

CSE-TR-

Functional Abstraction and Partial Specification of Boolean Functions

Karem A. Sakallah

255-95

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122
USA

THE UNIVERSITY OF MICHIGAN

August 9, 1995

Functional Abstraction and Partial Specification of Boolean Functions

Karem A. Sakallah

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2122

August 9, 1995

Abstract

We define functional abstraction as the process of deliberately ignoring the dependence of a Boolean function on a subset of
its variables. Functional abstraction causes a completely specified function to become partially specified. We propose function
sets as a theoretical model for partially specified functions and function intervals as a practical approximation to them. We
develop an interval Boolean algebra suitable for the symbolic manipulation of function intervals and highlight the relationship
between functional abstraction and universal and existential quantification.

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 1

Notational Con ventions and Glossar y of Symbols

We will generally use lower-case symbols to denote scalar quantities and upper-case symbols to denote aggregates (vec-

tors and sets.) Calligraphic type will denote the carriers (universal sets) of algebraic structures. Unless explicitly stated other-

wise, when we speak of Boolean variables and functions we mean variables and functions in the 2-element Boolean

(switching) algebra. Thus, refer to switching variables, denote switching functions,

 represents a vector of switching variables, and denote sets of switching functions.

Notation Meaning Example

�

2-element Boolean algebra —

�

Set of intervals on �

; .
When clear from context, these three intervals may be
relabeled , and respectively

—

2-element Boolean variables —

Complement —

AND —

OR —

Exclusive-Or (XOR) —

Equivalence; exclusive-NOR (XNOR) —

Vector of

n

 Boolean variables —

n

-variable Boolean functions

Number of minterms for which

Set of all

n

-variable Boolean functions

Partially specified

n

-variable Boolean functions; sub-
sets of

Size (cardinality) of

Set union

Set intersection

Greatest lower bound (glb) of

Least upper bound (lub) of

Uncertainty set of Boolean variable

x

x

1

x

2

…

x

n

, , ,

f g h

, ,

X x

1

x

2

…

x

n

, , ,()�

F G H

, ,

0 1

,{ }
�

0 0

,[]

0 1

,[]

1 1

,[], ,{ }�

0

U

1

x

1

x

2

…

x

n

y z

, , , , ,

x x �

x

¬, ,

xy x y�

x y

∧, ,

x y

∨

x y
�

x y
�

X x

1

x

2

…

x

n

, , ,()�

f X

()

g X

()

h X

(), ,

f x

1

x

2

,()

x

1

x

2

∨�

f X

()

f X

()

1�

x

1

x

2
�

2�
�

n

X

()
�

1

x

1

()

0

x

1

x

1

1

, , ,{ }�

F X

()

G X

()

H X

(), , �

n

X

()

F x

1

x

2

,()

x

1

x

1

x

2

∨

x

1

x

2

, ,{ }�

F X

()

F X

()

x

1

x

1

x

2

∨

x

1

x

2

, ,{ }

3�

F G
	

x

1

{ }

x

1

x

2

{ }	

x

1

x

1

x

2

,{ }�

F G

x

1

x

2

,{ }

x

1

x

1

,{ }

x

1

{ }�

F X

()

F X

()

x

1

x

1

x

2

∨

x

1

x

2

, ,{ }

x

1

x

2
�

F X

()

F X

()

x

1

x

1

x

2
�

x

2

, ,{ }

x

1

x

2

∨�

U x

()

U x

()

0

x x

1

, , ,{ }�

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 2

1 Intr oduction

In this report we address the following question: “Given a completely specified

n

-variable Boolean function

, what is the effect of ignoring its dependence on one or more of its variables?” We refer to this process

as

functional abstraction

. Intuitively, functional abstraction introduces

uncertainty

 in our knowledge of the function and

causes the function to become

partially specified

. Partial specification of Boolean functions has traditionally been examined in

the context of logic synthesis by way of exploiting the inherent flexibility in a partially specified function to produce more effi-

cient implementations than would otherwise be possible from a complete specification. Partial specification can also be viewed

as a vehicle for approximate circuit analysis. In this scenario, the objective is to establish efficiently-computed

bounds

 on cir-

cuit behavior by judicious injection of ambiguity in a circuit’s functional specification.

A particularly important example of this type of approximation is timing analysis where we seek to determine the earliest

and latest event times for circuit signals under all possible input stimuli. Theoretically, these times can be determined exactly

by exhaustive simulation. In practice, though, this approach is infeasible except for trivially small circuits. “Incomplete” simu-

lation may be acceptable in certain cases if the input vectors can reasonably be expected to stimulate extreme circuit behavior

(longest path, for example.) Generally, however, incomplete simulation does not provide a coverage guarantee and carries the

risk of false negatives. Alternatively, functional abstraction allows us to err conservatively by bounding extreme behavior; it

guarantees complete coverage by embedding the sought-after behavior in a larger set of behaviors that are easier to determine.

The inevitable incidence of false positives in such an approach can be controlled by appropriate choice of which variables to

abstract away. The loosest bounds are found by structural (topological) analysis of the circuit and correspond to total abstrac-

tion of all functional information. Tighter bounds can be obtained by abstracting away only some but not all functional depen-

dencies.

The use of uncertain signal values in models of logic gate circuits has a long history that started with the introduction, by

Muller [13], of a third value to the two-element switching algebra. This third value—which Muller wrote as —was meant to

model digital signals in transition between the binary values 0 and 1. Muller also pointed out that the resulting ternary algebra

was formally equivalent to the strong 3-valued logic of Kleene [10]. Since that time, this third value has become a standard

feature of logic simulation models and has found additional applications such as circuit initialization, hazard detection, race

detection, etc. [4]. More recently, Hayes [8, 9] examined uncertainty in the context of multiple-valued logics and showed how

logics that incorporate more than one uncertain value can be systematically generated. Examples, other than timing analysis,

of approximate modeling through careful introduction of uncertainty have been studied by Harkness [6, 7] and include switch-

Abstraction of with respect to

Interval in between and

Smallest interval containing

Conservative abstraction of with respect to

Expand operator; interval containing —

Notation Meaning Example

F X

()

U x

i

()

