

CSE-TR-

Dynamic Modeling of Logic Gate Circuits

Karem A. Sakallah

253-95

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122
USA

THE UNIVERSITY OF MICHIGAN

July 31, 1995

Dynamic Modeling of Logic Gate Circuits

Karem A. Sakallah

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2122

July 31, 1995

Abstract

We propose a dynamic model of logic gate circuits that integrates their functional and temporal aspects in a single unified
framework based on a calculus of symbolic logic waveforms. Using a continuous time model, appropriate time derivatives that
capture the dynamic behavior of digital signals are defined. These derivatives provide a natural link between the functional
and timing components of gate models and highlight the conditional nature of gate delay. The framework subsumes all known
dynamic models of logic gates and—through a formal process of functional and temporal abstraction—provides a sound foun-
dation for functional timing analysis.

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 1

1 Intr oduction

Most dynamic models of logic gate circuits are premised on the separability of the circuits’ functional and temporal

behaviors. Indeed, the temporal behavior is almost always posited as an “add-on” to the Boolean algebra-based functional

behavior in the form of lumped propagation delays. In reality, these two aspects of behavior are not entirely separable. Mani-

festations of the link between functionality and timing abound and have led to a proliferation of ad hoc extensions to Boolean

algebra that were aimed at improving the temporal accuracy of the models. The first concession to the strict separation between

timing and function was to allow for different rise/fall gate delays. This immediately led to the consideration of inertial filter-

ing mechanisms to block the transmission of the narrow pulses that are produced as a result of asymmetric delays. The recently

proposed state-dependent delay models [2, 4] intertwine functionality and timing even more closely by distinguishing among

the various input conditions that produce functionally similar but temporally different output responses. The advent of “deep

submicron” integrated circuit technology has introduced further complications including the need to account for the finite

slopes of switching signals and for the degree of simultaneity among temporally adjacent transitions on different gate inputs.

The increasing dominance of interconnect delay is also challenging the standard assumptions about the causes of delay as well

as its intrinsic nature.

It is rather remarkable that—unlike the solid foundation that supports functional modeling—no universally accepted theo-

retical foundation exists for modeling the timing behavior of digital circuits. The plethora of models that exist today evolved in

response to the need, real or perceived, for greater accuracy and tend to be specific to particular technologies or design styles.

The primary goal of this paper is to take a first step towards evolving a consistent theory for the dynamic behavior of digital

circuits. The centerpiece of this theory is a differential calculus that allows us to describe the transient behavior of logic wave-

forms in terms of appropriate time derivatives based on a continuous time model. These derivatives form the link between the

functional and timing aspects of waveform behavior by establishing a functional framework for temporal modeling. The

framework highlights the intrinsically conditional nature of signal delay and can be shown to encompass most delay models

proposed to date.

The rest of this paper is organized in five sections. In Section 2 we briefly cover some basics to help enhance the clarity of

the development in later sections. In particular, we describe our system of notation and introduce the topics of conditional

arithmetic and partially specified Boolean functions. In Section 3 we propose a model for symbolic logic waveforms, investi-

gate a number of its properties and nuances, and provide the computational recipes required for its algebraic manipulation. In

Section 4 we define the time derivatives of these symbolic logic waveforms and relate them to several dynamic aspects of the

waveform behavior; the development is restricted to completely specified waveforms because of space limitations. Signal

delay through logic functions is defined in Section 5 and related to the time derivatives. Additional aspects of delay modeling,

such as propagation through logic functions and inertial filtering are also discussed. The paper concludes in Section 6 by hint-

ing at the application of this model and its underlying theory to the field of timing analysis.

2 Preliminaries

We will generally denote scalar quantities using lower-case symbols. Aggregates (vectors and sets) will be either denoted

using upper-case roman or lower-case bold type. Calligraphic type will denote the carriers of algebraic structures: for Bool-

ean algebra, for the real number system, for the set of intervals on , and for the universe of

n

-variable Boolean

functions. Unless explicitly stated otherwise, when we speak of Boolean variables and functions we mean variables and func-

tions in the 2-element Boolean (switching) algebra. Thus, refer to switching variables, denote switching

functions, represents a vector of switching variables, and denote sets of switching functions.

�
� � � �

n

x

1

x

2

…

x

n

, , ,

f g h

, ,

X x

1

x

2

…

x

n

, , ,()�

F G H

, ,

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 2

The elements of will be equivalently denoted as or as . Logic waveforms will be indicated

by lower-case bold type such as or . An

m

-input single-output logic gate with input waveforms and

output waveform is characterized by its combinational switching function and an appropriate set of conditional propaga-

tion delays . The

instantaneous

(delayless) output waveform for such a gate will be denoted by .

To distinguish between Boolean and arithmetic operators, we will reserve the “�

” symbol for arithmetic addition and the

“ �

” symbol for logical OR. Logical AND will be denoted by “ ” or by juxtaposition.

2.1 Conditional Arithmetic

Conditional arithmetic is a hybrid algebraic system that combines the deductive power of switching algebra with the com-

putational facilities of regular arithmetic and emerges as a natural vehicle for capturing the functional dependencies of gate

delay and signal transition times.

A

conditional number

 is a mapping (function) that assigns to every element an element . Condi-

tional numbers can be specified by function tables that are analogous to the truth tables of Boolean functions or as sets of

tuples that associate a real number with each possible combination of the Boolean vector . Algebraically, a conditional num-

ber can be expressed in the following

disjoint sum-of-products (DSOP)

form:

(2.1)

where is an orthonormal set of

n

-variable Boolean functions [1] and are the correspond-

ing real values of . The set will be referred to as the Boolean

basis

 of

A

. The logical AND and XOR

operators in (2.1) are extended to handle the reals according to the rules:

(2.2)

where and . A DSOP form for conditional number is

minimal

 if each is a distinct real number. The min-

imal DSOP form of is unique and can be obtained from any DSOP form of by repeated application of the identity:

(2.3)

whenever .

To avoid potential ambiguities in interpreting algebraic expressions of conditional numbers, the elements of the Boolean basis

and the corresponding real-valued components will be distinguished by enclosing the latter in angle brackets. This convention

leads to the following

standard

DSOP form of (2.1):

(2.4)

�

0 0

,[]

0 1

,[]

1 1

,[], ,{ }

0

U

1

, ,{ }

w x

i

y

j

, ,

z

y

1

y

2

…

y

m

, , ,

z

f�

y

1

z
�

y

2

z

…
�

y

m

z

, , ,

z

*

∧

A

X
�

n�

A X

()
��

X

A x

1

x

2

…

x

n

, , ,() 	

1

X

()

a

1

∧() 	

2

X

()

a

2

∧() … 	

k

X

()

a

k

∧()

 	

i

X

()

a

i

∧()

i

1�

k�
�

	

1

X

() … 	

k

X

(), ,{ }

a

1

…

a

k

, ,
��

A 	

i

X

()

1

i k
� �

{ }

y u

∧

0 if

y

0�

u

if

y

1�

î





u v

0 if

u

0�

 and

v

0�

u

if

u

0
�

 and

v

0�

v

if

u

0�

 and

v

0
�

undefined if

u

0
�

 and

v

0
�

î





y
��

u v

,
��

A

a

i

A

A

	

i

X

()

a

i

∧() 	

j

X

()

a

j

∧()

 	

i

X

() 	

j

X

()

()

a

i

∧ 	

i

X

() 	

j

X

()∨()

a

i

∧� �

a

j

a

i
�

A x

1

x

2

…

x

n

, , ,() 	

1

X

()

a

1

〈 〉 	

2

X

()

a

2

〈 〉 … 	

k

X

()

a

k

〈 〉

 	

i

X

()

a

i

〈 〉

i

1�

k�
�

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 3

where, for the sake of compactness, juxtaposition is used to indicate logical AND.

