Automatic Parallel Program Conversion from Shared-Memory to

Message-Passing
Hsien—Hsin Lee Edward S. Davidson

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, Michigan 48109

{linear,davidson } @eecs.umich.edu

ABSTRACT

It is an elaborate work to parallelize an application on message-passing machines since there is
few good software or compilers supported for dealing with the interprocessor communication. Ac-
cordingly, it is inefficient for programmers to understand the communication behavior and explicitly
specify them in the code by hand. In this paper, three schemes are presented for alleviating this
time-consuming and error-prone task. Scheme A and B are two obvious methods to implement the
communication code while the Scheme C is a systematic methodology for generating a functional
and efficient message-passing code in an automatic manner.

1 Introduction

Message-passing and shared-memory are two predominant communication models supported in
multiprocessor systems today. Shared memory machines provide programmers a shared address
space supported by the machine’s hardware, protocols and operating system. Thus shared data
can be managed and moved among the processing nodes automatically when parallel programs
are executed. On the other hand, message passing machines share common data through explicit
message transactions which need to be specified by programmers in their high level application
codes.

In terms of communication cost, ping-pong effect, cache coherence, false sharing and superfluity
in transferred memory blocks often make shared-memory systems more inefficient than message-
passing systems. Many people believe that better overall performance can be achieved by using
message-passing communication substrates. However, in message-passing systems, programmers
must understand when and where each data element is updated and needs to be sent to those
nodes that own stale data copies in order to achieve a consistent execution of a program. This
work, which must presently all be done by hand, is very elaborate and prone to error. Thus,
porting an application from a shared-memory platform to a message-passing platform is a difficult,
time-consuming, and costly task for programmers, especially, when an efficient message-passing
program is required.

DO PID =1, num_of_procs P2 P3
DO k =K_BEGIN(PID), K_END(PID) T=2 T=2
DO IL=1, NLAY
DO i=1, SEG(PID,k)
len=size*(J_END(PID,k,i)-J_BEG(PID,k,i)+1) : T=2
call MP_BCAST(V(J_BEG(PID,k,i),k,IL,1), len, T=2 -
& (PID-1), allgrp)
END DO
END DO T=1 P4 T=1 PS5
END DO
END DO @ (P
T=0

Figure 1: Broadcasting algorithm and recursive doubling algorithm

In this research, we discuss three approaches including a systematic methodology to parallelizing
an application (Indian Ocean circulation simulator) on a pure message-passing machine (IBM SP2),
based on a parallelized version of shared-memory code on a shared-memory machine (KSR2). Via
an automated manner, the systematic method is proposed to simplify the task of specifying the
routines for sending and receiving messages, where they need to be used and what data need to be
transferred. Based on this approach, programmers can generate a functional and efficient message-
passing code automatically from an analysis of parallel trace results which are collected by running
the application on a shared-memory system.

The three approaches are presented in Section 2, 3 and 4, respectively. Some of our preliminary
results on the IBM SP2 and a comparison with the KSR2 are reported in Section 5. We conclude
and discuss our future work in Section 6.

2 Scheme A: Broadcast all updated data to all other processors

Since there is typically no information present in a domain decomposition file that identifies
shared vs. local data, it is quite difficult to determine the appropriate data transactions between
processors for implementing a message-passing code. In this section, a very straightforward method
is proposed for implementing message-passing code. First of all, we analyze and identify the shared
data arrays in the application. Due to the unknown details regarding exactly how these arrays
are shared between processors, we take a simple but wasteful approach in Scheme A. Whenever a
shared array is updated by a particular processor, the values will be sent to every other processor by
inserting message-passing calls at the original synchronization barriers of the shared-memory code.
This approach ensures the functional correctness of the message-passing code by assuming that
each processor has the most up-to-date copy of each shared array. Nevertheless, this programming
method will introduce a lot of communication overhead due to redundant messages.