F X

()

x

i

x

1

x

2

{ }

U x

1

()

x

1

x

2

0

x

1

x

2

x

2

, , ,{ }�

l X

()

u X

(),[]
�

n

X

()

l X

()

u X

()

x

1

x

2

x

1

x

2

∨,[]

F X

()[]

F X

()

x

1

x

2
�

x

1

x

2
�

,{ }[]

0 1

,[]�

F X

()

U x

i

()[]

F X

()

x

i

x

1

x

2

{ }

U x

1

()[]

0

x

2

,[]�

F X

()

G X

()◊

F X

()

G X

()	

y f x

1

x

2

…

x

n

, , ,()�

1
2

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 3

level simulation with uncertain signal strength, delay in RC networks with uncertain parameter values, and placement using

uncertain costs. Zukowski [16] also demonstrated that tight bounds on voltage waveforms in circuit simulation can be effi-

ciently obtained when appropriate bounds on the circuit excitations are assumed.

The remainder of this report is divided into four sections. In Section 2 we motivate the use of function sets for modeling

functional uncertainty and establish the computation rules required for their manipulation. In Section 3 we formally define

functional abstraction and establish some of its important properties. While providing the theoretical basis for functional

abstraction, explicitly enumerated function sets are unwieldy and have little, if any, practical value. We address this deficiency

in Section 4 by introducing function intervals as approximations to unrestricted function sets. We also develop a suitable inter-

val Boolean algebra for function intervals, illustrate its use with several examples, and conclude by revealing the relationship

between functional abstraction and universal and existential quantification. Section 5 summarizes the main points of the report

and highlights ongoing and future applications.

2 Modeling Uncer tainty with Function Sets

Consider the functional behaviors that can be observed at the output of a two-input AND gate when

the value of the first input is unknown. As shown in Figure 2-1, uncertainty about the value of can be modeled by

(a) AND function specification (b) “Numeric” model of AND
 function when is
 unknown

(c) Symbolic model of AND function when is
 unknown

x

1

x

2

f x

1

x

2

,()

x

1

x

2

f x

1

x

2

,()

g x

1

()

x

2

f x

1

x

2

,()

x

1

x

2

x

1

x

2

x

1

0

x

1

1

x

1

x

2

0

x

1

x

2

x

2

0

0

0

0 1

,{ }

0

0

⇔

0

0

1

1

0

0

0

0

0

0

1

0

0 1

,{ }

1

0 1

,{ }

0

0

1

1

1

0

0

1

1

1

0

0

0 1

,{ }

0

0

1

0

0

1

0

0

0

0

0

1

1

1

0 1

,{ }

1

0 1

,{ }

1

0

0

1

1

1

0

0

1

0
0 0

0
1 0

1
0 0

1
1 1

0 1

,{ }

0 0

0 1

,{ }

1 0 1

,{ }

0 1

,{ }

0 0

0 1

,{ }

1 0 1

,{ }

x

1

0

x

1

1

, , ,{ }

x

2

{ }

x

1

x

2

0

x

1

x

2

x

2

, , ,{ }

x

1

x

1

Figure 2-1: Modeling uncertainty for AND gate

f x

1

x

2

,()

x

1

x

2
�

x

1

x

1

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 4

replacing each entry in the column of the AND truth table with the set . Application of the AND function to and

this set-valued yields, in turn, an uncertain set-valued result. This

numeric

 model of uncertainty can be converted to an

equivalent

symbolic

 model by transforming the uncertainty in the

values

 of and

f

 to uncertainty about their

functional

dependence on . In this view, the first input of the AND gate is treated as a 1-variable Boolean function .

Thus, when the value of is known, the AND gate “sees” the function at its first input and produces the expected function

 at its output. However, when the value of is unknown, the AND gate is unable to distinguish among the four possible

single-variable Boolean functions of , namely the functions in the set . Consequently, the gate output

 becomes uncertain since, in addition to the original function , it can also be any of the functions , , or

. Symbolically, these observations are captured by the equation:

(2.1)

where the inputs and output of the AND gate are considered to be

function sets

 rather than single functions.

This example suggests that function sets arise naturally in the context of modeling functional uncertainty. Indeed, function

sets provide the most general framework for modeling uncertainty in the functional behavior of logic circuits. Other models,

such as don’t-cares, Boolean relations [3], or function intervals [5, p. 45], are easily shown to be special cases of function

sets.

1

 In the remainder of this section, we provide a formal definition of partially specified Boolean functions as function sets

and examine several of their properties.

Definition 2.1 (Boolean Function Space)

The function space, or universe, of n-variable Boolean functions is the -

element set denoted by

.

2 �

Definition 2.2 (Partiall y Specifi ed Boolean Functions)

A partially specified n-variable Boolean function

 is a nonempty subset of the function space . The cardinality of the set F, denoted by ,

is the number of n-variable Boolean functions it contains and indicates the degree of its uncertainty. When , F is said

to be completely specified. When , F is said to be completely unspecified

. �

Unless stated otherwise, the phrases “function” and “partially specified function” in this report should be interpreted as abbre-

viations for “partially specified

n

-variable Boolean function.”

Example 2.1

The function space of 2-variable Boolean functions is the sixteen-element set

1. Don’t-cares, Boolean relations, and function intervals yield identical function sets when used for the partial specification of sin-
gle-output Boolean functions. A natural extension of don’t-cares to

m

-output Boolean functions is to view them as subsets of
two or more elements of the power set of . The function sets generated by such don’t-cares are identical to those produced
by a Boolean relation from to . In contrast, function intervals result when the

m

 functions are individually treated as
single-output partially specified functions.