Let and be two conditional numbers expressed in terms of

two independent bases , and let

∗

 stand for any binary arithmetic operation (addi-

tion, subtraction, multiplication, division, maximization, etc.) The conditional number is defined by

the following DSOP expression:

(2.5)

Equation (2.5) also applies when

∗

 is a relational operator (etc.) yielding a logical predicate

. Since the terms in the above XOR double summation are orthogonal, the following simpler form of such

predicates (using inclusive ORs) is immediately available:

(2.6)

2.2 Partiall y Specifi ed Boolean Functions

Partial specification of Boolean functions provides a convenient mechanism for modeling functional uncertainty in logic

waveforms. Uncertainty will be seen as an inherent ingredient in the logic waveform abstraction we introduce in Section 3. In

addition, the judicious introduction of uncertainty often leads to significant savings in the computations required for perform-

ing dynamic analyses of logic circuits with only minor reductions in accuracy.

Generally speaking, a

partially specified n-variable Boolean function

 is a nonempty subset of the func-

tion space representing all completely specified

n

-variable Boolean functions. A partially specified

function is a

function interval

 [1] if it can be expressed as

(2.7)

where and are two

n

-variable Boolean functions such that . A function interval can be viewed

as a mapping , where is the set of intervals on , and can thus be equivalently expressed as

. It is easy to show that and are, respectively, the

greatest lower bound

 (glb) and

least

upper bound

 (lub) of the functions contained in . Denoting these bounds by and allows us to express

 and in terms of :

(2.8)

The

interval operator

 is a unary operator that returns the smallest function interval containing a given partially speci-

fied function. It is defined by the formula:

A X

() 	

i

X

()

a

i

〈 〉

i

1�

k��

B X

() �

i

X

()

b

i

〈 〉

i

1�

m��
	

1

X

() … 	

k

X

(), ,{ } �

1

X

() … �

m

X

(), ,{ }

C X

()

A X

()

B X

()∗�

C X

() 	

i

X

() �

j

X

()

a

i

b

j

∗〈 〉

j

1�

m�

i

1�

k��

,� �

,�

,�

P X

()

:
�

n �

→

P X

()

A X

()

B X

()∗ 	

i

X

() �

j

X

()

a

i

b

j

∗()

j

1�

m

i

1�

k� �

F x

1

x

2

…

x

n

, , ,()�

n

x

1

x

2

…

x

n

, , ,()

2

2

n

F X

()

F X

()

f X

()

:
�

n �

→

l X

()

f X

()

u X

()� �

{ }�

l X

()

u X

()

l X

()

u X

()�

F X

()�

n �

→
� �

F X

()

l X

()

u X

(),[]�

l X

()

u X

()

F X

()

F X

()

F X

()

l X

()

u X

()

F X

()

l X

()

F X

()

f X

()

f X

()

F X

()�� �

u X

()

F X

()

f X

()

f X

()

F X

()�� �

[]

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 4

(2.9)

When is itself a function interval, .

The main advantage of function intervals over unrestricted partially specified functions is that they do not require an

explicit enumeration of their member functions. Instead, the elements of a function interval are implicitly defined by the inter-

val’s glb and lub along with the partial ordering relation “
�

”. This advantage may not, in general, be preserved when function

intervals are combined by set operators. Specifically, the union, intersection, and difference of two function intervals are not

necessarily function intervals. On the other hand, applying Boolean operators to function intervals will always yield function

intervals. This property leads to an

interval Boolean algebra

 that can be used to manipulate and simplify expressions involving

function intervals. The extension of the three basic Boolean operators NOT, AND, and OR to function intervals is provided by

the following theorem.

Theorem 2.1 Boolean Operations on Function Inter vals)

Let and be two function intervals. Then

, , and are also function intervals that are given by the following identities:

�

Equality of function intervals derives from their interpretation as function sets. Thus, the function intervals and

 are equal

if and only if and . Equivalently:

(2.10)

i.e., and are identical if their respective bounds are equal.

As mentioned earlier, set operations on function intervals do not, in general, yield function intervals. In such cases, the

interval operator “ ” can be used to convert the result of a set operation to the smallest enclosing function interval. The

function interval containing the union of two function sets (not necessarily function intervals) is particularly useful and will be

called the

expansion

or

interval union

of the two function sets. Denoting this operation by the symbol “

◊

”, it is defined by the

following expression:

(2.11)

Equivalently, we may express the interval union in terms of logical AND and OR rather than set union. This alternative form,

given in Theorem 2.2 below, is usually more convenient for algebraic manipulations.

Theorem 2.2
�

F X

()[]

F X

()

F X

(),[]

F X

()

F X

()[]

F X

()�

F X

()

G X

()

F �

X

()

F X

()

G X

()∧

F X

()

G X

()∨

F �

X

()

F �

F �

,[]�

F X

()

G X

()∧

F G

∧

F G

∧,[]�

F X

()

G X

()∨

F G

∨

F G

∨,[]�

F X

()

G X

()

F X

()

G X

()�

G X

()

F X

()�

F G�

()

F G�

()

F G�

()∧⇔

F X

()

G X

()

[]

F X

()

G X

()◊

F X

()

G X

()�

[]

F X

()

G X

()◊

F G

∧

F G

∨,[]�

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 5

3 Symbolic Logic Waveforms

We define a logic waveform as a discrete -variable function that takes values from the three-element set

. The function arguments represent the independent time variable and a suitable vector of

n

 independent Boolean

variables . In other words,

w

 is an element of the function space defined by the mapping:

(3.1)

Several points are worth noting about this definition:

1. The domain of this function is partly discrete () and partly continuous (
�

). While the time axis could have
been discretized to obtain a purely discrete waveform function, treating time as a continuous variable has certain
advantages as will become obvious in the sequel. An immediate consequence of choosing a continuous time
model is that, when

X

 is set to some fixed value

V

, is a discrete (discontinuous) function of

t

 (see
Figure 3-1.) The role that

t

 plays in the representation of

w

 is, thus, limited to that of an interval

selector

. The
waveform in Figure 3-1, for example, can be expressed as follows:

where each inequality involving

t

 is considered to be a predicate that evaluates to 1 when

t

 falls within the
specified interval and that evaluates to 0 otherwise.

2. The discontinuous nature of a logic waveform allows us to characterize its temporal behavior at any given time
instant as either

stable

or

changing

. The waveform in Figure 3-1, for example, is stable at and changing
at . The times at which the waveform is changing are called

transition

 instants; the waveform is also
said to have an

event

 at each of those times.

3. The codomain of the function is the ternary set
�

 rather than the binary set
�

. This choice is motivated by the
need to model uncertainty in waveform value. To appreciate this need consider the question of assigning an
appropriate value to a binary signal at a transition instant between logic 0 and logic 1. The available options are
shown in Figure 3-2. Options (a) and (b) assign a binary value to the signal by including the transition instant
with either the preceding or the succeeding time interval. These two options are somewhat arbitrary, however,
since there is no clear basis for preferring one to the other. The third option basically excludes the transition
instant from the function domain by declaring the signal value to be undefined (i.e. neither 0 nor 1.) This option
is also unsatisfactory since it forces different waveforms to have different time domains; the resulting
proliferation of time domains causes unwarranted complexity when manipulating collections of waveforms. The

Figure 3-1: A typical plot of versus for

w

t X

,()

t

X V�

1 1 1

,[]

U

0 1

,[]

0 0 0

,[]

w

t X V�

,()

t

1 2 3 4 5 6 7 8 9-1-2-3

n

1�

()

w

t X

,()�

t
��

X
�

n�

w

:
� �

n� �

→

�

n

w

t V

,()

w

t X V�

,() ��

t

1.9�� �

()�

0

()∧

1.9�

t

0.3�� �

()

1

()∧

0.3�

t

0.2
� �

()

U

()∧∨ ∨ ∨

0.2

t

2.2
� �

()

0

()∧

2.2

t

3.1
� �

()

U

()∧

3.1

t

4.5
� �

()

1

()∧∨ ∨ ∨

4.5

t

6.2
� �

()

U

()∧

6.2

t

8.3
� �

()

0

()∧

8.3

t �� �

()

1

()∧∨ ∨

t

4�

t

6.2�

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 6

last option assigns the value or

U

 to the waveform at the transition instant. Semantically, this choice
conforms to the intuition that the signal value is “unknown” at the transition instant and can appropriately be
interpreted as either 0 or 1. In other words, at the transition instant we lose the certainty of knowing the precise
value of the waveform and must assume that it becomes multi-valued. It is important to note that the third value

U

 does not model an intermediate voltage level between the low and high voltages that correspond to logic 0 and
logic 1. Rather, it represents the set and suggests that the transition instant is included in

both

 the
preceding and succeeding time intervals.

