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Abstract

We popose a dynamic model of logic gatecuits that integrates their functional and temporal aspects in a singledinifi
framework based on a calculus of symbolic logic waveforms. Using a continuous time modeljajedime derivatives that
capture the dynamic behavior of digital signaleatefned. These derivativesquide a natural link between the functional
and timing components of gate models and highlight the conditionaknaftgiate delayThe framework subsumes all known

dynamic models of logic gates and—setigh a formal pocess of functional and temporal abstractionevinles a sound foun-
dation for functional timing analysis.
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1 Introduction

Most dynamic models of logicate circuits are premised on the separability of the circluiteétional and temporal
behaiors. Indeed, the temporal beftar is almost avays posited as an “add-on” to the Boolean algebra-based functional
behaior in the form of lumped propagjon delays. In realitythese tw aspects of bekior are not entirely separable. Mani-
festations of the link between functionality and timing abound awel lea to a proliferation of ad hogtensions to Boolean
algebra that were aimed at impitng the temporal accurpof the modelsThe frst concession to tterict separation between
timing and functiorwas to allov for different rise/all gate delaysThis immediately led to the consideration of inertilé-
ing mechanisms to block the transmission of the mapuses that are produced as a result of asymmetric d€teysecently
proposed state-dependent delay modgld][intertwine functionality and timingven more closely by distinguishing among
the \arious input conditions that produce functionally similar temporally diferent output responsebhe adent of “deep
submicron” intgrated circuit technology has introduced further complications including the need to account foitethe fi
slopes of switching signals and for thegoke of simultaneity among temporally adjacent transitions éerelift gte inputs.

The increasing dominance of interconnect delay is also challenging the standard assumptions about the causes of delay as
as its intrinsic nature.

It is rather remarkable that—unéikhe solid foundation that supports functional modeling—neeusally accepted theo-
retical foundationdsts for modeling the timing behar of digital circuits.The plethora of models thatist today &olved in
response to the need, real or peredj for greater accuna@nd tend to be spedafto particular technologies or design styles.
The primary goal of this paper is to ¢ak fist step tavards &olving a consistent theory for the dynamic babaof digital
circuits. The centerpiece of this theory is afeliential calculus that ales us to describe the transient bébeaof logic wave-
forms in terms of appropriate time detfives based on a continuous time modibkse detviatives form the link between the
functional and timing aspects ofaveform behwior by establishing a functional framerk for temporal modelingThe
frameawork highlights the intrinsically conditional nature of signal delay and can lensttoencompass most delay models
proposed to date.

The rest of this paper isganized in fve sections. Ibection 2we briefly cover some basics to help enhance the clarity of
the deelopment in later sections. In particylare describe our system of notation and introduce the topics of conditional
arithmetic and partially spedi Boolean functions. I18ection 3we propose a model for symbolic logiemgforms, iwvesti-
gate a number of its properties and nuances, andderthe computational recipes required for its algebraic manipulation. In
Section 4we defne the time devatives of these symbolic logicaweforms and relate them toveeal dynamic aspects of the
waveform behwior; the deelopment is restricted to completely speaifinaveforms because of space limitations. Signal
delay through logic functions is deéid inSection 5and related to the time deaiives.Additional aspects of delay modeling,
such as propagion through logic functions and inertididring are also discussethe paper concludes Bection 6oy hint-
ing at the application of this model and its underlying theory to ¢lek éf timing analysis.

2 Preliminaries

We will generally denote scalar quantities usingdecase symbol#iggregates (ectors and sets) will be either denoted
using uppetcase roman or eer-case bold type. Calligraphic type will denote the carriers of algebraic strucRifes:Bool-
ean algebraR for the real number systens, for the set of interads onB, and ‘U, for the unverse ofn-variable Boolean
functions. Unlessxlicitly stated otherwise, when we speak of Booleariables and functions we meaariables and func-
tions in the 2-element Boolean (switching) algefitaus, x;, X, ..., X, refer to switching ariables,f, g, h denote switching
functions, X = (x4, X, ..., X,;) represents aector of switching ariables, and~, G, H denote sets of switching functions.
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The elements of will be equvalently denoted a§| 0, 0], |0, 1], [1, 1]} or as{O0, U, 1} . Logic waveforms will be indicated
by lower-case bold type such &g x;, y; or z. An mrinput single-output logicae with input vaveformsy;,, ys, ..., y,, and
output waveform z is characterized by its combinational switching funcficend an appropriate set of conditional prapag

tion delaysAylz, Ayzz, Aymz. Theinstantaneoug$delayless) output aweform for such aate will be denoted by* .

To distinguish between Boolean and arithmetic operators, we will ee@v+" symbol for arithmetic addition and the
“/" symbol for logical OR. LogicaAND will be denoted by “ 0 " or by juxtaposition.

2.1 Conditional Arithmetic

Conditional arithmetic is ayltrid algebraic system that combines the dedegiiwer of switching algebra with the com-
putational &cilities of rgyular arithmetic and emges as a naturakhicle for capturing the functional dependenciesatég
delay and signal transition times.

A conditional numbetA is a mapping (function) that assigns e elementX € B" an elementA(X) € R. Condi-
tional numbers can be speeti by function tables that are analogous to the truth tables of Boolean functions or as sets o
tuples that associate a real number with each possible combination of the BecteaX vAlgebraically a conditional num-
ber can bexpressed in the foliging disjoint sum-of-ppducts (DSOPjorm:

k
A(Xq1s Xo, o X)) = (@1(X) Oay) @ (¢o(X) Hay) D ... @ (¢ (X) Oay) = @ (¢;(X)Oq) (2.1)
i=1
where{ ¢4(X), ..., ¢, (X)} is an orthonormal set ofvariable Boolean functior[] anda,, ..., a, € R are the correspond-

ing real walues ofA. The Set{cpi(X)‘l =i =k} will be referred to as the Boolesasisof A. The logicalAND and XOR
operators ir{(2.1) are ettended to handle the reals according to the rules:

EOifyzO E 0 ifu=0andv=0

yOdu=Q udbv=[ u !fu;&Oandv: 0 (2.2)
Duifyzl 0 % if u=0andv+#0
0 U undefinedif u# 0 andv # 0

wherey € B andu, v € R.A DSOP form for conditional numbek is minimalif eacha, is a distinct real numberhe min-
imal DSOP form ofA is unique and can be obtained frony &SOP form ofA by repeated application of the identity:

(cpi(X)Dai)GB(<pj(X)[|aj) = (CPi(X)@CPj(X))Dai = (‘Pi(X)DﬂPj(X))Dai (2.3)

wheneer a; = a.
To avoid potential ambiguities in interpreting algebraipressions of conditional numbers, the elements of the Boolean basis
and the corresponding reaiued components will be distinguished by enclosing the latter in angleetydtks cowvention

leads to the follwing standad DSOP form of(2.1).

k
A(Xq, Xor oony X) = @1(X) 0B 9o(X) (06D ... D ¢y (X) 0= EB @i(X) B (2.4)
i=1
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where, for the sakof compactness, juxtaposition is used to indicate logidal.