2. Brown [5, p. 47] denotes this set by where is, in general, a

k

-element Boolean algebra.

x

1

0 1

,{ }

x

2

x

1

x

1

x

1

g x

1

()

x

1
�

x

1

x

1

x

1

x

2

x

1

x

1

x

1

0

x

1

1

, , ,{ }

f x

1

x

2

,()

x

1

x

2

0

x

1

x

2

x

2

f x

1

0

x

1

1

, , ,{ }

x

2

{ },()

x

1

0

x

1

1

, , ,{ }

x

2

{ }∧

x

1

x

2

0

x

1

x

2

x

2

, , ,{ }� �

�

m�

n �

m

2

2

n

�

n

x

1

x

2

…

x

n

, , ,()

F

n

B

()

B

F x

1

x

2

…

x

n

, , ,()
�

n

x

1

x

2

…

x

n

, , ,()

F

F

1�

F
�

n
�

�

2

x

1

x

2

,()

0

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

, , , , , , , , ,{�

x

1

x

2
�

x

1

x

2
�

x

1

x

2

∨

x

1

x

2

∨

x

1

x

2

∨

x

1

x

2

∨

1

, , , , , , }

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 5

The sets , , and correspond to partially

specified 2-variable functions whose uncertainties are equal to 2, 3, and 1, respectively. Since

, H

 is completely spec-

ified. �

Partially specified functions have two facets. On the one hand,

they are sets

 and can thus be related by set inclusion and

manipulated by set operations such as union, intersection, and difference. On the other hand,

their elements are Boolean func-

tions

 that can be manipulated by Boolean operators such as AND, OR, and NOT and that, more generally, can be composed

with other Boolean functions. It is, therefore, appropriate to manipulate partially specified functions algebraically. Such alge-

braic manipulation is based on the following pair of functional composition rules [9].

Definition 2.3 (Functional Composition Rules f or Partiall y Specifi ed Boolean Functions)

• Composition Rule #1

: Let be a k-variable Boolean function, and let

 be k partially specified n-variable Boolean functions. Then

 is a partially specified n-variable Boolean function defined by the following rule:

(2.2)

• Composition Rule #2

: Let be partially specified n-variable Boolean

functions. Then is a partially specified n-variable Boolean function defined by

the rule:

(2.3)

Note that the function F can be viewed as a mapping from

to where

is the power set of . �

Example 2.2

Let

Then,

F x

1

x

2

,()

0 1

,{ }�

G x

1

x

2

,()

x

1

x

2

x

1

x

2
�

x

1

x

2

∨, ,{ }�

H x

1

x

2

,()

x

1

x

2

∨{ }�

H

1�

y

1

y

2

…

y

k

, , ,()

G

1

X

()

G

2

X

() …

G

k

X

(), , ,

G

1

X

()

G

2

X

() …

G

k

X

(), , ,()

G

1

X

()

G

2

X

() …

G

k

X

(), , ,()

v X

()

w X

() …

z X

(), , ,(){ }

v X

()

G

1

X

()�

w X

()

G

2

X

()�

…

z X

()

G

k

X

()�

��

F X

()

G

1

X

()

G

2

X

() …

G

n

X

(), , , ,

F G

1

X

()

G

2

X

() …

G

n

X

(), , ,()

F G

1

X

()

G

2

X

() …

G

n

X

(), , ,()

f G

1

X

()

G

2

X

() …

G

n

X

(), , ,()

f X

()

F X

()�
��

2�

n

n

2 �

n

2 �

n�

…�

2�

n��

2�

n

2 �

n

�

n

F x

1

x

2

,()

x

1

x

2

0

x

1

x

2

x

2

, , ,{ }�

G

1

x

1

x

2

,()

x

1

x

1

x

2

∨,{ }�

G

2

x

1

x

2

,()

0

x

2

x

2

1

, , ,{ }�

G

3

x

1

x

2

,()

x

1

{ }�

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 6

where the last operation was the cofactor of with respect to [2]. �

Finally, let us note that the function space forms a -element Boolean algebra [5, p. 48], i.e. it is a

distributive and complemented lattice [11, p. 64]. Thus, each subset of has a unique greatest lower bound (glb) and a

unique least upper bound (lub). The following definition prescribes how these bounds are calculated.

Definition 2.4 (

glb

 and

lub

 of Partiall y Specifi ed Functions)

The greatest lower bound and least upper bound of the

partially specified n-variable Boolean function are n-variable Boolean functions denoted, respectively, by and

, and determined according to

:

(2.4)

In general, and are not necessarily members of

. �

Example 2.3

Let . Then,

and

Note that whereas . �

G

3

x

1

x

2

,()

G

1

x

1

x

2

,()�

F x

1

x

2

,()

G

2

x

1

x

2

,()

0

x

2

,{ }�

F x

1

x

2

,()

G

2

x

1

x

2

,()�

x

1

x

2

x

1

x

2

,{ }�

F G

3

G

2

,()

F x

1

{ }

0

x

2

x

2

1

, , ,{ },()�

F G

3

G

2

,()

x

1

{ }

0

x

2

x

2

1

, , ,{ }∧()

0

{ }

x

1

{ }

0

x

2

x

2

1

, , ,{ }∧()

0

x

2

x

2

1

, , ,{ }	 	 	�

F G

3

G

2

,()

0

x

1

x

2

x

1

x

2

x

1

, , ,{ }

0

{ }

0

x

1

x

2

x

1

x

2

x

1

, , ,{ }

0

x

2

x

2

1

, , ,{ }	 	 	�

F G

3

G

2

,()

0

x

1

x

2

x

,

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

1

, , , , , , , ,{ }�

F �

x

1

x

2

,()

x

1

x

2

∨

1

x

1

x

2

∨

x

2

, , ,{ }�

F

x

1

F x

1

x

2

,()

x

1

1�

x

1

x

2

x

1

1�

î

0

x

1

1�

î

x

1

x

2

x

1

1�

î

x

2

x

1

1�

î

 	 	 	

0

x

2

,{ }� � �

F

x

1

�

n

x

1

x

2

…

x

n

, , ,()

2

2

n

�

n

F X

()

F X

()

F X

()

F X

()

f X

()

f X

()

F X

()�
�

F X

()

f X

()

f X

()

F X

()�
�

F X

()

F X

()

F X

()

F x

1

x

2

,()

x

1

x

1

x

2

x

1

x

2
�

, ,{ }�

l x

1

x

2

,()

F x

1

x

2

,()

x

1

x

1

x

2

x

1

x

2
�

()∧ ∧

x

1

x

2
� ��

u x

1

x

2

,()

F x

1

x

2

,()

x

1

x

1

x

2

x

1

x

2
�

()∨ ∨

x

1

x

2

∨� ��

l x

1

x

2

,()

F x

1

x

2

,()�

u x

1

x

2

,()

F x

1

x

2

,()
�

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 7

3 Functional Abstraction

As mentioned in the introduction, partial specification of Boolean functions has been mainly used in synthesis. In this

report, however, we are primarily concerned with characterizing the partially specified functions that arise when we choose to

ignore the functional dependence on certain variables. In this section we formally define functional abstraction and investigate

its properties.