Two communication schemes described in the following were used in our current implementation
of this approach.

p = 4 (even number) p =5 (odd number)

Time Steps Time Steps

HO) H(I) H@) HE) H4)
H@4) HE) HE) HQO)

T=0: HO) H@) H2) H(@O)

T=1: H3) H(@2) H(@) H(©O)

- HE) HO) H@) H(@)
T=2 H@ HE) HO) HQ) H@) H(E) H(1) H(©)
T=3 H@L) HO) HE HE) = H(1) HO) H@) H@)

o 4 A4 4 4 -
1
a A W N B O

H(3) HE@) H@) HO

Figure 2: Examples of pairwise message exchange

2.1 Broadcasting

In this scheme, many-to-many communications are performed by the way that every processor
broadcasts to every other processor its updates on decomposed shared arrays. Since each processor
knows the arrays’ partition index domains of all others, thus the receiver end will put their received
data into the correct arrays’ index range after the communication finishes. The algorithm of our

implementation is shown in figure 1.

From the experiments suggested in [1], the collective routine, MP_BCAST, provided in the MPL
message-passing library of the IBM SP2 for broadcasting is used. This routine employs a recursive
doubling (binary tree)algorithm. The graph in figure 1 illustrates the data communication paths
and the corresponding time steps of the recursive doubling algorithm, which takes O(lgp) time to
broadcast a message from a particular processor P0 to the other (p— 1) processors. The total time

complexity of this scheme for each of p processors to broadcast to all others is O(plgp).

2.2 Pairwise Message Exchange

In this section, pairwise message exchange, an efficient way to implement many-to-many com-
munications is demonstrated. For communication with an even number of processors, for each of
several steps the processors can be divided into disjoint pairs and each pair can exchange their
updated data with one another. The number of steps we need in this case for p processors will
be %, that is, p — 1 steps. For communication with an odd number of processors, at each
step one processor will be left out while the other processors exchange their data. Hence, after p
steps, each processor will have received the updated data from all others. The time complexity

of pairwise message exchange for p processors is thus O(p), which is a lower order of complexity

pair = ((num of procs .eq. even) 7 numof procs : numof procs - 1)
/* Packing the sender’s message */
length out = accumulate(PID, arrayl, array2, ..)
send buffer = pack data(arrayl, array2, ..)
/* Starting pair the processors and exchange their messages */
do i =0, pair - 1
if (i .ne. PID .or. pair .eq. numof procs) then
if (PID .eq. pair) then
buddy PID = i
else if (PID .eq. i) then
buddy PID = pair
else
buddy PID = mod(pair+2*i-PID, pair)
end if
/* Recognize the number of bytes to be received from its buddy proc */
length_in = accumulate(buddy PID, arrayl, array2, ..)
/* Pairwise message exchange */
call MP _BSENDRECV(send buffer, length out, (buddy PID-1),
mesg_type, recv_buffer, length in, (buddy PID-1), NBYTES)
/* Unpacking the receiver’s messages */
unpack (buddy PID, recv_buffer, arrayl, array2, ..)
end if
end do

Figure 3: Algorithm for pairwise message exchange

than the broadcasting algorithm proposed in the previous section. Regarding exchanging of data
between two processors, the IBM Message Passing Library (MPL) [3] provides a library routine
called MP_BSENDRECYV which effectively accomplishes a pairwise exchange.

Two examples are illustrated in figure 2. At the beginning, each processor p owns a locally
updated partial array H(p). Data will be exchanged in each step based on the above description.
In 3 steps for p = 4 (a case with an even number of processors) and 5 for p = 5 (a case with an odd
number of processors), each processor will have exchanged all its locally updated data with all the
others. The detailed algorithm is shown in figure 3.

Figure 4: Indian ocean partition for 25 processors

3 Scheme B: Send updated arrays only to neighboring processors
when possible

Without doubt too much redundant information is communicated among the processors in
Scheme A for almost any application, i.e. unless every processor performs updates and all processors
need all the updated data. In many parallel applications, a processor shares only those data elements
lying on the boundaries of its sub-domain and to share these only with the neighbors that share
the relevant boundary. For example, as shown in figure 4, one data decomposition of an Indian
Ocean circulation code uses a horizontal partitioning. Each processor has one neighbor processor
sharing each of two boundaries. Therefore, each processor can pass the locally updated shared
arrays only to the two neighbor processors instead of passing them to all of the other processors.
However, before using this method, it must be guaranteed that each array to be communicated
only with neighbor processors are needed only by those neighbors that share a boundary with the
transmitting processor; otherwise, the array is broadcast to all of the other processors. To make
sure that this condition is satisfied, in our current implementation, we identified the array-sharing
status using the analysis of Scheme C which is discussed in the next section.