Let A(X) = @:‘: 1(pi(X) [a,C and B(X) = @Im: l¢i(x) [b;C be two conditional numbersxgressed in terms of
two independent basgsp(X), ..., ¢, (X)} , {¥1(X), ..., ¥(X)} and letdstand for ay binary arithmetic operation (addi-
tion, subtraction, multiplication, dision, maximization, etc.Jhe conditional numbe€(X) = A(X) OB(X) is defned by
the folloving DSOP gpression:

k m
C(X) = @ B «i(X)w;(X) & Ob;C (2.5)
i=1j=1
Equation(2.5) also applies wheilis a relational operator (< , = , > , = etc.) yielding a logical predicate

P(X):Bn - B. Since the terms in the alw XOR double summation are orthogonal, the Yeilhg simpler form of such
predicates (using inclug ORS) is immediatelyvailable:

k m

PO = A DB(X) = \ /\ / €i(X)0;(X)(a Oby) 26)

i=1j=1
2.2 Partiall y Specifi ed Boolean Functions

Partial speciftation of Boolean functions primes a comenient mechanism for modeling functional uncertainty in logic
waveforms. Uncertainty will be seen as an inherent ingredient in the legafavm abstraction we introduce $ection 31n
addition, the judicious introduction of uncertainty often leads to sigmfisaings in the computations required for perform-
ing dynamic analyses of logic circuits with only minor reductions in acgurac

Generally speaking, jgartially specifed n-variable Boolean functioR(xy, X,, ..., X,) is a nonempty subset of the func-
tion spaceU,(Xy, Xy, ..., X,,) representing alp? completely speciéid n-variable Boolean function# partially specifed
function F(X) is afunction interval1] if it can be &pressed as

F(X) = {f(X):B" - B|I(X) = f(X) = u(X)} 2.7)

wherel(X) andu(X) are two n-variable Boolean functions such théaX) = u(X) . A function intenal F(X) can be vieed

as a mapping B" . S, where S is the set of intemls on B, and can thus be eqalently «pressed as
F(X) = [I(X),u(X)]. It is easy to she that |(X) and u(X) are, respeately, the greatest lower boundglb) andleast

upper boundlub) of the functions contained I(X) . Denoting these bounds by (X) | and[ F(X) ] allows us to gpress

[(X) andu(X) interms ofF(X):

I(X) = [F(X)] = /\ (X
f(X) € F(X)

u(X) = [F(X)] = f(X)
f(X)\e/F(X)

(2.8)

Theinterval operator[ ] is a unary operator that returns the smallest function aiteontaining a gien partially speci-
fied function. It is defied by the formula:
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[FOOI=[LF(X) L TF(X)T] (2.9)
When F(X) is itself a function interad, [F(X)] = F(X).

The main adantage of function inteals over unrestricted partially speafi functions is that tlyedo not require an
explicit enumeration of their member functions. Instead, the elements of a functiomliaterimplicitly defied by the inter
val's glb and lub along with the partial ordering relatisti.“ This adwantage may not, in general, be presdrwhen function
intervals are combined by set operators. Speadlfi, the union, intersection, and féifence of tw function interals are not
necessarily function inteals. On the other hand, applying Boolean operators to functionatgemill alvays yield function
intervals.This property leads to anterval Boolean algebréhat can be used to manipulate and simpbfyressions imolving
function intenals. The etension of the three basic Boolean operatord M®ID, and OR to function inteals is preided by
the folloving theorem.

Theorem 2.1 Boolean Operations on Function Inter vals) Let F(X) and G(X) be two function intervals. Then
F'(X), F(X) OG(X), andF(X) OG(X) are also function intervals that agiven by the following identities:

F'(X) = [TF],LF]1]

F(X)DOG(X) = [LFJOLGJTFIO[G]]

F(X)OG(X) = [LF]OLGL[FIO[G]] .

Equality of function interals derves from their interpretation as function sétsus, the function inteals F(X) and
G(X) are equaif and only if F(X) C G(X) andG(X) C F(X). Equvalently:
(F=0G) = (LF]=LGHOJF[=[G]) (2.10)
i.e., F(X) andG(X) are identical if their respegé bounds are equal.

As mentioned earlieset operations on function intals do not, in general, yield function intats. In such cases, the
interval operator { ]” can be used to ceert the result of a set operation to the smallest enclosing functionainfEne
function intenal containing the union of wvfunction setsrot necessarily function intealg) is particularly useful and will be
called theexpansioror interval unionof the two function sets. Denoting this operation by the symbglit is defined by the
following expression:

F(X) 0 G(X) = [F(X) U G(X)] (2.11)

Equivalently, we may &press the inteal union in terms of logicedND and OR rather than set unidrhis alternatre form,
given inTheorem2.2 belaw, is usually more comenient for algebraic manipulations.

Theorem 2.2 F(X)0G(X) = [LF]OLG],[F10O[GT] O
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w(t, X = V)
1=[1,1] ----
u=[01] - - —_—
0=[0,0] ----- —
[] | | | | | | | | | | | =t
3 2 -1 [ 1 2 3 4 5 6 7 8 9

Figure 3-1: A typical plot of w(t, X) versus t for X = V

3 Symbolic Logic Waveforms

We deine a logic vaveform as a discretén + 1) -variable functionw(t, X) that tales \alues from the three-element set
S. The function aguments represent the independent timeablet € R and a suitableector ofn independent Boolean
variablesX € B". In other vords,w is an element of the function space waedi by the mapping:

WRXxB" LS (3.1)

Several points are arth noting about this defition:

1. The domain of this function is partly discretBrb and partly continuousK). While the time axis could have
been discretized to obtain a purely discrete waveform function, treating time as a continuous variable has certain
advantages as will become obvious in the sequel. An immediate consequence of choosing a continuous time
model is that, wheiX is set to some fixed valué w(t, V) is a discrete (discontinuous) functiontofsee
Figure3-1) The role that plays in the representation wfis, thus, limited to that of an interveélector The
waveform inFigure3-1, for example, can be expressed as follows:

w(t, X =V)=(-0o<t<-190(0)0(-1.9<t<-0.3)0(1)d(-0.3<t<0.2)0(U)O
(0.2<t<22)0(0)0(2.2<t<3.1)0(U)0O(3.1<t<4.50(1)0
(45<t<6.20(U)0O(6.2<t<8.3)0(0)O(8.3<t <) (1)

where each inequality involvingis considered to be a predicate that evaluates to 1 wtadls within the
specified interval and that evaluates to 0 otherwise.

