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Abstract

Oneprimary task of engineeringdesignis resolutionof the conflicting objectivesthat are inherentin the design

process. This problem is even more difficult when membersdesmnteam, who eachhavedifferent perspectives,
must resolve these conflicts. We present a decision theoretic approach for resohflieging objectivesduring the

design process,and discussan extensionto this approachthat addressescoordination of hierarchical design

organizations. Hierarchical design organizations arise from traditional hierarchical system decomposition,
subcontracting, and supervisor/subordinate relationships. We believe the methods presiistedperare general,
and thus will provide benefits not only to concurrent engineering, but other domains as well.

1.0 Introduction

Oneprimary task of engineeringdesignis resolutionof the conflicting objectivesthat are inherentin the design
process. These conflicts arise due to the physical relations among objectives and resource limitations. Formal mode
of preferenceqThurston,1991; Sykes and White, 1991) have shown promise in resolving conflicting design
objectives. A formal model, e.g., a value (utility) function, in conttastd hoc techniquesprovidesa well-defined

basisfor predictingthe quality of the resultsachieved.This propertyis highly desirable sincemany engineering-
designproblemsare so large that the desirability of the solution producedis difficult, if not impossible, to
determine.
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Figure 1.1: A portion of an objective/attribute hierarchy for a computer design problem.

To definea value function for a designproblem,the attribute hierarchy of the problem must be identified. This
hierarchy describes how the top-level attributes (objectives) of the problem rdtatetdevel attributes,which are
important for detaileddesigndecisions.Figure 1.1 shows an exampleattribute hierarchyfor a computer-design



problem. The value of the design is determined based on three top-level attributes: cost, power, and pefbemance.
top-levelattributecostis definedin termsof the costof hardwareand packagingusedto constructthe computer.

With the attribute hierarchy defined, the top-level attributesof a designalternativecan be calculated.A value
function, which captures designgreferencesgan be constructecby examiningthe top-level attribute valuesof all
designalternatives.The best alternativecan then be identified by applying the value function to evaluatethe
alternatives.

In general, it is not possible to generate awmdluateall designalternativesdueto problem-sizerestrictions.Some
previous research has focused on hill climbing search of the design space, where in each iteratioa/tdradingt
is choserfrom all known alternativeslin this case,eachiterationis considerech separatedecisionproblem,anda
new value function is created lexaminingall known alternativesThis processs time consumingandlimits the

amountof searchthat can be performed.What is neededis a techniquefor constructinga value function from

incomplete knowledgef designalternativesandthen applying this value function during designoptimization. In

the section on current results, we describe our approach for solving this problem.

In addition to formally representing preferencasnechanisnis neededor combining and applying the preferences
of the various decision makers involved in the degigrcess.The growing practiceof concurrentengineering(CE)
hastransformedhe design processfrom solving a sequentialseriesof independentlesign problemsto a group
decision process. Design decisions depeméhputs from a group, and cannot be madefrom a single perspective.
Members of a CE design team have different areas of expertise, and each decision maker is retpliestktasions
that impact others in the organization.

Currently, there exists twprimary approachesor solving CE problems:multi-level optimization and agent-based
systems. The multi-level optimization approach is based on mathematical progratechimguesor decomposing
andoptimizing large systems.A single monolithic problemis decomposedhto a numberof subproblemswhere
each subproblem corresponds to a specific discipline involved in the design pfocessdinationprogramassigns
optimization parameterso eachsubproblem subproblemsare solved, and the coordinationprogram analyzesthe
results and assignsnew optimization parameters.This processis iterated until a convergencetest is passed.
Depending on the type of problem, the resulting solution is either locally or globally optimal.

Agent-based systems for CE are based on distributed-artificial-intelligence techniques for distributedguisthem
An agent can be viewed asamputerprogramwith the ability to independentlychoosewhat actionsto take. The

agentmodelis attractivesincecomputertools are usedextensivelyin engineeringdesign,and computernetworks
provide a meansfor communicationand collaborationamongthe computer-baseéngineers.in general,an agent
exists for eachdisciplineinvolvedin the CE problem,andit is assumedhe knowledgerepresentatiowariesfrom

one discipline to another. The expertise required to solve the problem is distributed among tharaifbetsmust
collaborate to find a good solution. A distributed problem-solving algorithm (e.g., distribomstraintsatisfaction)
coordinateghe activities of the agents.Unlike the global optimization focus of multi-level optimization, agent-
based systems focus on peer-to-peer problem solving.

We believethat the solution of a CE problemrequiresboth global direction and exploitation of local expertise.
Multi-level optimization approachesio not allow the local expertiseof the participatingdisciplinesto impactthe

value of the final design,since eachdiscipline must solve the optimization problem specified by the global
coordinator(Figure 1.2 (a)). In this approach,an optimal solution is obtainedby restricting the definition of
optimality to the preferences of the supervisor agent, and ignoring the preferences of domai/A adEntEnagent

is an expert only in the sense that it knows how to solve the subproblem specified by the supervisor agent; a doma
agent has no ability to reflect its preferences into the design process. Without thisabiityainagentis simply

a demon that waits to dutifully respond to subproblem optimization requests.

In agent-based systems, peer-to-peer problem solving exploits local expertise (Figure 1.2 (b)), buhigygtweal
preferenceshat exist. Global preferencesrisedueto the standardhierarchicalsystemdecompositiorthat is often
requiredto solve large complex problems.To achievedesirable,overall system performancethe preferencesf
supervisors and system architects must be accountedifiog the designof subsystemsln addition, portionsof a
design may be subcontractedastsidesuppliers,andthe preferencesf the designorganizationmust be accounted
for by the subcontractorThis contractor/subcontractaelationshipalso occurswithin an organization,where a



designerreportsto a supervisor,who's own objectives must be reflected in the design process.These agent
relationships create a hierarchical agent organization, that must be accounted for during the design process.

Subdomain
Agents

(c) A hierarchical agent organization.

Figure 1.2: Agent Organizations for CE. Solid lines indicate problem solving networks, arrows indicate control
relationships.

Figure 1.2 (c) illustrates our view of a typical CE problem. A supervisor agent cordta@<CE problemto three
domain agents, DAIDA2, andDA3. DAL in turn subcontractsts responsibilitiesto two otheragents,DA4 and
DA5. Problem solving takes place through the interactioageintsDA2, DA3, DA4, and DA5, with coordination
provided by the supervisor agent and DA1. The preferences of all agents are comnsitieeenbntextof the existing
hierarchical organization. Thus, a hierarchy of preferences is applied during problem solving.

In this paper we discuss a tool, ACME&hich facilitateshierarchicalconcurrentengineering ACME usesa formal

model of preferences based on utilibeory. We first presenta review of previouswork in the areaof engineering
design and concurrent engineering. Next we discribe our preference modéarstresultsfrom the applicationof

this model. We then describe how this model camberporatednto an overall procesdor facilitating hierarchical
concurrent engineering. We conclude with a summary and discussion.

2.0 Background

In this sectionwe examinecurrent approacheso multiattribute designand CE, as well as relevantbackground
material. Our interest in CE is focused on the automation and optimizatioaltéttribute CE problems,thus the



materialreviewedwill be limited to this area.The topics to be coveredinclude the application of mathematical
programming distributedartificial intelligence,and decisiontheoryto engineeringdesign.There are other subject
areasthat areimportantto CE, suchas collaborationtechnologyand group dynamics,but theseare not directly
relevant to this paper, and thus are not discussed here.

We will first examinethe formulation of multiattribute design problems. Next, multi-level optimization is
introduced, and its application to CEdiscussedFinally, an overview of relevanttopics from distributedartificial
intelligenceis given, and the applicationof thesetechniquesto CE is discussedTable 2.1 gives the notation
developed in this paper.

2.1 Formulating a Design Problem

A mathematical-programming (Nemhauser, Kan, & Todd, 1989) or constraint-satisfaction (Mack®8ithiMittal
& Falkenhainer, 1990) formulation of a design problem includes:

e atuple of n design variableX,= (X1, X2, ..Xk, Xk+1, --Xn), Where variables 1 to k measure the k
attributes to be optimized,

+ atuple of n domaind) = (d1, d2, ...,dn), such thakj [ dj,

» a set of constraints among design variali®s {r1, r2, ...,rm}, that restrict the domains of the variables,

e an objective functiorg(X), to evaluate the desirability of a design alternative.
Integer-valueddesignvariablesselectthe topology or componentsof the design,and real-valueddesign variables
selectdesignparameterskor topology decisions,a variablevalue of oneindicatesthat a certain configuration of
componentshouldbe used,while a zerovalue indicatesthat it shouldnot. By settingup appropriateconstraints
between integer design variables, different topologigls different combinationsof componentsan be considered.
A wide range of constraintscan be supported,including if-then constraintsbetweeninteger design variables
(Grossmann, 1990). In this paper, we focus on topology and component design decisions.

The majority of single-attribute design problems can be formulated and solwgreakintegemon-linearprograms
(Grossmann, 1990) as follows:

Minimize z(X) = x1
Subject to:
R
x1..xj O O
Xj+1..Xn O {0,1}

where the non-linearitieare presentin the real variables,andx1 measureshe level of a single attribute, suchas

cost. Mathematicalprogrammingfor designhasbeenappliedto the fields of electronicengineering(Gebotys&
Elmasry, 1993; Hafer & Parker, 198B3¢e, Hsu, & Lin, 1989), chemicalengineeringlGrossmann1990; Pekny,
1992), and mechanicalengineering(Vanderplaats& Sugimoto, 1985). Constraint satisfaction approachesto
engineeringdesigninclude COSSACK (Mittal & Frayman,1987), MBESDSD (Wu et al., 1990), and MICON
(Birmingham, Gupta, & Siewiorek, 1992).

