = N. Then First, div N and Last, div N differ by 1. By
definition of h, InCount(i); = 1- OutCouni(i)s for all i, including k. O

Lemma 4.10 Rule Output is enabled in state p iff rule Put is enabled in state s = h([p]) for agent Out(s).
Proof: Similar to that of the last theorem. O

Lemma 4.11 Suppose that rule Input is enabled in a state p of R and rule Get is enabled in a state s = h([p])
of C for agent In(s). Let ¢ = Resuli(I,p) and t = Result(In(s), s). Then t = h([q]).

Proof: We check that h([q]) = ¢.
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e Both Input and Get execute MyBit := InBit

o Input executes Buffer(First mod N) := InData. Get executes Buffer(In(s)) := InData. By Lemma 4.8,
In(s) = First, mod N, so these updates are identical.

o Input executes First := First + 1. Get executes InCount(In(s)) := 1 - InCount(In(s)). The definition
of h and the fact that InCount(i); = InCount(i)pp)) imply that InCount(i); = InCount(i)(,).

o Get executes Mode(In(s)) := put. By Lemma 4.7, this update is redundant and need not have a
corresponding update in Input. O

Lemma 4.12 Suppose that rule Output is enabled in a state p of R and rule Put is enabled in a state
s = h([p]) of C for agent Oui(s). Let ¢ = Result(O,p) and t = Result(Oui(s), s). Thent = h([q]).

Proof: Parallel to that of the last theorem. [
Theorem 1 R s lock-step equivalent to C.

Proof: Let A(p) = Ar(p) and A'(p) = Ac(p).

We begin by showing that any run (M, A, o) of R is h-similar to a run of C, using the definition of A
given earlier. Construct a run (M, A’ o') of C, where ¢/(X) = h([c(X)]) and A’ is defined as follows. Let u
be a move of M and let s = h([A(x)]). Then A'(p) = In(s) if A(p) =1, and A'(p) = Out(s) if A(p) = O.

We check that (M, A’, 0’) satisfies the four requirements for a run of C stated in Section 3.5.

1. Trivial, since (M, A, o) is a run.

2. By Lemma 4.3, it suffices to show that for any p, if A'(u) = k, then A(u) is a k-slot move. By the
construction above and Lemma 4.8, we have modulo N that k = In(s) = Firsta(,) if A(u) = I and
k = Out(s) = Lasta(,) if A(u) = O. In either case, p is a k-slot move.

3. Since ¢/ = h oo, ¢’ maps finite initial segments of M to states of C.

4. Coherence. Let Y be a finite initial segment of M with a maximal element p, and X =Y — {u}. Thus
Result(A(u),0(X)) = o(Y). By Lemma 4.9 or 4.10, A’() is enabled in ¢/(X). By Lemma 4.11 or 4.12,
Result(A'(pn), o' (X)) = o'(V).

Continuing, we must also show that for any run (M, A’,¢’) of C, there is a run (M, A, o) of R which is
h-similar to it.

We define A as follows. Consider the action of agent A’(p) at state A’(p). If A'(p1) executes rule Get, set
A(p) = I. Tf A’(p) executes rule Put, set A(p) = O.

We check that {g : A(p) = I} is linearly ordered. By Lemma 4.6, it suffices to show that if A(y) = I,
then A'(p) executes Get in state A’(p) — which is true by construction of A. {p : A(g) = O} is linearly
ordered by a similar argument.

We define ¢ inductively over finite initial segments of M. o(0) is the unique initial state in h=1(o”(0)).

Let Y be a finite initial segment with a maximal element g such that o is defined at X =Y — {u}.
Choose o(Y) from h=1(¢'(Y)) such that o(Y)~ = Result(A(u),oc(X)). Is it possible to select such a o(Y)?
Yes. By Lemma 4.9 or 4.10, A(p) is enabled in o(X) iff A’(p) is enabled in ¢/(X). By Lemma 4.11 or 4.12,
Result(A(p), 0(X)) € h™t (Result(A'(p), o' (1))).

Tt is easy to check that (M, A, o) is a run of R which is A-similar to (M, A’,¢"). O

5 Inequivalence

Even though we have proven that R and C are lock-step equivalent, there are meaningful differences between
R and C. We consider several differences which could be detected by an external observer.
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Magnitude of Values. R uses unrestricted integers as its counters; in constrast, C uses only single bits
for the same purpose. Imagine that the universe of data is finite and small, and that an observer uses a
computer with little memory to execute R and C. R’s counters may eventually exceed the memory capacity
of the computer. € would have no such difficulties.

Types of Sharing. R shares access to the buffer between both agents; each agent in C has exclusive access
to its portion of the buffer. Conversely, agents in C share access to both the input and output channels; each
agent in R has exclusive access to one channel. Imagine an architecture in which input or output channels
may not be exclusively held by an agent. It may not be possible to implement R directly on such a system.

Degree of Sharing. R has N + 2 shared locations: the N locations of the buffer and 2 counter variables.
C shares access to 2(N + 2) locations: the input and output channel functions and the 2N counter variables.
Sharing locations can be an expensive matter; if a location is being shared, some provision must be made for
handling read/write conflicts to a given location. Imagine that a user must pay (either in time or in money)
for each shared location (but not for private variables), regardless of size. In such a scenario, C would be
more expensive than R to run.

These constrasts can be made more a little more dramatic. For example, one could construct an algorithm
which uses 2N agents, each of which is responsible for an input or output action (but not both) to a particular
buffer position. Virtually all of the locations it uses will be shared; yet, it is lock-step equivalent to R and
C. Yet few people would use this algorithm instead of R or C because it combines their disadvantages.
Alternatively, one could write a single processor (sequential) algorithm which is equivalent in a different
sense to R and C; it would produce the same output as R and € when given the same input, but would not
allow all orderings of actions possible for R and C.
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