2. The discontinuous nature of a logic waveform allows us to characterize its temporal behavior at any given time
instant as eithestableor changing The waveform ifFigure3-1, for example, is stable &t= 4 and changing
att = 6.2. The times at which the waveform is changing are caifetsition instants; the waveform is also
said to have aaventat each of those times.

3. The codomain of the function is the ternary Seather than the binary s& This choice is motivated by the
need to model uncertainty in waveform value. To appreciate this need consider the question of assigning an
appropriate value to a binary signal at a transition instant between logic 0 ant [bgecavailable options are
shown inFigure3-2. Options (a) and (b) assign a binary value to the signal by including the transition instant
with either the preceding or the succeeding time interval. These two options are somewhat arbitrary, however,
since there is no clear basis for preferring one to the other. The third option basically excludes the transition
instant from the function domain by declaring the signal value to be undefined (i.e. neither 0 nor 1.) This option
is also unsatisfactory since it forces different waveforms to have different time domains; the resulting
proliferation of time domains causes unwarranted complexity when manipulating collections of waveforms. The
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1 o— o o— o— o
U [ J =
0 t t t t t
[ [ [ [ [
@ w() =0 ® wt) =1 © w(t;) isundefined @ w(t) = [0,1] = U
(neither O nor 1) (either 0 or 1)
Figure 3-2: Options for waveform value at the transition instant t;

last option assigns the val(i, 1] or U to the waveform at the transition instant. Semantically, this choice
conforms to the intuition that the signal value is “unknown” at the transition instant and can appropriately be
interpreted as either 0 or 1. In other words, at the transition instant we lose the certainty of knowing the precise
value of the waveform and must assume that it becomes multi-valued. It is important to note that the third value
U does not model an intermediate voltage level between the low and high voltages that correspond to logic 0 and
logic 1. Rather, it represents the §€t 1} and suggests that the transition instant is includdabth the
preceding and succeeding time intervals.

The ability to model uncertainty in waveform value is not restricted to transition instants between logic 0 and
logic 1. For example, it may be desirable in some cases to ignore the precise value of the waveform over one or
more finite time intervals. These intervals may correspond to the finite rise/fall times of the analog voltage
waveform that is idealized by the logic waveform. In addition, it may be desirable to deliberately ignore the
functional dependence of the waveform on one or more of its Boolean variables. It turns out thaicsioctal
abstraction along with the complementary mechanism of temporal abstractioS8éséen 3.2, form the basis

that underlies the field of timing analysis.

4. The temporal and Boolean aspects of the waveform functiosemarablein the sense that the functional
dependence arandX are distinctly different3, p. 23]. As noted earlier, when the valu&a$ fixedw becomes
a ternary function of. This can be expressed formally by the mapping

w:B" . (R-S) (3.2)

which assigns a ternary function of time to each elerest3” and allows us to “separate” the arguments of
w by expressing it as/(X)(t) . In this form, the notatiomv(X) is interpreted to mean a function of time that
assigns to each elementfha unique element frorfi. Alternatively, fixing the value of makesw a partially
specified Boolean function of. Formally, this is expressed by the alternate mapping:

w:R - (B" - S) (3.3)

which assigns a Boolean function interval to each elehenfR and allows us to express the waveform
function asw(t)(X) . The notatiornw(t) in this case is interpreted to mean a function interval in the space of
Boolean functions oX. We will mostly use this second form and refemtas am-variable logic waveforrh
wheren is the size of the Boolean vectrIn addition, for the sake of brevity, we may on occasion dfep
explicit dependence on eithieor X or both; in such cases it must be assumed that this dependence is implied.

1. Strictly speakingy is an(n + 1) -variable function. Haever, sincet is a common gument to all logic @veforms, it is con-
venient to characterize specifvaveforms by the number of their Booleaariables.
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Wo(X) | wq(X) W, (X) w; (X) W, 1(X) | w(X)

to ty t t_q t t—2 (] f =

Figure 3-3: Schematic Representation of the Logic Waveform w(t)(X)

3.1 Logic Waveform Specifi cation

A logic waveform w(t)(X) can be represented in nyadifferent ways.A particularly cowenient representation is to
specify it in terms of a tartuple(T,,, V,,) whose components are aefd as follavs (seeFigure3-3).

 Afinite ordered seT,, ofkdistincttime instanty,, = {t; € :R‘to <t <..<t._,} referredto as thime
grid ortime baseof w; the elements of, are referred to agid points T,, induces a partition of the time axis

{ (=2, tg), [to: tol, (to ty)s [ty ] ooy (e — ot — 1) [t = 1ot = 1] (Y — 15 @)} (3.4)

that consists ok + 1 finite open time interds andk time instantsWe will find it corvenient for later manipulations
to augmentT,, with two artificial grid points defied agt_; = — andt, = .

* A corresponding se¥,, = {wg(X), w{(X), ..., W, (X)} of k+ 1 partially specified Boolean functions. The
ith such functiorwi(x):Bn - § is thevalue of w over the intervalt; _ 4, t;) . We will refer towy(X) and
w, (X) as thanitial andfinal values ofw .

As suggested bifigure3-2, a transition instant is best modeled by including it in both the preceding and succeeding time
intervals. Generalizing, we def the alue ofw at grid pointt; as the interal union ofw’s \alue wer the interals (t; _ 4, t;)
and(t;, t; , 1) . Specifcally:

w(t;)(X) =w;(X)Ow, , 1(X) O=i=k-1 (3.5)

A waveformw will be calledcompletely specédif the k + 1 Boolean functions iV, are completely spedd; if one
or more of these functions is partially spesdfiw will be referred to as partially specifed waveform.When necessaryve
will write w = (T,,, V,,) to indicate thatv is defned in terms of a particular time grig, and an associatedlve setv,, .

Stability , Functional Uncer tainty , and Temporal Uncer tainty = The notion of stability is fundamental to our under
standing of the dynamic behar of logic waveforms.As mentioned earlielat aly given time instant a completely speeifi
waveform is either stable or changing foyagiven combination of the Boolearator X . On the other hand, when thewe-
form is partially speciéd, i.e. when the aveform has somiinctional uncertaintyits temporal behéor may become ambig-
uous.

Let us associate with aameformw a ternary functiors,,(t) € S, called itsstability predicate This predicate \aluates
to 1 at a gren time instant if it is certain that theweform cannot hae a transition at that instant undey @ombination of the
Boolean ectorX. The predicatevaluates to O if it is certain that there is at least one combination of the Boeltanithat
causes a transition to occur at that instantvdtuates tdJ if we are uncertain about whether transitions are possible at that
time. Stated anotheray, o,,(t) = 1 meansw is alays stable &t o,,(tf) = 0 meansw will experience one or more tran-
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3 EA T3 3

i1 t -1 {i i1 b

Lwi(X)J = [Wi(X)W Lwi(X)J * [Wi(X)W Lwi(X)J #* (wi(xﬂ
| 0 0

/\ ou® /\ ou) /\ (o,(1) = V)

teE(t_1t) te(t_pt) te(t_pt)

Completely Specified Stable Chanai
(and Stable) (but Partially Specified) anging

Figure 3-4: The three types of waveform intervals

sitions at; ando,,(t) = U means we cannot tell whetharwill or won't have transitions at We refer to this last condition
astemporal uncertainty

Consider nw a completely specéd waveformw = (T,,, V,,). Clearly o, (t) = 1 within the time interals defned
by T,, . On the other hands,(t;) , wheret; is a grid point, may be either 0 orAlgrid point at whicho,,(t;) = 1 isredun-
dantsince it does not correspond to an actual signal transition.