2.2 Multiattribute Optimization

A major difficulty in solving a designproblemis resolving conflicting attributes.Improving the level of one
attributeis usually only achievedat the expenseof other attribute levels. Trade-offsmust be madeamong the

! When discussing the value of an attribute, we use “level” to refer to the raw value of the attribute, and use “value” only to
refer to the output of the attribute’s value function.



attributes, but the exact information requitedmake suchtrade-offsis rarely available.Oneway to addressucha
problemis to generateahe Pareto-optimabket of designsand selectthe alternativethat best meetsorganizational

goals.

X, AX, Tuple of n design variableX = (x1,X2,..Xk,Xk+1,--Xn), Where
variables 1 to k measure the k attributes to be optimized; the
_ difference in attribute k between two alternatives.
D, d, Tuple of domains for design variables, such tiat 1d. ; a subset of

R, rk(X), n k(Xn)

d,.d 0d,.

Set of constraints; constraint for attribute k, such xhat rk(X);
constraint forxp that calculates the contribution xf to
attribute k.

z(X) Obijective function or search heuristic

S Set of solutions.

PX, PS A partition of X; set of partition solutions.

wg, W’ Weight associated with attribute k; subspace of weight values.

Vk(xK), V, AV,

Value of attribute k; set of attribute valu&ss {v1(x1),

v2(x2),...\.(XK)}; difference in the value of attribute k between

two alternatives.
Value of an alternative; value of alternative i; difference in the value

between two alternatives.
Contribution ofxp to v(V); difference in contribution afp to v(V)
between two alternatives.
Contribution ofxp to vk(xk); the difference in the value of attribute k
for two alternatives due tx.
Slope of a linear value function; slope at a given point; y intercept; y
intercept projected using slopg(xk) from point
corresponding tak.

v(V), v(a), Av

vn(xn), Av,,
Vnk(Xn), Avnk

mk, Mk(xk), bk, bk(xk)

X X Assigned level of variable, for alternative i; tuple of assigned design
variables,)_( = ()_(1,)_(2,...,)_(n).
Q(f, X, X, ooes %) Max or Min derivative of function f(x;,...,x) with respect to x

Table 2.1: List of symbols.

Pareto optimality and multiattribute design evaluation

An alternative pis Pareto preferredo alternative gif all attribute levels of jgare better thaor equalto thoseof g,

with at leastone being strictly better.An alternativedominatesanotherif it is preferred.The setof nondominated
alternativeshasedon Paretopreferenceis the Pareto-optimalset Identification of the Pareto-optimalset is also

known as vector minimization (Murty, 1983). The optimal design is guaranteed to beFar#ie-optimabket. The

Pareto-optimaketis usually found by enumeratioror by repeatedptimizationbasedon a single attribute while

changing the bounds on others. GOPfaworth & Birmingham,1993) produceshe Pareto-optimaket of designs
for electronicsystem problemsusing a combinatorial-optimizatiortechnique.Bradley and Agogino (1993) use
Pareto plots to choose components from a catalog.

2 When discussing the value of an attribute, we use “level” to refer to the raw value of the attribute, and use “value” only to
refer to the output of the attribute’s value function.



Decision-theoreticapproacheswhich provide accuratemultiattribute evaluation,and thus solve the problem of
specifying trade-off weights, have been appligth greatsuccessThurston(1991) demonstrateghe applicationof
multiattribute decisionmaking for selectingthe best designalternative.The utility of eachdesignalternativeis
evaluated,and the one that maximize utility is chosen.Evaluation basedon utility analysis requires detailed
guantitative analysis, which may be difficult if a design problem has a high degree of imprecision, such dlkseduring
early stages of thdesignprocessWood et al. (1990) note the difficulties involved in using utility analysiswhen
most designinformationis incomplete,andWood & Antonsson(1989) describean alternativeapproachbasedon
fuzzy analysis, which allows evaluation based on qualitative information.

In theory, a mathematical-programming or constraint-satisfaction tool that identifies Pareto optimal set could be uset
for optimal design. Once the set is identified, utility or fuzzy analysis could be used to setgatirtied alternative.
Unfortunately,the Pareto-optimalset is often extremelylarge for interesting design problems (Murty, 1983),

making generation of the entire set impractical. Artificial constraints can be adeelitethis setto a manageable

size, but adding these constraints may eliminate the optimal solution from the feasible set.

Multiattribute evaluation during the design process

Insteadof generatinghe entire Pareto-optimalset and then evaluatingdesigns,multiattribute evaluationcan be
performed during the design process.Techniquesfor formulating multiattribute (multiobjective) mathematical
programsinclude weightedevaluationfunction, goal programming,and compromise(Murty, 1983; Yu, 1989). A
weighted evaluation function combinti® level of attributesinto a single objectivefunction by using a weighted
sum of attribute levels:

z(X) = ZWK X,

The relative importance of one attribwiersusanother is determined by relative levefsthe weights. For example,

MICON and MBESDSD use a weighted evaluation function as a search heuristic, therefore reducing the
multiattribute optimization problemto a single-objective-functionproblem. In goal programming, constraints

assign goals for attribute levelndslack and surplusvariablesmeasureleviationfrom thesegoals. The objective
function, which is minimized, is a weighted summation of slack and surplus variables, with the relative lthesls of
weights specifying the relative importance of the goals. The compromise approach attempts to minimize the distanc
from an ideal state.

The compromise approach often fails, since there is no guaranteleetilasignalternativeclosestto the ideal will
be optimal (Yu, 1989). The main limitation of a weightedevaluationfunction and goal programmingis the
difficulty in correlating weight levels to the solutions produded: process for assignirigvelsto weightsdoesnot
guarantee the optimal design alternative will be identified

As an alternative, decision-theoretic techniques can be used in an iterative design algorithm (Sykes ab@jhite,
Eachiterationis considereda separatalecisionproblem,anda searchmethod,suchas hill-climbing, is appliedto
identify a good design. These techniques do not guarantee optimality, and construction of dandidy for each
iteration may requirea significantamountof effort to support.In Section3 of this paper,we describea design
technique, preference-directedptimal design, that performs decision-theoreticevaluation during design space
exploration, and solves a large class of problems optimally.

2.3 Decomposition and Optimization of Large Systems

The first significant technique developed for decomposition and solution of mathematigalmswas the Dantzig-
Wolfe decompositiorprinciple (Dantzig and Wolfe, 1960). This procedurds basedon the observationthat large
systems are often comprised of one or more independent blocks tiplemlipling equationslt performsa gradient
searchby iterating betweenthe set of independensubproblemsand a masterprogram. Sharedresourcesamong



subproblems are represented by constraints, and the master prograprisetoaeach, the subproblems a@ved,
and the master determines a new set of prices. Iteration proceeds until an optimality test is passed.

The two-level approachpioneeredby Dantzig and Wolfe hasbeenextendedand appliedby othersto solve a wide
range of problemsMesarovicet al. (1970) specify a generaltheory for coordinationof hierarchicalsystems.They
discussvarious coordinationstrategiedasedon known two-level mathematical-programmingpproachesWagner
and Papalambros (1993a, 1993b) and Michelena and Papalait®®ds 1995) specify decompositiorstrategiesor
a two-levelmathematical-programmingpproachto designlarge systems.Thesedecompositiortechniquesattempt
to partition a large probleminto subproblemssuch that the resulting two-level optimization problem can be
efficiently solved.

The abovetwo-level approachesre ideal for solving large, monolithic problems,but to apply them a single
problem representatiorincluding a single multiattribute objective function must be identified. Seo and Sakawa
(1982) andTarvainenand Haimes(1981) describeapproacheso eliminatethe problemsassociatedvith specifying
multiattribute objectivefunctionsby combiningmathematicaprogrammingwith decisionmaking. For example,
Tarvainenand Haimes use the SurrogateWorth Trade-Off (SWT) method (Haimesand Hall, 1974), which is a

technique for analyzing and optimizing noncommensurate attributes with single or migmnmakers,as part

of a higher-level coordinator fdrierarchical-multiobjectiv®ptimization (HMO). Although theseapproachesire an

improvement over standard multi-level optimization, they are still focosegblving a single monolithic problem.
In CE, multiple agents,eachwith their own perspectivejnteractto solve a problem, so it is not reasonabldo

consider such a problem as a single one.

2.4 Multi-Level Optimization for Concurrent Engineering

Haimes and others presentsseveralextensionsto HMO that attempt to addressthe needsof CE: hierarchical
overlappingcoordination(HOC) (Macko and Haimes, 1978; Haimeset al., 1990), and hierarchicalholographic
modeling (HHM) (Haimes, 1981; Haimes et al., 1990). Since alternative decompositiassngle HMO problem
may be feasible and desirable, HOC coordinates multiple decompositions. In other sitoatitipte models,with

somesharedvariablesand objectives,may be required,so HHM coordinatesmultiple HOC modelswith shared
variables and objectives.

Barthelemy (1983) implements a multi-level optimization approach for CE basedropasalby Sobieski(1982).
Coordinationover designactivitiesin severaldisciplinesis achievedby analyzingthe sensitivities of subproblem
objective functions and design variables to changes in coordinatitables.Basedon the sensitivities,new values

of coordination variables are determinadd subproblemsre resolved.Building on this work, Sobieskiand others
describe an approach to discipline-based decomposition (Bloebaum et al., 1992) and concurrent subspace optimizati
(CSSO)(Sobieski, 1990). Renaudand others extendthis approachto including sequentialglobal approximation
(Renaud and Gabriele, 1993) and design variable sharing among disciplines (Wujek et al., 1995).

Azarm and Li (1988) propose an appro&asedon model coordination(Schoeffler,1971) and global monotonicity
concepts(Papalambrosand Wilde, 1988). They discussthe applicationof sensitivity analysisto determinethe
impacts of parameter changes on global value (Li and Azarm, 1989).

