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Abstract

Views are an established technique for restructuring and repartitioning the format of data, classes,
and schemata so that applications can customize shared data objects without affecting other applications’
perceptions of the data. The MultiView system is one of the first OODB systems to support dynamic and
updatable materialized object-oriented database views. Multi View is fully functional and is being used
for a number of projects. In this paper, we describe our system’s architecture, the services it provides,
and the decisions we made during our implementation. Although the GemStone system we chose for our
implementation base offers many features that greatly aided our implementation, it does not support
several key object-model properties that are critical for the realization of our design principles. These
fundamental properties include multiple classification, dynamic object-restructuring, and the ability to
make dynamic changes to the schema. In this paper, we describe a flexible and powerful technique
known as object-slicing that we adopted to construct the MultiView object model — this now successfully
addresses our requirements. The MultiView system is distinguished by a number of unique features,
including the incorporation of virtual classes into the global schema as first-class database citizens,
support for capacity-augmenting views (virtual classes that add new extrinsic properties or behavior),
view materialization strategies that take advantage of object-oriented modeling features, and a graphical
interface that is tailored to provide easy access to the MultiView system. The resulting system preserves
all of the capabilities of the underlying GemStone OODB while providing support for dynamic and
updatable materialized object-oriented views.
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1 Introduction

Motivation and Background. Views provide logical data independence, and offer a means by which
data can be repartitioned and restructured in format. Applications can use views to customize shared data
objects, even adding new extrinsic properties and behavior, without affecting other applications’ perceptions
of the data. Views have been established as an effective method for virtually restructuring data, classes,
and schemata so as to meet the needs of specific applications or users; for integrating heterogeneous and
distributed systems; for security and access rights restriction; and for achieving interoperability by hiding the
idiosyncrasies of component systems to be integrated into one unified, yet federated system [1, 4, 5, 6, 17].
Because views allow a database object to behave differently depending on the context in which it appears,
views are a recognized technique for extending a database system with support for subjectivity.

Many research areas can profit from the flexibility provided by object-oriented views. In addition
to the traditional use of views for facilitating the sharing of data by applications, current researchers are
examining new areas that can specifically benefit from object-oriented views. Barsalou et al. use object-
based views to integrate object-oriented and relational databases while preserving update capabilities [4]. Ra
and Rundensteiner utilize views to provide transparent schema evolution, preserving existing views through
schema change [30]. Because the object-oriented paradigm offers a more powerful model for integration than
the relational one, several papers discuss the integration of heterogeneous data repositories via object-oriented
views [5, 4, 17].

While a number of researchers have begun to study view mechanisms with regard to object-oriented
databases (OODBs) [1, 15, 22, 36, 31, 33], little work has been done regarding implementation issues related
to object-oriented views. To the best of our knowledge, commercial OODB systems do not yet support
view capabilities. Furthermore, of the few research papers that discuss implementations of OODB view
systems, most support only limited functionality at this time. There are several outstanding issues that
must be addressed for the successful implementation of an object-oriented view system. First, creating
views in an object-oriented model is not a simple transfer of the relational view solution to the object-
oriented model. Much of the functionality typically provided by relational databases must be re-evaluated
in the context of this new technology—for example, how to overcome the view update problem of the
relational view mechanism, and how to utilize the complexity of the object-oriented data model for view
definition (such as behavioral customization, view hierarchy manipulation, and property inheritance among
view classes). Second, and more critically, to the best of our knowledge, no existing commercial OODB
system supports all of the properties we identify as critical for the realization of fully-functional object-
oriented views. These properties are quite fundamental, including features such as multiple classification,
dynamic object-restructuring, and dynamic changes to the schema. This implies that either the data models
of existing OODB systems must be extended, or other solutions must be found to address this problem.

The Mult:View Approach. Here at the University of Michigan, we have an NSF-funded project devel-
oping MultiView, a view management system capable of supporting updatable materialized object-oriented
views [31]. In the context of the MuliiView project, we provide solutions to the issues outlined above. In
order to facilitate the implementation of our system, we chose to use the commercial GemStone OODB as our
base 1. However, although GemStone offers many features that greatly aided our implementation, neither it
nor any other existing commercial OODB system supports several of the key object-model properties that
are necessary for the realization of our design principles. We therefore developed an object-slicing represen-
tational model, a flexible and powerful technique, that addresses these deficiencies. Using the object-slicing
representational model, we were able to construct the MultiView object model, which provides all the fea-
tures required for our view system, on top of GemStone. We ran an experimental evaluation of our system to
determine the overhead that can be attributed to our choice of an object-slicing representation paradigm (in
terms of both storage costs and performance). Our experiments confirm that the overhead is mixed, ranging
from performance gains of 50% to increases in execution time of 200%, depending on the characteristics of
the specific access patterns.

Our MultiView system is currently fully functional, provides clean object-oriented characteristics, sup-
ports dynamic updatable materialized views, and is being used for a number of projects. To the best of our
knowledge, MultiView is one of the first (and perhaps the only) implemented OODB view system to support
incrementally materialized views. Another unique feature of MultiView is that (again, to the best of our
knowledge) MultiView is the only implemented OODB view system that treats virtual classes as first-class
database citizens. We integrate both base and virtual classes into a unified global schema. Virtual classes

1GemStone is a registered trademark of Servio Corporation
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in MultiView participate in the actual inheritance hierarchy and thus behave just like base classes. Further-
more, virtual classes in MultiView can independently define additional attributes and methods, i.e., they are
capacity-augmenting views.

In previous papers we have described individual components of MultiView. [31] introduced the founding
principles of the Multi View view specification methodology as a three-step process. [32] discusses Mult: View’s
strategy for the generation of view schemata, and [33] presents the classification algorithm by which new
virtual classes are integrated into the global schema. In [24], we introduce some initial algorithms for
incremental propagation of updates for maintaining materialized views in Mul{iView. In this paper we
now present a unified overview of the Mult:View project, focusing primarily on issues related to its system
implementation. In particular, we outline the motivation and execution of our design decisions, system
architecture, and the MultiView system’s capabilities. The implementation solutions we describe are portable
to other object-oriented systems.

System Overview. We exploit the unique features of the object-oriented paradigm in the design and
implementation of the Mult:View system. As shown in Figure 1, the Mult:View system consists of a nested-
layer architecture.
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Figure 1: The Nested Layer Architecture of the Mult:View System Design.

e The innermost layer of the figure represents the underlying GemStone database system kernel. Gem-
Stone provides many of the basic functionalities for our system, including persistence, database pro-
gramming language support, and transaction management.

e The second layer illustrates how we overlay an object-slicing representation on top of the GemStone
architecture in order to implement the fundamental object model needed for view support. We iden-
tified features that must provided by an object model for the flexible support of object-oriented views
according to pure object-oriented principles. Like all the other OODB systems we surveyed, the Gem-
Stone OODB underlying our system does not support all of the properties required by our model.
We hence designed the object-slicing representational layer, which resolves the significant differences
between the underlying system and our object model. Object-slicing allows us to provide all of our
required object model properties, including multiple classification, multiple inheritance, the dynamic
restructuring of objects and classes, and dynamic changes to the class hierarchy.

e The third layer of the architecture represents MultiView’s support for materialized views and virtual
schemata. Our implementation provides a Smalltalk interface that supports the creation of virtual
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classes and the automatic integration of the base and virtual classes into a consistent and correct
global schema, the creation and customization of view schemata, the entry and update of data, and
the retrieval of data via user queries.

o Finally, Mult:View’s graphic user interface provides access to the system in an intuitive and user-friendly
fashion. The MultiView graphic user interface displays global and view schemata in visually intuitive
graphic windows, facilitates the creation of new virtual classes and view schemata, and provides an
interface for querying class extents and data entry. The current version of the Mult:View Viewer, or
short, the MultiViewer, is written in Tk/Tcl using C.

As represented by the anthropomorphic stick-figure below the diagram of system components, users
can access the MultiView system either through the graphic user interface or through Mult:View’s Smalltalk
interface. The Mult:View system as described in this paper is fully functional. We have used Mult:View to
implement the University of Wisconsin’s OO7 benchmark suite schema, populated the database with OO7’s
10,000 object parts-assembly example, and have tested MultiView using both OO7 benchmark queries and
queries of our own design. A summary of our performance evaluation, as well as of usage of the Mult:View
prototype in other projects, will be presented in later sections of this paper.

Outline of this Paper. In the remainder of this paper, we describe the object model, techniques, and
algorithms underlying our implementation of MultiView. Our work should be of interest to researchers
studying view systems. In addition, because many aspects of our experience, for example our use of an
object-slicing technique, can be applied to the general support of object model features such as multiple
classification and type-specific behavior, other implementors seeking to support subjectivity will also benefit
from this work. We begin by discussing related work. The goals and object model of the Mult:View project
are set forth in Section 3. We present our approach of realizing object model features required for the
support of our goals in Section 4, then discuss each of the components of our implementation in Sections 5
through 7. Finally, we conclude in Section 8 with a summary of the implementation status of Mult:View,
and a discussion of our contributions and future work.