To determine the neighbors of a particular processor, after the domain decomposition file is
read in, we build the neighbors list for each processor by checking the ownership (a processor) of
the elements adjacent to each data element that is allocated to a processor as shown in figure 5. A
processor’s updated shared data will merely be multi-casted to the neighbors identified in its list

so as to eliminate some of the redundant communication.

4 Scheme C: Send each updated array element only to processors
that use it

In Scheme C, a systematic and automatic methodology is presented to assist programmers in

writing an efficient message-passing code based on an existing shared-memory code.

Distributed shared-memory (DSM) machines are built on top of an underlying message-passing
substrate [4]. In message-passing multicomputers, the shared data are sent or received by accessing
this network (substrate) directly. The messages received from the network are put into buffers
which will be accessed later by the processor. Shared-memory multiprocessors, on the other hand,
provide an enhanced interface between the processors and the network which provides globally
shared addresses of the desired data and maintains system-wide data coherence. This enhanced
interface provides a single system-wide virtual memory address space to programmers. Based on this
concept, we developed a methodology that will analyze a shared-memory code to assist us in writing
a functional and efficient code that will run on message-passing machines. This methodology can
simplify the error-prone task of specifying the explicit message-passing routines and can eliminate

a large amount of the messages communicated on the network when using Scheme A or Scheme B.

4.1 Overview of the Methodology

The block diagram of this methodology is shown in figure 6. This diagram can be divided into
five major phases. The output of each phase can be produced by a specific automatic tool that we

have developed.

For writing a message-passing program, the most critical and laborious work is to identify the
interprocessor data movements and translate these movements into explicit messages. Our basic
notion in this approach is to obtain this information directly from the execution of the shared-
memory program. In the first phase of this scheme, the shared-memory code is instrumented for
generating a parallel trace by inserting a call to trace routines at points in the call where memory
accesses or synchronizations occur. During the execution of the instrumented program, a trace is
generated for each participating processor. In our experiments, a parallel tracing tool, K-Tracer [2],
was developed and used on our host shared-memory machine, the KSR2. In the second phase, these
parallel traces are split into several smaller parallel traces based on several disjoint ranges of the
address space. This step provides more manageable files and improves the performance in later
phases. The split parallel traces are independent of one another, thus they can be processed
concurrently in the follow-up phases.

K+1

Figure 5: Check eight neighbors for an array with dimension (J,K)

para_trace_pu

para_trace_p1l \

para_trace_pZ he -\ Instrumented
P ° shared-memory

° ° code

Split Address
Space

para_trace_p(N-1)

(]
para_trace_p0_002, p1_001, p2_002, ..., p(N-1)_002
para_trace_p0_001, p1_001, p2_001, ..., p(N-1)_001
para_trace_p0_000, p1_000, p2_000, ..., p(N-1)_000

LT}

. Message—-Passing
: Post-Processing Message SloDutg]eS ;/Arl:f:th
Mﬁigage Essential | - Address translation ggﬁ?ilrr]]gs parameters
Generator Mﬁﬁgages : i:%;,rigzlgts'g?ng Generator

. Message combining
. Message scheduling

Replace Syncs with
Routine Calls

Figure 6: Overview of the automated scheme

Through the phases of Message Links Generator, Post Processingand Message Passing Routines
Generator, the essential messages are organized in one message-passing routine for our final message-
passing code. Then synchronizations in the parallel code are replaced with calls to this routine.
The detailed mechanisms of the method and tools are described in the following sections.

4.2 Generating Message Links

A tool called Message Links Generator was developed for the purpose of generating the essential
message links. This tool reads in each of the split parallel traces and generate essential message
links in the format shown in figure 7. Fach message link consists of a memory address and a message

tag. A message tag is composed of four fields, source processor ID (SP), destination processor 1D

PO P1 P2 | P3 A message link

@ sl Address | Message Tag
An essential N\
message M @ @

@ S | sp | op |ss |bs
Synghronizatio@ 78 SP : Source Processor ID
Region g DP : Destination Processor ID

' “ S SS : Source Synch ID

DS : Destination Synch ID
Figure 7: Essential Message and Message Link Format

-

(DP), source synchronization region ID (SS) and destination synchronization region ID (DS), where
ID stands for identification number. Processor IDs indicate which processor the message is from
and where the message should be sent. Synchronization region IDs provide us the sequential timing

constraints that are used in message scheduling.