The work of Sobieski and others is similar to that of Azarm and lthat both focus on solving a discipline-based
decomposition of a single problem. These approache®tisupportthe preferencesf discipline agents.Although

HHM provides a method for capturing and applying discipline preferences, it dogowide a frameworkfor agent
hierarchy:it only supportspeeragents.This approachs similar to agent-basegdystems which will be discussed
next.

2.5 Distributed Atrtificial Intelligence

The formulation of a design problem, as previowd#gcribedcanbe solvedby constraintsatisfaction(Mackworth,
1987). An extension of this approach, distributed constraint satisfaction, allows a problem to be solnethioyka
of agents (Yokoo et al., 1990). Each agent is given a ser@blesto assign,andtheseassignmentsnust satisfy



existing constraintsamong agents.Consistencyand backtrackingalgorithms are two methodsfor solving these
problems. Extensions to constraint satisfaction, which are useful in solving design problenadBamingham,
1994), are interval propagation (Davi®87) and dynamicconstraintsMittal and Falkenhainer1990). Yokoo and
Durfee (1991) investigateoptimization aspectsof distributed constraintnetworksfrom a group decisionmaking
perspective Although this work does not addresshierarchical organizations,it does identify several possible
strategies for defining the optimal solution for peer-to-peer organizations, and describes sdairedmjigorithm for
optimizing the solution of the problem.

A numberof researcherbaveidentified the needto organizenetworksof agentsfor problemsolving. Fox (1981)
studiesresults from managemenscienceto identify efficient agent organizations.Corkill and Lessor (1983)
investigate organizational structuring to provide coordination among agents in a network. Ishida (199Ppstates
achieve efficient agent organizations, methods are needed for decomposing and distributingdfoalan agentto
mergeits goalswith others.Durfee and Montgomery (Durfee and Montgomery, 1991; Montgomery and Durfee,
1993) discussthe benefitsof forming hierarchicalorganizationof agentsbasedon sharedbehaviors Although the
mechanismgor forming and controlling hierarchicalagentorganizationsand associatedbenefits,identified by the
above research are applicable in general to our weglgre more concernedvith optimizing the performanceof an
existing organization where the desired behavior can be described by preferences and constraints, which allow efficiel
problem representatiorand solution. Our work is closerto that of Pan and Tenenbaum(1991), who discuss
developingagentframework for enterpriseintegration. This latter work, however,doesnot addresshe needfor
multiattribute decision making.

In many agent-based system, an agent evaluates a payoff matebetminewhich actionto take. As demonstrated
by Horvitz (1988) and Deanand Boddy (1988), preferencegutility theory) canbe usedfor evaluatingalternatives.
These specifiapproachespply utility theoryto metaleveldecisionmaking, accountingfor not only the expected
value of an alternative but also the value of resourcesxpendedn making a decision.This work is focusedon
determining the actions of an individual agent, as opposed to a group of agents.

Ephrati and Rosenschein (199®)scribea hierarchicalcoordinationapproachreferredto as non-absolutecontrol. A
subordinate agents attempts to achieve the goals asdigreedupervisoragent,but must also make use additional
relevantinformationthat is availableonly to the subordinate.The motivation for this researchis to preventa
disaster, such as if an agent on Earth assigrggahl to a robot agenton Mars, and completionof that goal would
result in the unforeseen destruction of the robot agent.

In our approach,contractingof preferencesnandateghat subordinatesadhereto the preferenceof supervisors,
althoughsubordinatesre free to chooseamongalternativesthat a supervisoris indifferent to. Since subordinates
have access to supervisor’s preferences, the subordinate is in a gosfienform multiattribute evaluation,from a
supervisor’'spoint of view, of all of the subordinateslternativeactions. If the problemis well characterizeda
subordinate would never select an alternative that would be detrimental to the supervisor. In additisnmehat
solving additional iterations of a CE problem is practical, so that preferkntalledgegainedduring solution of a
problem can be incorporated into a subsequent solution of the same problem.

2.6 Agent-based systems for Concurrent Engineering

Severalagent-basedystemsfocus on the needsof cooperativeproblem solving amongdomain experts.PACT
(Cutkosky, et al., 19935 a testbedfor building large-scaledistributedCE systems whereagentsare groupedby
discipline and communicateghroughfacilitators. First-Link (Park, et al., 1994) emphasizesollaborationamong
specialistand the developmentof hierarchical design representationsAgent communicationand coordination
mechanisms allow members of a design team to work concurremiiffeaént levels of detail. DesignWorld(Huyn,
et al., 1993)is an automatecengineeringenvironmentfor the designand manufacturingof digital circuits. In this
system, a facilitator accepts an address-free message containing ampkiformedfrom an agent,androutesthe
task to the appropriate agent(s), possibly decomposingé#fein the processThe currentimplementationallows
communication ocompletedesigns part of a design,or constraintsrestrictingthe set of feasiblealternativesThe
focus ofthe abovesystemsis on knowledgerepresentatiomnd communicationfor a peer-to-peeproblemsolving
network; there is no concept of hierarchical control or preferences in these systems.



Some agent-based system have attempted to address the need for hierarchicahdgmefdrencesDFI (Werkman,
1992) is a CE tool for steel-connection designsystemdesignerierarchicallycontrolsa network of agents,each
of which is a domain expertwith its own preferencesThe preferenceof the system designerare limited to
specifying a single attribute to optimize, while an ad hoc scheme for represagginigreferencesllows agentsto
negotiateover valuesfor the remaining attributes. In ACDS (Darr and Birmingham, 1994), a system agent
distributes its preferences to catalog agents, who uses these preferences to select components. In this sistem, ther
no ability for catalogagentsto apply their own expertise(preferences)AGENTS (Huangand Brandon,1993)is a
object-orientedProlog-basedanguagefor cooperatingexpert systems.To implement concurrentengineering,a
system designer interacts wighdirectoratedesignagent,who controlstwo agentcommittees,comprisedof design
agentsand analysisagentsrespectively.Thereis no conceptof preferencesn AGENTS. Although thesesystems
attemptto addresghe needsfor hierarchicalcontrol and preferencesthey lack a uniform approach,and thus are
limited in their capabilities.

As hasbeendescribedneithermulti-level optimization nor agent-basegystemsprovidesa generalframework for
hierarchicalpreferencesWhat is neededis an approachthat providesglobal coordination,similar to multi-level
optimization, and exploits local expertise,similar to agent-basedystems.In the next section, we presentour
approach to representing designer preferences, and in Section 4, we discuss fepregestatiortan be appliedin
solving hierarchical CE problems.

3.0 Preference-Directed Design

We now introducean approachio engineeringdesignthat emphasizesipplicationsof preferencesluring the design

process (D’Ambrosio and Birmingham, 1995). The apprddehdspreviousresearchin the areasof utility theory,
constraintnetworksand constraintpropagation and combinatorialoptimization. To solve the problemsassociated

with defining and applying preferences during the design process, we have chosen a formal model of preferences bas
on utility theoryandhavedevelopeda procesdor applyingthis modelto solve problemsof reasonablesize. The

model is referred to as @amprecise value functigrand is created by specifying preferences amasugpaetof design
alternatives. This function specifies a partial order over all dedtgmativesThus, from incompleteknowledgeof

all design alternatives, a value function is created that captures a significant portion of a designer’s preferences.

To solve large problems, we rely on problem-solving techniquesasjgartitioning, therebycreatingan additional
problemrelatedto identifying the value of a subsetof a design.Partitioning reducesthe overall complexity of a
problemby decomposingt into a numberof subsetshat areindependenandcanbe solvedin isolation. In our
approach,an imprecisevalue function definesa preferencestructurethat ranks design alternatives;however, if
partitioning of desigrvariablesis performed,imprecisevalue functionsfor eachvariable must be derivedfrom the
global imprecisevalue function. Thesedesign-variablevalue functions are required if preferential decisionsfor
partition alternativesareto be made. We identify design-variablevalue functions from the objective/attribute
hierarchy, which providethe ability to relatethe impactof designdecisions(e.g, the selectionof a CPU) to the
overall value of the desigithe key contribution dahis researchis the theoryfor deriving the value function for a
subset of a design from the value function of the entire design.

In additional to that theory, we have developed two preference-dirgestghalgorithmsfor applying the modeland
theory during the design process. The first algoritAraference-Directed Optimal Desigdentifies a seof optimal
solutions forproblemsof small to moderatesize. Whencomparedo a similar algorithm basedon identifying the
Pareto-optimaket, our test resultsindicatethat our algorithm extendsthe classof problemsthat can be solved
optimally. The secondlgorithm, Preference-Directedvolution finds good solutionsto problemsof any size. By
providing a meanso solve problemsregardles®f complexity, we believewe havedemonstratedhe flexibility of
our preference model and theory.

The main contributions of the research presented in this section are:

« Development of theory and heuristics for identifying the value of a design variable with respect to the value
of the entire design, thus increasing the ability to applying preferduncieg the design process.
« Demonstration of how this capability extends the set of designs that can be solved optimally.



e Demonstration that our preference model is flexible, in that it can be used in conjunction with different
optimization algorithms, thus providing solutions to a wide range of design problems

3.1 Modeling Preferences

Many problemsare characterizedby multiple conflicting attributes,and in many casesa multiple-attributevalue
function can represent the preference structure of the problem. Two condition must be matlfeattribute value
function to exist. The first condition is a monotonicity condition, which states if the value of one aftripudees
while there is no loss; valuefor otherattributes,preferencenust increase The secondis a continuity condition,
which states if & g f_ a,, thentheremust be a uniquepoint wherethe decisionmakeris indifferent betweenthe

increase fromato g and the increase fromta a.