2 Related Work

Relational Versus Object-Oriented Views. View mechanisms have been extensively studied for the
relational model by [7, 13, 2, 16]. Although we can benefit from this work, there are some significant
differences between relational and object-oriented views.

e Tables in relational databases (RDBs) are arranged in a “flat” fashion in the schema. There is no
information about the subset or subtype relationships contained between tables in the schema. Both
virtual and base classes in the MultiView model are arranged in an integrated generalization hierarchy.
Information about the relations between the types and extents of OODB classes can thus be easily
recognized by database users. Furthermore, update propagation techniques can be designed to exploit
the object membership information that is implicit in the hierarchical structure in order to terminate
propagation as soon as appropriate.

e Views in RDBs refer to virtual tables that are formed by applying query operations to base tables.
Because an OODB schema is organized into a generalization hierarchy, OODB views include both
virtual classes (formed by applying query operations to base classes) and virtual schema (formed by
applying query operations to a base or view schema).

e Attributes in RDBs are identified only as the names of columns in tables. If two relational tables
each have an attribute with the same name, there is no guarantee that the two attributes refer to the
same property. Each property in the MultiView model is defined at a single class and using property
inheritance shared by other classes. Database users can thus unambiguously identify whether or not
two properties represent the same instance variable or method. In addition, when a predicate term in a
virtual class’s query invokes a given property, we can identify exactly which class defines that property,
enabling us to localize the effects of updates.

o Attributes in RDBs are associated with simple values. Although the simple value can be a foreign

key referring to a row in another table, RDB attributes cannot contain sets or other complex data
structures. Instance variables in OODBs, on the other hand, can contain references to actual objects
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or sets of objects. OODBs thus contain aggregation relationships that can be used in view formation
queries.

e The values of relational attributes are updated using generic queries, and thus update procedures must
be implemented for the general case. On the other hand, because OODBs support encapsulation,
updates to attributes are localized to specific accessing methods that are themselves defined at a single
identifiable class. We can embed our update propagation methods into the accessing methods for the
properties referenced by the predicates of materialized virtual classes. The accessing methods then
serve as update triggers.

e Data in RDBs exists as values in tables. Thus when virtual tables in RDBs are materialized, the
materialized tables typically contain copies of data values from the base tables 2. On the other hand,
data in OODBs exists as objects that can be uniquely identified and then accessed using unique object
identifiers (oids). Thus when virtual classes in OODBs are materialized, the materialized classes can
contain references to the relevant objects rather than value duplicates (copies) of the original objects.
This not only saves space, but also significantly simplifies the view update problem. Furthermore,
regardless of which properties are “hidden” by a “project” query, objects belonging to a virtual class
can be easily associated with their base incarnations. In fact, this provides us with a basis for the
arbitrary restructuring of an object’s look and feel without compromising its identity.

Object-Oriented View Approaches. In recent years, several proposals for object-oriented view systems
have appeared in the literature [1, 6, 15, 26, 36, 39]. MultiView differs from other view systems in that it
does not simply adopt assumptions made by current OODB architectures; instead we re-examine key features
required as foundation for views. For example, we overcome the stringent constraint that each object belongs
to one and only one most-specific type—which is an unreasonable assumption for view systems. Rather than
handle an object as being of a single fixed type, a MultiView object is distributed among multiple object-
slicing implementation objects. The Iris functional database system resembles our system in that, being
built on top of a relational engine, it distributes data over several relational tables [11]. Iris does not support
view mechanisms, and does not address issues of classification, inheritance for virtual classes, etc.

Most previous work regarding view systems for OODBs focuses on view formation to the exclusion of
view incorporation. Note that our approach of providing for the integration of virtual classes into a single
unified global schema is distinct from others found in the literature. Existing approaches either: (1) require
the user to specify explicitly the relationship between a virtual class and existing base classes [18, 41]; or
(2) relate a virtual class only with its direct source class via a subclass/superclass relationship [36]; or (3)
simply relate a virtual class with its source class via a derived-from relationship [6], (4) or with the root of
the schema [15, 19].

The first approach is vulnerable to potential consistency problems, since the users might introduce
an inconsistency in the schema graph by inserting is-a arcs between two classes not related by a subclass
relationship. A solution of verifying the correctness of the relationship in essence would have to provide
a capability similar to the automatic classification approach advocated in our system, namely, a means of
automatically computing the subsumes relationships between pairs of classes. The second approach is prone
to misrepresenting the subclass relationships normally represented in a class hierarchy, in particular, because
a derived class may not be 2s-a related to its immediate source class. It would at best result in a partial, hence
less informative, classification of class extents. The third approach ignores the issue of determining subclass
relationships by introducing a parallel derived-from relationship hierarchy, which is not very informative in
terms of relating different classes and their type descriptions. Note that in all other approaches given above,
one would of course also maintain this derived-from relationship by keeping the class derivation query (which
will be used to recompute the population of the virtual class, whenever needed). Finally, the last approach
completely ignores the issue of classification, thus resulting in a flat class structure.

02 Views [26] [35], based on Abiteboul and Bonner [1], is the first and only commercial implementation
of an object-oriented view management system, currently realized. The O2 Views approach does include
the integration of view classes into a view schema, but rather than supporting a global class hierarchy and
migrating properties, it instead daisy-chains views and “bases.”

Scholl et al. [36, 37] have developed an object-preserving algebra to define virtual classes and thus
achieve updatable views. Their system, named Cocoon, has been implemented on top of a nested relational

?Note that some materialized RDB views may be implemented using techniques such as view indices that resemble mem-
bership materialization.
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model. The MuliiView object-algebra is similar in flavor to Cocoon’s. However, Cocoon does not support
the classification of view classes into a global schema, the automatic generation of complete view schemata,
the implementation of capacity-augmenting views, nor the incremental support of materialized views.

Others define view schemata through the manipulation of the object schema graph rather than solely
by query languages. Tanaka et al. [41] propose that view schemata be defined by manually manipulating the
edges in the global schema graph. Kim also uses DAG rearrangement for view schema definition [18]. Such
DAG manipulation approaches must deal with the issues of (1) possibly introducing inconsistencies into the
view schema due to human error and of (2) unintentionally modifying the semantics of a virtual class due
to side effects of graph manipulation.

View Materialization Research. Relational and object-oriented systems share a common motivation
for view materialization: the goal of improving query performance. Although not much work has been done
regarding OODB view materialization, object-oriented and relational systems both must address a number
of common issues when designing a view materialization system, such as when to evaluate updates and
how much to update. Our research on view materialization in OODBs borrows several techniques from
the relational arena. [7, 8] tests modified tuples to see if they fulfill view predicates, thereby detecting
irrelevant and autonomously computable updates. This resembles our solution of filtering irrelevant updates
by exploiting the generalization hierarchy and the derivation structure. The system provided by [10] performs
incremental view maintenance using production rules that are triggered by update operations. Similarly, we
override generic-update operations with type-specific update operators for virtual classes.

However, there are significant differences between view materialization in OODBs and relational systems.
In relational systems a view is a virtual table, so a materialized view consists of stored values/rows. In
OODBs, a view is a schema containing both base and virtual classes, so an object-oriented materialized view
consists of a schema in which some of the “virtual” classes contain actual stored objects. Our OODB view
approach supports membership materialization, meaning that we store references to the objects rather than
copies of them, while the relational model typically duplicates data on view materialization. Object-identity
eliminates the duplicate row problem of relational views in the context of our object-preserving model.
Finally, OODB support for encapsulation and object-identifiers significantly eases the implementation of
triggered incremental updates and the update of path query views.

As described in this paper, our approach incorporates several aspects (such as encapsulation and inheri-
tance) unique to object-oriented view technology. For instance, because there is a unique point of inheritance
for each property in the database, any modification to the value of an instance variable will take place at a
pre-determined class’s implementation object independent of through which base or virtual class the update
request was specified. Also, because an instance variable’s update method is always stored at the same
location as the instance variable itself, it is a simple matter to determine which selection class should register
where. Thus, when an object is updated, the update method triggers a notification function that informs all
virtual classes that have registered with the class of the update to the object.

Only a few published papers address issues of view materialization in OODBs. [14] provide a view
materialization model in which updates are propagated by use of change files, representing histories of design
sessions. However, [14] duplicate objects (including identifiers) for virtual classes rather than merely storing
references to objects. [20] address maintaining consistency for a particular type of join class formed along an
existing path in the aggregation graph. Our work instead focuses on the exploitation of the structure of the
schema hierarchy and derivation dependency graph in order to reduce update propagation. Our research is
also unique in studying incremental updates in the context of the object-slicing paradigm.

Role Modeling Systems. MultiView uses an object-slicing mechanism to address the object model re-
quirements underlying the support of object-oriented views. These requirements include multiple classifica-
tion and dynamic object migration. The flexibility offered by the object-slicing approach naturally lends itself
to implementing role systems: object-slicing’s implementation objects can easily be adapted to represent the
various roles of objects in a role system [12]. Although the object-slicing techniques underlying the current
implementation of MultiView can be compared to mechanisms used in role modeling approaches [12, 27], no
other research in the literature discusses the application of the object-slicing paradigm regarding the sup-
port of object-oriented views. In role modeling systems, objects dynamically gain and lose multiple interfaces
(a.k.a. roles) throughout their lifetimes. These roles can be compared to the implementation objects of an
object-slicing implementation, in that both permit objects to belong to multiple classes and change types
dynamically. In some sense, accessing an object through one of its implementation objects is like accessing an
object while it is playing one of its roles. However, role systems and views systems have different goals. Role
systems strive to increase the flexibility of objects by enabling them to dynamically change types and class
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membership at the level of individual object-instances. Such changes are done explicitly by user request,
and on an object-by-object basis. View systems, on the other hand, enable users to restructure the types
and class membership of complete classes—based on content-based queries.

n [38], Sciore proposed an object specialization approach, in which a real world entity is modeled by
multiple objects arranged in an object hierarchy. These object hierarchy objects inherit from each other,
enabling each individual entity object to decide its own inheritance hierarchy. Although our implementation
objects resemble object hierarchy objects in that they inherit from each other, objects in our implementation
always conform to the existing global class hierarchy. This single-point-of-inheritance allows us to optimize
view update propagation.