Definition 3.1 (Uncer tainty Sets of Boolean Variab les)

The uncertainty set of a Boolean variable is the partially

specified n-variable Boolean function . The shorthand notation, , will be used to denote this set

and may be read as “ is unspecified.” Further, the notation , where V is a set of variables, will be used to indicate that

each of the variables in V is individually unspecified

. �

Definition 3.2 (Functional Abstraction)

A variable is said to be functionally abstracted from a function if

every occurrence of in is replaced by . The result of abstracting from F is a partially specified n-variable

function called the abstraction of F with respect to and denoted as .

3

 Functional abstrac-

tion of both and from F will be denoted by and evaluated according to

. Abstraction of larger sets of variables is handled similarly.

 �

It is important to emphasize that functional abstraction of a variable does not eliminate functional dependence on it. The

difference between the functions and is that the latter’s dependence on may be more ambiguous than the

former’s. The exact relationship between these two functions is provided by the following theorem.

Theorem 3.1

Proof:

The following expression for follows directly from definitions 3.1 and 3.2 and from application of the

functional composition rule in (2.3):

(3.1)

Thus is a subset of . �

Example 3.1

Let . Functional abstraction of yields:

3. This notation is similar to the cofactor notation [2] and can be read as “the function

F

 with

x

i

 unspecified.” It suggests the eval-

uation of the function at the values indicated in the subscript.

x

i

F X

()

0

x

i

x

i

1

, , ,{ }�

U x

i

()

x

i

U V

()

x

i

F X

()

x

i

F X

()

U x

i

()

x

i

F x

1

…

U x

i

() …

x

n

, , , ,()

x

i

F

U x

i

()

x

i

x

j

F

U x

i

x

j

,()

F

U x

i

x

j

,()

F x

1

…

U x

i

() …

U x

j

() …

x

n

, , , , , ,()�

F X

()

F X

()

U x

i

()

x

i

F X

()

F X

()

U x

i

()
�

F X

()

U x

i

()

F X

()

U x

i

()

F x

1

…

U x

i

() …

x

n

, , , ,()�

F x

1

…

0

x

i

x

i

1

, , ,{ } …

x

n

, , , ,()

=

F x

1

…

0

…

x

n

, , , ,()

F x

1

…

x

i

…

x

n

, , , ,()	 	

=

F x

1

…

x

i

…

x

n

, , , ,()

F x

1

…

1

…

x

n

, , , ,()	

F X

()

F X

()

U x

i

()

F x

1

x

2

,()

x

1

x

2

0

x

1

x

2

x

2

, , ,{ }�

x

2

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 8

Note that . �

Example 3.2

Let . Functional abstraction of both and yields:

�

It is interesting to note that the partially specified function resulting from the abstraction of in Example 3.1 is identical

to the function resulting from the abstraction of both and in Example 3.2. This is not coincidental since the starting

functions in the two examples are related: . Indeed, as stated in the following theorem, variables

can be abstracted from a function in any order without affecting the result.

Theorem 3.2

Proof:

Immediate from expansion of each side using composition rule #2 in (2.3). �

Corollar y 3.3 �

Note also that the abstraction of both and from the two-variable AND function yields a ten-element partially spec-

ified function rather than the sixteen-element completely unspecified function . This may seem odd considering

that we are ambiguating the functional dependence on

all

 input variables. This apparent paradox disappears, though, when we

recall from definitions 3.1 and 3.2 that multiple variables are abstracted

individually

. Thus, while we may now no longer know

the precise functional dependence on each of and , we do know that they are still combined by an AND function. The

maximum uncertainty set would have resulted had the definition of functional abstraction allowed for the

simulta-

neous

 abstraction of both and .

While variables can be abstracted away in any order, the following example demonstrates that abstracting a variable from

a function may not produce the same result as abstracting the variable from a

circuit implementation

of that function.

Example 3.3

Let . The functional abstraction of yields the following partially specified function:

Consider next the abstraction of from the four-NAND implementation of XOR shown in Figure 3-1. The resulting partially

specified functions at the intermediate nodes

g

,

v

 and

w

 as well as that at the output node

f

 are easily shown to be:

F x

1

U x

2

(),()

x

1

{ }

U x

2

()∧

0

{ }

x

1

{ }

U x

2

()∧

U x

2

()	 	 	�

0

x

1

x

2

x

1

x

2

x

1

, , ,{ }

0

{ }

0

x

1

x

2

x

1

x

2

x

1

, , ,{ }

0

x

2

x

2

1

, , ,{ }	 	 	

=

0

x

1

x

2

x

,

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

1

, , , , , , , ,{ }

=

F x

1

x

2

,()

F x

1

U x

2

(),()�

f x

1

x

2

,()

x

1

x

2
�

x

1

x

2

f

U x

1

x

2

,()

f U x

1

()

U x

2

(),()

0

x

1

x

1

1

, , ,{ }

0

x

2

x

2

1

, , ,{ }∧� �

f

U x

1

x

2

,{ }

0

x

1

x

2

x

,

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

1

, , , , , , , ,{ }�

x

1

x

1

x

2

F x

1

x

2

,()

f U x

1

()

x

2

,()�

F X

()

U x

i

x

j

,()

F X

()

U x

i

()

()

U x

j

()

F X

()

U x

j

()

()

U x

i

()
� �

F X

()

U x

i

()

()

U x

i

()

F X

()

U x

i

()
�

x

1

x

2 �

2

x

1

x

2

,()

x

1

x

2�

2

x

1

x

2

,()

x

1

x

2

f x

1

x

2

,()

x

1

x

2
��

x

1

f

U x

1

()