Onedrawbackof representingpreferencesy a multiattribute value function is the amountof work requiredto
construct the function, which is due to the multi-dimensionality of the problem. In many casasotinatof work
requiredcan be reducedby decomposinghe value function into subsetsof attributesthat are independenpf the
others.Krantz et al. (1971)showthat if eachattributeis preferentiallyindependentf its complement,the value
function can be decomposed such thatv(v,, v,, ...V,), wherey, is the attribute value function fattributek. An
attribute k is preferentiallyindependenif the weak order specifiedby vk is independenpf the level of other

attributes. A physical relationship may exist between preferentially independent attiileytasconstraintr [1R);
it is only requiredthat the preferenceorder for attribute levels be independenpf the others.In the caseof all
attributesbeing preferentiallyindependent,attribute value functions can be constructedindependentlyof other
attributes, resulting in a significant reduction in the work required to construct the overall function.

The most desirable form of a decomposable value funitiam additive value function. An additive value function
is a weighted sum of attribute values, such that the value of an alternativeattiibutes is given by:

v(V) = ZWk Vie(%,) (3.1)

wherew is the tradeoff weight for attribute andvi(xk) is the value produced by tivalue function of attributek.

Keeney and Raiffa (1976) describe the process for determining the attribute value functions and tradeoffrisights.
form of the multi-attribute value function requires that the attributesuiaally, preferentially independemt set of
attributes is mutually, preferentially independent if every subset of these attributes is preferentially indepetsdent
complementary set. It can also be shown that in genegathipair of attributesis preferentiallyindependenof its
complement, then Eqn. 3.1 is valid (Gorman, 1968). Urdikedardvalue functions, the additive value function is
unigue up to a positive linear transform.

Imprecise Value Functions

In addition to decomposing a multi-attribute value function, the amount of quantitative anadysisdto construct
the function canbe reducedby using an imprecisevalue function. Imprecisely Specified Multi-Attribute Utility
Theory (ISMAUT) (White et al., 1984) createsa partial orderbasedon preferenceaelationshipsamonga subsetof
alternatives. ISMAUTusesa weightedsum of attributevalues.Thus, the value of alternativea; is given by Eqn.

3.1. A preference statement of the forapi$ preferred t@” implies an inequalityin the spaceof possibleweights
according to the following relation:

Zwk[vik(xk) - vjk(xk)] >0
According to this interpretation, the statement thas preferred t@; means thathe trade-offweightsare suchthat

the total weightedvalue of g is at leastas greatasthat of g;. Direct pair-wise preferencesamong attributesalso
translate to inequalities, such as:
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Furthermore, all weights must be positive and their sum must be unity:

Ok, w, =20

Zwkzl

All these inequalities confine the weight space to a subspécthat satisfies the inequalities. Thus, from pair-wise
preference statements, ISMAUT determines ranges of attribute weights consistent with designer’s preferences.

The imprecise value functiorfV) can order pairs othe¢han thosespecifiedby the designerz; is preferredto g if,
for every possible vector afeights<wi, wa, ..., wg> within W', the value of g; is greaterthanthe value of g,
i.e.,

Min ZWK[Vik(Xk)_ij(Xk)] >0, W, oW

This relation can be tested for every pair of alternatives that the designer has not already stated a preferéinee. Thus,
preferences specified by a designer create a partial ordealbdesign alternativegndthis partial order canidentify
the nondominated set of design alternatives.

ISMAUT provides the means foartially ordera set of alternativesusing a small set of preferencestatementsand
thus identify a set of nondominated alternatives guaranteed to ctimtaptimal one. This partial order is stronger
than Pareto preferencein that therewill be fewer alternativesin the final nondominatedet. In fact, without any
preference statements, the nondominated set produced by ISMAUT will be the Pareto-optimal set.

ISMAUT Tools

We have developeda software package ISMAUT Tools, to supportdecisionmaking basedon imprecisevalue
functions. ISMAUT Tools provides a library of routines for defining attribuééternatives and preferencesand for
performing dominancechecksbetweenalternatives.In addition to the library, a text-basedinterface has been
developed. The text-based interface allows ISMAUT Tools to be used in isolation as a demgioritool, andthe
library of routines provides other applications the abiityperform dominancechecksbasedon an imprecisevalue
function.

Our experiencenith ISMAUT Tools indicatesthat decisionmaking basedon an imprecisevalue function is both
practicaland desirable Although eachdominancecheck requiresthe solution of a linear program, our test cases
indicate that selection problems with over 1000 alternatives can be solvedtimleasminute when executecon a
standardUnix workstation.In one test case,nine pair-wise preferencestatementsallowed a Pareto-optimalset
containingover 350 alternativesto be reducedto a nondominatedet containingfive alternativesn less than one
minute. Reducingthe set of alternativesfrom 350 to five allows a decision maker to focus analysis efforts,
improving the ability to identify the best alternative.

3.2 Optimization Techniques

Given a preference structure modeledalmimprecisevalue function, thereare severalwaysto apply preferenceso
select the best alternative. The most straight forward approach is to generate the entire set of feasible alternatives, a
usethe ISMAUT Tools text-basednterfaceto evaluatepairs of alternativeswith the imprecisevalue function to
identify a nondominatedset of alternatives.Although only a small set of preferencestatementsare requiredto
construct the imprecise value functigenerationof all alternatives angerformingthe necessargiominancechecks
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are not practical for many problems. To solve this problem, we propose to use the imprecise value fyprcinen to
inferior pathsduring design-spacsearch(D’Ambrosio and Birmingham, 1995). Many designalternativescan be
eliminated from consideration before they are fully constructed, thus reducing the complexity of the design process.

In this section, we describe two main concepts related tajpnoachunconstrainediariablesandisolating design-
variable value functions.

Unconstrained Variables

Constraint-graplanalysisis the processof examiningthe feasibility and preferentialdependenciebetweendesign
variables. A graph describing the dependencies can be constructed where the nodes are design variables and the arc:
constraints. Problem decomposition can be achieved by partitioning thesyipihat nodesconnectedby arcsare
placed in the same patrtition. The constraint graph given in FigureaB e into threesubsetsof designvariables,
{x1, X2, x3}, { X4, x5}, and {xg}. Design decisions related to feasibility for a subset lsamadeindependentlyfrom

the assignment of variables in other sets, since ikame constraintconnectingthem. The third subset,{xg}, is a
specialcase,becausét containsonly one variable. The variablein this subset,xg, is unconstrainedsince the

feasibility of the assignmentioesnot dependon the assignment®f any othervariables.Thus, dominancechecks
between possible assignments of an unconstrained design variablepgafobraed which, if successfulreducethe
size of the design space by eliminating inferior alternatives.

Dynamic constraint-graphanalysisimprovesproblem decompositiorduring search.For the graphgiven in Figure
3.1, the assignment of variabbegandx3 is constrainedvia constraints'] andrp respectively by the assignment

of x1. If the current state of theearchprocesss suchthat x1 hasbeenassignedthen the feasibledomainsfor x2
andx3 cannotbe impactedby any additionalassignmentsDomain-consistencgheckscan be performedbetween
xjandx2 and betweem; andx3 to identify the assignments g andx3 that are consistent with tressignmenbf
x1. With their domains limiteds2 andx3 become unconstrained variables, alininancecheckscan be performed.

Similar to the methods proposed by Dechter and Pearl (1987), dynamic constraint-graph analysis cao loedased
the assignment®f variablesduring searchsuch that the numberof unconstrainedrariablesencounteredalong a
search path is maximized.

rl r3

r2

Figure 3.1: Constraint graph with variableg,...Xg and constraintsy,r2,r3

Isolating Design-Variable Value Functions

An imprecise value function, created by specifying prefereaeescompetingdesigns,s only valid for comparing
complete designs, but evaluation ofwbsetof a designsis often required.Partitioning a problemdictatesthat the
value of prospectivesolutionsfor a partition be comparedFor example,in solving a partition, the bestpartition
alternative musbe found. To identify this alternative,a value function reflecting the value of the partition to the
entire design is required. To obtain a value function for a partition, the global value function must be mathematically
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decomposetiinto valuesof the designvariablescontainedin the partition. Similarly, when evaluatingalternative
assignments for an unconstrained design variable, the value of the variable to thdesigimmust be the basisfor
comparison.To supportthis capability,ISMAUT must be extendedo allow comparisonsamong alternativesfor
subsets of a design. We now describe an approach for comparing assignments of unconstrained variables.

An additive attribute k is defined as an attribute with a level given by the summation of attribute levels
corresponding to design variables:

X =1 (X) = Z (%)

One interpretation of the above equation is theﬁ,;kifxn) % 0, x, is a subsystem of the design, and in isolatamn

be meaningfully characterizedby attribute k, e.g. cost. A linear attribute value function for attribute k can be
expressed in slope-intercept form:

V(%) = m X +Db

Corollary 1% If for a given problem:

¢ a variable ¥ is unconstrained

« attributes are additive and mutually preferentially independent
» attribute value functions are linear

Then the assignment of variablg is independenbf the assignmenof all other designvariables,and the optimal
alternative will have an assignment fgf such that m(xp) is maximized, where

Vn(xn) = Zwk Vnk(xn)

Vnk(xn) = m< rnk(xn)-l-ﬁ
When the conditions of Corollary 1 are satisfied, thangein total designvalue, Av, with respectto assignments
X and X;,, is equal to the change in design variable valwg,thus X ,f X;, if Min Av, > 0.

Theorem 2: If for a given problem:

* a set of variables is unconstrained
« attributes are additive and mutually preferentially independent
» attribute value functions are non-linear
Then the optimal assignment to variabjgixdependent on the assignment of other design variables.

Corollary 1 states that under restrictive conditions védee of a designvariablecan be found independenthyof the
values of other design variables. Theorem 2 states that if the restrictions on attribute value functions are relaxed, the
the value of a variable cannot be conveniently isolated from the assigmmede othervariables.This situation

s Decomposing a value function into values of design variables should not be confused with the standard value-analysis
decomposition of attributes into preferentially independent sets.