Unlike many role systems, which allow object hierarchies to exist independently from class hierar-
chies [38], objects in our model always conform to the existing global class hierarchy. In short, if an object
possesses an implementation object of a given class’s type, it must also possess an implementation object
for every class that is a superclass of that given type. This achieves an efficient and uniform inheritance
scheme. Also, unlike many role systems, in our implementation conceptual objects can be associated with
at most one implementation object of a given type [12]. Role systems do not deal with the issues of virtual
class derivation, classification, nor with method promotion.

The role system proposed by Gottlob et al. was implemented using techniques similar to object-
slicing [12]. This system, like ours, is implemented in Smalltalk by overriding the doesNotUnderstand:
method. The difference between [12] and our implementation is that [12] is a role system while we are
developing a view system. Also, the [12] system does not permit the derivation of new virtual classes, and
thus does not address issues related to view management.

Deputy Mechanisms. The Depuiy Mechanisms proposed by Peng and Kambayashi unify the concepts
of object views, roles, and migration in the form of deputy objects and deputy classes [28]. In the deputy
mechanism paradigm, view objects are treated as roles of database objects. The deputy mechanism object
model is probably the work most closely related to MultiView’s. In particular, the similarities of the two
systems include the following: Both support capacity-augmenting views, dynamic classification, and multiple
classification. Neither duplicate the state of an object when representing it as a virtual object. And finally,
both support update propagation to materialized virtual/deputy classes.

There are some significant differences between the two systems, however. MultiView treats virtual classes
as first-class database citizens, and thus integrates virtual and base classes into a unified global schema,
whereas Deputy classes are not integrated into the global schema. Virtual classes in MultiView participate
in the actual inheritance hierarchy and thus behave just like base classes. Mult:View supports the automatic
generation of view schemata composed of selected base and virtual classes, while the Deputy system does
not support view schemata. Although both the Deputy and MultiView systems are based on Smalltalk,
MultiView supports multiple inheritance. Deputy objects and source objects have independent object-
identifiers, whereas a view object and a source object in Mult:View share a conceptual object-identifier in
addition to individual implementation object-identifiers. Finally, MultiView supports optimized incremental
materialized view maintenance algorithms that exploit the integrated class hierarchy structure.

3 Object Model of Mult:View

3.1 Goals of the MultiView Project
The purpose of the Multi View project is to build, implement, and evaluate a system for OODB view support.
The goals of the project include the following:

e Users should be able to create customized virtual classes at any time.

e Users should be able to query and update both base and virtual classes.

e Users should be able to create and modify customized virtual schemata at any time.

e Virtual classes and schemata should be first-class citizens of the database.

By first-class database citizen, we mean that virtual classes and schemata should look and feel like base
classes and schemata. Virtual and base classes should be fully integrated into a global class hierarchy in terms
of both type and extent®. This implies that virtual classes should fully participate in the inheritance scheme

3 Although we combine type and extent for the sake of consistency between virtual and base classes, our model can easily be
extended to support models that separate type and extent.
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in such a way that virtual classes can act as a point of inheritance for properties, and also that the extents
of both virtual and base classes should be kept consistent with the class hierarchy. In addition, Mult: View
supports capacity-augmenting virtual classes. First introduced by [6], a capacity-augmenting virtual class
is a virtual class that includes instance variables that are not derived from the source classes of the virtual
class. Finally, the user should be able to select both base and virtual classes from the global schema at any
time and add them to view schemata. The MultiView system should automatically integrate these selected
classes into a consistent and correct view schemata.

In the following subsections, we give a description of an object model that fulfills the Mult: View project
goals. We first formalize our basic concepts and principles, then extend this initial description to include
virtual classes and schemata and materialized views.

3.2 Basic Concepts and Principles

An object instance (or short, object) represents an entity. Anything with distinct existence in objective or
conceptual reality can be represented as an object. Let O be an infinite set of object instances. Each object
O; € O consists of state (the instance variables or attributes of the object) and behavior (the methods,
or messages, to which the object can respond). Because our model is object-oriented and assumes full
encapsulation, any modification to an instance variable of an object in our system must be accomplished by
means of an accessing method. An accessing method is a method that modifies or retrieves an instance
variable. Together, the methods and instance variables of an object are referred to as its properties.
In addition, each object has a unique system-generated value-independent object identifier, which makes
it possible to distinguish between equality and identity, to share sub-objects among complex objects, and to
perform updates on common sub-objects.

Objects are grouped into sets of similar objects that share a common structure and behavior. The term
class denotes this specification of a common structure and behavior. Let C' be the set of all classes in a
database. A class, C; € C, has a unique class name, a type, and a set membership (known as the class’s
extent), as defined below *. We use the term type to indicate the set of applicable property functions
shared by all object-instances of the class. The set of property functions defined for class C; is denoted as
properties(C;).

Definition 1 (type) A type is a tuple, <Instance Variables, Methods>, where Instance Variables is the
set of atiributes (instance variables) possessed by the type and Methods is the set of methods defined by the
type. We refer to the the type associated with a class, C; € C by type(C;).

Figure 3 shows the class that MultiView would generate based on the class definition given in Figure 2,
creating a new class named Person that has instance variables (and accompanying accessing methods) to
store a Person’s birthyear and name. As shown in Figure 3, the Person class’s type contains the instance
variables birthyear and name, retrieval methods birthyear and name, and assignment methods birthyear:
and name:.

Definition 2 (subtype, supertype) For two classes C; and C; € C, C; is called a subtype of C;, denoted
by C; X Cj if and only if (properties(C;) O properties(C;)). C; is called a supertype of C; if and only
if Cs is a subtype of Cj. All properties defined for a supertype are inherited by its subtypes.

Definition 3 (extent) The extent (also called set-membership) of a class C; € C is the collection of
object instances that belong to that class. The membership of an object instance, o, in the extent of a class,
C;, is denoted by o € C;. We refer to the set of objects that are implemented as direct instances of C;
(objects whose most specific type is C;) as LocalEztent(C;), or short, extent(C;). We call the collection
of all objects thatl possess a class’s type the GlobalEztent(C;).

For example, we can create a new instance of the Person class and assign values to its birthyear and
name instance variables (Figure 4). This instance is automatically added to the extent of the Person class,
as shown in Figure 5.

Definition 4 (subset, superset) For two classes C; and C; € C, C; is called a subset of C;, denoted by
C; C Cy, if and only if (Yo € O)((0 € C;) = (0 € C})). Thus GlobalExtent(C;) = | LocalExtent(C;)
VC; C Ci. C is called a superset of C;, denoted by C; D Cj, iof and only of C; C Cj.

4We associate both type and extent with our concept of class. Although there is no general agreement on whether or
not classes in OODBs should incorporate their own extents rather than requiring users to maintain their own collections of
class-instances, several systems follow this philosophy, including Orion and the system proposed by H. J. Kim [18]. Furthermore,
the proposed ODMG standard [3] recently formulated by several key OODB vendors also follows this approach.
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Figure 4: Using the MultiView graphic interface to Figure 5: The Person class’s extent now contains
create a new instance of Person. the new instance.

Definition 5 (subclass, superclass) For two classes C; and C; € C, C; is called a subclass of Cj,
denoted by C; is-a Cj, if and only if (C; C C;) and (C; < C;). C; is a direct subclass of C; if ACy € C
st. k#1i1# j, C; is a subclass of Cy, and Cy, is a subclass of C;. Similarly, C; is called a superclass
of C; if and only if C; is-a Cj, and C; is a direct superclass of C; if AC, € C s.t. k#£i# j, C; s a

superclass of Cy, and Cy, is a superclass of C;.

Definition 6 (object schema) An object schema is a rooted directed acyclic graph G = (V, E), where
V is a finite set of vertices and E is a finite set of directed edges. Each element in 'V corresponds to a class
C; € C, while E corresponds to a binary relation on V XV that represents all direct is-a relationships between
all pairs of classes in V. In particular, each directed edge e € E from Cy to Cy, denoted by edge(Cq,Cs),
represents the relationship Cy is-a Cy. Two classes, C;,C; € C, share a common property if and only if
they inherit it from the same superclass. The designated root node, representing the Object class, is a class
defined to have a global extent of all database object instances and an empty type description.

Figure 7 shows the result of executing the code shown in Figure 6 in MultiView, thereby defining the
Student and Staff classes as subclasses of our original Person class. MultiView will update the schema
incorporating each new class into the global schema.

3.3 Views in OODBs

Now we extend the basic definitions given above to include the concept of virtual classes and virtual schemas.
In the relational model, a view, or virtual table, is defined to be a named, stored query. Similarly,
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Operations Instances

Search for class: |

run I

BaseC ass creat eSubcl ass: #St udent
supers: #[ Person ]
i nst Var Nares: #( #gpa ) J

constraints: #[ #[gpa, Nunber] ]

%

run

St udent conpi |l eAccessi ngMet hodsFor: #( #gpa ).
%

Person

run
Based ass createSubcl ass: #Staff
supers: #[ Person ]

i nstVar Narmes: #( #title )
constraints: #[ #[title, String] ] Staff m

%

run
: . . A
Staff conpil eAccessi nghvet hodsFor: #( #title ).

Figure 6: Code defining Student and Staff as sub- Figure 7: The new classes are automatically inte-
classes of the Person class. grated into the Global Schema.

our object-oriented model permits the application of a query operator to a source class (or classes) that
restructures the source class’s type and/or extent membership in order to form a virtual class with a type
and extent derived from its source class(es).

3.3.1 View-defining Queries

Let @ be the set of all possible queries. We constrain a query @; € @ used to define a virtual class to
correspond to a single algebra operation. Figure 8 displays the view-forming queries currently supported
by our model. If a complex query is specified by nesting algebra operators, then each intermediate algebra
operator generates a separate virtual class [31].