0

x

1

x

1

1

, , ,{ }

x

2

{ }
�

x

2

x

1

x

2
�

x

1

x

2
�

x

2

, , ,{ }� �

x

1

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 9

Thus, abstraction of from the circuit implementation of the XOR function yields the maximally uncertain function of two

variables indicating a complete loss of information. �

The above example illustrates an undesirable characteristic of uncertainty models, namely the unavoidable introduction of

apparent

uncertainty when

correlations

 that exist among the model variables are ignored. As shown in Figure 3-2, the correct

answer for this example can be obtained when such correlations are properly taken into account. To accomplish that, however,

requires that we distinguish among individual members of sets and amounts to an enumerative “case analysis.” Since the

abstraction of

m

 variables gives rise to independent cases, such an approach is infeasible except for small values of

m

. The

only other way of eliminating apparent uncertainty is to express the model only in terms of independent variables such as those

corresponding to primary inputs or head lines [1, p. 208] in the circuit implementation. Unfortunately, for many functions such

representations are impractical since their sizes can be exponential in the number of independent variables. Realistically, there-

fore, the injection of apparent uncertainty must be accepted as a necessary consequence of abstraction, and the result of

abstraction should be viewed as a conservative approximation to the sought-after partially specified function.

Figure 3-1: Four-NAND Circuit Implementation of XOR

x

1

x

2

g

v

w

f

g U x

1

()

x

2

,()

x

2

x

1

x

2

∨

x

1

x

2

∨

1

, , ,{ }�

v U x

1

()

x

2

,()

0

x

1

x

2

x

1

x

2

x

1

x

1

x

2

x

1

x

2

∨

x

1

x

2

∨

1

, , , , , , , ,{ }�

w U x

1

()

x

2

,()

x

2

x

1

x

2

∨

x

1

x

2

∨

1

, , ,{ }�

f U x

1

()

x

2

,()
�

2

x

1

x

2

,()�

x

1

4

m

U x

1

()

0

x

1

x

1

1

g x

1

x

2
�

1

x

1

x

2

∨

x

1

x

2

∨

x

2

v x

1

g�

1

x

1

x

2

∨

x

1

x

2

∨

x

2

w x

2

g�

x

2

x

1

x

2

∨

x

1

x

2

∨

1

f vw�

x

2

x

1

x

2
�

x

1

x

2
�

x

2

Figure 3-2: Solution of Example 3.3 taking signal correlations into account

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 10

4 Function Inter vals

Function sets represent uncertainty

explicitly

 by enumerating all the completely specified functions that are obtained as a

result of abstraction. Their importance, thus, is primarily theoretical since they may become too large for any practical applica-

tion, even when apparent uncertainty is eliminated. The only recourse for containing the inevitable exponential growth in set

sizes is to bound such sets by sets that can be represented

implicitly

, i.e. without enumeration. Intervals in the function space

 are function sets that can be described compactly by specifying two distinguished members. In this section we define

function intervals, derive some of their properties, and show how they can be used for functional abstraction.

Definition 4.1 (Function Inter val [5, p. 45])

The partially specified function is a function interval if it can be

expressed as

where and are two n-variable Boolean functions such that . A function interval can be viewed

as a mapping , where is the set of intervals on , and can thus be equivalently

expressed as . �

Several examples of function intervals in are shown in Figure 4-1.

Function intervals have many useful properties most of which derive from the partial ordering (inclusion) relation “

≤

” and

its various equivalents [5, p. 28]. In particular, given and , we can establish the follow-

ing two sets of equivalent identities:

(4.1)

An immediate consequence of these identities is that and are the glb and lub of , i.e.

 (4.2)

(4.3)

Thus, if is a function interval we can denote it most succinctly as

(4.4)

The size of a function interval is where

m

 is the number of minterms for which the function value is . For

each one of those

m

 combinations, the glb is 0 whereas the lub is 1. Thus,

m

 is equal to the number of min-

terms for which the function is equal to 1 yielding the following expression for the size of :

�

n

F X

()

F X

()

f X

()

l X

()

f X

()

u X

()� �

{ }�

l X

()

u X

()

l X

()

u X

()�

F X

()
�

n �

→
�

0 0

,[]

0 1

,[]

1 1

,[], ,{ }� �

F X

()

l X

()

u X

(),[]�
�

2

x

1

x

2

,()

F X

()

l X

()

u X

(),[]�

f X

()

F X

()�

l X

()

f X

()�

l X

()

f X

()∧

l X

()�

l X

()

f �

X

()∧

0�

f �

X

()

l �

X

()�

l �

X

()

f �

X

()∨

l �

X

()�

l �

X

()

f X

()∨

1�

f X

()

u X

()�

u X

()

f X

()∨

u X

()�

u X

()

f �

X

()∨

1�

u �

X

()

f �

X

()�

u �

X

()

f �

X

()∧

u �

X

()�

u �

X

()

f X

()∧

0�

l X

()

u X

()

F X

()

F X

()

l X

()�

F X

()

u X

()�

F X

()

F X

()

F X

()

F X

(),[]�

F X

()

2

m

0 1

,[]

F X

()

F X

()

F X

() �

F X

()

F X

()

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 11

(4.5)

where is the number of minterms for which a Boolean function is equal to 1. Using (4.5) it is easy to show that

the size of the completely unspecified

n

-variable function is , whereas that of any completely specified function

 is 1. It is worth noting that, while identical in appearance, the interval in the

n

-variable function space is

distinct from the interval in the 2-element Boolean algebra �

. The interval bounds in the former case represent the

n

-

variable constant functions 0 (

inconsistency

) and 1 (

tautology;

) in the latter case the bounds denote the constant elements of �

.

Furthermore, the partially specified

n

-variable functions and are different; the latter consists of just two ele-

ments, namely the constant functions 0 and 1, whereas denotes the entire function space .

The interval operator introduced next is useful in “converting” unrestricted partially specified functions into intervals. It

can be viewed as a

type cast

 [15] that converts objects of type “function set” to objects of type “function interval”.