An essential message link is defined as a data transaction path which is required between
two processors each time that a true interprocessor data dependency exists between them. Anti-
dependency and output-dependency between processors, which cause problems and have to be
considered previously during program parallelization, need not be considered here. Because inter-
processor dependencies only exist between distinct synchronization regions, if one processor writes
a data element, then that element can be used in the same synchronization region only by the
same processor that wrote the element. It can be used by other processors only in subsequent
synchronization regions until some processor writes that element again. If the data is read by other
processors in subsequent synchronization regions, then to maintain data consistency a message link
has to be built from the writing processor to those processors that read the data. Such a mes-
sage link is called an essential message link. Let a data read and a data write be represented as
R(a, P,S) and W(a, P, 5), respectively, where a stands for the name of the data element, P is the
processor ID and 5 is the synchronization region ID. A message link is created for each W R pair
that share the same @ where the R occurs after the W and before the next W, where the order is
determined by the § field. A message link is denoted as Mesg(a,SP, DP,SS,DS), where SP and
55 are P and S from W and DP and DS are from R.

For example, in figure 7, variables ¢ and b are read(R) and written(W) by four processors in
five distinct synchronization regions. The only interprocessor communication takes place when
there is a true interprocessor dependency, i.e. only between W (a, P0,51) and R(a, P1,53). A
message, Mesg(a, PO, P1,51,53), needs to be generated for this dependency. It is not necessary
to have message links built between W (a, P0,51) and W (a, P2,55), or between R(b, P2,51) and
W (b, P3,52) although there exists output-dependency and anti-dependency in these two cases,
respectively.

4.3 Post Processing

After all the essential message links are built by the previous phase, a few post-processing
techniques are applied to these messages. Basically, the following procedures are considered in our
current implementation.

e Address translation

e Processor ID translation
e Array coalescing

o Message combining

o Message scheduling

PO P1 P2 P3 P4 PO P1 P2 P3 P4

Q
\

y w‘

combined message

Y f Y

Figure 8: Example of combining messages with different synchronization ranges

4.3.1 Address and Processor ID Translation

Since the message links are generated from the parallel traces, the memory addresses are nu-
merically resolved virtual addresses. For writing the message-passing routines, these numerical
addresses have to be translated into array element names. Address translation translates these
memory addresses from numerical format into array names with the corresponding indices. Pro-
cessor 1D translation translates the physical processor ID into a symbolic processor 1D which will
be used as a symbolic source or destination in the message-passing program. The address and
processor ID mapping information are collected by K — Tracer during the run of the instrumented
shared-memory code.

4.3.2 Array Coalescing and Messages Combining

Variables with contiguous memory addresses that are communicated from the same source to
the same destination and have the same synchronization region IDs can be combined into larger
messages, this technique is called array coalescing. Due to the large overhead incurred by the
initialization effect for each message, a larger combined message is preferable to several smaller
messages.

A more aggressive optimization scheme is to combine non-contiguous addresses into larger
messages. The message combining approach is combine messages with the same S P and D P whose
synchronization ranges (from S5 up to, but not including D.S) overlap. For example, assume that
SP(k), DP(k), SS(k) and DS(k) represent variable k’s source PID, destination PID, source synch
ID and destination synch ID, respectively. Then message A and message B can be combined if 7)
DP(A)=DP(B) and SP(A)=SP(B) and #7) DS(A) > SS(B) and DS(B) > SS(A) are both satisfied.

An example is shown in figure 8.

Another effective way to reduce the number of messages is re-routing the message path through
intermediate processors. Figure 9 gives an example of a sample data distribution and the results
after our tools are applied on it. Figure 9(a) is the data distribution obtained from the parallel
traces. Fach circle accounts for a data reference, either a read or write. Each vertical band is the
trace for a particular processor while each horizontal band is for a synchronization region. Through
our Message Links Generator, the essential message links for each data element are generated as

PO ,PL , P2 [P3 | P4 PO ,PL , P2 [P3 | P4 PO | PL | P2 | P3 P4

(Wi w2 W3 [wawe s1 iW{l Wé w3 |wawsg WiWw W

e -AR
@@Ss\g@ Nk

[RUR2|R4RS —_— R2RERS

R2 ws |wo |R2 =4 \Rz
s [0 - R

) \ \

Y Yy \

1 One-to—many 1 One-to—-many
7 Point-to—point 4 Point-to—point
@) (b) (©)

Figure 9: Example of the Scheme C

shown in figure 9(b) and some of the data elements which do not cause any communication are
removed. In this example, the communication links are now composed of a single one-to-many
message and seven point-to-point messages. After the optimization of the post-processing phase as
shown in figure 9(c), some of the combinable messages are bound together, which results in a reduced
number of point-to-point messages. Some of the messages, such as Mesg(10, P0, P4,52,55), must
be received earlier; and some, such as Mesg(2, P0, P4, 51, 54), must be transmitted later because
they are combined with another message, whose synchronization range overlaps, but is not identical.