Definition 7 A query Q; € Q includes the following components: <QueryType,SourceClasses, Type-
Modifiers, MemberPredicates, ValuePredicates>, where QueryType € —Select, Hide, Refine, Union,
Intersect, Dif ference”; SourceClasses € C is an ordered list of the classes from which the class 1s derived
(that is, the classes to which the query is applied); TypeModifiers defines the derivation relationship be-
tween the type of the virtual class and that of the source class from which it is derived; Member Predicates
ts an ordered list of the class membership requirements that apply to instances of the virtual class, listed in
the same order as the classes in SourceClasses to which they correspond; and ValuePredicates is the set
of stmple value predicates that constrain the extent of the virtual class. We refer to the query that defines a

virtual class, VC; € VC, as query(VC;).

Currently we support the object algebra shown in Figure 8 for the derivation of virtual classes. These
queries allow us to determine the methods, instance variables, and extent of the virtual classes.

Now suppose we were to use a select query upon class Person to define a new virtual class, YoungPerson:
createSelectClass: YoungPerson query: [ :person | person birthyear > 1975]. We can derive all
aspects of the new virtual class from this query. The new class’s name will be YoungPerson, its type will
have the same properties as that of the Person class, SourceClasses( YoungPerson) will contain only the
Person class, MemberPredicates( YoungPerson) = (€ Person), and ValuePredicates( YoungPerson) will
contain only the simple predicate (birthyear > 1975). After the YoungPerson class has been created,
MultiView will then integrate the new virtual class into the class hierarchy and add the appropriate edge
(YoungPerson, Person) to the object schema’s edge set. The new object schema is shown in Figure 10.
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hide syntax <wirtual-class>) := (<source-class>) createHideClass: [<new-class-name>]
hideMethods: [<prop-functions>])
semantics | type(<wirtualclass>) := {p € P | peproperties(<source-class>) A pg<prop-functions>}
extent(<wirtualclass>) := extent(<source-class>)
class rels < source-class> < <wirtualclass>
<source-class> C <wirtualclass>
< source-class> is-a <wirtual-class>
refine syntax <wirtualclass> := (<source-class>) createRefineClass: [<new-class-name>]|
withProperties: [<prop-function-defs>]
semantics | type(<virtualclass>) := {p€P | pEproperties(<source-class>) V pE<prop-function-def>}
extent(<wirtualclass>) := extent(<source-class>)
class rels <wvirtuakclass> < <source-class>
<wvirtuakclass> C <source-class>
<wvirtuakclass> is-a <source-class>
select syntax <wirtuakclass> := (<source-class>) createSelectClass: (<new-class-name>) query: (<predicate>)
semantics | type(<virtualclass>) := type(<source-class>)
extent(<wvirtualclass>) := {0€0 | oE<source-class> A <predicate>(o)=true}
class rels <wvirtuakclass> < <source-class>
<wirtuakclass> C <source-class>
<wvirtuakclass> 1s-a <source-class>
union syntax < virtualclass> 1= (<source—c]ass] >) createUnionClassWith: (<so71,7‘(:e—c]as52>)
named: (<new-class-name>)
semantics | type(<wirtualclass>) := type(<source-class1>) M type(<source-class2>)
extent(<wirtualclass>) := {0€0 | o€<source-class1> V o€<source-class2>}
class rels <source-class1> < <wirtualclass> A <source-class2> < <wirtualclass>
<source-class1> C <wirtualclass> A <source-class2> C <wirtualclass>
<source-class1> is-a <wirtual-class> A <source-class2> is-a <wvirtualclass>
intersect syntax <wirtualclass> := (<source-class1>) createIntersectClassWith: (<source-class2>)
named: (<new-class-name>)
semantics | type(<wirtualclass>) := type(<source-class1>) U type(<source-class2>)
extent(<wvirtualclass>) := {0€0 | oE<source-classl> A o€ <source-class2>}
class rels <wvirtuaklclass> < <source-class1> A <wirtualclass> < <source-class2>
<wvirtuakclass> C <source-class1> A <wirtualclass> C <source-class2>
<wvirtuaklclass> is-a <source-class1> A <wirtualclass> is-a <source-class2>
difference | syntax <wvirtualclass> := (<source-class1>) createDifferenceClassWith: (<source-class2>)
named: (<new-class-name>)
semantics | type(<virtual-class>) := type(<source-classl>)
extent(<vim‘ua1—class>) = {0€0 | €< source-class1> A og<source-class2>}
class rels <wirtuakclass> < <source-class1>
<wirtuakclass> C <source-class1>
<wvirtuakclass> is-a <source-class1>
join syntax < nirtualkclass> 1= (<source-classl>) createJoinWith: (<source-classZ>)
named: (<new-class-name>) withMethods: (<aMethodArray>)
joinAttl: (<property>) joinAtt2: (<property>)
semantics | type(<virtual-class>) := newly-generated type
extent(<wvirtualclass>) := newly-generated extent
class rels <wvirtuaklclass> 1s-a <Root>

Figure 8: The

Object Model of MultiView
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Operations Instances

Search for class: |

|

run
Person createSel ect d ass:

Student Young Person
. #YoungPer son ©
query:

[ :ra| a birthyear > 1975 ]. i
% Kl —_ | P

Figure 9: MultiView definition of a new  Figure 10: MultiView automatically integrates the new virtual
YoungPerson virtual class. class into the schema.

3.3.2 Base Classes, Virtual Classes, and View Schemata

Let C' be the set of all classes in the database. C'is partitioned into two sets — BC' is the set of all base
classes in the database, and V' C is the set of all virtual classes in the database. Base classes are defined
during the initial schema definition. Virtual classes can be defined and added dynamically to the schema
throughout the lifetime of the database. They are defined by the application of a query operator to a source
class (or classes) that restructures the source class’s type and/or extent membership.

Just like our original class definition, each database class (whether virtual or base) C; € C has a
unique class name, a type description, and a set membership. In addition, in order to accommodate the
support of virtual classes, each class C; also maintains a set of all virtual classes VC; € VC st. C; €
SourceClasses(VC;). We use the corresponding notation VC; derived-from C; to characterize the rela-
tionship C; € SourceClasses(VC}).

Let VC' be the set of all virtual classes. Like members of the set of base classes, a virtual class
VC; € VC has a unique class name, a type description, and a set of the virtual classes derived from VC;. In
addition, because the set membership of V' C; is derived using its derivation query, V C; also includes the
query from which it is derived, denoted by query(V C;), as defined in Definition 7.

Definition 8 (Derived-from Sub-Graph) We define the Derived-from Sub-Graph of a class C; € C
to be a schema DS(C;) = (DV, DE) containing all the classes that are either directly or indirectly derived
from Cj:

1. Cj 1s the root of the DS.
2. DV CV,

3. YV; €V s.t. Vj corresponds to virtual class VC; € VC, DV; € DV if and only if VC; derived-from
C; or AV, € DV s.t. VC; derived-from V.

4. Fach edge DE; =<DV;,DV;> € DE corresponds to a direct derivation relationship between two
classes C; and C; € C with corresponding nodes DV; and DV; € DV, meaning that C; derived-from
Ci.

In Definition 6, we define an object schema as a database schema containing all of the classes in the
database. We now extend this definition to define a global schema as a database schema containing
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YoungCulture View

View Operations Instances

Search for class: |

run
YoungCul t ur eVi ew
addVC:. YoungPerson

wi t hNane: #Generati onXer

run
YoungCul t ur eVi ew
addVC. Student
wi t hNane: #St udent
%

Figure 11: Code to add classes to the Figure 12: The YoungCulture View schema contains a selected
YoungCulture virtual schema. set of classes organized into a schema by MultiView.

all of the database classes, both base and virtual, integrated into a consistent generalization hierarchy; a
base schema as a database schema containing all base classes; and a view schema as a database schema
containing a user-selected subset of the classes (either base or virtual) from the global schema. A view
management system must support a flexible classification mechanism in order to maintain this global class
hierarchy. For example, the system must be able to make dynamic changes to the class hierarchy, possibly
inserting a new class between two existing classes without affected the types or extents of previously-existing
classes in the hierarchy. We have proposed elsewhere [34, 31] algorithms and techniques by which the global
class hierarchy can be maintained.

Virtual classes are often simply called “views,” but we interpret an object-oriented view to imply a
complete view schema, which is a user-selected subgraph of the global schema.

Definition 9 (view schema) Given a global schema GS = (V| E), a view schema, VS, is defined 1o be
a schema VS = (VV,VE) with the following properties:

1. VS has a unique view identifier denoted < VS >,
2.VVCV

3. VE C transitive-closure(E)

For example, we can create a new view schema, named YoungCulture View, and select the YoungPerson
and Student classes to participate in that schema under the names GenerationXer and Student. The Mul-
t1View system will automatically build the class hierarchy for the new view schema. Figure 12 shows the
resulting view schema.

Because view schemata have all the properties of the global schema, and because classes can participate
in view schemata under assumed names, different applications can use their own views of a shared database.

3.3.3 View Materialization

Typically, the contents of a view are not stored, but are instead derived using the stored query defining the
view. The term view materialization means that results of the query that defines a view are actually
maintained in the view’s extent, as opposed to being computed on demand. Materialized views have already
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been established in the relational context as offering improved query times. We define a materialized
virtual class as a virtual class that stores either copies of or references to data instances in its extent rather
than computing its extent upon access. The extent of a materialized virtual class must be maintained in a
consistent state with respect to updates by the database system.

4 MoultiView Design Principles

In the following sections we describe and discuss our system design and its components, as illustrated by the
concentric circles of Figure 1. We begin in this section by reviewing the properties required for the support
of our object model’s features. We next review the properties provided by the underlying GemStone system.
Finally, we compare the required properties to those that are provided.

4.1 Properties Required for View Support

MultiView’s object model includes some fundamental design principles. These principles require the un-
derlying database system to support certain properties. Figure 13 outlines the design principles and the
properties needed to support them.