Definition 4.2 (Inter val Operator [])

The interval operator is a unary operator that returns the smallest function

interval containing a given partially specified function. It is defined by the formula

:

(4.6)

Note that F itself is an interval whenever and ; in such a case . �

Example 4.1

Let . Then,

0

1

x

1

x

2

∨

x

1

x

2

∨

x

1

x

2

∨

x

1

x

2

∨

x

1

x

2

x

1

x

2
�

x

1

x

2
�

x

2

x

1

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

Figure 4-1: (a) Sixteen-element lattice of two-variable Boolean functions. The
highlighted lines correspond to the three intervals ,
and . (b) Truth tables for highlighted intervals.

�

2

x

1

x

2

,()

F

0

x

1

x

2

,[]�

G x

1

x

2

x

1

x

2

∨,[]�

H x

1

x

2

1

,[]�

x

1

x

2

0 0

10

1 0

11

F

G

H

F G H

0 1

,[]

1 1

,[]

0 1

,[]

0 0

,[]

0 0

,[]

0 0

,[]

0 1

,[]

0 0

,[]

0 1

,[]

0 1

,[]

0 1

,[]

1 1

,[]

(a) (b)

F X

()

2

F X

() �

F X

()�

f X

()

f X

()

0 1

,[]

2

2

n

f X

()

f X

(),[]

0 1

,[]

0 1

,[]

0 1

,[]

0 1

,{ }

0 1

,[]
�

n

[]

F X

()[]

F X

()

F X

(),[]�

F F
�

F F
�

F

[]

F�

F x

1

x

2

,()

x

1

x

2

x

2

,{ }�

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 12

�

4.1 Operations on Function Inter vals

The main advantage of function intervals over unrestricted partially specified functions is that they do not require an

explicit enumeration of their member functions. Instead, the elements of a function interval are implicitly defined by the inter-

val’s glb and lub along with the partial ordering relation “

≤

”. This advantage may not, in general, be preserved when function

intervals are combined by set operators. Specifically, the union, intersection, and difference of two function intervals are not

necessarily function intervals. On the other hand, applying Boolean operators to function intervals will always yield function

intervals. This property allows us to develop an

interval Boolean algebra

 that can be used to manipulate and simplify expres-

sions involving function intervals.

The extension of the three basic Boolean operators NOT, AND, and OR to function intervals is provided by the following

theorem.

Theorem 4.1 (Boolean Operations on Function Inter vals)

Let and be two function intervals. Then

, , and are also function intervals that are given by the following identities:

(4.7)

(4.8)

(4.9)

Proof:

We demonstrate the proof procedure for (4.7); the other two identities can be proved similarly.

from (2.2) (functional composition rule #1)

from (2.4) (definition of glb)

factor out lub

from (4.1) (inclusion relation)

from (2.4) (definition of lub)

factor out glb

from (4.1) (inclusion relation)

F

[]

F F

,[]

0

x

1

x

2

∨,[]

0

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2

x

1

x

2
�

x

1

x

2

∨, , , , , , ,{ }� � �

F X

()

G X

()

F �

X

()

F X

()

G X

()∧

F X

()

G X

()∨

F �

X

()

F �

F �

,[]�

F X

()

G X

()∧

F G

∧

F G

∧,[]�

F X

()

G X

()∨

F G

∨

F G

∨,[]�

H X

()

F �

X

()

f �

X

(){ }

f X

()

F X

()�
���

H X

()

h X

()

h X

()

H X

()�

f �

X

()

f X

()

F X

()�
� �

H X

()

F X

() �

f �

X

()

f X

()

F X

()�

f X

()

F X

()
�

∧�

H X

()

F X

() ��

H X

()

h X

()

h X

()

H X

()�

f �

X

()

f X

()

F X

()�
� �

H X

()

F X

() �

f �

X

()

f X

()

F X

()�

f X

()

F X

()�

∨�

H X

()

F X

() ��

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 13

Thus, and , i.e. is an interval (see Definition 4.2). This immediately leads to

. �

The identities in (4.1) allow us to derive many useful properties that facilitate the algebraic manipulation of expressions

involving function intervals. A few of these properties are listed in Table 4-1. It is interesting to note that function intervals

obey most, but not all, of the laws of Boolean algebra. In particular, they do not obey the complement laws or any properties

derived from them. Thus, unlike the case for completely specified functions, the conjunction and disjunction of a function

interval and its complement do not yield, respectively, and . Instead, there is some residual uncertainty whose

size is equal to .

Equality of function intervals derives from their interpretation as function sets. Thus, the function intervals and

 are equal

if and only if and . Equivalently:

(4.10)

i.e., and are identical if their respective bounds are equal.

Example 4.2

Assume that are Boolean variables and that

F

 and

G

 are function intervals. The follow-

ing equations illustrate the application of interval Boolean algebra.

H X

()

H X

()�

H X

()

H X

()�

H X

()

F �

X

()

F X

() �

F X

() �

,[]�

Table 4-1: Some pr oper ties of inter val Boolean alg ebra
(, , and are assumed to be function inter vals)

Commutative

Distributive

Identities

Associative

Idempotence

Null Elements

Absorption

Involution

De Morgan’s

Complement

F

G

H

F G

∨

G F

∨�

F G

∧

G F

∧�

F G H

∧()∨

F G

∨()

F H

∨()∧�

F G H

∨()∧

F G

∧()

F H

∧()∨�

0 0

,[]

F

∨

F�

1 1

,[]

F

∧

F�

F G H

∨()∨

F G

∨()

H

∨�

F G H

∧()∧

F G

∧()

H

∧�

F F

∨

F�

F F

∧

F�

F

1 1

,[]∨

1 1

,[]�

F

0 0

,[]∧

0 0

,[]�

F F G

∧()∨

F�

F F G

∨()∧

F�

F �

() �

F�

F G

∨() �

F �

G �

∧�

F G

∧() �

F �

G �

∨�

F F �

∨

F F �

∨

1

,[]�

F F �

∧

0

F �

F

∧,[]�

F

0 0

,[]

1 1

,[]

F

F X

()

G X

()

F X

()

G X

()�

G X

()

F X

()�

F G�

()

F G�

()

F G�

()∧⇔

F X

()