Consider net a partially speciéd waveformw = (T,,V,,). At the grid points, we must assume that transitions can
occur @en if the partially speciid functions wer the adjoining intemals are identicallo understand this it is best to recall the
interpretation of partially speaftl Boolean functions atsof completely speciéid Boolean functions. If the tmsetsw; and
w, , 1 are disjoint, then we can state with certainty thawill change at; ; thuso,,(t;) = 0. If the two sets are not disjoint,
we must conclude that it is possible ferto change as well as not to change; tayét;) = U . Thus the presence of uneer
tainty inw, and/orw; , ; causesr,(t;) to be uncertain @ept when the sets are disjoint.) lryamase,o,,(t;) # 1. Within
partially specifed intenals, we hge two casesWe either knw that the vaveform is stable, i.es,,(t) = 1, or we dont know
for sure that it is stable, i.e,(t) = U.In ary caseo, (t) # O at an internal point since thabwd imply that we hee cer
tain knavledge thatw will change at that time.

The preceding discussion suggests that a plausibhatiefiof the stability predicate might be as fall

oy(t) = VX (Lw(t)(X) ] O Tw(t)(X) 1) (3.6)

This defnition yields the gpected results whew is a completely specifd waveform. For partially speciféd waveforms, the
definition aways yields 0 for those time instants at whigft) is partially speciéd. Thus, it fils to male the distinction
noted abwe between interls over which the vaveform \alue is uncertainui it is knavn to be stable and those intals/over
which both the w@veform \alue and stability are uncertain.

In summarywe note that functional certainty implies temporal certaintythat the coverse is not truelhus, the stabil-
ity predicate must be made part of thaveform specifiation for partially speciéid waveforms. In those cases, we will indi-
cate a wveform by a three-tuplev = (T,,, V,,, 0,,) - Figure3-4 illustrates the three types ofweform intenals that result
from the interaction of functional and temporal uncertainty
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Alg ebraic Representation The functional dependence oéweformw = (T,, V,,d,,) onits agumentd andX can be
expressed in aariety of ways.A particularly useful algebraic form fav is the standardum-of-interval{SOI) epression
given by:

O 0 O O
W) = 0\ / (ti,1<t<ti)mvi(X)%DSJ \/ (=00 0w 10000 (3.7)

=1=k si=sk-1

This epression can be wieed as anxpansion ofv using the partition of the time axissgh by(3.4) as a basislhe &pansion
has 2k + 1 disjoint terms corresponding to tiket+ 1 intervals andk grid points. Each such term is the conjunction of an
interval or grid point selector (a predicatetpand a correspondingaweform alue (a partially spec#dd Boolean function of
X.) Since vaveform \alues at the grid points are completely determined by thkies @er the adjoining intewmls, it is often
sufficient in algebraic manipulations tgpress a \veform just by the fst OR sum in(3.7). In such cases, it is to be under
stood that the unspedti waveform \alues at the grid points can be obtained by appkaris).

3.2 Temporal Operations on Logic Waveforms

The time grid used to specify a logieweformw is not uniqueWe examine in this section thefett of changing the time
grid on the alue and stability of the aveform.

Refinement Consider a weformw = (T,,, V,,,0,,), and letT’,, be another time grid such thag, C T',,. In other
words, T’ is obtained fronT,,, by adding more grid point$he efect of adding a grid poirtt. such that; _ ; <t. <t; is
to split the interal (t; 4, t,) into two subinterals (t; ;,t.) and(t,t;). Clearly such a split can neitherfaft the \alue
nor the stability ofw at ary instant within(t; _ 4, t;) .

Abstraction  Consider a weformw = (T,,V,,, o), and letT’, be another time grid such that, C T,,. In other
words, T’,, is obtained fronil,, by remaing one or more grid points. Rexad of the grid point; from T, causes the inter
vals (t; _ 4, t;) and(t;, t; , 1) tomegeinto a single interal (t; _ 4, t; , 1) . This meger causes thealue and stability ofv for
te (t _ 4t , 1) to change according to the follng rules:

w(t)(X) = w(t;))(X)
o ft) = 0 1ifoy(t) =1 (3.8)

OuU if o, (t) # 1

In other vords, unless the aveform was stable at; meging the tvo intenals adjoining at; causes thealue ofw att; to
“spread” to all time instants within the nged interal and its stability to become uncertain. In general, temporal abstraction
increases the uncertainty in both the functional and temporal aspects ofatbform. The only e&ception is when
o,(t;) = 1 before the megper indicating that the grid poimt does not correspond to an actual transition instantioOsly,
removal of such a “redundant” grid point has néeef on the alue or stability of the aweform (see discussion of minimal
waveforms belw.)

Example 3.1 An example of temporal abstraction is shoin Figure3-5. Remawal of the grid points at = 5 andt = 11
from the time grid of the completely speediwaveformw leads to the creation of tamepged interals and results in a we
abstracted aveform w. Prior to the megers, the alue and stability predicate wfat these tw grid points were:
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w(t)(Xq, X5) 3 X1 X1 Xy X1

—

Il

o

—

Il

o

—

Il

© x
N

—

Il

11

Remove
Remove

\/
RS T TR R
t=20 t=9

Figure 3-5: Temporal abstraction (see Example 3.1)

W(5)(Xg, Xp) = (X4%) O (Ry) = [0, %y O]

0 (5) = VX VX, ((XyX0) @ Ry) = VXq* VXy+ (XRp) = O
WD) (Xp, X)) = (%) 0 (%) = [Xpu Xo] = Xy

T (11) = VX3 VX (X, O %) = ¥Xg* VX + (1) = 1

Thus, the abstraction df = 5 causesv to be partially speciid and changingver the meged interal (0, 9) . In contrast,
the abstraction of = 11 has no d&ct sincew is always stable at that time. Note that the reahof the grid pointat = 5

represents an irversible loss of information; starting from it is not possible to rever the original vaveformw by merely
adding back the grid point at= 5. O

Minimal Waveforms A grid point whose temporal abstraction does not changeathe @r the stability of theaveform is
redundantand can be renved to yield a more compact representation of theeform.A waveform is minimal if it is based
on a minimal time grid, i.e. a grid that does notéhary redundant grid points.