Required Properties dynamic flexible

Design multiple multiple dynamic class object inheritance
Principles classification inheritance restructuring restructuring system

4

class has type
and extent

dynamic class
creation

integrated

class
hierarchy

Vv
vV |V

virtual class

first-class

database
citizen

NSNS

4
4
4

objects gain
and lose

types
dynamically

objects have
both base &

virtual types

NSNS

Figure 13: Properties required for view support

e A class has a type and an extent. If an object qualifies for membership in two classes, it must
belong to the extent of both classes, whether or not any subsumption relationship exists between the
two classes. Our system must therefore support multiple classification.

e Users should be able to create virtual classes dynamically, customizing both type and
extent. If the new virtual class’s type i1s a customization of an existing class’s type, then the correct
position in the global type hierarchy might be between two existing classes. The underlying inheritance
implementation must therefore be flexible enough to support the dynamic reclassification of database
classes. Furthermore, if the new virtual class is to serve as the point of inheritance for a new property,
that property could be relocated to the new class. Our system must therefore support dynamic class
restructuring. This dynamic class restructuring includes support for the possible migration of state as
properties are moved from class to class.

¢ Both virtual and base classes should be integrated into a correct and consistent hierarchy.
As detailed in [32],this integration requires both multiple classification and multiple inheritance. For
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example, if a virtual class is formed by applying a union query to two base classes, then the newly-
formed union class should be classified as a superclass of both base classes, which should continue to be
subclasses of any other classes from which they inherit properties. In addition, because new classes will
have to be integrated dynamically, the inheritance implementation must be flexible and the underlying
system must support dynamic class restructuring.

e Virtual classes should be treated as first-class database citizens. This means that virtual
classes should participate in the upwards-inheritance mechanism of the schema, and that the system
should support capacity-augmenting virtual classes.

¢ Objects should be able to gain or lose types dynamically. This feature requires support for the
dynamic restructuring of objects because an object could gain or lose state depending on which types
1t possesses.

e Objects should possess both virtual and base types. For example, if an object qualifies for
membership in two select classes, then it should be a member of both—regardless of whether or not
any subsumption relationship exists between the select classes. The system must therefore support
multiple classification and, as explained above, the dynamic restructuring of objects.

4.2 GemStone Kernel

As illustrated by the innermost circle of Figure 1, MultiView is built on top of Servio Corpora-
tion’s GemStone OODBMS using GemStone’s Smalltalk-like OPAL programming environment.
We chose to use the GemStone OODBMS rather than implement Mult: View from scratch because
GemStone provides a rich object-oriented data model with supporting tools. Despite significant
differences between the GemStone and Mult:View data models, GemStone offers key features that
proved extremely useful in the implementation of MultiView. Besides the typical database functionali-

ties, such as persistence, database programminglanguage support, and transaction management, features
of GemStone include:

OPAI
Interface

c User Ing
o Sltace

e GemStone provides automatic, system-maintained object identity.
e GemStone treats everything in the system, including code blocks and classes, as objects.

e GemStone offers a number of programming language interfaces, such as C, C++4, and Smalltalk, which
facilitate the development and integration of a graphic interface.

e GemStone permits access to the source code for most methods, whether system or user defined.

4.3 Differences Between Multi View and GemStone

Our implementation made a number of extensions to the GemStone system that were necessary in order to
support views. For example, because GemStone does not maintain explicit extents to collect all instances of a
type, which is needed for the specification of select virtual classes, MultiView extends the GemStone concept
of class to include an extent. We add system methods to automatically add objects to the appropriate
extents upon creation, and maintain the extents of virtual classes upon updates.

More significantly, the goals of MultiView require that the underlying object model support certain
properties, as discussed in Section 4.1. Many of these properties are not supported by GemStone’s data
model. The most important of these properties are:

o GemStone does not support multiple classification, which is a required characteristic for view support
in MultiView.

e GemStone does not support multiple inheritance, which is necessary both in order to preserve our
single-point-of-inheritance property and also the participation of virtual classes as first-class citizens
in an upward-inheritance mechanism.

o (lass restructuring in GemStone is severely restricted for classes with instances, which would prevent
the manipulation of the schema hierarchy necessary for the integration of virtual and base classes into
a single global schema.
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e GemStone supports object restructuring only in terms of migrating objects from one class to another.
Furthermore, an object can only belong to one class, and migration can only take place between two
classes that share a class history.

e GemStone’s native inheritance schema does not support the independent restructuring of class in-
heritance relationships that is necessary if virtual classes are to participate fully in the inheritance
schema.

Multiple classification is particularly necessary in a capacity-augmenting view system, because an object
can be an instance of multiple virtual classes (as well as its base class) regardless of whether or not any
subsumption relationships exist between those classes 5. To the best of our knowledge, current OODB
systems do not support multiple classification — with the exception of TRIS [11], which is a functional
database system that uses a relational database as a storage system, to store data from one object across
many relations . Inspired by this approach we have developed an object-slicing technique to address these
advanced features in the context of the OODB technology [29]. In the following section, we describe our
object-slicing technique.

5 Object-Slicing Architecture

We used a flexible and powerful technique called object-slicing to construct the MultiView object
model on top of GemStone. In object-slicing, a real-world object corresponds to a hierarchy of
implementation objects (one for each class whose type the object possesses) linked to a con-
ceptual object (used to represent the object-itself) rather than associating one implementation
with each conceptual object as is commonly assumed in OODB systems [25]. For example, Figure 14
depicts a schema composed of two base classes, Cat and HouseCat, and two virtual classes, HeavyCat

(derived from a selection query upon the Cat class) and DietingHeavyCat (derived by refining HeavyCat
to add a new instance variable, diet). The right-hand side of the figure illustrates a single instance of the
HouseCat class with instance variables height = 9", weight = 171bs, and owner = Fred. The instance
fulfills the membership requirements of HeavyCat (weight > 15 lbs), and thus it belongs to both the HeavyCat
and the DietingHeavyCat virtual classes. Note that the state of the object i1s maintained by the implementa-
tion objects of the classes defining each property. Because the instance belongs to DietingHeavyCat, it now
carries a data value for the diet attribute.
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1
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Figure 14: Example of object-slicing.

5While regular view systems (i.e., that do not support capacity-augmenting views) also must permit an object to be an
instance of multiple virtual classes (in addition to its base class), note that virtual classes do not carry any additional stored
data — and it is thus trivial to make the object a transient member of the virtual classes on access. This is no longer sufficient
for capacity-augmenting views.

6Most OODBs typically represent an object as a chunk of contiguous storage determined at object creation time. They thus
adhere to the invariant that an object belongs to exactly one class only — and indirectly also to all the class’s superclasses.
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We formalize the object-slicing paradigm as follows. Let O; € O be a user-defined database object. In
the object-slicing model, O; is represented using two kinds of objects: a single conceptual object, O and
one implementation object for each class C; € C to which the object belongs, O

tconc

Timple .
7

Definition 10 (conceptual object, implementation object) A conceptual object consists of a tu-
ple, <OID, implementationObjects>, where OID 1s the unique, system-generated object-identifier of the
conceptual object, and implementationObjects is the set of tmplementation objects that are linked to
the conceptual object. An implementation object is a f-tuple <OID,oid,class,state> where OID 1is
the object-identifier of the linked conceptual object, oid is the object-identifier of the implementation object
itself 7, class is the class of which the implementation object is a direct instance, and state corresponds to
the values of the local instance variables stored for the given object.

Each implementation object O is an object instance of the database class C; € C it represents.

Timple
7

Conceptual objects are object instances of a special system class, ConceptualObject, rather than of a user-
defined class.

Because a single real-world object is now represented using multiple database objects, we define a
number of functions to operate on objects in the model, including object creation, equality comparison, etc.

5.1 Implementation of Required Properties Using Object-Slicing

The object-slicing architecture offers the advantages of a flexible and powerful implementation base that can
readily be configured to support all of the properties we require for the support of the Mult:View model.

Multiple Classification. The object-slicing approach implements multiple classification by using imple-
mentation objects to represent an object’s membership in multiple classes. This technique of representing
class membership via implementation objects is quite flexible. For example, an object-slicing system can
dynamically reclassify an object from being the instance of one class (C'1) to becoming that of another class
(C2), by linking the object instance to an implementation object of the class C2 and discarding that of the
class C'l. The effect of reclassification under object-slicing is minimal. No new classes are created using
this approach, nor is the type of any existing class affected by the reclassification. Furthermore, because
objects are compared using the oid of their conceptual objects, the multiply-classified object’s identity is not
compromised.

Customizing Inheritance Using Object-Slicing. If an object O; possesses an implementation object

Oipp,, for some Cj € €, then O; must also possess implementation objects for all classes Cy s.t. Cj 15-a
7

Cy. Thus the implementation objects associated with a given conceptual object will mirror the structure

of the class hierarchy. Object-slicing intrinsically includes its own inheritance mechanism. Let there be an

implementation object O O; € O,C; € C. Suppose the method m; € M were to be invoked upon

Z”melcl )
object Oy, » and m; is not defined locally in type(C;). In this case, O;,,,,, . will delegate the method
m; to O;_,, ., which will then conduct a search “upwards” through SuperclassHierarchy(C;). If method

m; is not found in the type of some C}, € SuperclassHierarchy(C;), then an error is returned. Otherwise,
the method is invoked upon object O which can be located using the function ImplLink (O Cr)

izmplck ) fconc?
8 Objects of user-defined classes in an object-slicing representation use this object-slicing inheritance mech-
anisms.

Figure 15 shows the process that takes place if one of the implementation objects receives a message
for a method that i1s not locally defined in the implementation object’s class. The left side of the top half

"Each implementation object by default possesses its own object identifier. However, because the implementation object
serves as an interface for a specific conceptual object, the object-identifier of the conceptual object supersedes that of the
implementation object for most practical purposes, such as determining object-equality.