The ability to model uncertainty in waveform value is not restricted to transition instants between logic 0 and
logic 1. For example, it may be desirable in some cases to ignore the precise value of the waveform over one or
more finite time intervals. These intervals may correspond to the finite rise/fall times of the analog voltage
waveform that is idealized by the logic waveform. In addition, it may be desirable to deliberately ignore the
functional dependence of the waveform on one or more of its Boolean variables. It turns out that such

functional
abstraction

, along with the complementary mechanism of temporal abstraction (see Section 3.2), form the basis
that underlies the field of timing analysis.

4. The temporal and Boolean aspects of the waveform function are

separable

 in the sense that the functional
dependence on

t

 and

X

 are distinctly different [3, p. 23]. As noted earlier, when the value of

X

 is fixed

w

 becomes
a ternary function of

t

. This can be expressed formally by the mapping

(3.2)

which assigns a ternary function of time to each element and allows us to “separate” the arguments of

w

 by expressing it as . In this form, the notation is interpreted to mean a function of time that
assigns to each element in

�

 a unique element from
�

. Alternatively, fixing the value of

t

makes

w

 a partially
specified Boolean function of

X

. Formally, this is expressed by the alternate mapping:

(3.3)

which assigns a Boolean function interval to each element and allows us to express the waveform
function as . The notation in this case is interpreted to mean a function interval in the space of
Boolean functions of

X

. We will mostly use this second form and refer to

w

 as an

n

-variable logic waveform

1

where

n

 is the size of the Boolean vector

X

. In addition, for the sake of brevity, we may on occasion drop

w

’s
explicit dependence on either

t

 or

X

 or both; in such cases it must be assumed that this dependence is implied.

1. Strictly speaking,

w

 is an -variable function. However, since

t

 is a common argument to all logic waveforms, it is con-
venient to characterize specific waveforms by the number of their Boolean variables.

0 1

,[]

0 1

,{ }

Figure 3-2: Options for waveform value at the transition instant

t

i

t

i

t

i

t

i

t

i

(a)

w

t

i

()

0�

(b)

w

t

i

()

1�

(c)

w

t

i

()

(d)

w

t

i

()

0 1

,[]

U� �

is undefined

t

i

0

U

1

(neither 0 nor 1) (either 0 or 1)

w

:
�

n � �

→()→

X
�

n�

w

X

()

t

()

w

X

()

w

:
� �

n �

→()→

t
��

w

t

()

X

()

w

t

()

n

1
�

()

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 7

3.1 Logic Waveform Specifi cation

A logic waveform can be represented in many different ways. A particularly convenient representation is to

specify it in terms of a two-tuple whose components are defined as follows (see Figure 3-3):

• A finite ordered set of

k

distinct time instants referred to as the

time

grid

 or

time base

 of

w

; the elements of are referred to as

grid points

. induces a partition of the time axis

(3.4)

that consists of finite open time intervals and

k

 time instants. We will find it convenient for later manipulations

to augment with two artificial grid points defined as and .

• A corresponding set of partially specified Boolean functions. The

i

th such function is the

value

 of

w

 over the interval . We will refer to and

 as the

initial

 and

final

 values of .

As suggested by Figure 3-2, a transition instant is best modeled by including it in both the preceding and succeeding time

intervals. Generalizing, we define the value of at grid point as the interval union of

w

’s value over the intervals

and . Specifically:

(3.5)

A waveform will be called

completely specified

 if the Boolean functions in are completely specified; if one

or more of these functions is partially specified, will be referred to as a

partially specified

 waveform. When necessary, we

will write to indicate that

w

 is defined in terms of a particular time grid and an associated value set .

Stability , Functional Uncer tainty , and Temporal Uncer tainty

The notion of stability is fundamental to our under-

standing of the dynamic behavior of logic waveforms. As mentioned earlier, at any given time instant a completely specified

waveform is either stable or changing for any given combination of the Boolean vector . On the other hand, when the wave-

form is partially specified, i.e. when the waveform has some

functional uncertainty

, its temporal behavior may become ambig-

uous.

Let us associate with a waveform a ternary function , called its

stability predicate

. This predicate evaluates

to 1 at a given time instant if it is certain that the waveform cannot have a transition at that instant under any combination of the

Boolean vector

X

. The predicate evaluates to 0 if it is certain that there is at least one combination of the Boolean vector

X

 that

causes a transition to occur at that instant. It evaluates to

U

 if we are uncertain about whether transitions are possible at that

time. Stated another way, means is always stable at

t

; means will experience one or more tran-

t

0

t

1

t

2

t

i

1�

t

i

t

k

2�

t

k

1�

w

0

X

()

w

1

X

()

w

2

X

()

w

i

X

()

w

k

1�

X

()

w

k

X

()

Figure 3-3: Schematic Representation of the Logic Waveform

w

t

()

X

()

t

k �

t

1� ��

w

t

()

X

()

T

w

V

w

,()

T

w

T

w

t

i
��

t

0

t

1

…

t

k

1�� � �

{ }�

T

w

T

w

��

t

0

,()

t

0

t

0

,[]

t

0

t

1

,()

t

1

t

1

,[] …

t

k

2�

t

k

1�

,()

t

k

1�

t

k

1�

,[]

t

k

1� �

,(), , , , ,, ,{ }

k

1�

T

w

t

1� ��

t

k �

V

w

w

0

X

()

w

1

X

() …

w

k

X

(), , ,{ }�

k

1�

w

i

X

()

:
�

n �

→

t

i

1�

t

i

,()

w

0

X

()

w

k

X

()

w

w

t

i

t

i

1�

t

i

,()

t

i

t

i

1
�

,()

w

t

i

()

X

()

w

i

X

()

w

i

1
�

X

()◊

0

i k

1�� �

w

k

1�

V

w

w

w

T

w

V

w

,()�

T

w

V

w

X

w �

w

t

()

S
�

�

w

t

()

1�

w �

w

t

()

0�

w

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 8

sitions at

t

; and means we cannot tell whether will or won’t have transitions at

t

. We refer to this last condition

as

temporal uncertainty

.

Consider now a completely specified waveform . Clearly, within the time intervals defined

by . On the other hand, , where is a grid point, may be either 0 or 1. A grid point at which is

redun-

dant

 since it does not correspond to an actual signal transition.

Consider next a partially specified waveform . At the grid points, we must assume that transitions can

occur even if the partially specified functions over the adjoining intervals are identical. To understand this it is best to recall the

interpretation of partially specified Boolean functions as

sets

 of completely specified Boolean functions. If the two sets and

 are disjoint, then we can state with certainty that will change at ; thus . If the two sets are not disjoint,

we must conclude that it is possible for to change as well as not to change; thus . Thus the presence of uncer-

tainty in and/or causes to be uncertain (except when the sets are disjoint.) In any case, . Within

partially specified intervals, we have two cases. We either know that the waveform is stable, i.e. , or we don’t know

for sure that it is stable, i.e. . In any case, at an internal point since that would imply that we have cer-

tain knowledge that will change at that time.

The preceding discussion suggests that a plausible definition of the stability predicate might be as follows:

(3.6)

This definition yields the expected results when is a completely specified waveform. For partially specified waveforms, the

definition always yields 0 for those time instants at which is partially specified. Thus, it fails to make the distinction

noted above between intervals over which the waveform value is uncertain but it is known to be stable and those intervals over

which both the waveform value and stability are uncertain.