For a completely specéd waveform, a grid point is redundant if its stability predicate i& tompletely speciéd wave-
form is therefore minimal if the stability predicate is O at all grid pofng.given completely specéd waveform can be min-
imized by temporally abstracting all grid points at which the stability predicate is 1.

For partially speciftd waveforms, a grid point is redundant if theotwime intenals adjoining it are changing inteds
whose partially specéd Boolean functions are equal. Speaifly, the grid pointt; is redundant i{t; ;,t;) and(t;, t; , 1)
are changing inteals such thaw;(X) = w; , 1(X).

3.3 Logical Operations on Waveforms

The complement of aaveformw is simply obtained by complementing each of the components ialits setv,, . Let
w andy be arbitrary vaveforms and let be a binary operator deéd wer partially speciéd Boolean functiong.he applica-
tion of f to w andy yields another aveform z that can be obtained by the fallmg procedure:
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Re-&pressw andy in terms of the common time ngqu =T,UT

w y*

» Apply f to the transformed waveforms interval-by-interval. Note that this may cause the stability predicate at
certain grid points to change from 0 to 1 (e.g. a 0 on one input of an AND can eliminate a possible transition on
another input).

» Minimize the resulting waveform by temporally abstracting redundant grid points.

4 Time Deriv atives of Completel y Specifi ed Waveforms

To analyze the dynamics of logiatg circuits we propose the use of dative operators that are similar in spirit to the
derivative operatoD of the calculus of real numbei&he time desatives of a symbolic logic aweform w(t)(X) are them-
seles symbolic logic aveforms that capture the conditions, both temporal and logical, under whitight be stable or
changing.The dervatives allav the denvation of diferentiation formulas for arbitrary Boolean combinations afeforms;
these formulas are used,3ection 5 as the basis for linking the functional and temporal aspects of combinational circuits. In
addition, we she how a waveform?’s first and lastent times are related to its dexiives. Due to space limitations, the dis-
cussion in this section is restricted to completely spetifaveforms.

4.1 Basic Deriv atives

The four time derviatives of w(t)(X) with respect td are termed itsising derivative Rw(t)(X), its falling derivative
Fw(t)(X), itshigh derivativeHw(t)(X), and itslow derivativeLw(t)(X), and are defied by the follving equations:

Rw(t)(X) = lim [w(t — €)(X) Dw(t + €)(X)]
Fw(D)(X) = lim [w(t — €)(X) Ow(t + €)(X)]

Hw(t)(X) = Iimo[w(t —¢€)(X) Ow(t + €)(X)] (4.1)
Lw(t)(X) = Iimo[w(t —¢e)(X) Ow(t + €)(X)]
Substituting the defition of w from (3.7) yields the folleving dervative expressions:
Rw(t)(X) = (t = 1) O[w;(X) Ow; 4 1(X)]
0= |\s/k -1 i
Fw(t)(X) = (t = 1) O[w;(X) Ow; ;. 1(X)]
0=si=k-1
Hw(t)(X) = w(t)(X) D% (t=1t)0[w(X)Ow (X)]E “-2)
) Q)s i\s/k— 1 o i " H
O O
Lw(t)(X) = w(t)(X)OO (t=1t) 0[w(X) 0w, . 1(X)]O
QJ =si=k-1 O
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W(t)(Xq, Xo) = (= <t <0)(xq Oxy) (0 <t<2)(Xy Oxy) [

X1 %o (2 <t<5)(x @ xy) O(5 <t <w)(x, OR,)
Symbolic [ X; O X, Xq OXy X1 D X, X; O%o

oo |

01 | | !

10 |

RN ‘ f

t=0 t=2 t=5

Rw(t)(xq, X5) = (t = 2)(x1 OX,) O(t = 5)(x; O X,)
Fw(t)(Xq, X) = (t = 0)(xq) O(t = 5)(%x; Ox5)

Figure 4-1: Example waveform and its rising and falling derivatives

Note thatRw andFw can be nonzero only at the grid points used to specifyVe say that aising evenioccurs af(t = t;)
if vVi(X) Ow, , ,(X) = 1. Similarly, afalling eventis said to occur aft = t;) if w;(X)Ow. , ,(X) = 1.An example
shaving the application of the dedtive formulas in4.2)is shavn in Figure4-1.

i+1

It is worth noting that at gngiven time instant, the four time deatives of a vaveform w form an orthonormal set. In
addition, the devatives at tvo consecutie grid pointst; andt; , ; are related by causality constraints; foample,
Rw(t;)Rw(t; , 1) = 0 andRw(t;)Lw(t; , ;) = O since a\aveform cannot rise or bevoatt; , , if it was rising at; and
remained stable untt| . ;.

4.2 Other Deriv atives

If we are interested in just kming whether a completely speeii waveform is stable or changing at a particular time
instant, it is useful to introduce owadditional dexatives: Cw(t)(X), the changing derivativeof w with respect td; and
Sw(t)(X), thestable derivativedf w with respect ta. They are defied as follavs?

Cw=RwOFw

Sw=Cw = RwOFw (4.3)

The rising, &lling, and changing destives can bewvaluated wer ary subset of the time axis by simply ORing theit-v
ues at all time instants in thevgn subset. LeT C R. Then,

2. For completely spec#id waveforms, orthonormality alles us to equilently express the stable deative as
Sw = HwDOLw. The more general detition in (4.3)is still required for partially spec#fd waveforms, though.
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Rw(T)(X) = Rw(t)(X)
t\e/T
Fw(T)(X) = Fw(t)(X) 4.4
t\e/T (4
Cw(T)(X) = \/CW(t)(X) = Rw(7)(X) OFw(T)(X)
te T

These defiitions are consistent with the intwiti notion that a eweform should be considered risingllihg, or changing wer
a given set of time points if it riseslfs, or changes, at one or more of these time points. In contrast, the Wigimdostable
derivatives are xtended to sets of time points ANDing their values at all time points:

Hw(TJ(X) = /\ Hw(t)(X)

te T

Lw(TJ(X) = /\ Lw(t)(X) (4.5)
teT

W(TH(X) = /\ SwW(t)(X) = [Rw(TJ(X)]" O[Fw(TH(X)]"
te T

Thus, a vaveform is considered to be highyipover a given set of time points if and only if it is high\{ipat each time point
in the set. It is considered to be stablerathe gien set of time points if it is guaranteed that it neither risesatisrdt ay
time point in the set.

4.3 First and Last Event Times

The times at which therfit and last\ent of a vaveform w occur are frequently needed. Indeed, itis fo say that the
field of timing analysis is primarily concerned with the determination of thesa &mes under aaviety of simplifying
approximations. In this section we deriformulas for these twquantities that sothem to be conditional numbers whose
conditions are related to eaveform’s dervatives.