81f a method with selector m; is found in more than one class in SuperclassHierarchy(C;), then the user is prompted to
cast O; into a non-ambiguous implementation object.
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of Figure 15 shows a class hierarchy composed of five classes. The right side of the top half of Figure 15
represents a conceptual object that belongs to all of the classes in the hierarchy. The smaller circles within
the object each represent an implementation object for a specific class whose type the object possesses.
Assume that an implementation object for the PedigreedCat class receives a message for method “color,”
which is an access method for instance variable “color” defined in Cat, Figure 15(c). Because the receiving
implementation object does not understand the method “color,” the request is delegated upwards until it
reaches the Car implementation object. Because both the instance variable and the accessing method are
locally defined at Cat, the Cat implementation object both contains the actual instance variable “color” and
can respond to message “color.” It thus recognizes the message and performs the appropriate operation,
returning the value of “color” to the user (Figure 15(c)).

o1 o1

o1

— =>{ color = brown

. .%color=br0wn -Color=brown
: """"" .—Color=br0wn .-name:Kiny ; .name:Km}f E
L B .breed:B rmese breed=Burmese
1 - 'name:Kmy ) u 7. u
. @-breed=Burmese . Qedigreezpaz . .é_edigreezpsz

i
'
'
'
1 B
\ .. - @:-pedigree=P32 - "
SN A conceptual object conceptual object
' ~
' ~
: . color (b) Each of the implementation objects (c) The method ‘color’ is found at the Cat class.
' conceptual object belonging to the superclasses of The implementation object of O1 belonging
! the PedigreedCat class is queried for to the Cat class returns the value of the
(a) An implementation object from the PedigreedCat class receives a message ‘color’. the method ‘color’. ‘color’ instance variable, ‘brown’.

Figure 15: Inheritance Under the Object-Slicing Model

Dynamic Restructuring of Objects and Classes. Recall that our data model supports a single point
of wnheritance characteristic for database properties, meaning that if two classes C; and C3 share some
common property then they both must have inherited it from some lowest common superclass (LCS). Not
only does this approach support true upwards inheritance of method code for both base and virtual classes,
but 1t also avoids the possible maintenance and storage problems that could be caused by the duplication of
code. This approach is compatible with object-slicing, because the point of inheritance corresponds to the
class that maintains all implementation objects that have values for the particular instance variable.

In order to preserve uniform upwards inheritance, it may be necessary to promote methods and/or
instance variables from a subclass to a new superclass during the classification of a new virtual class into
the global schema ?. We call this promotion property migration. This will ensure that the property will
be located above all the classes that inherit that property. When methods or instance variables are moved
from an existing class to a new superclass, the system performs the following tasks: First the new superclass
is extended to include the migrating (to be locally defined) methods and/or instance variables. Next, the
migrating methods and instance variables are removed from their original class. Finally, each implementation
object instance of the original class is split into an implementation object of the modified original class and
an implementation object of the new superclass '°. These new implementation objects are linked together by
their corresponding conceptual objects. Below we present a result that limits the effort required for property
relocation.

Axiom 1 Iftwo classes C;, C; € C share some common property p;, then they must ultimately have inherited
it from the same superclass; i.e., there must exist a lowest common superclass in the class lattice Cy, € C' s.1.
C; is-a Cy, Cj is-a Cy, and p; € properties(Cy).

This axiom follows from our classification algorithm, which places each newly-created virtual class into the
global class hierarchy in a consistent and correct way [32].

Proposition 1 Only two classes will be involved in any property migration caused by virtual class integration.

9The methods used to set or retrieve an instance variable’s value are called that instance variable’s accessing methods.
Accessing methods are always located at the same class as the instance variables for which they are defined, and thus when an
instance variable migrates from one class to another, that instance variable’s accessing methods must make the same migration.
10For example, we could swap the identities of two implementation objects to give the implementation object of the modified
existing class the same object identifier as the original implementation object.
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Figure 16: Attribute a and method print_a are moved from class B to a new superclass.

Proof. Suppose that there two distinct source classes, Class A and Class B, and that there were two
methods, “a” and “b”, respectively located in Class A and Class B, as shown in Figure 17. Because we do
not allow cycles, the relationship between Class A and Class B cannot be ambiguous — class Class A can
be a superclass of class Class B (in which case Class B would inherit method “a” from Class A), as shown
in Figure 17(a), or class Class B can be a superclass of class Class A (in which case Class A would inherit
method “b” from Class B), as shown in Figure 17(b), but one class cannot be both superclass and subclass
of the other, Figure 17(c). Therefore, by Axiom 1, at least one class of Class A and Class B must not have
inherited any methods from the other class. Because the only way that a class could include method “a” or
“b” in its type would be to have inherited them from class Class A or Class B, and because Class A and
Class B cannot both inherit from each other, at most one of classes Class A and Class B could include both

methods “a” and “b”.

G G

Let method ‘a’ be defined
by CLASS A, and method
‘b’ be defined by CLASS B.

CLASS CLASS }p
A

G (@
Cas

(b) ©

CLASS A can be a subclass of CLASS B, or CLASS B can inherit
from CLASS A, but they cannot be subclasses of each other.

(@)

Figure 17: Cycles cannot exist in the class hierarchy.

Now suppose, contrary to fact, that there were a new class such that two methods, “a” and “b”, from
different source classes, Class A and Class B, were to be relocated in the new class. Axiom 1 states that
every method is located in exactly one place; thus both of the source classes would now be subclasses of the
new class.

If both source classes are subclasses of the new class, then each of them must inherit both “a” and “b”
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from the new class. However, we already established that it is not possible that both Class A and Class
B include both methods “a” and “b”. Therefore, there cannot be a new class such that two methods from
different source classes are relocated in the new class.O

Object-Slicing and View Materialization. The object-slicing technique, combined with the charac-
teristic of single point of inheritance and classification, lends itself well to materialization, because (1) it
elegantly avoids the need to duplicate data for materialized classes and (2) any update to an object will
take place at a location determined by the property involved regardless of the source of the update request.
Since object-slicing requires an object to possess implementation objects for any class to which it belongs,
an object-slicing view implementation is effectively materialized in that the implementation objects repre-
senting an object’s membership in various virtual classes are actual object-instances of those virtual classes.
The object-slicing technique is thus subject to the intrinsic problem of view materialization — how to update
materialized views so as to keep their extents consistent with the rest of the database. This problem and its
solutions are addressed by the MultiView system’s update model, which is described in Section 6.

5.2 Evaluation of Object-Slicing’s Impact on Performance

Extending an existing DBMS with object-slicing techniques necessarily involves the overhead of additional
data structures, maintenance costs, and processing time. Because although object-slicing is a known tech-
nique that is being utilized for view systems [24], schema evolution [30], and role systems [12], to our
knowledge no other work has been done evaluating the costs of object-slicing, we were motivated to perform
some initial experiments evaluating the relative costs and benefits of adopting the object-slicing techniques.
The results of these experiments are presented in [21]. In the remainder of this section, we summarize the
conclusions of our evaluation.

In evaluating the performance of databases, I/O operation time typically dominates CPU operation
time. Consequently, an evaluation of object-slicing must consider the effect of object-slicing on I/O time.
One major variable for calculating I/O time is the number of objects that can be stored in a disk block,
known as the blocking factor (bf), namely: [ disk block size / object size ].

In traditional (non-object-slicing) architectures, the size of an object is calculated to be the total amount
of storage needed to store the state of the object (data size), oid size, and pointer size (to reference the ob-
ject’s class), and some fields for the system use. Because the object-slicing model represents any given object
using a conceptual object and some number of implementation objects, objects in the object-slicing archi-
tecture inherently require more storage space than their counterparts in traditional architectures. Like a
traditional object, an object under the object-slicing architecture contains data, an oid, and a pointer to its
class. In addition, an object-slicing object that belongs to [ classes also requires storage for (ignoring system
fields) { implementation objects (each with a reference to its class and to the object’s conceptual object)
and the conceptual object (which has a dictionary of references to its implementation objects, respectively
indexed by the class the implementation object belongs to) 1. That is, while in a conventional architecture
we would have:

obj size = data size + oid size + pointer size,
in the object-slicing architecture we now have:
obj size = data size + (I + 1) - 0id size + (4l + 1) - pointer size.
To simplify, we assume that oid size is equal to pointer size. The ratio of the sizes is:

DS + (5l + 2) - pointersize

SizeRatio(SR) =
izeRatio(SR) DS + 2 - pointersize

where SR is the size ratio and DS is data size. In general, the ratio increases as the value of [ increases and
decreases as the data size increases. This means that the disadvantage of the object-slicing architecture’s
storage overhead is ameliorated by an increased object size/depth of schema ratio.

11 While this storage of references linking conceptual to implementation objects and back could be reduced, we've chosen this
representation for reason of efficiency.
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In order to determine the base cost of implementing the object-slicing representation paradigm, we have
run test queries from the University of Wisconsin’s OO7 benchmark suite [9] with the intention of comparing
GemStone’s native implementation versus our object-slicing extension to GemStone. For this study, we used
MultiView to create and populate the OO7 benchmark’s parts-assembly database with 10,000 Atomic Parts.

Our experiments confirm that in the case of queries upon local properties object-slicing can actually
improve query performance. The improved performance can be explained as follows. First, the navigation
was limited to access of local instance variables (rather than inherited ones). Thus there is no overhead of
finding appropriate implementation objects for MultiView. Consequently, only one implementation object
must be retrieved per queried object. The query avoids having to perform random accesses to retrieve
additional implementation objects. Not only was retrieval of the single implementation objects sequential,
but also these navigated implementation objects are much smaller in size (containing only local instance
variables) compared to GemStone’s native objects (containing both local and inherited instance variables in
one contiguous allocation) and thus offered a higher blocking factor.