4 Development and proofs of Corollary 1 and Theorem 2 is given by D’Ambrosio and Birmingham (1995).
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is complicatedby the fact that multiple assignmentsnay still be possiblefor other individual variables,so the
calculation of a design variable value depends on the range of attribute and variable assignments still possible.

To performchecksof this latter type, AV, canbe estimatedor boundedby a form of sensitivity analysis.If the
difference Ax,, is small, then the following first-order model, or other higher-order models, closely estiwates

Iv(X,)
AVn = TAXn
In our applicationsx, is an discrete variable representing selection of a part or a topology, therefore theirthange
cannot be assumed to be small. In addition, traditional ISMAUT dominance checks only eliminate an alteinative

is guaranteed to be dominated, so the above estimation approach may not be desirable in that it aegiepasate
from this philosophy.

To remedy this situation, weroposethe following checkthat conservativelybounds Av,, guaranteeinghat only

dominatedalternativeswill be eliminated.Recallthat the ISMAUT dominancecheckfor a variabledetermineghe
changein total designvalue with respectto the changebetweenthe worst possible value of one assignment
comparedto the best possiblevalue of another.If the changeis positive, Av, = 0, and the first assignment

dominates the second. In the following calculation, the minimum or maximum vatdé/atx, boundsAv,,,

@Min (V, Xn)AXn if AXn >0

Av, =[]
EQMax(V, Xn)AXn if Ax <0
where,
7 X
QMin(Van) = Minimize dV(X) = Zwk Vk(rk( ))
an dxn
Subject to:
x Od,
w, [JW’

ai is current range of possible assignments for varigldedQ,,,,(v,x,) is similarly defined.Thusif Q(v,x,) Ax,
2 0, thenX;,f X; .

Calculation ofQ(v,x,) Ax, is not performed directly, sindlis expressiorcanbe decomposedhto subexpressions
that are easierto determineFirst recall that the value assignedto x, representsa choice amonga finite set of
elements, e.g., the selection of a part. When evaluating the difference bemwezssignmentsAx, only indirectly
takes part in the calculation, since #etual calculationis basedon attribute changesAr . (x,), that areinducedby
Ax,. Thus an equivalent expression with fire(x,) as parameters is evaluated to determil(ex,) AX,,

Q(v,x) Ax, = Minimize Zwk Q(vk,rnk)Arnk(xn), wOwW'
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In addition, the calculation d®(v,,r,,) Ar, «(X,) canbe simplified dependingon the type of attributesandattribute
value functions. Consider the following chain rule expartsidf2 (v,,r,) Ar, (X.),

Q(vk,rnk)Arnk(xn) = Minimize ﬂﬂArnk(xn), x Od

1
rk r.nk
If a designproblemis characterizedby additive attributes,then drk/ﬁrnk =1, andif the problemalso haslinear
attributevalue functions, then dvk/drk = m,, wherem, is the slopeof v,(r,). Theseconditionsare identical to
those specified in Corollary 1, as is the following linear progranh¥pr

Av, > Q(v, rnk)Arnk(xn) = Minimize Zwk mAr,,, wIwW

The above linear program has the desirable propertythatformation on designvariableassignmentsptherthan
for x,, is required to solve the program.

With nonlinearattribute value functions, dv, /dr, is not a fixed number, and dependson the value of r,. If
oV, /0r, is first bounded bf2(v,1,), then a problem with additive attributes and nonlinear attribute Vahations
can be solved by the following linear program,

AV, 2 Q(v, rnk)Arnk(xn) = Minimize ZWK Q(V,r) Ar (%), wOW!

OnceQ(v,,ry) is solved,the abovelinear programdoesnot requireany information on designvariableassignment,
other than fox,. FurthermoreQ(v,,r,) is easily solved, since constructioh v,(r(X)) by the methodof specifying
indifferencepoints resultsin v,(r (X)) being piece-wiselinear, allowing quick determinationof the maximum and
minimum derivatives over some rangeXof

Returning to linear attribute value functioms|axing the constrainton additive attribute requiresthat dr, / or., be
bounded byQ(r,,r,), since ﬁrk / 6rnk dependon the levels of ry(x) for eachdesignvariablex; that contributesto
r(X). If drk/o"rnk is bounded, théollowing linear programsolvesproblemswith nonadditiveattributesand linear
attribute value functions,

n

Av, > Q(v, rnk)Arnk(xn) = Minimize Zwk mQ(rk,rnk)Arnk(xn) wOw'

Finally, removing preferential-independence restrictimeseasegshe complexity relatedto defining value functions
and performing dominancechecks.If attributesare not preferentialindependentcompletedecompositionof the
problemis not possible.Subsetsof attributes,that areindependenbf their complementcanbe identified. Value
functions for these subsets can be determiaedthe overall form of the global value function identified. For this
situation, assessmentf value functionsand dominancerelationswill require more effort. Thesecalculationsare
similar to nonlinear attribute value functions, but they are harder to solve.

® This expansion is only valid if, = f(r,(x), ..., LX), where the only function ihthat depends or, isr,. If r, =
f(ru (%), ihg i (X)), -f, (X)), wherer,, (X) tor,,, (X,) depend orx,, then a similar, but slightly more complex
expansion must be applied.
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Table 3.2 summarizesariousforms of AV, dependingon the type of attributesand attributevalue functions. In

most problems, the attributes will not all be of the same type/dndis a combinationof the forms given Table
3.2.

As an example, consider a network of three resistors characterized by two attributes, resistanse Resistorsx;
andx, areconnectedn parallel, and this parallel combinationis connectedin serieswith resistorx,. The total
resistance of the network is given by

nLr
rn+r,

while the total cost of the network is the just the summationof individual resistor costs. Assume that both
resistance and cost have linear value functions. Total cost is an additive attribute, but total resistance is not.

R= +1,

Attributes | Attr. Value Av, Depends on
Functions
Attr. Design
L evels Vars.
Additive Linear Z w, m Ar, (x) No No
Additive Non-linear Yes No
ZWK Q(Vkvrk)Arnk(Xn)
Non-additive Linear No Yes
Z W, m Q(rk' rnk)Arnk(Xn)
Non-additive Non-linear Yes Yes

Z w, Q(v,, rk)Q(rk , rnk)Arnk (x,)

Table 3.2: Properties of Av, for mutually preferentially independent attributes.

The value of, to the design is given by the following value function,

Av, = Min df(l)Axl WmCAcl(x1)+W,m,Q(R,rl,rzy)Arl(xl), w OW'

where,

r; O

tl
Q(R1,.1,) = Min/Max % = Min/Max WB x 0Od
1

andc, is the cost ok, andm, andm, are attribute-value-function slopes.

To find the nondominated set of assignments{fothe interval of nondominata@sistancdevels possiblefor x, is
needed, since the impactxqfon the total resistance changes dependinipenesistanceof x,. The resistancevalue
of X; is not needed, since its impact on the total resistance is additive. Cost valyenfbg, are not neededsince
cost is an additive attribute.

In summary,unlike techniqueghat decomposevalue functions so that function creationis simplified, we have

presentedhn approachthat decomposesalue functionsto improve efficiency of the problem solver. For a given
design variable, our approach identifies a subset of attributes and vatiegttlerist be consideredvhen performing
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dominancechecks.Dependingon the type of problemto be solved, varying degreesof decompositioncan be
achieved. We now present several test cases to illustrate our technique and demonstrate its benefits.

3.3 Optimization Algorithms

We now overview two algorithms for solving configuration design problems. Thealfistithm, preference-directed
optimal design providesoptimal solutionsfor small to moderatesized design problems. The secondalgorithm,
preference-directe@volution provides good solutions for large design problems. Both algorithms rely on an
imprecise value function for evaluating the desirability of a design.

Preference-directed optimal design

Preference-directedptimal design(D’Ambrosio and Birmingham, 1995) facilitates multi-attribute decisionmaking
while minimizing the enumeration araluationof designalternatives An imprecisevalue function is createdby
ranking a random sample of design alternatives. Preference-diseetazh which decomposethe value function for
decision making, uses combinatorial optimization and constraint propagation to explore the design sgentfand
a set of nondominated solutions.

PD_OptDesignf: X, R, D; out: S) {
GenerateRandSampia( X, R, D; out: S);
RankSampléf: S; out: V);
BuildConstraintNetworkf: X, R, D);
StaticPartitioningifh: X, R; out: PX);
for eachpx LPX {

PD_Search: px, v; infout: ps, D);
CombinePartitionsf: PS out: S);
}

Figure 3.2: Preference-directed optimal design algorithm

Figure 3.2 describeghe preference-directedptimal designalgorithm. Domain knowledgedefines designvariables
(X), variable domains (D), and constraints (R). By making random variations in an objective function,
GenerateRandSample creates a random savhpasibledesigns,S, whereeachdesignis characterizedy a set of
non-commensuratattributes.RankSamplas an interactiveprocedureor specifying attribute value functions and
rankingthe elementsn the sample.The sampleis eithertotally or partially orderedfrom pair-wise comparisons
betweenelementsin the set. The attribute value functions and preferencesamong sample elementsimply an
imprecise value function, v, which measuresdesign value during problem solving. BuildConstraintNetwork
generatesa constraint network for constraint propagation during search (design) (Mackworth, 1987) .
StaticPartitioningexaminesthe constraint connectionsamong design variables, and divides X into sets, P1,

P2,...Pj, forming independensub problems,if possible (seeunconstrainedrariables,Section 3.2). Preference-
directed search, PD_Search, finds solutions for each partition by performing a branch-and-bourd Headssign
space,and limits the complexity of the searchby performing constraint satisfactionand pruning domains of

unconstrained variables. CombinePartitions integrates partition solutions into the final set of solutions.