Let's consider the time at which the lage®rt ofw occurs.We begin by noting that this quantity is going to be a condi-
tional numberlts possible alues come from the time grig,, used to specifw. Each grid point; is a candidateatue for the
time of the lasteent if w changes at; and is guaranteed to remain stable aftelhis requirement is easilkpressed by:

Cw(t;) DSW((t;, =)) (4.6)

Denoting the time of the lasvent ofw by A, , it can be succinctlyx@ressed as folles:

Ay= P (Cwlt) Osw((t, =) C (4.7)
-l=si=sk-1
whereCw(—«) = 1. Recalling thatt_;, = —«, the abue epression allws for the possibility of a aveform that has no

events (i.e., that is stable for all points on the time axis) by assignin@s the time of the lastent (the gent that neer took
place!)

Similar reasoning yields the folling expression fora,, , the time of the fst event of w:
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Table 4-1: Diff erentiation Form ulas
- ()(X) = f(w(t)(X), y(t)(X))
z* Rz* Fz* Hz* Lz*
W Fw Rw Lw Hw
wy RwRy ORwHy OHwWRy | FwFy OFwHy OHwWFy | HWHY Lw ULy ORwFy OFwWRy
wly | RwRy ORwLy OLwRy FwFy OFwLy OLwFy |HwOHyORwFy OFwRY | LwLy
wdy LwRy OFwHy O LwFy OFwLy O LwHy OHwLy O LwLy OHwHy O
HwFy O RwLy HwRy O RwHy FwRy O RwFy FwFy O RwRy
ay = P (Sw((==, 1)) OCw(t))EC (4.8)
0=i=k

In this case, the time of thedt event is set toe when the vaveform is stable at all time points (theeat that will neer

occur!)

Example 4.1 Using(4.9) and(4.8), the frst and lastents of the \aveform inFigure4-1 can be calculated as fols:

The correctness of these results is easgilidated by inspection of theameforms inFigure4-1.

Aw

o o

I

4.4 Diff erentiation Form ulas

0 if Sw((—2, 0)) 0Cw(0)
2 if Sw((—x, 2)) DCw(2)
5 if Sw((—, 5)) 0Cw(5)
o if (Sw((—, «)))

5 if Cw(5) OSw((5, «))
2 if Cw(2) OSw((2, «))
0 if Cw(0) OSw((0, =))
— if Sw((—2, *))

X 06D X, [BC

(4.9)

(4.10)

The timederivatives of ay Boolean function of logic eweforms are easily found by direct, if sonteat tedious, applica-
tion of the defiitions in(4.1). The denative sets for a sampling of one- andtvariable functions are gen inTable4-1. Not
surprisingly these deviative formulas hae simple intuitve explanations. Br example, the rising derative of wy indicates
thatwy rises at some timigf either input is rising at that time while the other input is either rising or is ilgire are some

3. The“a”in A, anda,, stands for the “aval” time of the correspondingent.
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z* (1) _| Rz* (1)

‘ 1 ‘ U
z(t) % Rz(t + | tp ) ORz(t + [ tp )
(1) ] | | Fz*(t)
‘ ‘ ‘ I
Z(t) | % Fz(t + UPJ) OFz(t + (tﬂ)
Y, — 0 _4 1 Lz (1)
O| Comb | ‘ ‘ U
o — 7 z(t) | Rz(t + Ltpj) OFz(t + [tpl)
O| Logic | | |
Ym 1 1 1
z(1) v | | I:JZE(t)
Z(t) Fz(t + UF’J) ORz(t + [tﬂ)
Figure 5-1: The link between time derivatives and signal delay. z* is the ideal instantaneous out-

put waveform; z is the actual output waveform.

subtleties, havever. Specifcally, note that the lw derivative of wy consists of four disjoint terms indicating that afisignt
condition forwy to be lav is that either input is 1 or that the tw inputs are undgoing opposite transitions. Mever, it
should be clear that the appearance of rising allidg dervatives in an gpression for a i or high denvative is an indication
of a static hazard that might result in a glitéfhen necessaryve will indicate these glitch-inducing deatives with a tilde
under the appropriate deative operatarThus, for theAND function we vould write:

L(wy) = RwFyOFwWRy O L(wy) = LwOLyOL(wy)

Another subtlety is that these dettives pertain to the instantaneous (delaylesskeform resulting from application of
the Boolean functiori. In other vords, these deritives are forz* (t)(X) = f(w(t)(X), y(t)(X)); they indicate the condi-
tions on the input ewveforms at time that would cause the instantaneous outpateform to rise, dll, remain high, or remain
low. What happens to the actuadweform is discussed re

5 Signal Delay

The link between the functional and temporal aspects of legecrgodels can be inferred by noting that a change indica-
tion for the instantaneous outputweform z* at timet implies corresponding changes on the real outpueferm z after
somepropagation timet, . The relation between the four possible change indicatiores cand the changes $énply on z
is illustrated inFigure5-1. Note that, in addition t&Rz* (t) andFz*(t), the glitch-inducing devatives | z* (t) and H z* (t)
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must be considered as change indicators. In making this link between the functieralbfgihe devatives) and temporal
(given by the propamion times) components of atg model, it is important to emphasize that no assumptions were made
about the implementation of thatg functionf. Thus, diferent implementations could yield madty different propagtion
times. More to the point, perhaps, is thetfthat all we can say when, foraple, a rise indicatiorxests for z* at timet, is
that the real output wikventuallyrise. It may depending on implementation Meaa single risingwent or a sequence of rising
and flling transitions that end in anéil rising @ent.To accommodate thesanations, the propagion timet, is best consid-
ered as a range that bounds the changing aitervz; the lover and upper bounds of this range will be denotegtp% and
(tﬂ. It is important to note that the range in progaan time introduced here is meant to model the possiidéeace of
several structural propagion paths within the logicage and not anstatistical dects caused by randoranations in process-
ing or operating conditions. Indeed, the special case ofjendeate range (i.%.tpj = [tpl) may be used to ddrentiate
between structurallprimitive andcomplexcomponents. In the remainder of this section we will assumeghata dgener
ate range (a single point) in order ®elp the \@veforms completely specéfi.