However, although the object-slicing paradigm improves the flexibility of our object model, retrieval of
inherited attributes in object-slicing can involve significant overhead. First, the cost of storing the conceptual
object, the oids of the implementation objects, and the extra links connecting conceptual and implemen-
tation objects may require a larger number of blocks and result in more page faults. Second, because the
implementation objects belonging to the same class are by default clustered together, a traversal to an im-
plementation object for getting an inherited value may require a random block access, which can result in a
page fault.

Using Clustering to Ameliorate Object-Slicing Costs. A MultiView object’s state is distributed
among multiple object-slicing implementation objects, which lends itself to clustering strategies that resemble
the vertical partitioning of the relational model. In order to determine under which circumstances it is
preferable to cluster the implementation objects by class (which we call class clustering), and under which
circumstances it is better to cluster all the components of a MultiView object together (which we term
object clustering), we designed and carried out an extensive experimental study evaluating both clustering
techniques [21]. Based on these results, we conclude that as in a conventional architecture, various types
of access patterns can best be optimized by providing distinct types of clustering techniques. We found
that class-clustering offers superior blocking factors for scenarios where only locally-defined attributes are
accessed, and that an object-clustering strategy can ameliorate the cost of retrieving inherited attributes.

6 MultiView View System

MultiView supports customized virtual classes and customized virtual schemata in such a way that
the system’s class-restructuring capabilities are powerful and flexible, and that the virtual classes
and virtual schemata look and feel like the actual database. The Mult:View system automates as
many of the database maintenance tasks as possible, including the integration of new classes into
the global schema, the construction of the class relationships in view schemata, and the maintenance
of class extents. The Mult:View OPAL interface preserves all the functionalities of the original GemStone

OPAL system, while providing new view capabilities. The subsections of the third circle of Figure 1
illustrate the four major functions performed by the MultiView view system:

Virtual class creation / integration. Mult:View users can customize existing type structures and object
sets (class extents) by deriving virtual classes via object-oriented queries. MultiView will then auto-
matically integrate the new virtual class with existing classes into a single consistent global schema
graph, maintaining relationships between base and virtual classes.

View schema support. MultiView users can specify (at any time) view classes (both base and virtual)
from the augmented global schema for membership to a particular view. MultiView will then construct
arbitrarily complex view schemata composed of these view classes.

Queries. Because MultiView is completely compatible with the underlying GemStone system, any set-based
query that can be performed using GemStone’s OPAL interface can also be performed by MultiView.
In addition, MultiView also supports object algebra queries over class extents and query-by-form (via
the graphic interface).
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Data manipulation. MultiView supports updates on both base and virtual classes. Because MuliiView
supports materialized views, the system incrementally maintains materialized virtual class extents in
the face of the entry and update of data objects (using efficient update propagation algorithms).

6.1 Virtual Class Creation and Integration

In this subsection, we focus on the implementation of the first task—the specification and classification of
virtual classes in MultiView.

Virtual class creation. MultiView provides a number of class methods that implement the query opera-
tors shown in Figure 8. These class methods automatically create the new virtual class, construct its type
(migrating all appropriate properties), construct its extent (preserving all property values), and integrate
the new class into the global class hierarchy.

Virtual class classification. In MultiView, all virtual classes are automatically integrated into one global
generalization hierarchy. Such complete classification offers a number of advantages, including (1) the rela-
tionships between base and derived classes are made explicit (which aids query processing and view material-
ization strategies); (2) because virtual classes fully participate in the inheritance schema, property functions
and and object interfaces can be shared; and (3) it facilitates the formation of arbitrarily complex view
schema graphs. Both the classification algorithm and its proof of correctness are presented in [33]. Classifi-
cation in Mult:View is automatic and compulsory. That is to say, every time a class is added to a Mult:View
database, the system automatically integrates it into the inheritance hierarchy. MultiView makes classifi-
cation the responsibility of the system rather than requiring users to create their own is-a arcs manually
because we want the global class hierarchy to be unique, correct, and consistent.

There are two steps to the classification algorithm: first the class hierarchy is prepared by the addition
of any necessary intermediate classes, then the virtual class is placed into the global schema. The Mult:View
view creation process includes the invocation of methods which use deterministic algorithms to perform the
automatic integration of virtual classes into the global schema.

In [32] we described the problem of how sometimes there may be no correct location for the placement of
a new virtual class in an existent global schema graph —in order to allow for both the full inheritance invariant
as well as subsumption. The current implementation of the Mult: View system includes this classifier, further
described in [32], which generates one or more intermediate classes in order to guarantee these properties.
This solution is both necessary and sufficient to guarantee the closure of the resulting class hierarchy. That
is to say, integrating the newly generated classes into the global schema will never cause the generation of
additional new classes.

Once the class hierarchy has been prepared by the insertion of any necessary intermediate classes, the
new virtual class can be inserted into the global schema by identifying all direct is-a relationships between
the new class and the other classes using a single depth-first downwards traversal algorithm. We have shown
elsewhere that the resulting global schema incorporates the virtual class in a consistent and most efficient
manner [33].

6.2 View Schemata

As proven in [32], once the global schema integration has been achieved, the tasks of specifying and construct-
ing view schemata can be reduced to simple graph algorithms. The Mult:View provides a simple graphical
interface for the definition of view schemata. The user can create any number of view schemata, and can
add both virtual and base classes to a view schema as wview classes (see Figures 11 and 12). The MultiView
view management module automatically computes the proper hierarchical relationships for classes in a view
schema. View classes can have different names in different view schemata. Each view schema is associated
both with an access control list of GemStone users who are allowed to access the view, and with a password
that controls access to this access control list.

6.3 Query Capabilities

The MultiView OPAL interface is fully OPAL compatible, and thus users can employ all queries supported by
the native GemStone system. In addition, because the Multi View model associates an extent with each class,
users can explicitly perform queries upon class extents. Mult: View class extents are implemented as a subclass
of the OPAL Set class, and thus all Set methods can be invoked upon class extents, including iteration,
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collection, and selection. Note that because inserting or deleting an object from a class’s extent can have an
impact upon the extent content of other classes, we overrode the adding and removing methods to perform
the necessary update propagation. MultiView’s query capabilities exceed GemStone’s, as the MultiView
object algebra supports declarative queries across both base and virtual classes. Section 7 presents examples
of MultiView’s query functionalities as captured by the MultiView graphic interface, called the Mult:Viewer.

6.4 Data Manipulation

MultiView supports a suite of update operations, as well as the underlying view update propagation strategies
necessary to keep materialized classes consistent. The update operators Mult: View supports include creation,
deletion, addition of a type, removal of a type, and modification of an instance variable.

Since MultiView maintains materialized views, the effects of updates must be propagated to all classes
affected by it. For example, if an object gains the type of a class that has a union class derived from it,
then one direct effect of that update would be that the object gains the type of the union class (i.e., a new
implementation object of the union class is created and linked to the updated object). MultiView minimizes
the number of times an updated object is evaluated to determine if the object should be a member of a
virtual class.

We identify specific techniques by which we can exploit unique features of the object-oriented paradigm
to optimize updatable materialized views. Our update algorithms are incremental, and perform selective
notification to the set of classes determined to be directly-affected by a given update. We use inherent
object-oriented features, such as the integration of classes into a generalization hierarchy, encapsulation, and
membership materialization, both to facilitate the identification of the classes that are directly-affected
by an update and also to optimize the propagation to the classes derived from classes directly-affected by
the update. Our update optimization process performs two tasks:

1. First, we identify the set of classes that are directly-affected by the update, i.e., the set of classes
whose set-membership changes as a direct result of the update.

2. We propagate to the classes derived from the directly-affected classes in an optimized manner, so as
to avoid both propagating to classes that are not indirectly-affected by the update and self-cancelling
update propagation.

Identifying directly-affected classes. In order to efficiently be able to identify the set of classes directly-
affected by modification updates, we introduce a “registration” service by which virtual classes can register
their interest in specific properties and be notified upon modification of those properties. We are aided to this
end by our data model’s injunction that each property must reside at a single class that defines the property
and acts as its point of inheritance. All classes whose membership may be affected by modifications to
an attribute are thus registered with the attribute’s point of inheritance. We associate triggers with the
accessing methods to propagate updates to the registered classes if and only if the relevant property’s value
is modified. The principles of our registration strategy are:

e When a virtual class is created, its predicate is parsed and the class is registered with each property
involved in the query specification. Each registration is sent to the class that serves as the point of
inheritance for the property involved. Because all classes in our model are arranged in a generalization
hierarchy, we optimize our registration process to take advantage of subsumption relationships. The
registration structures can thus be distributed along the generalization hierarchy, as illustrated in
Figure 18. Distributing the registration structures allows us to avoid evaluating the update in terms
of classes that are obviously unaffected by the update (i.e., classes derived from classes to which the
object did not belong either before or after the update).

e When an object is updated, the update method 2 triggers a notification function that propagates the
update to all virtual classes that have registered an interest in the value of the updated property.

e When a virtual class has been informed, via the notification class method, that an object in which it
has a potential interest has been modified, it then evaluates the update. Should the update warrant
that the object gain, keep, or lose the type of the class, then the class will send a message notifying
those dependent upon it of the change. Otherwise it does not propagate the change across its derivation
hierarchy and the update propagation terminates.