In summary, we note that functional certainty implies temporal certainty but that the converse is not true. Thus, the stabil-

ity predicate must be made part of the waveform specification for partially specified waveforms. In those cases, we will indi-

cate a waveform by a three-tuple . Figure 3-4 illustrates the three types of waveform intervals that result

from the interaction of functional and temporal uncertainty.

t

i

1�

t

i

Figure 3-4: The three types of waveform intervals

t

i

1�

t

i

t

i

1�

t

i

Completely Specified Stable
(and Stable) (but Partially Specified) Changing

w

i

X

()

w

i

X

()�

�

w

t

()

t t

i

1!

t

i

,()�

w

i

X

()

w

i

X

()�

∧

�

w

t

()

t t

i

1!

t

i

,()�

w

i

X

()

w

i

X

()�

∧

�

w

t

()

U�

()

t t

i

1!

t

i

,()�

�

w

t

()

U�

w

w

T

w

V

w

,()� �

w

t

()

1�

T

w �

w

t

i

()

t

i �

w

t

i

()

1�

w

T

w

V

w

,()�

w

i

w

i

1
�

w

t

i �

w

t

i

()

0�

w �

w

t

i

()

U�

w

i

w

i

1
� �

w

t

i

() �

w

t

i

()

1
�

�

w

t

()

1�
�

w

t

()

U� �

w

t

()

0
�

w

�

w

t

()

X
"

w

t

()

X

()

w

t

()

X

()
#

()$

w

w

t

()

w

T

w

V

w �

w

, ,()�

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 9

Alg ebraic Representation

The functional dependence of waveform on its arguments

t

 and

X

 can be

expressed in a variety of ways. A particularly useful algebraic form for

w

 is the standard

sum-of-intervals

 (SOI) expression

given by:

(3.7)

This expression can be viewed as an expansion of

w

 using the partition of the time axis given by (3.4) as a basis. The expansion

has disjoint terms corresponding to the intervals and

k

 grid points. Each such term is the conjunction of an

interval or grid point selector (a predicate on

t

) and a corresponding waveform value (a partially specified Boolean function of

X

.) Since waveform values at the grid points are completely determined by their values over the adjoining intervals, it is often

sufficient in algebraic manipulations to express a waveform just by the first OR sum in (3.7). In such cases, it is to be under-

stood that the unspecified waveform values at the grid points can be obtained by applying (3.5).

3.2 Temporal Operations on Logic Waveforms

The time grid used to specify a logic waveform

w

 is not unique. We examine in this section the effect of changing the time

grid on the value and stability of the waveform.

Refinement

Consider a waveform , and let be another time grid such that . In other

words, is obtained from by adding more grid points. The effect of adding a grid point such that is

to

split

 the interval

 into two subintervals and . Clearly, such a split can neither affect the value

nor the stability of at any instant within .

Abstraction

Consider a waveform , and let be another time grid such that . In other

words, is obtained from by removing one or more grid points. Removal of the grid point from causes the inter-

vals and to

merge

into a single interval . This merger causes the value and stability of

w

 for

 to change according to the following rules:

(3.8)

In other words, unless the waveform was stable at merging the two intervals adjoining at causes the value of

w

 at to

“spread” to all time instants within the merged interval and its stability to become uncertain. In general, temporal abstraction

increases the uncertainty in both the functional and temporal aspects of the waveform. The only exception is when

 before the merger indicating that the grid point does not correspond to an actual transition instant. Obviously,

removal of such a “redundant” grid point has no effect on the value or stability of the waveform (see discussion of minimal

waveforms below.)

%'&)(+*-,/. 02143 5

An example of temporal abstraction is shown in Figure 3-5. Removal of the grid points at and

from the time grid of the completely specified waveform

w

 leads to the creation of two merged intervals and results in a new

abstracted waveform . Prior to the mergers, the value and stability predicate of

w

 at these two grid points were:

w

T

w

V

w �

w

, ,()�

w

t

()

X

()

t

i

1�

t t

i
� �

()

w

i

X

()∧

0

i k
676

 
 
 

t t

i
�

()

w

i

X

()

w

i

1
�

X

()◊()∧

0

i k

1�676

 
 
 

∨�

2

k

1�

k

1�

w

T

w

V

w �

w

, ,()�

T �

w

T

w

T �

w
8

T �

w

T

w

t

*

t

i

1�

t

*

t

i
� �

t

i

1�

t

i

,()

t

i

1�

t

*

,()

t

*

t

i

,()

w

t

i

1�

t

i

,()

w

T

w

V

w �

w

, ,()�

T �

w

T �

w

T

w
8

T �

w

T

w

t

i

T

w

t

i

1�

t

i

,()

t

i

t

i

1
�

,()

t

i

1�

t

i

1
�

,()

t t

i

1�

t

i

1
�

,()�

w

t

()

X

()

w

t

i

()

X

()�
�

w

t

()

1 if �

w

t

i

()

1�

U

if �

w

t

i

()

1
�

î

�

t

i

t

i

t

i

�

w

t

i

()

1�

t

i

t

5�

t

11�

w

˜

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 10

Thus, the abstraction of causes to be partially specified and changing over the merged interval . In contrast,

the abstraction of has no effect since

w

 is always stable at that time. Note that the removal of the grid point at

represents an irreversible loss of information; starting from it is not possible to recover the original waveform

w

 by merely

adding back the grid point at .
�

Minimal Waveforms

A grid point whose temporal abstraction does not change the value or the stability of the waveform is

redundant

 and can be removed to yield a more compact representation of the waveform. A waveform is minimal if it is based

on a minimal time grid, i.e. a grid that does not have any redundant grid points.

For a completely specified waveform, a grid point is redundant if its stability predicate is 1. A completely specified wave-

form is therefore minimal if the stability predicate is 0 at all grid points. Any given completely specified waveform can be min-

imized by temporally abstracting all grid points at which the stability predicate is 1.

For partially specified waveforms, a grid point is redundant if the two time intervals adjoining it are changing intervals

whose partially specified Boolean functions are equal. Specifically, the grid point is redundant if and

are changing intervals such that .

3.3 Logical Operations on Waveforms

The complement of a waveform is simply obtained by complementing each of the components in its value set . Let

 and be arbitrary waveforms and let

f

 be a binary operator defined over partially specified Boolean functions. The applica-

tion of

f

 to and yields another waveform that can be obtained by the following procedure:

Figure 3-5: Temporal abstraction (see Example 3.1)

x

1

x

1

x

2

x

1

w

t

()

x

1

x

2

,()

t

0�

t

5�

t

9�

x

1

x

2

w

˜

t

()

x

1

x

2

,()

t

0�

t

9�

0

x

1

x

2

∨,[]

R
em

ov
e

x

2

x

2

t

11�

R
em

ov
e

w

5

()

x

1

x

2

,()

x

1

x

2

()

x

1

()◊

0

x

1

x

2

∨,[]� �
�

w

5

()

x

1
"

x

2
"

x

1

x

2

()

x

1
#

()$ $

x

1
"

x

2
"

x

1

x

2

()$$

0� � �

w

11

()

x

1

x

2

,()

x

2

()

x

2

()◊

x

2

x

2

,[]

x

2
� � �

�

w

11

()

x

1
"

x

2
"

x

2

x

2
#

()$$

x

1
"

x

2
"

1

()$$

1� � �

t

5�

w

˜

0 9

,()

t

11�

t

5�

w

˜

t

5�

t

i

t

i

1�

t

i

,()

t

i

t

i

1
�

,()

w

i

X

()

w

i

1
�

X

()�

w

V

w

w

y

w

y

z

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 11

Re-express and in terms of the common time grid .

• Apply

f

 to the transformed waveforms interval-by-interval. Note that this may cause the stability predicate at

certain grid points to change from 0 to 1 (e.g. a 0 on one input of an AND can eliminate a possible transition on

another input).

• Minimize the resulting waveform by temporally abstracting redundant grid points.