The synchronization ranges of these combined messages are reduced appropriately.

There is an interesting case which we call intermediate message routing in the message optimiza-
tion. Notice that Mesg(4, P3, P2,51,53) and Mesg(5, P3, P2,51,53) are combined and routed
through P4 to P2 so as to eliminate one message initialization overhead even though Data 4 is
not needed by P4. However, if the size of Data j is big enough, we may not get any benefit from
this scheme because the transfer time for Data 4 could override the message initialization time and

Data 4 may also pollute P4’s memory.

4.3.3 Message scheduling for point-to-point communication

In section 2.2, we described an efficient communication scheme, pairwise message exchange,
provided by some message-passing machines. Before scheduling the generated point-to-point com-
munication messages, pairs of messages that are suitable for pairwise exchange will be grouped

together so as to mask a communication start-up overhead.

In this step, we demonstrate an algorithm to schedule the messages. The purpose of scheduling
the messages is to reduce the wait time for each processor. A non-proper schedule for the point-to-
point message-passing code can result in unnecessary wait time in some processors. For example, in

figure 10(a), a message is defined as M (s, i,7), where s, i and j stand for the message weight, source

10

processor ID and destination processor ID, respectively. The message weight can be calculated
from the formulas of communication latency modeled in [1]. Nine messages are scheduled on five
processors in the order shown in figure 10(a). The corresponding schedule and the communication
latency are shown in figure 10(b), the total latency for passing these nine messages is 5700. Based
on our algorithm described below, the selected order of the scheduled messages and the resulting
communication latency are shown in 10(c) and (d). The total latency of the scheduled messages is
reduced to 3300.

The scheduling algorithm is explained as follows. Define the processor weight function W,
as the time at which processor ¢ finishes the last communication currently assigned to it. The
message weight, W, , of a particular unassigned message my in point-to-point communication is
defined as the larger processor weight of the two processors involved in this message, i.e. W,,, =
maz(W,,,W,,), where p; and p; are the processors involved in the message M(s,7,7), i.e. the
earliest time that this message can start if it is selected for scheduling next. The scheduling
algorithm has the following steps. The algorithm is an earliest-start-time-first greedy algorithm

with a shortest-message-first tie-breaker.

Step 1: Reset the values of processor weight function, W), and message weight function, W,,,,
to zero for each processor p; and message my. Put all the messages to be scheduled into the message
candidates list.

Step 2: Select a random message M(s,1,) from the message candidates list as the first one in
the schedule.

Step 3: Update the weights W, and W, by adding the modeled communication latency, s, of
the scheduled message to the weights of W), and W), of processors ¢ and j, then select the larger
value of W), and W, as the new weight for both p; and p;.

Step 4: Update the message weights W,,, for each unscheduled message.

Step 5: Select the message with the minimum message weight as the message to be scheduled
next. If there are several candidates, then select the one with the shortest message modeled
communication.

Step 6: Repeat Step 3 to 6 until the message candidate list is empty.

Figures 10(d) and 10(e) show the variation of processor weights and message weights during
the scheduling process. The resulting final order of the schedule is given in figure 10(c).