12For the sake of simplicity, we currently make the assumption that instance variables reside at the same location as their
update methods.
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Eliminating Self-Cancelling Update Propagation The propagation process could involve updates
that cancel out each other’s effects. We call this the self-cancelling update propagation problem because it
could lead to repetitive evaluations of the object in the context of a single class, sometimes with self-cancelling
results. In order to overcome the problem of self-cancelling propagation, Muli: View incorporates the following
strategy. First, we assign a unique derivation number to each class in the database, indicating its global
derivation depth in the schema. Using this derivation number framework, we propagate changes to affected
classes using a breadth-first traversal by order in the derivation hierarchy. Once the traversal reaches a
class to which the updated object does not belong either before or after the update, it terminates update
propagation to that class’s branch. Because a derived class will only be processed after all of its source
classes have been processed, we can guarantee that no class will be processed more than once. This solution
avoids the problem of self-cancelling update propagations by ensuring that if DerNum(Cj) < DerNum(Cy),
then a modified object’s membership in C} can be evaluated only before the object’s membership in C; has
been evaluated.

Identifying Branch Termination Conditions Under certain conditions, propagation to branches of
the derivation or generalization hierarchy can be terminated. For example, propagation to a branch of
the derivation hierarchy can be terminated if the object does not qualify to belong to any of the entrance
points into the branch either before or after the update. MultiView incorporates strategies that achieve early
termination whenever possible.

7 MultiView Graphic User Interface

c User In
s tery, o

> \Although the GemStone OODB provides its own native graphic programming tool, named GeODE,
¢ TN\ % "\ GeODE is not an appropriate tool for MultiView users for a variety of reasons. First of all,
GeODE does not reflect the MultzView object model. For example, GemStone’s object model is
single-inheritance, and thus does not recognize the multiple inheritance schemata of MultiView.

Similarly, because the GemStone model does not associate extents with classes, GeODE does not

support the concept of class extents and as a consequence does not support queries upon class extents.

More importantly, GeODE does not provide support for the Mult:View virtual class operators and view
schema capabilities. We therefore built a custom graphic user interface for the MultiView system.

For our interface, we created a customized implementation of the Tcl Windowing Shell (“wish”) with
extensions to interface with both Mult:View and the underlying GemStone database system. We call our
graphic interface MultiViewer. The MultiViewer extensions allow the manipulation of database objects
using Tcl language constructs. The Multi Viewer provides convenient access to basic GemStone functions

such as logging into and out of the GemStone database, sending OPAL code to the database and accessing
the objects returned, and committing changes to the database structures, In addition, Mult:Viewer also
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performs a number of MuliiView-specific functions. In the remainder of this section, we describe the main
features.

7.1 Schema Views

The MultiViewer displays a class hierarchy using a directed graph representing inheritance relationships.
The graph layout is determined by an algorithm designed to minimize the number of edge crossings [40].
This results in a clean-looking directed graph that simplifies visualization of the generalization relationships
by grouping similar classes together on the display. A sample schema graph is shown in Figure 19.

The schema graph itself can be of arbitrary size; schema graphs too large to fit on the physical display
can be browsed using the scroll bars below and to the left of the graph display. Each schema graph includes
a text widget that can be used to bring a specified class to the center of the display.

7.2 Virtual Classes

Pressing mouse button 1 above one of the schema graph’s vertices (i.e., a class) selects that class for MultiView
operations. For example, in Figure 19 the Animal class has been selected. The Info button in the lower
right will present you with information about the selected class, as shown in Figure 20.

Once a class has been selected, it can be used, for example as a source for virtual class creation. If the
virtual class is created using a query that takes two source classes (e.g., a union query), then a dialog box will
prompt for the right-hand class. A new class will immediately appear on the global schema graph, allowing
the user to visually confirm that the operation had the expected result. For example, in Figures 21 and 22, we
create a new class, BabyHybrids, that is defined as the intersection of the BabyHorta and BabyCrystalEntity
classes from Figure 19. MultiView automatically integrates the new virtual class into the global schema,
which appears in Figure 23.

7.8 View Schemata

As is apparent from Figure 23, schemata can become quite complex as they are augmented and grow over
time. MultiView therefore supports the creation of view schemata. Users can use the MultiViewer to
graphically create a new view schema (as shown in Figure 24), then populate the schema with selected
classes (illustrated by Figure 25). The latter task can be accomplished by either graphically selecting classes
from the global schema (by clicking on them) or by incorporating one view schema into another. Access to
classes and objects can now be performed through any of these customized view schemata, which provide a
personalized view of the database to the user.
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7.4 Queries and Data Entry

The Mult:Viewer allows a user to interact with object instances without using native database syntax. This
is especially useful when the person responsible for entering or updating records is not a computer specialist.
The MultiViewer generates a user interface, called a form, for any object based on constraints established
by the class’s creator. The exact way that a class or object presents itself is completely configurable.

7.4.1 Object Forms for Data Display, Browsing, and Editing

The basic interface to an object is a collection of graphical entries, one for each attribute defined by the
object’s class. The values displayed in the fields will update dynamically as changes are made in the database.
The user can change any field to modify the associated object. Figure 26 shows a basic object form for a
Person class object. MultiViewer builds the interface to an object dynamically by querying the object’s
class about which of its properties are externally modifiable. The class responds with a set of ordered tuples
specifying, for each value, the name to be presented to the user, the domain class, and the accessing methods
that can retrieve and set the value.
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Figure 24: Creating a new view schema. Figure 25: Adding classes to a view schema.
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MultiView provides appropriate interface forms for many internal built-in GemStone classes, such as
Integer, Strings, Set, Boolean, etc. For example, Booleans are represented in the MultiViewer by toggle
switches representing the value’s current state. The system is extensible in that additional primitive repre-
sentation forms can easily be defined as needed.

For more complex classes, the MultiViewer will query the class about its interface form by interacting
with the MultiView system and dynamically constructing an interface within the original form. For example,
suppose a class called Person has a field BestFriend, which is constrained to be another Person. When
editing a Person, the MultiViewer will build a form consisting of various fools, say, Name, Age and Gender.
It will also display the person’s BestFriend as a subform, containing its own fields Name, Age, Gender and
BestFriend. To prevent infinite recursion, each subform is not actually built and displayed until activated
by the user. Figure 27 shows a form that displays the instance indirectly referenced by an object, namely
the Person “Jimmy” has a best friend named “Homer.”

7.4.2 Selection Forms for Querying

In addition to the ability to browse and edit object instances, forms can be used to formulate queries. The
MultiViewer particularly facilitates the specification of selection predicates. These can be used to filter a
large database for objects with interesting properties, or in the creation of virtual classes. A selection form
is created in much the same fashion as an object form, but the fields themselves are different. For each field,
several tests customized to the data type of the attribute can be performed.

These query forms support the specification of nested queries involving implicit joins. Namely, the user
can base the selection predicate on attributes of other objects. By displaying the BestFriend subform and
interacting with its fields, it is simple to select, for example, the set of all Persons whose BestFriend is a
teenager. For example, the query shown in Figure 28 will return all teenagers whose BestFriend is also a
teenager.

7.4.3 Configurability

If MultiViewer’s form generation mechanism is not sufficiently flexible for an application’s purposes, the
creator of an object can design a custom interface to its externally visible attributes (e.g., for multi-media
display). Because MultiViewer is written in Tcl, an interpreted language, it can easily be extended with
dynamic user-interface code. This would allow a Multi Viewer user to view pictures or use tools custom-built
for another user’s class without having to build or install any software packages.
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8 Conclusions

In this paper, we have provided an overview of the Mult:View system — one of the first implemented OODB
systems to support dynamic and updatable materialized object-oriented database views. In particular, we
have presented the motivation and execution of our design decisions, system architecture, and the Mult: View
system’s capabilities. The implementation solutions we describe are general — and thus should be applicable
to other object-oriented systems. To summarize, the MultiView system is distinguished by a number of
unique features, which include:

o MultiView treats virtual classes as first-class database citizens, integrating virtual and base classes into
a unified global schema.

e Virtual classes in MultiView participate in the actual inheritance hierarchy and thus behave just like
base classes.

o MultiView supports capacity-augmenting views (virtual classes can independently define additional
attributes and methods).

o MultiView automatically generates view schemata composed of user-selected base and virtual classes.

o MultiView includes optimized incremental view maintenance algorithms for materialized views that
exploit the integrated class hierarchy structure.

During our initial design stage, we identified a set of key object-model properties that are critical for
the realization of an object-oriented view system. To the best of our knowledge no existing commercial
OODB supports all of these properties. Our implementation of the MultiView system uses the object-
slicing representational technique to provide these necessary object model properties, which include multiple
classification, object migration, and dynamic classification.

The current version of MultiView uses the 4.0.1 version of GemStone and was developed using the
OPAL interface. The database is built on a Sun 4m running SunOS 4.1.3 with 32 megabytes of memory.
MultiView’s implementation consists of approximately 48 classes and approximately 230 class and instance
methods, all of which are defined using less than 10,000 lines of code (over 50% of which are comments).
The code used to implement object-slicing makes up about 5% of the total code. The graphic interface was
implemented separately, using Tecl.

We have performed several studies to evaluate the MultzView system and its embedded algorithms.
Our experiments demonstrate the benefit of techniques used by our update propagation algorithms [23].
Namely, we show that the potential problems of self-cancelling propagation and of early branch condition
termination are indeed handled by our solution and result in significant performance gains. In a related
paper, we explore the use of clustering to ameliorate the overhead of the object-slicing technique employed
by our implementation [21].

Because it is one of the only implemented view systems, Mult:View is currently being used in a number
of projects. For example, the Transparent Schema Evolution project, funded by an NSF Young Investigator
Award, uses MultiView as an implementation base to develop a suite of schema evolution tools that use the
view system to preserve existing database interfaces through schema change. We are also utilizing Mult: View
in a NASA-funded study for the storage, retrieval, and interpretation of scientific data gathered by space
physics researchers.
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In the future, we plan to extend our current work to examine the area of distributed views. We also want
to study issues related to the support of deferred updates and multiple (batched) updates for materialized
views.
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