4 Time Deriv atives of Completel y Specifi ed Waveforms

To analyze the dynamics of logic gate circuits we propose the use of derivative operators that are similar in spirit to the

derivative operator

D

 of the calculus of real numbers. The time derivatives of a symbolic logic waveform are them-

selves symbolic logic waveforms that capture the conditions, both temporal and logical, under which might be stable or

changing. The derivatives allow the derivation of differentiation formulas for arbitrary Boolean combinations of waveforms;

these formulas are used, in Section 5, as the basis for linking the functional and temporal aspects of combinational circuits. In

addition, we show how a waveform’s first and last event times are related to its derivatives. Due to space limitations, the dis-

cussion in this section is restricted to completely specified waveforms.

4.1 Basic Deriv atives

The four time derivatives of with respect to are termed its

rising derivative

 , its

falling derivative

, its

high derivative

 , and its

low derivative

 , and are defined by the following equations:

(4.1)

Substituting the definition of from (3.7) yields the following derivative expressions:

(4.2)

w

y

T

wy

T

w

T

y
��

w

t

()

X

()

w

w

t

()

X

()

t

R

w

t

()

X

()

F

w

t

()

X

()

H

w

t

()

X

()

L

w

t

()

X

()

R

w

t

()

X

()

w

t 9�

()

X

()

w

t 9�

()

X

()∧[]:

0

→

lim

F

w

t

()

X

()

w

t 9�

()

X

()

w

t 9�

()

X

()∧[]:

0

→

lim

H

w

t

()

X

()

w

t 9�

()

X

()

w

t 9�

()

X

()∧[]:

0

→

lim

L

w

t

()

X

()

w

t 9�

()

X

()

w

t 9�

()

X

()∧[]:

0

→

lim

w

R

w

t

()

X

()

t t

i
�

()

w

i

X

()

w

i

1
�

X

()∧[]∧

0

i k

1�6;6�

F

w

t

()

X

()

t t

i
�

()

w

i

X

()

w

i

1
�

X

()∧[]∧

0

i k

1�6;6�

H

w

t

()

X

()

w

t

()

X

()

t t

i
�

()

w

i

X

()

w

i

1
�

X

()∧[]∧

0

i k

1�676

 
 
 

∨�

L

w

t

()

X

()

w

t

()

X

()

t t

i
�

()

w

i

X

()

w

i

1
�

X

()∧[]∧

0

i k

1�676

 
 
 

∨�

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 12

Note that and can be nonzero only at the grid points used to specify . We say that a

rising event

occurs at

if . Similarly, a

falling event

 is said to occur at if . An example

showing the application of the derivative formulas in (4.2) is shown in Figure 4-1.

It is worth noting that at any given time instant, the four time derivatives of a waveform form an orthonormal set. In

addition, the derivatives at two consecutive grid points and are related by causality constraints; for example,

 and since a waveform cannot rise or be low at if it was rising at and

remained stable until .

4.2 Other Deriv atives

If we are interested in just knowing whether a completely specified waveform is stable or changing at a particular time

instant, it is useful to introduce two additional derivatives: , the

changing derivative

of

w

 with respect to

t

;

and

, the

stable derivative

of

w

 with respect to

t

. They are defined as follows:

2

(4.3)

The rising, falling, and changing derivatives can be evaluated over any subset of the time axis by simply ORing their val-

ues at all time instants in the given subset. Let . Then,

2. For completely specified waveforms, orthonormality allows us to equivalently express the stable derivative as

. The more general definition in (4.3) is still required for partially specified waveforms, though.

R

w

F

w

w

t t

i
�

()

w

i

X

()

w

∧

i

1
�

X

()

1�

t t

i
�

()

w

i

X

()

w

∧

i

1
�

X

()

1�

Figure 4-1: Example waveform and its rising and falling derivatives

x

1

x

2

0 0

1

0

11

1

0

x

1

x

2

∨

t

= 0

t

= 2

t

= 5

x

1

x

2

∧

x

1

x

2

x

1

x

2

∨

Symbolic

R

w

t

()

x

1

x

2

,()

t

2�

()

x

1

x

2

∧()

t

5�

()

x

1

x

2
#

()∨�

F

w

t

()

x

1

x

2

,()

t

0�

()

x

1

()

t

5�

()

x

1

x

2

∧()∨�

w

t

()

x

1

x

2

,() ��

t

0
� �

()

x

1

x

2

∨()

0

t

2
� �

()

x

1

x

2

∧()∨ ∨�

2

t

5
� �

()

x

1

x

2

()

5

t �� �

()

x

1

x

2

∨()∨

w

t

i

t

i

1
�

R

w

t

i

()

R

w

t

i

1
�

()

0�

R

w

t

i

()

L

w

t

i

1
�

()

0�

t

i

1
�

t

i

t

i

1
�

C

w

t

()

X

()

S

w

t

()

X

()

S

w

H

w

L

w

∨<

C

w

R

w

F

w

∨

S

w

C

w

R

w

F

w

∧�
= ��

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 13

(4.4)

These definitions are consistent with the intuitive notion that a waveform should be considered rising, falling, or changing over

a given set of time points if it rises, falls, or changes, at one or more of these time points. In contrast, the high, low, and stable

derivatives are extended to sets of time points by ANDing their values at all time points:

(4.5)

Thus, a waveform is considered to be high (low) over a given set of time points if and only if it is high (low) at each time point

in the set. It is considered to be stable over the given set of time points if it is guaranteed that it neither rises nor falls at any

time point in the set.

4.3 First and Last Event Times

The times at which the first and last event of a waveform occur are frequently needed. Indeed, it is fair to say that the

field of timing analysis is primarily concerned with the determination of these event times under a variety of simplifying

approximations. In this section we derive formulas for these two quantities that show them to be conditional numbers whose

conditions are related to a waveform’s derivatives.

Let’s consider the time at which the last event of

w

occurs. We begin by noting that this quantity is going to be a condi-

tional number. Its possible values come from the time grid used to specify

w

. Each grid point is a candidate value for the

time of the last event if

w

 changes at and is guaranteed to remain stable after . This requirement is easily expressed by:

(4.6)

Denoting the time of the last event of

w

 by , it can be succinctly expressed as follows:

(4.7)

where . Recalling that , the above expression allows for the possibility of a waveform that has no

events (i.e., that is stable for all points on the time axis) by assigning as the time of the last event (the event that never took

place!)

Similar reasoning yields the following expression for , the time of the first event

3

 of

w

:

R

w
=

()

X

()

R

w

t

()

X

()

t >�

F

w
=

()

X

()

F

w

t

()

X

()

t >�

C

w
=

()

X

()

C

w

t

()

X

()

t >�

R

w
=

()

X

()

F

w
=

()

X

()∨�

H

w
=

()

X

()

H

w

t

()

X

()

t >�

L

w
=

()

X

()

L

w

t

()

X

()

t >�

S

w
=

()

X

()

S

w

t

()

X

()

t >�

R

w
=

()

X

()[] �

F

w
=

()

X

()[] �

∧�

w

T

w

t

i

t

i

t

i

C

w

t

i

()

S

w

t

i �

,()()∧

A

w

A

w

C

w

t

i

()

S

w

t

i �

,()()∧()

t

i

〈 〉

1�

i k

1�6;6
��

C

w ��

()

1

t

1� ���
��

a

w

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 14

(4.8)

In this case, the time of the first event is set to when the waveform is stable at all time points (the event that will never

occur!)