4.4 Generating message-passing routines

The final phase of Scheme C is to generate the message-passing routines to be used in the
message-passing code. Another automatic tool, Message_Passing File Generator reads in the gen-
erated formatted message links and generated a Fortran subroutine which will be inserted later in
each original synchronization barrier of the shared-memory code to perform interprocessor commu-
nication. After these routines are generated by our automatic tool, we simply change each original
synchronization barrier in shared-memory code into the corresponding message-passing subroutine
call, as shown in figure 11. There are potential deadlock problems if the send/receive calls are not

11

ML(500, 1,2) M(800,1, 3)

MB(900, 1, 4) MA(700,1,5) M(600, 2, 4)
MB(500, 2, 3) M7(1000, 2, 5) MB(600, 3,5) M(800, 4, 5)

(a) Messeage List

[1000]

800

P1 [500] 800] 900 [700 |
P2 [600] 500
P3 800 500
P4
P5 wait tine [700 |

[1000 [600 [800

(b) Schedule in message order, Total Latency = 5700

Mi(700,1,5) NB(500, 2, 3)

M?(1000, 2, 5) MB(900, 1, 4)

500, 1, 2) MB(600, 3,5) NMs(600, 2, 4)
800, 4, 5) M2(800, 1, 3)
(c) Scheduled Messeage List
P1 [500] [700 | [800 [900]
P2 [500] 600 [500] [1000]
P3 [600 500] 800
P4 600 800] [900
P5 [600] 700 | 800 | 1000 |

(d) Schedule with our algorithm, Total Latency = 3300

pl 0 500 500 500
p2 0 500 500 1100
p3 0 0 600 600
p4 0 0 0 1100
p5 0 0 600 600

1300
1100

600
1100
1300

1300 1300 2400 2400 3300
1600 1600 1600 3100 3100
1600 1600 2400 2400 2400
1100 2100 2100 2100 3300
1300 2100 2100 3100 3100

(e) Processor weight updates during the scheduling process

ML(500,1,2) O
M2(800,1,3) 0O 500
MB(900,1,4) 0 500
Mi(700,1,5) O 500
M5(600, 2,4) 0 500
M6(500, 2,3) 0 500
M7(1000, 2, 5) 0 500
MB(600,3,5) 0 0
M(800,4,5) 0 O

600
500
600
500
600
600

600

600 1300
1100 1300
600

1100 1100
1100 1300

1100 1300

1600 1600
1300 2100 2400 2400

1600 2100 2100
1300

(f) Message weight updates during the scheduling process

Figure 10: Example of message scheduling

12

Shared-memory code Message-passing code

Parallel Region 1 Parallel Region 1

Synch Barrier 1 call MPR1

Parallel Region 2 —py- | Parallel Region 2

Synch Barrier 2 Call MPR2
[J [J
[J [J
[[J
[J [J

Figure 11: Conversion from shared-memory code to message-passing code

properly arranged in these routines. For example, suppose that P1 and P2 each have messages
to send to the other. If the generated code has both receiving calls written ahead of the sending
calls, then P1 and P2 will wait forever and never receive their message. To avoid deadlock prob-
lems, pairwise communication will be helpful here. (Another implementation that can be effective
would use a non-blocking send for all sending processors first. Then after all processors send, each
processor can start to receive by using a blocking receive. However, this scheme is unable to be
implemented thus far, since our target machine, IBM SP2, has not yet actually supported the
non-blocking communication functions.)

5 Preliminary Results and Current Status

At this point, we have ported the Indian Ocean code on the IBM POWER2 node, and developed
three fully functional versions of message-passing programs based on the two different broadcast
communications patterns (one to many and pairwise message exchange) described in Scheme A
and Scheme B. A fourth code based on Scheme C is functional except for some arrays in some
synchronization regions which have irregular communication that varies among time steps. These
communications could be corrected by refining Scheme C or by using Scheme A or B only for these
and Scheme C for all others. The message byte count for Scheme C in Table 1 is an accurate count
of what a refined Scheme C would produce. Preliminary results collected from these programs are
as follows.

Table 1 is the actual number of data bytes communicated on the network by the Scheme A and
C codes based on a 25-processor run for three time steps of the Indian Ocean code. As this table
shows, there are many redundant data bytes communicated on the network when the message-
passing code was implemented by Scheme A. In most of the processors, only about 1% of the
data bytes transferred are regarded as essential (i.e. communicated in the Scheme C code). Many
messages are removed or shortened by Scheme C to achieve a great performance improvement.

Table 2 compares the uniprocessor performance of the KSR2 and the IBM SP2 (POWER2
architecture). Note that IBM SP2 has a much faster single processor than the KSR2.