Preference-directed evolution

Certain design problems are so large agrécludedthe use of an optimal algorithm. In this casethe optimization

problem becomesne of finding a good solution as opposedo an optimal one. For this classesof problems,we

havedevelopedan algorithm, preference-directedvolution, basedon evolutionarystrategiesWe have chosenthis

approach because of the ease of formulating a configuration design problem as an evopridxhany, and because
of the desirable optimization properties of evolutionary strategies.
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An evolutionary algorithm executdsr a userspecifiednumberof generationgvolving a populationof solutions.
For a givenpopulationsize N, the algorithm startsby randomlygeneratingN alternativesolutions, any of which
may not be feasible. The population is copied to creatt W’ of alternativesandeachmemberin N’ is mutated.
The two sets, N and N’, are then combined, and a fithess functions selects the best N altéoratihescombined
set. This processs thenrepeatedevolving the populationwith eachiteration. An evolutionaryalgorithm is not
trappedby local optimums, sinceeachmemberof the populationrepresentsa solution in a different part of the
solution space.

To solve a design problem using an evolutionary strategy, the problem muaspbedinto the characteristiceof a
member and into the fithess function. For preference-directed evolatinamberof the populationis definedby a

vector of independent design variables. When the algorithm starts, each variable in the vector is randomlyassigned
a level in its respective domain. During mutatiah|eastone designvariableis assignedo a differentlevel in its
domain. Insteadof using a standardweighted evaluation function as the fitness function, constraintsand the
imprecise value function determiriee fitnessof member.The populationis dividedinto two classesfeasibleand
infeasible, and members in a class are sorted based on dominance checks.

3.4 Test Cases

In remaining portion of this section we present a summary otéstrasesBoth test casewheresolvedusing the
preference-directe@ptimal design algorithm, and one was also solved using the preference-directecevolution
algorithm. We performed these test cases to gain some insight on the performance and flexabitipppfoach A
summary of the two cases is given in Table 3.3.

Computer HWSW
Board Codesign
Level of Difficulty Moderate Moderate
Attributes Additive Non-additive
Attr. Value Functions. Linear Linear
P-D Design Results Excellent Undetermined
P-D Evolution Results - Good

Table 3.3; Evaluation of imprecise value functions for four test cases

Computer Board Design

To evaluate the performance of iamprecisevalue function againstgeneratiornof the Pareto-optimaket, a suite of

test caseshasedon a computerdesignproblem was developed.The function specificationfor eachtest caseis
identical, but thenumberof parts(domainsize) availableto implementthe functionsrangesfrom 29 to 463. The
imprecise value function was created from linear attribute value functions and ranking a random sample of 10 feasibl
alternatives.The sameproblem solver was used for all test cases;the only difference betweenruns is how
evaluations were performed (Pareto preference or imprecise value function). The results are given in Table 3.4.

One important finding from this suite of tests is that for problems of any reasaiadleolving the problemwith

an imprecise value function requires less time to fisdtaof nondominatedsolutions. Eachdominancecheckbased
on designer’s preferences requires the execution of a linear program to detdimid®/. For trivial problems,the
extra time required to solve the linear programs nesyltin the solver executinglongerthan one basedon Pareto
preferenceFor problemsof any significance the extrapruning capability provided by preference-directedptimal
design dramatically reduces execution time.
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J29 J63 J77 J90 J109 J194 | J465
# Feasible 103 1011 1012 1014 1016 1021 | 1028
Alternatives
Pareto
Preference
# Solutions || 28 379 1698 | 3495 NA NA NA
Time (sec.) 0.7 23.4 |]310.6 | 1303.4 NA NA NA
Imprecise
Value Function
# Solutions || 2 2 4 4 4 24 28
Time (sec.) 1.2 2.8 4.4 5.1 5.5 39.3 |55.2

Table 3.4: Comparison of dominance checks based on Pareto preference and Preference-Directed Design.

A secondfinding is that the setof nondominatedsolutionsis drastically reducedby dominancechecksbasedon
designer’spreferencesFor the test case J90, Pareto preferenceproduces3495 nondominatedsolutions, while
designer’s preferences produces only 4. The problem solver wouldolve any of the Pareto-preferenceaseswith
more than 90 parts, since the memory required to maintain all of the solutions was too large. To quivbléns
attribute boundswould haveto be introduced,thus potentially eliminating the optimal solution from the Pareto-
optimal set.

Hardwar e/Software Codesign

To add further evidence dffie benefitsof preference-directedesignover approachedasedon Pareto-optimality we
investigated the design afreal-timeembeddedontroller (D’Ambrosio et al., 1993; Hu et al., 1994; D’Ambrosio
andHu, 1994).In this type of a system,interactionsbetweenhardwareand software must be accountedfor. The
function specification for this problem included nine software functions to be supported, and requaenbthatiter
board with enough RAM, ROM, and CPU throughput be configured. Only branch-and-bound dominancevefeecks
enabled for this test case; the nataféhe problem’sconstraintsrequiredthat the implementationof the algorithm

be extended if constraint propagation and unconstrained variable demaing wereto be enabledwhich we have

not accomplished at this time.

The initial results of this test case appeatbe disappointing,in that a Pareto-optimabpproachappearedo out-

perform preference-directed design. Further investigation showetthéhsdurceof the poor performancevas dueto
branchandboundin general,andnot the imprecisevalue function. Disabling the imprecisevalue function, and
performing Pareto-optimabranch-and-boundhecksrequiredmore time thanfull generationof the Pareto-optimal

set. We have concluded that the performance of branch-and-bound checks can be improved by adding simple heuristi
to guidethe assignmenbf designvariable,suchthat the variableswhich determinemost of the level of global
attributes are assigned first, as opposed to last.

In addition to the above test, we also solved this problem usingvalutionaryalgorithm. Our motivation wasto
comparethe resultsof the evolutionaryalgorithm to the optimal solution, which was found by the preference-
directed design algorithm. The initial population for the evolutionary algorithm is chosen randoinfyesecuting
the algorithm several timegypical resultscan be identified. Running the algorithm for fifty generationgypically
identified most of the nondominated designs found by the optimal algorithm. Thisleasiglis to believethat the
evolutionary algorithm will produce good results for larger problems, which cannot be solved optimally.

4.0 ACDS in a Multilevel Environment (ACME)

The theory and algorithms developed in our previous work here focugedasing conflicting objectivesfrom the
viewpoint of a single designer,but in reality, a designerrarely works in isolation. We have chosento extend
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preference-directed design to address CE probléfesiow describehow the preferencenodel andtheory developed
for preference-directed design can be combined with an existing CE tool, ACDS, to create WwhibtE;oordinates
a set of agents in a hierarchical organization.

Many decision-makingproblems are solved by subcontractingor delegatingparts of a task. The processof
subcontractingwhich hasalreadybeenshownto be viable approachto subtaskdistribution (Davis and Smith,
1983), createsa hierarchical,decision-makingorganization. Coordinationis accomplishedby allowing general
contractors, who have a global perspective, to provide direction to subcontractors, who have local expertise.

We believethat it is practical and desirableto direct a subcontractor'sactionsby explicitly stating a preference
structurethat the agentmust follow. Justas any contractdescribesa set of constraintsghat must be met for the
contract to be fulfilled, a contrashouldinclude a preferencestructurethat must be followed by a subcontractoin

order to fulfill its obligations. Oddly enough, our experience with a major automotive company, which we believe to
be typical of large engineeringcompaniesshowsthat such preferencesare not explicitly or implicitly specified
Specifying a preferencestructurefor a subcontractordoesnot requirethe generalcontractorto revealall of its
preferential knowledge to the subcontractonly the subsetof preferenceshat rank the implementationdomain of

the contracted subtask need be specified.

Onedifficulty in specifyingpreferencedor a subtaskis deriving the preferencestructurefor the subtaskfrom the
overall preferencestructureof the generalcontractor.Given a taskto accomplish,a generalcontractordefinesand
contractsout a setof subtasksthat takentogether,accomplishthe task. The preferencestructureof the general
contractordescribesthe desirability of possibleimplementationof the task, but to contract out subtasks,the
preference structure for each subtask must be derived from the preference structure for the task.

A process similar to isolating variable value functions in preference-directed optimal desiguszaito determine
the value of a contractedsubtask. To accomplishthis, an agent value-function/attributehierarchy is created,
expressingglobal objectivesin terms of attributesmeaningfulto subcontractingagents.Each agentencodesits
preferencesver the attributesmeaningfulto it in animprecisevalue function. The agentvalue-function/attribute
hierarchy allows the imprecise value function of a general contractingagentto be translatedinto attributes
meaningful for a subcontractor, and the preferences of the two agents are merged appropriately.

We believe this approach possesses a number of features that are desirable for solving CE problems:

« Formal preference model provides accurate representation of individual preferences.

e Construction of a useful agent preference structure from a subset of design alternatives.
» Ability to provide preferences and constraints to subcontractors.

« Ability of subcontractors to evaluate the effects of local decisions on global value.

e Support for hierarchical agent organizations.

e Problem solving using a variety of agents, each with different objectives.

4.1 ACDS Overview

The foundationof ACME is basedon an existing CE tool, ACDS, which solvesa classof distributed,dynamic,
interval constraint-satisfactioproblems(DDICSP). We choseACDS as the foundationfor two reasonsFirst, a
constraint-satisfaction formulatiae a good matchto our approachSecondwe haveaccesgo the sourcecodeof
ACDS, and thus the effort required to construct ACME is minimized.