G X

()

x

1

x

2

x

3

, ,

0 1

,{ }�

x

1

x

2

x

2

x

3

∨

x

1

x

2

x

3

∨,[] �

x

1

x

3

x

2

x

3

∨

x

1

x

3

x

2

∨,[]�

x

1

x

2

x

1

x

2

∨

x

1

x

2

∨,[]

x

1

x

2

x

1

x

2

x

1

x

2

∨,[]∧

0

x

1

x

2

,[]�

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 14

�

It is useful to note that the above 2-valued interval Boolean algebra is isomorphic to the ternary algebra commonly used in

logic simulators. Specifically, the three intervals on are renamed 0, 1, and

U

, are considered to be totally ordered

according to and are assumed to obey the following truth tables:

As mentioned earlier, set operations on function intervals do not, in general, yield function intervals. In such cases, the

interval operator can be used to convert the result of a set operation to the smallest enclosing function interval. The func-

tion interval containing the union of two function sets is particularly useful and we define a special operator for it as follows:

Definition 4.3 (Expand Operator)

The expand operator for partially specified functions is a binary operator defined by

the formula

:

where and are arbitrary partially specified functions (i.e. not necessarily function intervals.) �

The next theorem establishes the relation between the bounds of the interval produced by the expand operator and the corre-

sponding bounds of its two arguments.

Theorem 4.2

Proof:

from Definition 4.3

from (4.6) (definition of interval operator)

from (2.4) (definition of glb and lub)

from (2.4) (definition of glb and lub) �

Example 4.3

Let and . Then,

x

1

x

2

x

1

x

2

∨

x

1

x

2

∨,[]

x

1

x

2

x

1

x

2

x

1

x

2

∨,[]∨

x

1

x

2

∨

1

,[]�

F G
�

F �

G FG �

∨

F �

G F G �

∨

F �

G F G �

∨,[]� �

0 1

,{ }

0 0

,[]

0 1

,[]

1 1

,[]� �

F

F �

∨

0 0

,[]

0 1

,[]

1 1

,[]

∧

0 0

,[]

0 1

,[]

1 1

,[]

0 0

,[]

1 1

,[]

0 0

,[]

0 0

,[]

0 1

,[]

1 1

,[]

0 0

,[]

0 0

,[]

0 0

,[]

0 0

,[]

0 1

,[]

0 1

,[]

0 1

,[]

0 1

,[]

0 1

,[]

1 1

,[]

0 1

,[]

0 0

,[]

0 1

,[]

0 1

,[]

1 1

,[]

0 0

,[]

1 1

,[]

1 1

,[]

1 1

,[]

1 1

,[]

1 1

,[]

0 0

,[]

0 1

,[]

1 1

,[]

[]

F X

()

G X

()◊

F X

()

G X

()	

[]�

F X

()

G X

()

F X

()

G X

()◊

F G

∧

F G

∨,[]�

F G

◊

F G
	

[]�

F G

◊

F G
	

F G
	

,[]�

F G

◊

h

h F G
��

h

h F G
��

,�

F G

◊

f

f F
�

g

g G
�

∧

f

f F
�

g

g G
�

∨,�

F G

◊

F G

∧

F G

∨,[]�

F x

1

x

2

,()

x

1

x

2
�

x

1

x

2

∨,[]�

G x

1

x

2

,()

x

1

x

2

x

1

x

2
�

,[]�

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 15

�

4.2 Abstraction of Variab les fr om Function Inter vals

Another operation on a function interval that may not necessarily yield a function interval is functional abstraction. We

therefore extend Definition 3.2 so that the result of functional abstraction from a function interval is another function interval.

Definition 4.4 (

Conservative

 Functional Abstraction)

The conservative functional abstraction of a partially speci-

fied n-variable Boolean function with respect to a variable is a function interval denoted by and defined

according to:

(4.11)

In other words, the conservative functional abstraction of with respect to is the smallest function interval containing

the (exact) functional abstraction of with respect to . �

The conservative functional abstraction has a particularly simple form in terms of the cofactors of the function bounds. To

derive this form, it is convenient first to establish the following two identities:

Lemma 4.3

The glb/lub and cofactor operators commute, i.e.

 and .

Proof:

from (2.3)

from (2.4)

from (2.4)

The other identity is proved similarly. �

Theorem 4.4

The conservative abstraction of with respect to is given by the following expression:

(4.12)

Proof:

F G
	

x

1

x

2
�

x

1

x

2

∨,{ }

x

1

x

2

x

1

x

2
�

,{ }	

x

1

x

2

x

1

x

2
�

x

1

x

2
�

x

1

x

2

∨, , ,{ }� �

F G

◊

x

1

x

2
�

()

x

1

x

2

()∧

x

1

x

2

∨()

x

1

x

2
�

()∨,[]

0 1

,[]� �

F X

()

x

i

F

U x

i

()[]

F X

()

U x

i

()[]

F X

()

U x

i

()

[]�

F X

()

x

i

F X

()

x

i

F

x

i

F

x

i

�

F

x

i

F

x

i

�

F

x

i

f

x

i

f F
�

��

F

x

i

f

x

i

f F
�

�

F f

f F
�

�

F

x

i

f

f F
�

x

i

f

x

i

f F
�

F

x

i

� � �

F X

()

x

i

F X

()

U x

i

([]

F

x

i

F

x

i

∧

F

x

i

F

x

i

∨,[]�

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 16

from (4.11) and (3.1)

from (4.6) (interval operator)

from (2.4)

by perfect induction

from Lemma 4.3 �

It is interesting to note that the conservative abstraction of with respect to is the interval whose glb is the

consen-

sus

 operator and whose lub is the

smoothing

 operator [12]. Brown [5, pp. 106-110] refers to these bounds,

respectively, as the conjunctive and disjunctive eliminants, and views what we have called conservative abstraction as the

“elimination” of from the function interval . Finally, these two bounds can be obtained by universal and existential

quantification of from and :

(4.13)

This last form is particularly helpful because it demonstrates that abstraction is essentially a process of quantification.