%'&)(+*-,/. 02?43 5

Using (4.9) and (4.8), the first and last events of the waveform in Figure 4-1 can be calculated as follows:

(4.9)

(4.10)

The correctness of these results is easily validated by inspection of the waveforms in Figure 4-1.
�

4.4 Diff erentiation Form ulas

The time derivatives of any Boolean function of logic waveforms are easily found by direct, if somewhat tedious, applica-

tion of the definitions in (4.1). The derivative sets for a sampling of one- and two-variable functions are given in Table 4-1. Not

surprisingly, these derivative formulas have simple intuitive explanations. For example, the rising derivative of indicates

that rises at some time

t

if either input is rising at that time while the other input is either rising or is high. There are some

3. The “a” in and stands for the “arrival” time of the corresponding event.

A

w

a

w

a

w

S

w ��

t

i

,()()

C

w

t

i

()∧()

t

i

〈 〉

0

i k
676
��

�

a

w

0 if

S

w ��

0

,()()

C

w

0

()∧

2 if

S

w ��

2

,()()

C

w

2

()∧

5 if

S

w ��

5

,()()

C

w

5

()∧�

if

S

w �� �

,()()()î







x

1

0

〈 〉

x

1

5

〈 〉

� �

A

w

5 if

C

w

5

()

S

w

5 �

,()()∧

2 if

C

w

2

()

S

w

2 �

,()()∧

0 if

C

w

0

()

S

w

0 �

,()()∧��

if

S

w �� �

,()()î







x

1

x

2

∨()

5

〈 〉

x

1

x

2

∧()

2

〈 〉

� �

Table 4-1: Diff erentiation Form ulas

z

*

t

()

X

()

f

w

t

()

X

()

y

t

()

X

(),()�

z

*

R

z

*

F

z

*

H

z

*

L

z

*

w

F

w

R

w

L

w

H

w

wy

R

w

R

y

R

w

H

y

H

w

R

y

∨ ∨

F

w

F

y

F

w

H

y

H

w

F

y

∨ ∨

H

w

H

y

L

w

L

y

R

w

F

y

F

w

R

y

∨ ∨ ∨

w y

∨

R

w

R

y

R

w

L

y

L

w

R

y

∨ ∨

F

w

F

y

F

w

L

y

L

w

F

y

∨ ∨

H

w

H

y

R

w

F

y

F

w

R

y

∨ ∨ ∨

L

w

L

y

w y

L

w

R

y

F

w

H

y

∨ ∨

H

w

F

y

R

w

L

y

∨

L

w

F

y

F

w

L

y

∨ ∨

H

w

R

y

R

w

H

y

∨

L

w

H

y

H

w

L

y

∨ ∨

F

w

R

y

R

w

F

y

∨

L

w

L

y

H

w

H

y

∨ ∨

F

w

F

y

R

w

R

y

∨

wy

wy

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 15

subtleties, however. Specifically, note that the low derivative of consists of four disjoint terms indicating that a sufficient

condition for to be low is that either input is low or that the two inputs are undergoing opposite transitions. However, it

should be clear that the appearance of rising and falling derivatives in an expression for a low or high derivative is an indication

of a static hazard that might result in a glitch. When necessary, we will indicate these glitch-inducing derivatives with a tilde

under the appropriate derivative operator. Thus, for the AND function we would write:

Another subtlety is that these derivatives pertain to the instantaneous (delayless) waveform resulting from application of

the Boolean function . In other words, these derivatives are for ; they indicate the condi-

tions on the input waveforms at time

t

 that would cause the instantaneous output waveform to rise, fall, remain high, or remain

low. What happens to the actual waveform is discussed next.

5 Signal Dela y

The link between the functional and temporal aspects of logic gate models can be inferred by noting that a change indica-

tion for the instantaneous output waveform at time

t

 implies corresponding changes on the real output waveform after

some

propagation time

 . The relation between the four possible change indications on and the changes they imply on

is illustrated in Figure 5-1. Note that, in addition to and , the glitch-inducing derivatives and

wy

wy

L

˜

wy

()

R

w

F

y

F

w

R

y

∨�

L

wy

()⇒

L

w

L

y

L

˜

wy

()∨ ∨�

f

z

*

t

()

X

()

f

w

t

()

X

()

y

t

()

X

(),()�

Figure 5-1: The link between time derivatives and signal delay. is the ideal instantaneous out-
put waveform; is the actual output waveform.

z

*

z

y

1

y

m

z

Comb

Logic

t t

P�

R

z

*

t

()

F

z

*

t

()

R

z

t t

P�

()

F

z

t t

P�

()∧

F

z

t t

P�

()

R

z

t t

P�

()∧

R

z

t t

P�

()

R

z

t t

P�

()∧

F

z

t t

P�

()

F

z

t t

P�

()∧

L

˜

z

*

t

()

H

˜

z

*

t

()

t t t

P�

z

*

t

()

z

t

()

z

*

t

()

z

t

()

z

*

t

()

z

t

()

z

*

t

()

z

t

()

t

P

t

P

z

*

z

t

P

z

*

z

R

z

*

t

()

F

z

*

t

()

L

˜

z

*

t

()

H

˜

z

*

t

()

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 16

must be considered as change indicators. In making this link between the functional (given by the derivatives) and temporal

(given by the propagation times) components of a gate model, it is important to emphasize that no assumptions were made

about the implementation of the gate function . Thus, different implementations could yield markedly different propagation

times. More to the point, perhaps, is the fact that all we can say when, for example, a rise indication exists for at time

t

, is

that the real output will

eventually

rise. It may, depending on implementation, have a single rising event or a sequence of rising

and falling transitions that end in a final rising event. To accommodate these variations, the propagation time is best consid-

ered as a range that bounds the changing interval on ; the lower and upper bounds of this range will be denoted by and

. It is important to note that the range in propagation time introduced here is meant to model the possible existence of

several structural propagation paths within the logic gate and not any statistical effects caused by random variations in process-

ing or operating conditions. Indeed, the special case of a degenerate range (i.e.) may be used to differentiate

between structurally

primitive

and

complex

components. In the remainder of this section we will assume that is a degener-

ate range (a single point) in order to keep the waveforms completely specified.

5.1 Delay Specifi cation

Having established the link between waveform derivatives and propagation times, we can now label each of these times
based on the logical conditions that cause its manifestation. To illustrate, consider a 2-input AND gate with inputs , and

output . Consulting the derivative formulas in Table 4-1 we can identify six potential propagation times from the inputs of the

gate to its output corresponding to the six different rise and fall indications on the instantaneous output . A possible sys-

tematic labeling of these six propagation times, thus, is

4

 .

Denoting the signal propagation delay to at time

t

 by , it can now be expressed as a conditional number

whose conditions are the relevant derivative combinations and whose values are the corresponding propagation times:

(5.1)

Note that the delay is set to zero when none of the change-inducing conditions apply; this merely states the fact that if no

events occur on the inputs to the gate, then there is nothing to delay! Note also that the delays from each of the inputs to the

output can be “extracted” from the above composite delay equation by selecting only those conditions that involve a change in

that particular input. Thus, the delays from and to are immediately seen to be:

(5.2)

4. This notation is meant to resemble the traditional notation for specifying delay parameters in databooks. The “

t

” stands for
time, the “

P

” for propagation (thus, propagation time.) The remaining subscripts denote the input events assuming a particular
input ordering. The superscript indicates the waveform (gate label) to which the delay parameter applies and the type of event
involved.

f

z

*

t

P

z

t

P

t

P

t

P

t

P
�

t

P

y

1

y

2

z

z

z

*

t

PRH
R

z

t

PHR
R

z

t

PRR
R

z

t

PFH
F

z

t

PHF
F

z

t

PFF
F

z

, , , , ,

z
�

*

z

t

()

X

()

�

*

z

t

()

X

()

Ry

1

Hy

2

t

PRH
R

z

〈 〉

Hy

1

Ry

2

t

PHR
R

z

〈 〉

Ry

1

Ry

2

t

PRR
R

z

〈 〉

�

Fy

1

Hy

2

t

PFH
F

z

〈 〉

Hy

1

Fy

2

t

PHF
F

z

〈 〉

Fy

1

Fy

2

t

PFF
F

z

〈 〉

Ry

1

Hy

2

Hy

1

Ry

2

Ry

1

Ry

2

Fy

1

Hy

2

Hy

1

Fy

2

Fy

1

Fy

2

∨ ∨ ∨ ∨ ∨() �

0

〈 〉

y

1

y

2

z

�

y

1

z

t

()

X

()

Ry

1

Hy

2

t

PRH
R

z

〈 〉

Ry

1

Ry

2

t

PRR
R

z

〈 〉

Fy

1

Hy

2

t

PFH
F

z

〈 〉

Fy

1

Fy

2

t

PFF
F

z

〈 〉

�

Ry

1

Hy

2

Ry

1

Ry

2

Fy

1

Hy

2

Fy

1

Fy

2

∨ ∨ ∨() �

0

〈 〉�

y

2

z

t

()