The ACDS systendefinesa distributedproblem-solvingalgorithm for a network of agentsthat finds solutionsto
catalog-based design problems. A network is comprised of a system agent, a bid agent, catalegpégems;aint
agents. The system agent specifies the problem solved.Eachcatalogagenthasthe responsibilityof finding a
setof parts(assignmentsfor a designvariablethat satisfy constraints Constraintagentscalculateattribute levels
and monitor constraintconditions.The bid agentevaluategproposalsirom catalogagentsfor moving the network
closer todecomposabilitymeaning that all combinations of values from all domains satisfy constraints.
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(a) Creating a network. (b) Detecting constraint violations.
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x3#1

Catalog
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Constraint Catalog

x3{0,1}

(c) Bidding on assignments to eliminate.

Figure 4.1: Solving an ACDS problem.

Solving a problem proceeds as follows. The system agent specifies to the catalog agents the variables to be assign
anda catalogagentis selectedfor eachdesignvariable.Constraintagentsare then createdby the systemagentor
catalog agents (sdeigure 4.1 (a)). The constraintagentscheckthe currentrangeof possibleassignmentgor each
catalog, and report to the catalog agesde-and arc-consistencyiolations. The catalogsthen prunetheir domains

to achieve node- and arc- consistency. The constraint agents then check to seé thaatributeintervalsviolate
constraintsIf so, the constraintagentsinstructthe catalogagentsto bid a set of assignmentgo eliminate (see
Figure 4.1 (b)), with the goal that once these assignments are eliminated, the degree to which constiaiatsdare
will be reducedThe bid agentevaluatesthesebids, selectinga set of bids such that progressin reducingeach
violation is made(seeFigure 4.1 (c)). Catalogswhose bids are acceptedremovethe specifiedassignmentqi.e.,
parts), and the constraint agents once again check for possible constraint violations. This process iamgépeated
constraintviolations remain. At this point, a sharedvalue function, specifiedby the systemagent,is appliedto
select the best assignment in each catalog.
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Extending the ACDS algorithm to solve a network of agents with subcontracting ability rethairtse conceptof

a catalogagentand systemagentbe merged.In termsof the ACDS algorithm, catalogagentsgain the ability to

specify preferences and to subcontract design variables. In ACDS, this behavior is only possible in the system ager
This eliminates the need for a formal distinction between the system and catalog agents, saavbatfaypes of

agents simply as design agents. This chandg affectsthe problem-specificatiopphasethe ACDS algorithm for
identifying a decomposable network is unchanged.

In additionto modifying the problem-specificatiophase,the problem-solvingphasemust be modified to apply
preferencesduring problem solving. The two phasesof problem solving that are affected are: achieving a
decomposablaetwork and solving a decomposabla@etwork. To achievea decomposableetwork, coordination
methodssimilar to CSSO (Sobieski,1990) canbe applied. Thesesensitivity techniquesare a good match to our
process for calculatindv,. Solving a decomposable network has many similaritig¢heémptimal designalgorithm
given in Section 3, and as a result, we have already defined an algorithm for solving this part of the problem.

We will now describethe operationof ACME by meansof an overview of the preference-relateéspectsof
formulating and solving an example problem.

4.2 Example Problem

For purposesof illustration, we will describeour approachusing a CE problem focused on hardware-software
codesign. The example presented here is a simplified version of the praddenbecby D’Ambrosio et. al. (1993)

and Hu et al. (1994). A system agent wishes to create the embedded controller shown in Figure 4.2. Theisontroller
comprised of both hardware and software, and both must be considered simultaneously. The function spémification
this problem includes three software functions to be supported, and requires that a computer board with enough RA!
and CPU throughputbe configured.Two attributes,cost andfeasibility factor, characterizehe system.Cost is a
summationof hardwarecomponentcosts,andfeasibility factor (D’Ambrosio and Hu, 1994) is a measureof the
system’s ability to guarantee that all software modules complete execution before their respective deadlines.

The system agent formulates the problem as shown in Figure 4.3. Design vagabéeslxz,, are definedfor the
two hardware modules, as &€, 4sensorXriter» aNAXeyeicarc fOr the three software modules. These five variableshare
independent variablesr the problem. The attributesof interest,cost andfeasibility factor, are representedby two
dependent variableg,,; andx., respectively. The calculation of these two variables is specifiéddoygonstraints,
Iost@Ndree. Ther i constraint is expressed in terms of functions of independent variables, while tbestraintis
expressed in terms of both a function of an independent varigh)g, and intermediate dependeratriables,x,, and
Xy~ IN @ddition to constraints for calculating attribute values, two constraj@tsdr,, determine the feasibility af
solution. rg ensureenoughRAM exist to meetthe needsof the softwaremodules,and rq ensuresall software
modules execute before their deadlines.

To design the embedded controller, the system agent must contract out the design work ataengrifenizations
shown in Figure 4.4. In both organizations, a supervisor is responsible for assagkad he organizationheaded
by the hardwareagentis capableof configuring computerboardswith CPU, RAM, and hardwarel/O. The

organization headed by the software agent selects the appropriate software modules.

4.3 Establishing a Network of Design Agents

The systemagentassignsresponsibilityfor eachindependentesignvariableto a designagentand eachdependent
designvariableto a constraintagent Assignmentof variablesto designagentsis performedusing an approach

similar to the contract-net negotiation procé@avis and Smith, 1983). Whena designagentmakesan offer for a

design variable, it commits to participate in the design process in exchange for the possibility that its assignment fo
the designvariablewill be used.In general,a given variablecanbe assignedo multiple agents,with the agents
competingduring the designprocess,and a single agentmay bid for multiple designvariables.Assignmentof
variables to constraint agents is discussed in the next section.
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Figure 4.5 illustrates the assignment of variables to demignts.The systemagentrequestbids for the following
variables: %o Xgeadsensor Xrueicals Xcpws Xram- 1he hardware agents bids fogx Xzav and the software agent bids for
Xeiter Xreadsensor Xeuelcale LOWEr-level agents do nohakebids at this point, sincethey canonly bid on offers from
their respective supervisors. The system agent accepts the bids from the two agenthjiscdse the two agents
subcontract all design variables to their subordinates.

CPU RAM
(a) System hardware
Read
Sensor —&= Sensor

Actuator

Sensor —>

Figure 4.2: Embedded controller example.

(b) System software

X = {X cost XFF: Xtr»ll Xtr-uv XFiIten XReadSensorXFueICan XCPUa XRAM}

R={

rcost= rCF’U cos(XCPU) + rRAM cost(XRAM):

Mer = f(repu v (Xepd), Ty T

r.tr-l = f(rFiIter dI(XFiIter)v rFilter per(XFiIter)l rFilter ac(XFiIter)v rReadSensor @(ReadSensr)n I’Readeens,or pQ(ReadSenS()n rReadSensor
act(XReadSenst)n rFueICaIc d(XFueICaI()a rFueICaIc pe(XFueICalgl rFueICaIc a(.(XFueICalt))a

rtr-u = f(rFilter dI(XFiIter)l I’Filter pev(XFiher)a rFilter ac{XFiIter)v rReadSensor GP(ReadSenS()n rReadSensor pQ(ReadSenS()n rReadSens,or
act(XReadSenst)n rFueICaIc d(XFueICaI()a rFueICaIc pe(XFueICalgl rFueICaIc a(.(XFueICalt))a

r5: rCF’U RAM(XCPLD + r'RAM RAM(XRAM) 2 rFilter RAM(XFilter) + r.ReadSensor RAICP(ReadSensr)r+ I’FueICaLIr: RAN(XFueICalz)
le: e = 0.0

}

Figure 4.3: Problem formulation.

4.4 Establishing Constraint Agents

Figure 4.6 showsthe constraintagentscreatedfor the exampleproblem. In some cases,such as the example
problem, all constraintagentsare createdby the general contractor (system agent), however, this is not a
requirement. The set @fgentsconnectedby constraintsforms the problem-solvingnetwork. Otheragents,suchas
the systemagent,only indirectly participatein problem solving through the contractingof preferencedo active
participants in the network.
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4.5 Distributing Preferences

With constraintsamongagentsestablishedthe agentvalue-function/attributdnierarchycanbe derived (see Figure
4.7), and agents can proceed to specify preferences. First a random sasegigrs A, is generatedand distributed
to all agents. The only restriction on the element is that they be feasible. A feasible solutiorarsassignment
of alevel to eachvariablein X suchthat eachconstraintin R is satisfied. The processfor finding a feasible
alternative is identical to solving for the most preferred alternative, except thagtasfyconsistentpreferencesnay

be used.

Software

Agent
CPU HW I/0 RAM Control
Agent Agent Agent Agent

Figure 4.4: Two groups of design agents available to implement the embedded system.

Hardware
Agent

{XFilter , XReadSensor

X cpus XRAM
{ } XFuelCalc  }

Software
Agent

Hardware

{X Filter
{X Fueicac }

Control
Agent

{x cpu}

X Readsensor }

1/10
Agent

Next, the agentshierarchicallydefine preferencedy ranking elementsin the sampleand defining attribute value
functions (see Figure 4.8 (a)). The system agent specifies a set efetwenttuples, A, rankingthe alternatives

in the sample,andalso specifiesattribute value functionsfor eachattributethat concernghe agent.A ranking of
elements irA is a partial order represented by a set of two element tuples, where the first element in e&latuple
alternative fromA that is at leasas preferredas the secondelementin the tuple. This processallows an agentthe
ability to specify preference®ver the attributesthat areimportantto the agent.In the example the systemagent
specifies preferences over the cost and feasibility factor attribyieandx.e, the hardware agent over cost and CPU
throughputx,,;andrp, , and the CPU agent over CPU cost and CPU throughfpyt.sandres, - In additionto

the constraintsspecifiedby the systemagent,thesepreferencebecomepart of the problem specification, and
therefore, must be followed during the design process.

Figure 4.5: Forming a design organization.
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System
Agent

Figure 4.6: Creating constraint agents.

System
Agent

FF
Agent

tr-l & tr-h
Agents

Control

Agent Agent

treru Cost cpy Cost ram

Figure 4.7: Agent value-function/attribute hierarchy.