Example 4.4

Let and . Then , , , and

the following functional abstractions are easily established:

 (4.14)

(4.15)

(4.16)

Recalling (2.1), note that the conservative abstraction in (4.14) does not involve additional pessimism. On the other hand, the

conservative abstractions in (4.15) and (4.16) are more pessimistic than their “exact” counterparts in examples 3.2 and 3.3.�

5 Conc lusions and Future Work

In this report we sought to understand the transformation to a Boolean function that results from functionally abstracting

its dependence on some of its variables. We argued for the use of function sets as a basis for capturing functional uncertainty,

and indicated how function intervals serve as a practical approximation to unrestricted function sets. We also developed a com-

plete interval Boolean algebra that helps us in the practical manipulation of function intervals.

F

U x

i

()

[]

F

x

i

F x

1

…

x

i

…

x

n

, , , ,()

F X

()

F

x

i

	 	 	

[]�

F

U x

i

()

[]

F

x

i

F x

1

…

x

i

…

x

n

, , , ,()

F X

()

F

x

i

	 	 	

,[�

F

x

i

F x

1

…

x

i

…

x

n

, , , ,()

F X

()

F

x

i

	 	 	

]

F

U x

i

()

[]

F

x

i

F x

1

…

x

i

…

x

n

, , , ,()

F X

()

F

x

i

∧ ∧ ∧ ,[�

F

x

i

F x

1

…

x

i

…

x

n

, , , ,()

F X

()

F

x

i

∨ ∨ ∨]

F

U x

i

()

[]

F

x

i

F

x

i

∧

F

x

i

F

x

i

∨,[]�

F

U x

i

()

[]

F

x

i

F

x

i

∧

F

x

i

F

x

i

∨,[]�

F X

()

x

i

C

x

i

F

S

x

i

F

x

i

F X

()

x

i

F

F

F X

()

U x

i

([]

x

i
�

F X

()�

x

i
�

F X

()�

,[]�

f x

1

x

2

,()

x

1

x

2
�

g x

1

x

2

,()

x

1

x

2
��

f

x

1

0�

f

x

1

x

2
�

g

x

1

x

2
�

g

x

1

x

2
�

F x

1

x

2

,()

f

U x

1

()[]

f

x

1

f

x

1

f

x

1

f

x

1

∨,[]

0

x

2

,[]� ��

f

U x

1

x

2

,()[]

F

U x

2

()[]

0

x

2

0�

0

x

2

1�

∧

x

2

x

2

0�

x

2

x

2

1�

∨,

0 1

,[]� � �

g

U x

1

()[]

g

x

1

g

x

1

g

x

1

g

x

1

∨,[]

x

2

x

2

x

2

x

2

∨,[]

0 1

,[]� � �

CSE-TR-255-95: Functional Abstraction and Partial Specification of Boolean Functions 17

The purpose of this report was to lay the algebraic foundation for both functional abstraction and partial specification of

Boolean functions. In related work, we describe a comprehensive model of the dynamic behavior of logic gate circuits that

builds on this foundation [14]. We are also developing a general model for the timing of logic gate circuits that is derived

through careful functional abstraction. Unlike most existing timing models, the proposed model handles state-dependent com-

ponent and wire delays and replaces the plethora of local sensitization criteria with a single universal criterion that captures the

functional dependence of component delays and signal arrival times.

References

[1] M. Abramovici, M. A. Breuer and A. D. Friedman,

Digital Systems Testing and Testable Design

. Electrical Engineering, Communica-
tions, and Signal Processing, ed. R.L. Pickholtz. 1990, Computer Science Press.

[2] R. K. Brayton, J. D. Cohen, G. D. Hachtel, B. M. Trager and D. Y. Y. Yun, “Fast Recursive Boolean Function Manipulation,”

in Proc.
IEEE International Symposium on Circuits and Systems (ISCAS)

, pp. 58-62, 1982, Rome, Italy.
[3] R. K. Brayton and F. Somenzi, “An Exact Minimizer for Boolean Relations,”

in Digest of IEEE International Conference on Com-
puter-Aided Design (ICCAD)

, pp. 316-319, 1989, Santa Clara, California.
[4] M. A. Breuer, “A Note on Three-Valued Logic Simulation,” IEEE Transaction on Computers, vol. C-21, pp. 399-402, April 1972.
[5] F. M. Brown,

Boolean Reasoning

. ed. J. Allen. 1990, Kluwer Academic Publishers.
[6] C. L. Harkness,

An Approach to Uncertainty in VLSI Design

, Ph.D. Thesis, Brown University, 1991.
[7] C. L. Harkness and D. P. Lopresti, “Interval Methods for Modeling Uncertainty in RC Timing Analysis,”

IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems

, vol. 11, no. 11, pp. 1388-1401, November 1992.
[8] J. P. Hayes, “Uncertainty, Energy, and Multiple-Valued Logics,”

IEEE Transactions on Computes

, vol. C-35, no. 2, pp. 107-114, Feb-
ruary 1986.

[9] J. P. Hayes, “Digital Simulation with Multiple Logic Values,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems

, vol. CAD-5, no. 2, pp. 274-283, April 1986.
[10] S. C. Kleene,

Introduction to Mathematics

. 1952, Princeton, N.J.: D. Van Nostrand, Inc.
[11] Z. Kohavi,

Switching and Finite Automata Theory

. Second ed. Computer Science Series, 1978, McGraw-Hill.
[12] P. C. McGeer,

On the Interaction of Functional and Timing Behavior of Combinational Logic Circuits

, Ph.D. Thesis, University of
California, Berkeley, November 1989.

[13] D. E. Muller, “Treatment of Transition Signals in Electronic Switching Circuits by Algebraic Methods,”

IRE Trans. on Electronic
Computers

, vol. EC-8, pp. 401, 1959.
[14] K. A. Sakallah, “Dynamic Modeling of Logic Gate Circuits,” Technical Report CSE-TR-253-95, The University of Michigan, July

1995.
[15] B. Stroustrup,

The C++ Programming Language

. Addison-Wesley Series in Computer Science, ed. M.A. Harrison. 1986, Addison-
Wesley.

[16] C. A. Zukowski,

The Bounding Approach to VLSI Circuit Simulation

. The Kluwer International Series in Engineering and Computer
Science, ed. J. Allen. 1986, Kluwer Academic Publishers.