5.1 Delay Specifi cation

Having established the link betweerawgform dematives and propagion times, we can molabel each of these times
based on the logical conditions that cause its manifestatidtiustrate, consider a 2-inpaND gate with inputsy, , y, and

outputz. Consulting the derative formulas inTable4-1 we can identify six potential propatipn times from the inputs of the

gate to its outpuz corresponding to the six &fent rise anddil indications on the instantaneous outptit A possible sys-

tematic labeling of these six progipn times, thus, fstRa,, thr s thar then: thre ther

Denoting the signal propation delay toz at timet by A.(t)(X), it can nev be expressed as a conditional number
whose conditions are the reémt devative combinations and whoselues are the corresponding progi@on times:

R R R
A ((X) = RygHY, BpryC® Hy; Ry, Op(ir0® Ry, Ry, Apge b
F F F
Fy; HY, Rprn 0B Hy; Fy, Bpph 08 Fy, Fy, Rpr 00 (5.1)
(Ry,Hy, OHy,Ry, ORy,Ry, OFy;Hy, OHy,Fy, OFy;Fy,)" [OC
Note that the delay is set to zero when none of the change-inducing conditions apply; this merely statethttdaffno
events occur on the inputs to thatg, then there is nothing to delay! Note also that the delays from each of the inputs to the

output can be “dracted” from the aba composite delay equation by selecting only those conditions tiehteéra change in
that particular inpufThus, the delays frory; andy, to z are immediately seen to be:

Ay AD(X) = RyyHY, (g, Tk Ryy Ry, (el Fy; HY, i, O Fy; Fy, Opee (k0
(Ry;Hy, ORy,Ry, OFy,Hy, OFy,Fy,)’ [00

Ay (D(X) = Hy;Ry, (pfe¥B Ry, Ry, igel® Hy, Fy, O el Fyy Fy, pg ek
(Hy;Ry, ORy,Ry, OHy,Fy, OFy;Fy,)" (00

(5.2)

4. This notation is meant to resemble the traditional notation for specifying delay parameters in datéeottkstands for
time, the P” for propagtion (thus, propagion time.)The remaining subscripts denote the inpugings assuming a particular
input orderingThe superscript indicates theweform (gate label) to which the delay parameter applies and the typemf e
involved.
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5.2 Delay Application

The preceding deslopment clearly shves the conditional nature of logiatg delay and highlights its relationship to the
Boolean function of theaje.To complete ourlving dynamic logic gte model, we must lastixamine hav such condi-
tional delays déct the propaation of symbolic logic \aveforms. Consider a generiaveform w(t)(X) as defied in(3.7)
and letA(t)(X) = \/Osi k- l(t = t;) (A (X)C whereA;(X) are conditional numbers (this is the form that results from
substituting thexgressions for the time destives in(5.1)). The waveform that results from delaying(t) (X) by A(t)(X) is
evaluated according to:

O=si=k-

w(t — A(t)(X))(X) = \/ (t _ 1+ 4 _ 1(X) <t <t; + Aj(X)) Owy(X) (5.3)
1

where the addition and relational operations are carried out using the conditional arithmeticSatg®nf2.1Several points
are worth noting about this delay operation:

+ Let's assume for a moment that the's are unconditional numbers, i.e. they are independextlafthat case,
(5.4) indicates that the delay operation transforms the original ftigt,,...,t, ;} to a new grid
{to+Ag ty +Aq, ..t 1 + A _ 41} . Inaddition, if the delay values are equal (uniform delay), then the grid
is merely shifted by the delay amount. If, however, the delay values are not equal, the spacing of the new grid
will be different from the original grid. Thus, some intervals might shrink while others might expand, and as a
result the new intervals may overlap. The value of the delayed waveform in these overlap regions is the logical
OR of the respectivey, 's.

» In extreme cases, intervals might shrink to zero or negative width. Their contribution to the value of the delayed
waveform in such cases reduces to zero because the temporal pigdicate A; ; <t <t, + A;) becomes
0. In some sense, this is a form of inertial filtering with a minimum pulse width of 0 and it is taken care of
automatically. This also suggests a possible approach to general inertial delay modeling. Suppose that there is a
minimum pulse widtt,,\,, > 0 that must be satisfied by all signals. The delay operation defir{djytan
be extended to handle this case as follows:

O0=si=sk-1
The additional predicate eliminates the contiitn of w; to the \alue of the delayed aveform if the transformed
interval is narrever than the specéd minimum pulse width.
* When thel;’s are allowed to be conditional numbers (functionX)pfthe above observations still hold. The
transformation to the time grid, however, is more involved. Each original grid point now generates several new

grid points depending on how many delay values and associated conditions are associated with that grid point.
The conditional arithmetic machinery takes care of this automatically.

5.3 Complete Integrated Functional and Temporal Gate Model

If the functional dependence obn y,, y., ..., ¥, is given by the Boolean functian then the completeaveform atz is
calculated from:
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Z(t) = f(yl(t - Aylz(t))! yz(t - Ayzz(t))v ERE] ym(t - Aymz(t))) (55)

This equation may imply a front-end delay model. It can be written in avadepi form, havever, that looks lile a back-end
delay model:

Z(t) = f(yp Yoo Ym) (T = Auy(t)) = Z5(t = Asy(1)) (5.6)

Thus, as long as we treat delay propeslg get the right answer in one ofatwvays: 1) apply the static logic function to the
inputs, then delay the result iy ,; 2) delay each of the inputs by the portionAaf, that pertains to it, then apply the static
logic function to the resuliThis is an interesting conclusion and suggests that the traditional dichotomy between front- and
back-end delay models is an atf of hav delay was postulated. It is clear from the abanalysis that there is nofdifence
between these tstyles of modeling logic delay as long asytberive from a consistent causal dhitiion of delay

6 Conclusions and Future Work

In this paper we hee sletched the outlines of a proposed fraroek for the dynamic modeling of logiate circuitsThe
thesis underlying this framrk is that functional and temporal properties are inherently related. By contrastxistisg e
logic gate models treat thesedviacets independently and somtat inconsistentlyThe unifcation preided by our frame-
work is not merely aesthetic; it alis us to gplore at a fundamentalJel the nature of logic delay and forms the basis for
more rigorous timing analysis models than are currentijlable. Specifially, through a systematic functional and temporal
abstraction procedure we can gerearly and late signal aral time equations that mirror in their form the topological equa-
tions at the core of the shortest and longest critical path method (T&®Miistrate, consider am-input single-output @te in
a combinational circuit. Denoting the late topologicalatrtimes at the inputs and outputs of tlmegbyAyl, ..., A, and

Y,
A, , and the (unconditional) delays from each of these inputs to the outm}lpy.., A the basic computationn?n CPM
is given by the equation:

YmZ’

A, = 1 Smiaé m[A : + Ayiz] (6.1)

The corresponding equation when thevatrtimes and signal delays are conditional numbers that are functions of an indepen-
dent Boolean @ctorX is then simply:

ALX) = | max A (X)+ Ay (A)(X)] (6.2)

where the rules of conditional arithmetic apfliie signifcance of the abv@ equation lies in its uversal applicability to an

logic functionf augmented with the most comprehgagielay model proposed to date. It clearly supersedes the plethora of
local sensitization criteridhat hae been proposed in the last decade to deal with the timing analysis problem and rationalizes
a field that has saf been treated by ad hoc methods.

Space limitations he precluded discussion ofvegal related topics including the modeling of such analfegtsfas sig-
nal slope and the neaimultaneous switching of inputgle also hinted atut did not fully deelop the model of partially spec-
ified waveforms.We plan to describe these ideas in future publications.