Figure 4.8 (b) showshow preferencesre distributedfrom the systemagentdownto the CPU agent. Each agent
takesthe preferencesentto it, andsendsthesealongwith its own preferenceslown to any agentslower in the
hierarchy.Eachset of preferencesmplies a value function, resultingin multiple value functionsfor some agents
(see Figure 4.8 (c)).
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System
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W
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N

V=Wcost Vcost + WFF VFF
VHW =Wcost Vcost +* WCPU-tr VCPU-tr
VCPU=WCPU-cost VCPU-cost * WCPU-tr VCPU-tr

CPU
Agent

()

(c) Resulting value functions

Figure 4.8: Specification and distribution of preferences.

The set of value functions containedby an agentdescribesa hierarchyof preferenceshat must be obeyed.When
considering the selectioof an alternative,a agentfirst appliesthe value function that is highestin the hierarchy,
yielding a set of nondominatedalternatives.The agentthen appliesthe next function in the hierarchyto the
nondominated set, continuirbis processuntil eitherthereis only one nondominatedlternativeleft, or all value
functions have been applied. If more than one alternative still remains, then one is chosen at random.

Each value function represents a different view of the desigreguidtesdifferent setsof attributes.To apply these
value functions, an agentmust isolate the effect of its local variableson the value of eachrespectiveview of the
design. This is accomplished using theory developed in Section 3 (see Table 3.2). Thus, for each valuéMynction,

with respect to a design variable of the agent is found. For example, the value functions for the CPU, RAM, and
agents become:

CPU agent:

Av = WcostQ(Vcost 1 rcost)ArCPUcost + Wee Q(VFF ’ rFF)Q(rFF Teputr s -1 rtr—u)ArCPU—tr
AVhw = thcostQ(Vhwcost’rcost)ArCPUcost + WhWCPU—tr Q(VhWCPU—tr ’ rCPUtr)ArCPU—tr

AVCPU = WCPU cost Q(VCPU cost? r‘CPU cost)ArCPUcost + WCPUCPU—tr Q(VCPUtr ’ rCPUtr )ArCPU—tr
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RAM agent:
AV =W Q(VCOQ ’ rcog )ArRAMCO§

cost
AVhw = thcos Q(Vhwcos ’ I’cost )ArRAMcost

AVRAM = WRAMCOS[ Q(VRAMCOS ! rRAMCOSt )ArRAMCOS

I/O agent Xgirer):

B gz(rtr—l ’rFiIterdI ’K )ArFiIterdI + B E
gz(rFF ’ rtr—l ’rCPUtr ' rtr—u)%-z(rtr—l ’rFiIter per’K )ArFiIter per +S+E
B 8)(['"_| 'rFiIteract’K )ArFilteract % E
AV =W QVer e ) O C
0 gz(rtr—l Teiera K )ArFiIterdI + S L
U 0 L
m(rFF ’ r‘tr—u ' rCPUtr ’ rtr—I )Il%)(rtr—l ! rFilter per’K )ArFiIter per +D [
U 0 L
E %)(rtr—l ’rFiIteracUK )ArFilteract ] E

S—

r.tr—l ’rFiIterdI ’K Ar.Filterdl + E

Av

sw — Wautr—i Q(sztr—l 'rtr_|) (| K )AI‘ +L0¢

tr=1 1" Filter per? Filter per

r

tr=17

r.Filteract’K )ArFiIteract

rtr—u ' I’Filterdl ’K )ArFilterdl +

Mooyl K)Ar +

tr—u? " Filter per? Filter per

TN N N N S

WSWTY -u Q(VSWTI’ -u? rtr -u )

OooOoo g

OEHE BYESIDY

(rtr—u ' r.Filter act’K )ArFiIter act ]

AVI /10 = WI / OFilter—dI Q(VI / OFilter—dI * rFilterdl )ArFiIter—dI +

WI / OFilter —per Q(VI | OFilter—per? rFilter per )ArFiIter— per +

WI / OFilter —act Q (VI / OFilter —act? rFilter act)ArFilter —-act

In the above equations, th, are constrained variables, with the range of possible assignment$\fordapendent
the rangesof the other W,. The Q,, functions are also constrainedvariables,with the range of possible
assignmentgor an Q,, dependenbn the possibleslopesfor its corresponding, . The Ar are constantsfor any
given evaluationof AV,. Although solving for AV, requiresthe solution of mathematicalprogram with a

polynomial objectivefunction, the mathematicalprogram can be simplified to a linear programby noting that
values for theQ),, canbe determinedn isolation, beforesolving for Av.. In fact, the Q,, areoften requiredby

several agents, and the calculation of these values casslgmedo constraintagents thus only one calculationis
necessary, and the results can be shared. The assignrefurmftions to constraint agents is showrFigure 4.9.
Note that when solving an ACDS network, only the agents resporisibéssigningdesignvariablesparticipatein
the solution process. With the delta value functions now isolated, agentthkareferencestructuresnecessaryor
decision making.
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Figure 4.9: Assignment ofQ functions to constraint agents.

4.6 Decision Making

While achieving a decomposable network, or solving a decomposed network, an agent must comwitmiotter
agents to apply preferences. For example, to choose a CPU, the CPU agent must firstfevdbratarious pairs

of alternativeCPUs. To performthis evaluation,the CPU agentsreceivesQ (Vs reos) from the cost constraint
agent and)(Vgg, rer) andQ(res, repy ) from the feasibility factor constraint agehvith this information, the CPU
agents solves a linear program to evaldatéor each pairof alternativeso be comparedIf the agentis unableto
identify a single nondominated alternative, the agent reqQ¥gis. ..., I..s) from the costonstraintagent,andthen
locally evaluate€2(Viwcpun fepuw)- With this information, the CPU agentevaluate\v,,, for variouspairs of the
nondominated alternatives found Ay. If more than one nondominated alternative still remains, then the CPU agent
appliesAvgp in a similar manner.

We believe that calculatinfyv, will not introduce excessive communication overhead. If attribute value functions are
nonlinear, or if attributeare nonadditive then the calculationof Av, requiresinput from otheragents.The worst-

case scenario is that to calculAte, a design agent would have to receive information that requires inpuefrem

other design agent. We believe that for most cases the amount of inforreaiiotih¢ number of attributes) required

to find Av, will be less than the number required to calcwatehis belieffollows from the fact that Av,, is found

by taking the derivative of, which often results in the elimination sbmetermsin the equation,especiallywhen

v hasan additive form. The samelevel of global coordinationcan be achievedby evaluatingeither Av, or v, but
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evaluatingdv, requires less communicatiolm addition, some othe information requiredto determinedv, for one
agent may also be required by other agents, and this information can be calculated once and shared among agents.

In this sectionwe havepresented basicoutline of a newtool ACME, which facilitateshierarchicalCE. Agents
contractout subtaskswith their preferencesand constraintsforming the terms of the contract. The hierarchical
preference structured created by subcontracting provides hierarchical control to a network of agents. Agertts interact
solve a problem by means of distributed constraint satisfaction.

5.0 Summary and Discussion

In this paper,we haveidentified the needfor a frameworkto solve CE problemsin a hierarchicalorganization.
Hierarchical organizations arise from hierarchical problem decomposition, subcontracting of sabtdslgervisor
and subordinate relationships. Hierarchical control provides global coordinatiom@nexperts,who must utilize

local expertise to solve a CE problem. Existing approaches focus on either solving a decosipgleadpnolithic
problem or peer-to-peemproblem solving. What is neededis a combined approachthat provides both global

coordination and exploitation of local expertise.

In our preference-directedesignresearchwe identified a preferencemodel that facilitates multiattribute design
evaluation. In addition, we developed a techniquedolating the value of a designvariable,which is neededvhen
partitioning is performed. The value of a desigmiablereflectsthe influenceof that variableon the total value of
the design.Finally, we developedand codedtwo designalgorithms. Preference-directedptimal design provides
optimal solutions for moderatelysized problems, and preference-directe@volution provides good solutions to
problems of any size.

To fill the gap in theexisting CE researchandthus solve the problemsrelatedto hierarchicalCE, we discussed

new tool, ACME, that builds upon our preferencanodel andtheory for isolating design-variablevalue functions.

Each agent has the ability to contract out subtasks, and both the constraints and prefetea@ggentare included

in the contract.The preferencegor a subtaskare found by applying our theory for isolating the value of a design

variable. Contracting of preferences creates a hierarchical preference structure, and lpigyaiaddécalcontrol of the

network of agents. Agents with local expertise are free to apply their own prefeasiiorg asthey do not violate
contracted preferences. Peer-to-peer problem solving is accomplished by distributed constraint satisfaction. In additio
to software coding and experiments, several theoretical issues must still be resolved.

The main contributions thipaperarethe conceptof hierarchicalCE, the developmenbdf a techniquefor isolating
subcontractowalue functionsfrom a generalcontractorsfunction, and generationof methodsfor applying these
functionsduring problem solving. This approachprovidesthe benefitsof global coordinationin a decentralized
problem solving environment.

At this time we arein the processof coding ACME. In additionto code developmenta firm definition of the

optimal solution for a hierarchical organization of agents must still be iden@f$agell as conditionswhensucha

solution canbe found. This may involve researchfrom the areaof mathematicalprogramming,group decision
making, and negotiation. Propagation of intervals through nonmondtarmitions may be required,andtechniques
basedon the work Faltings (1994) and Hyvonen(1992) may prove useful. In addition, decompositionformulas,
similar to those given in Table 3.2, are required to support a wider cdrageibutetypes. Specifically,a complete
set of formulas is needed fattributefunctionsthat dependon multiple functionsof a designvariable.This is the

case for the formulation of the hardware/software codesign problem given in Secthich requiredextensiongo

the formulas given in Table 3.2.
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