X

()

Hy

1

Ry

2

t

PHR
R

z

〈 〉

Ry

1

Ry

2

t

PRR
R

z

〈 〉

Hy

1

Fy

2

t

PHF
F

z

〈 〉

Fy

1

Fy

2

t

PFF
F

z

〈 〉

�

Hy

1

Ry

2

Ry

1

Ry

2

Hy

1

Fy

2

Fy

1

Fy

2

∨ ∨ ∨() �

0

〈 〉

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 17

5.2 Delay Application

The preceding development clearly shows the conditional nature of logic gate delay and highlights its relationship to the

Boolean function of the gate. To complete our evolving dynamic logic gate model, we must lastly examine how such condi-

tional delays affect the propagation of symbolic logic waveforms. Consider a generic waveform as defined in (3.7)

and let where are conditional numbers (this is the form that results from

substituting the expressions for the time derivatives in (5.1)). The waveform that results from delaying by is

evaluated according to:

(5.3)

where the addition and relational operations are carried out using the conditional arithmetic rules of Section 2.1. Several points

are worth noting about this delay operation:

• Let’s assume for a moment that the ’s are unconditional numbers, i.e. they are independent of

X

. In that case,

(5.4) indicates that the delay operation transforms the original grid to a new grid

. In addition, if the delay values are equal (uniform delay), then the grid

is merely shifted by the delay amount. If, however, the delay values are not equal, the spacing of the new grid

will be different from the original grid. Thus, some intervals might shrink while others might expand, and as a

result the new intervals may overlap. The value of the delayed waveform in these overlap regions is the logical

OR of the respective ’s.

• In extreme cases, intervals might shrink to zero or negative width. Their contribution to the value of the delayed

waveform in such cases reduces to zero because the temporal predicate becomes

0. In some sense, this is a form of inertial filtering with a minimum pulse width of 0 and it is taken care of

automatically. This also suggests a possible approach to general inertial delay modeling. Suppose that there is a

minimum pulse width that must be satisfied by all signals. The delay operation defined in (5.4) can

be extended to handle this case as follows:

(5.4)

The additional predicate eliminates the contribution of to the value of the delayed waveform if the transformed

interval is narrower than the specified minimum pulse width.

• When the ’s are allowed to be conditional numbers (functions of

X

), the above observations still hold. The

transformation to the time grid, however, is more involved. Each original grid point now generates several new

grid points depending on how many delay values and associated conditions are associated with that grid point.

The conditional arithmetic machinery takes care of this automatically.

5.3 Complete Integrated Functional and Temporal Gate Model

If the functional dependence of

z

 on is given by the Boolean function , then the complete waveform at

z

 is

calculated from:

w

t

()

X

()�

t

()

X

()

t t

i
�

()
�

i

X

()〈 〉

0

i k

1�676� �

i

X

()

w

t

()

X

()
�

t

()

X

()

w

t
�

t

()

X

()�

()

X

()

t

i

1� �

i

1�

X

()�

t t

i
�

i

X

()�� �

()

w

i

X

()∧

0

i k

1�676

�

i

t

0

t

1

…

t

k

1�

, , ,{ }

t

0
�

0�

t

1
�

1�

…

t

k

1� �

k

1��

, , ,{ }

w

i

t

i

1� �

i

1��

t t

i
�

i�� �

()

t

MPW

0
�

w

t
�

t

()�

()

t

i

1� �

i

1�

t

MPW� �

t

i
�

i��

()

t

i

1� �

i

1��

t t

i
�

i�� �

()∧

0

i k

1�676

w

i

∧�

w

i

�

i

y

1

y

2

…

y

m

, , ,

f

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 18

(5.5)

This equation may imply a front-end delay model. It can be written in an equivalent form, however, that looks like a back-end

delay model:

(5.6)

Thus, as long as we treat delay properly, we get the right answer in one of two ways: 1) apply the static logic function to the

inputs, then delay the result by ; 2) delay each of the inputs by the portion of that pertains to it, then apply the static

logic function to the result. This is an interesting conclusion and suggests that the traditional dichotomy between front- and

back-end delay models is an artifact of how delay was postulated. It is clear from the above analysis that there is no difference

between these two styles of modeling logic delay as long as they derive from a consistent causal definition of delay.

6 Conc lusions and Future Work

In this paper we have sketched the outlines of a proposed framework for the dynamic modeling of logic gate circuits. The

thesis underlying this framework is that functional and temporal properties are inherently related. By contrast, most existing

logic gate models treat these two facets independently and somewhat inconsistently. The unification provided by our frame-

work is not merely aesthetic; it allows us to explore at a fundamental level the nature of logic delay and forms the basis for

more rigorous timing analysis models than are currently available. Specifically, through a systematic functional and temporal

abstraction procedure we can derive early and late signal arrival time equations that mirror in their form the topological equa-

tions at the core of the shortest and longest critical path method (CPM). To illustrate, consider an

m

-input single-output gate in

a combinational circuit. Denoting the late topological arrival times at the inputs and outputs of the gate by and

, and the (unconditional) delays from each of these inputs to the output by , the basic computation in CPM

is given by the equation:

(6.1)

The corresponding equation when the arrival times and signal delays are conditional numbers that are functions of an indepen-

dent Boolean vector

X

 is then simply:

(6.2)

where the rules of conditional arithmetic apply. The significance of the above equation lies in its universal applicability to any

logic function augmented with the most comprehensive delay model proposed to date. It clearly supersedes the plethora of

local sensitization criteria

 that have been proposed in the last decade to deal with the timing analysis problem and rationalizes

a field that has so far been treated by ad hoc methods.

Space limitations have precluded discussion of several related topics including the modeling of such analog effects as sig-

nal slope and the near-simultaneous switching of inputs. We also hinted at but did not fully develop the model of partially spec-

ified waveforms. We plan to describe these ideas in future publications.

References

[1] F. M. Brown,

Boolean Reasoning

. ed. J. Allen. 1990, Kluwer Academic Publishers.

z

t

()

f

y

1

t
�

y

1

z

t

()�

()

y

2

t
�

y

2

z

t

()�

() …

y

,

m

t
�

y

m

z

t

()�

(),,()�

z

t

()

f

y

1

y

2

…

y

,

m

,()

t
�

*

z

t

()�

()

z

*

t
�

*

z

t

()�

()� �

�

*

z
�

*

z

A

y

1

…

A

y

m

, ,

A

z
�

y

1

z

…
�

y

m

z

, ,

A

z

A

y

i

�

y

i

z�

[]

1

i m
� �

max�

A

z

X

()

A

y

i

X

()
�

y

i

z

A

y

i

()

X

()�

[]

1

i m
� �

max�

f

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 19

[2] C. T. Gray, W. Liu and R. K. Cavin III, “Exact Timing Analysis Considering Data Dependent Delays,” Technical Report NCSU-VLSI-
92-04, North Carolina State University, December 1992.

[3] W. K.-C. Lam,

Algebraic Methods for Timing Analysis and Testing in High Performance Designs

, Ph.D. Thesis, University of Califor-
nia, Berkeley, 1994.

[4] S.-Z. Sun, D. H. C. Du and H.-C. Chen, “Efficient Timing Analysis for CMOS Circuits Considering Data Dependent Delays,” in

Proc.
IEEE International Conference on Computer Design (ICCD)

, pp. 156-159, October 1994, Cambridge, Massachusetts.