References
[1] F M. Brown, Boolean Reasoningd. JAllen. 1990, KluwerAcademic Publishers.



CSE-TR253-95 Dynamic Modeling of Logic Gate Circuits 19

[2] C.T.GrayW. Liuand R. K. Cain Ill, “Exact Timing Analysis Considering Data Dependent Defayechnical Report NCSU-VLSI-
92-04, North Carolina State Umirsity December 1992.

[8] W.K.-C. Lam,Algebraic Methods forimingAnalysis and &sting in High Performance Desigrizh.D.Thesis, Uniersity of Califor
nia, Berlelgy, 1994.

[4] S.-Z.Sun, D.H. C. Du and H.-C. Chen,fiEientTiming Analysis for CMOS Circuits Considering Data Dependent Délay&roc.
IEEE International Confeance on Computer Design (ICCpp. 156-159, October 1994, Cambridge, Massachusetts.

Application of Conditional Dela y to Symbolic Logic Waveforms
(A Correction to Section 5.2 of CSE-TR-253-95)

In some cases, equation (5.3) on page 16 yields incoresefarms. It should be replaced with the fallag corrected
version:

O=si=k-—

w(t — A() (X)) (X) = \/ (t_ 1+ A= 100 <t <t + A(X)) Ow;(X) (7.1)
1

where the conditional dela&i(X) that is applied at grid poirtt is a function of the actual conditional delay(X) att; as
well as the conditional delays at all preceding grid points.7,€X) denote thepropagation conditiorassociated with the
conditional delayA;(X) . Thus,m;(X) is the union (OR) of all the conditions under which the delay is nonkeran eam-
ple, the propagftion condition for the delag. , of a 2-inputAND gate is (see equation (5.1)):

7+, = Ry;Hy, OHy;Ry, ORy,Ry, OFy,Hy, OHy,Fy, OFy;Fy, (7.2)

The basic idea mois that the amount of delay to apply at grid pajnshould reféct the cumulate efect of the conditional
delays at préious grid pointsThus, when the propation condition;(X) is true,t; is delayed byA;(X) ; when,(X) is
false, havever, t; is delayed byA; — 1(X):

Ai(X) = m(X) DA{(X) O, (X) O4; — 1(X) (7.3)

This equation can be vieed as constructing a weconditional number by splicing together portions frono wther condi-
tional numbersThe propagtion condition and its complement are used to select the portions to be spliceihgDké delay

at grid point t_; = —« to be &,1(X) = A_1(X) = 0 allows this equation to be used recuey to determine
AO(X), Al(X), Ak_ 1(X) . Note that(7.3) reduces toﬁi(X) = A,(X) when the delays are unconditional, i.e. when
m(X) = 1.

Example 7.1

V(D (X, Xo) = (=0 <t <0)(xy) O(0 <t <®)(x5)
Yo(t) (X, Xo) = (—e <t <1)(x,) O(1<t<x®)(X;)

First, compute the delayless output:
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z =y, 0y, = (% <t<0)(x%) 0(0<t<1)(xp) O(L<t<)(%xy)

Next, compute its devatives:

*

Rz (t = 0)(xqX,)

Fz = (t = 1)(x1X,)

Now express gte delayA. ,(t) in terms of these demtives.The delay is nonzero only atdwime instants:

R

Ay(0) = (RyXp) Rprpy (X OR,) [OC
F

Acy(1) = (Xg%p) Bpyel® (%; O%,) [OC

The actual gte outputz is hav obtained by aluating z*(t — AL (1)) :

2(t) = (=0 <t<Ay(0))(XyXp) O(Ax£(0) <t <1+ Avy(1))(Xg) (L + Ary(1) <t < 0)(R1X,)

where:
n R
Acy(0) = A, (0) = (XyX) Rpgy B (x4 O%,) (OO
Acy(1) = (xy%5) DAL (1) O(X; O%,) OAx5(0)
F R
= (X1Xp) Oppir® (RyXo) By (%) (0T
Thus,

(= <O[(Rx)(t < tEZRH) O(xq ORy)(t < 0)](X1X%5) O

Z(t)
[(RyXo) (thayy < 1) O (xg OR)(0 < ][(XX)(t < 1 + thie) O(RXo) (1 < 1+ tiagey) O(R)(t < 1)] (X,

[(XXo) (1 + thi e < 1) O(RyXo) (L1 + thay < 1) O(Xy)(1 < )] (t < 20)(X;Xy)
= (—e <t <0)(x1Xp) O

[(RXo) (tgy < 1) O (X X)(0 < )] [(XyXo)(t < 1+ th5e) O(Ryxo)(t < 1 + tRe)] O

R
(1 + tpgy < t < ©)(XyXy)
(—e <t <0)(xyx,) 0

(182 <t <1+ thg)(RyXo) (0 <t <1+ tphe)(XXp) O

(1+ 535, <t < ®)(X,Xy)
Under the uniform delay assumptidgéH = tEZHF = 3 leading to:

Z(t) = (—o <t <0)(Xx1%,) OB <t <4)(RyXo) O(0 <t <4)(XX,5) O(4 <t <0)(RX5)
= (— <1< 3)(Xy%p) (3 <1< 4)(xp) O(4 <t < )(RyXp)
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Under the rise#ll and state-dependent delay assumptiq'}fs\';,l_1 =3 andt,E,z_'F = 1 leading to:

2(t) = (= <t<0)(X%p) D(3<t<4)(X1Xp) D(0 <t < 2)(x;%)) O(4 <t <=)(X1Xy)
= (=0 <t < 2)(XXy) O(3<t < 0)(RyXy)

Had we used the delay application formula in (5.3) welad/ hare obtained the follwing erroneous outputaveform (for the
uniform delay case):

z(t) = (= <[(Xx,)(t < 3) O(xq O%,)(t < 0)](x;%,) O

[(X1%2)(3 < 1) O(xq ORy))(0 < t)[(xx,)(t < 4) O(xy O%p)(t <1)](x,) O
[(X1X5)(4 < 1) O(%y OR5) (1 <)](t <) (RyXy)

= (= <t <0)(Xy%y) O
[(R1%2)(3 < 1) O(X1X5)(0 < t)J[(XqX,)(t < 4) O(RXyxx)(t<1)] 0
(1 <t<oo)(X1X5)

= (—o <t <0)(X1Xp) O(0 <t <4)(x1Xp) O(1 <t <®)(RyX,)

= (oo <t <1)(XXy) O(1<t<4)(x,) O(4 <t <®)(RX5)

The basic cause of this anomalous result is that the ptpagonditions at = 0 and att = 1 are mutually eclusive and
that the latter condition incorrectly annihilated thieef of the earlier on&Vhen the dect of the earlier condition is incorpo-
rated into the delay dt = 1, the anomaly disappears.