13

PID Send(A) | Send(C) Recv(A) | Recv(C) | Reduced | Reduced
Send(%) | Recv(%)
PO 98336640 102432 29909988 3552628 99.90% 88.12%
P1 29763360 299892 32767208 147696 98.99% 99.95%
P2 29910240 308460 32761088 157956 98.97% 99.52%
P3 29744352 301992 32768000 149328 98.98% 99.54%
P4 29759904 303096 32767352 150912 98.98% 99.54%
P5 30065760 303120 32754608 150552 98.99% 99.54%
Pe 29706336 310416 32769584 155232 98.96% 99.53%
P7 29783232 277020 32766380 127008 99.07% 99.61%
P8 29942208 304008 32759756 152808 98.98% 99.53%
P9 29792736 255480 32765984 105060 99.14% 99.68%
P10 29810880 309444 32765228 155580 98.96% 99.53%
P11 30224736 313092 32747984 159756 98.96% 99.51%
P12 29746080 315468 32767928 161688 98.94% 99.51%
P13 29783232 294888 32766380 149208 99.01% 99.54%
P14 29988000 289776 32757848 137796 99.03% 99.58%
P15 29713248 299364 32769296 148464 98.99% 99.55%
P16 29790144 272580 32766092 120564 99.08% 99.63%
P17 29988000 269916 32757848 119076 99.10% 99.64%
P18 29740032 300072 32768180 147048 98.99% 99.55%

P19 29771136 247356 32766844 97368 99.17% 99.70%
P20 30044160 245256 32755508 96792 99.18% 99.70%
P21 29875680 234204 32762528 86808 99.22% 99.74%
P22 30034656 233676 32755904 87948 99.22% 99.73%
P23 29954304 217236 32759252 72372 99.27% 99.78%
P24 30907296 168024 32719544 34752 99.46% 99.89%

Total | 816176352 | 6624000 | 816176352 | 6624000 99.19% 99.19%

Table 1: Comparison of the number of messages (in bytes) between Scheme A and C

Single Node (in seconds) | 10 Days | 30 Days | 100 Days

KSR2 391.33 931.34 2369.24
IBM SP2 70.16 157.23 277.6

Table 2: Uniprocessor run on the KSR2 and IBM SP2

| IBM SP2 (in seconds) | 30 Days | 120 Days | 360 Days
P=1 117.36 359.63 1005.77
P=16 (Scheme A: broadcast) 122 377.9 1063
P=16 (Scheme A: pairwise) 78.66 178.4 444
P=16 (Scheme B) 76.35 139.7 3205

Table 3: Preliminary results on the IBM SP2

P=1|P=16
KSR2 1 3.685
IBM SP2 (Scheme A: broadcast) 1 1.29
IBM SP2 (Scheme A: pairwise) 1 1.99
IBM SP2 (Scheme B) 1 2.06

Table 4: Speedup of on the KSR2 and IBM SP2

14

Table 3 shows parallel performance for various schemes. Table 4 shows speedup vs. P for the
KSR2 and for the Scheme A (with one-to-many broadcast) for the SP2, which is the least efficient
scheme. Speedups for the other schemes are yet to be evaluated.

6 Conclusion and Future Work

In this research, we showed that tracing tools can be effectively applied in program conversion
from shared-memory to message-passing machines in addition to their basic functions on debugging
and analyzing the behavior of programs. Scheme C has shown that it can be used as an effective
parallel program performance tuning tool on message-passing programs with stable communication
patterns and can identify and remove the redundant messages, and exploit opportunities for message
combining.

For portions of programs with irregular communication, Scheme B or if necessary Scheme A
can be used. They are more robust but generate more traffic, some of which is generally redundant.
More work needs to be done to improve the robustness and efficiency of these schemes, but these
preliminary results are very encouraging.

References

[1] Eric L. Boyd, Gheith A. Abandah, Hsien-Hsin Lee, and Edward S. Davidson. Modeling com-
putation and communication performance of parallel scientific applications: A case study of
the IBM SP2. Technical report, CSE-TR-236-95, Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, 1994.

[2] Shih-Hao Hung and Edward S. Davidson. Design of trace-driven simulation tools on the KSR1.
Directed Study Report, University of Michigan, 1994.

[3] IBM Corporation, Kingston, NY. IBM AIX Parallel Environment Parallel Programming Sub-
routine Reference, 1994.

[4] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong Lim. Inte-
grating message-passing and shared-memory: Early experience. In Proceedings of the Fouth
Symposium on Principles and Practices of Parallel Programming, pages 54-63, 1993.

15