Application of Conditional Dela y to Symbolic Logic Waveforms
(

A Correction to Section 5.2 of CSE-TR-253-95

)

7

In some cases, equation (5.3) on page 16 yields incorrect waveforms. It should be replaced with the following corrected

version:

(7.1)

where the conditional delay that is applied at grid point is a function of the actual conditional delay at as

well as the conditional delays at all preceding grid points. Let denote the

propagation condition

 associated with the

conditional delay . Thus, is the union (OR) of all the conditions under which the delay is nonzero. As an exam-

ple, the propagation condition for the delay of a 2-input AND gate is (see equation (5.1)):

(7.2)

The basic idea now is that the amount of delay to apply at grid point should reflect the cumulative effect of the conditional

delays at previous grid points. Thus, when the propagation condition is true, is delayed by ; when is

false, however, is delayed by :

(7.3)

This equation can be viewed as constructing a new conditional number by splicing together portions from two other condi-

tional numbers. The propagation condition and its complement are used to select the portions to be spliced. Defining the delay

at grid point to be allows this equation to be used recursively to determine

. Note that (7.3) reduces to when the delays are unconditional, i.e. when

.

%'&)(+*-,/. 02@43 5

First, compute the delayless output:

w

t
�

t

()

X

()�

()

X

()

t

i

1� �

ˆ

i

1�

X

()�

t t

i
�

ˆ

i

X

()�� �

()

w

i

X

()∧

0

i k

1�6;6

�

ˆ

i

X

()

t

i
�

i

X

()

t

iA

i

X

()�

i

X

() A

i

X

() �

*

z

A

*

z

Ry

1

Hy

2

Hy

1

Ry

2

Ry

1

Ry

2

Fy

1

Hy

2

Hy

1

Fy

2

Fy

1

Fy

2

∨ ∨ ∨ ∨ ∨�

t

iA

i

X

()

t

i
�

i

X

() A

i

X

()

t

i
�

ˆ

i

1�

X

()

�

ˆ

i

X

() A

i

X

()
�

i

X

()∧ A

i

X

()
�

ˆ

i

1�

X

()∧∨�

t

1� ��
 �

ˆ

1�

X

()
�

1�

X

()

0� ��

ˆ

0

X

()
�

ˆ

1

X

() …
�

ˆ

k

1�

X

(), , ,
�

ˆ

i

X

()
�

i

X

()�
A

i

X

()

1�

y

1

t

()

x

1

x

2

,() ��

t

0
� �

()

x

1

()

0

t �� �

()

x

2

()∨�

y

2

t

()

x

1

x

2

,() ��

t

1
� �

()

x

2

()

1

t �� �

()

x

1

()∨�

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 20

Next, compute its derivatives:

Now express gate delay in terms of these derivatives. The delay is nonzero only at two time instants:

The actual gate output is now obtained by evaluating :

where:

Thus,

Under the uniform delay assumption, leading to:

z

*

y

1

y

2

∧ ��

t

0
� �

()

x

1

x

2

()

0

t

1
� �

()

x

2

()

1

t �� �

()

x

1

x

2

()∨ ∨� �

R

z

*

t

0�

()

x

1

x

2

()�

F

z

*

t

1�

()

x

1

x

2

()�
�

*

z

t

()

�

*

z

0

()

x

1

x

2

()

t

PRH
R

z

〈 〉

x

1

x

2

∨()

0

〈 〉

�

�

*

z

1

()

x

1

x

2

()

t

PHF
F

z

〈 〉

x

1

x

2

∨()

0

〈 〉

�

z

z

*

t
�

*

z

t

()�

()

z

t

() ��

t
�

ˆ

*

z

0

()� �

()

x

1

x

2

()
�

ˆ

*

z

0

()

t

1
�

ˆ

*

z

1

()�� �

()

x

2

()

1
�

ˆ

*

z

1

()�

t �� �

()

x

1

x

2

()∨ ∨�

�

ˆ

*

z

0

()
�

*

z

0

()

x

1

x

2

()

t

PRH
R

z

〈 〉

x

1

x

2

∨()

0

〈 〉

� �

�

ˆ

*

z

1

()

x

1

x

2

()
�

*

z

1

()∧

x

1

x

2

∨()
�

ˆ

*

z

0

()∧∨�

x

1

x

2

()

t

PHF
F

z

〈 〉

x

1

x

2

()

t

PRH
R

z

〈 〉

x

2

()

0

〈 〉

�

z

t

() ��

t
�

()

x

1

x

2

()

t t

PRH
R

z�

()

x

1

x

2

∨()

t

0
�

()∨[]

x

1

x

2

() ∨�

x

1

x

2

()

t

PRH
R

z

t
�

()

x

1

x

2

∨()

0

t
�

()∨[]

x

1

x

2

()

t

1

t

PHF
F

z��

()

x

1

x

2

()

t

1

t

PRH
R

z��

()

x

2

()

t

1
�

()∨ ∨[]

x

2

() ∨

x

1

x

2

()

1

t

PHF
F

z�

t
�

()

x

1

x

2

()

1

t

PRH
R

z�

t
�

()

x

2

()

1

t
�

()∨ ∨[]

t ��

()

x

1

x

2

()
��

t

0
� �

()

x

1

x

2

() ∨�

x

1

x

2

()

t

PRH
R

z

t
�

()

x

1

x

2

()

0

t
�

()∨[]

x

1

x

2

()

t

1

t

PHF
F

z��

()

x

1

x

2

()

t

1

t

PRH
R

z��

()∨[] ∨

1

t

PRH
R

z�

t �� �

()

x

1

x

2

()
��

t

0
� �

()

x

1

x

2

() ∨�

t

PRH
R

z

t

1

t

PRH
R

z�� �

()

x

1

x

2

()

0

t

1

t

PHF
F

z�� �

()

x

1

x

2

()∨ ∨

1

t

PRH
R

z�

t �� �

()

x

1

x

2

()

t

PRH
R

z

t

PHF
F

z

3� �

z

t

() ��

t

0
� �

()

x

1

x

2

()

3

t

4
� �

()

x

1

x

2

()

0

t

4
� �

()

x

1

x

2

()

4

t �� �

()

x

1

x

2

()∨ ∨ ∨�
��

t

3
� �

()

x

1

x

2

()

3

t

4
� �

()

x

2

()

4

t �� �

()

x

1

x

2

()∨ ∨�

CSE-TR-253-95: Dynamic Modeling of Logic Gate Circuits 21

Under the rise/fall and state-dependent delay assumptions, and leading to:

Had we used the delay application formula in (5.3) we would have obtained the following erroneous output waveform (for the

uniform delay case):

The basic cause of this anomalous result is that the propagation conditions at and at are mutually exclusive and

that the latter condition incorrectly annihilated the effect of the earlier one. When the effect of the earlier condition is incorpo-

rated into the delay at , the anomaly disappears.

t

PRH
R

z

3�

t

PHF
F

z

1�

z

t

() ��

t

0
� �

()

x

1

x

2

()

3

t

4
� �

()

x

1

x

2

()

0

t

2
� �

()

x

1

x

2

()

4

t �� �

()

x

1

x

2

()∨ ∨ ∨�
��

t

2
� �

()

x

1

x

2

()

3

t �� �

()

x

1

x

2

()∨�

z

t

() ��

t
�

()

x

1

x

2

()

t

3
�

()

x

1

x

2

∨()

t

0
�

()∨[]

x

1

x

2

() ∨�

x

1

x

2

()

3

t
�

()

x

1

x

2

∨()

0

t
�

()∨[]

x

1

x

2

()

t

4
�

()

x

1

x

2

∨()

t

1
�

()∨[]

x

2

() ∨

x

1

x

2

()

4

t
�

()

x

1

x

2

∨()

1

t
�

()∨[]

t ��

()

x

1

x

2

()
��

t

0
� �

()

x

1

x

2

() ∨�

x

1

x

2

()

3

t
�

()

x

1

x

2

()

0

t
�

()∨[]

x

1

x

2

()

t

4
�

()

x

1

x

2

()

t

1
�

()∨[] ∨

1

t �� �

()

x

1

x

2

()
��

t

0
� �

()

x

1

x

2

()

0

t

4
� �

()

x

1

x

2

()

1

t �� �

()

x

1

x

2

()∨ ∨�
��

t

1
� �

()

x

1

x

2

()

1

t

4
� �

()

x

2

()

4

t �� �

()

x

1

x

2

()∨ ∨�

t

0�

t

1�

t

1�

