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Abstract

This paper describes the integration of a monitoring and assertion checking tool into the Modechart Toolset,
a suite of integrated tools providing system specification, formal verification, static analysis, and specification
stmulation for real-time systems. The monitoring and assertion checking tool, MAC, supports monitoring of
symbolic execution traces generated by the Modechart stmulator, permitting testing of specifications early in
the design phase and providing a mechanism for evaluating properties of the system on a particular execution
trace. These capabilities are provided by the automatic translation of assertions in a declarative language
(such as Real Time Logic) into monitoring fragments, written in Modechart, which augment the original
specification to perform monitoring and assertion checking during stmulation. In addition, we discuss several
major issues of monitoring and assertion checking in this context. In particular, a key issue is that not all
assertions can be evaluated with a bounded event history. A primary goal of this research is the identification
of classes of assertions for which the number of events which must be recored for monitoring is independent
of the length of the computation to be monitored. We address this problem by exploiting the semantics of
Modechart to identify classes of assertions for which monitoring is sitmplified to evaluation of a state predicate
on a finite event history having a bound which is established a priori.

Index terms: real time systems, specification, symbolic execution, monitoring and assertion checking,
formal methods.
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1 Introduction

Embedded real time systems, such as air-traffic control, patient-monitoring, and manufacturing, have strin-
gent timing and dependability constraints. Ensuring that such systems meet their prescribed specifications
is a growing challenge that faces the industry in the coming decade. Several studies have demonstrated
that the cost of detecting and removing software errors increases significantly as the development process
moves from requirements specification toward production [7]. In fact, the cost of removing an error from
a system specification is an order of magnitude smaller than the cost of removing it from a system that is
going through integration testing. Other studies have demonstrated that errors in the specification are the
most frequent types of software errors and the most expensive to correct [3, 22]. The source of safety-critical
failures can often be traced to requirements, specification, or design errors very early in the software devel-
opment process [20]. It has been argued that formal specification methods can reduce the number of errors
in a specification by preventing imprecision and ambiguity. Furthermore, formal specifications are amenable
to formal analysis techniques including consistency and completeness checks, validation and testing, and
verification.

The Modechart Toolset (MT)[5] is a collection of integrated tools developed by the Naval Research
Laboratory together with researchers from the University of Texas to address these challenges. MT supports
the formal specification of real time behavior in a language called Modechart [14] and formal analysis via
formal verification, simulation, and completeness and consistency checking. The toolset includes facilities
for creating and editing Modechart specifications. Users may symbolically execute the specifications with
an automatic simulation tool to confirm that the specification is consistent with their intent. They may also
invoke a verifier that uses model checking to determine whether the program specifications satisfy any of a
broad class of safety assertions. Finally, they may perform a variety of static consistency and completeness
queries on their specifications.

In this paper, we develop an approach to monitoring and assertion checking in the context of symbolic
executions of Modechart specifications. This approach is intended to complement the existing analysis
techniques in the Modechart Toolset. We develop a Monitoring and Assertion Checking Tool (MAC) which
is tightly integrated into the Toolset. In particular, the MAC tool supports monitoring execution traces as
generated by the Modechart Simulator. Furthermore, it provides a mechanism for evaluating properties of
the system on a particular execution trace. For example, it can be used to detect an undesirable behavior or
violation of a design assumption as an execution trace is generated. By combining evaluation of a property
with a graphical representation of the execution trace, the MAC tool and the Modechart Simulator together
conveniently provide some assurance of the user’s intent during the specification and design phase. The MAC
tool can also be used to invoke user-defined handlers upon detection of certain properties. The handlers can
be used to change the simulator execution profile or even the system state before the computation resumes.
Furthermore, the MAC tool can complement the Modechart Verifier in several novel ways. While the
verifier can be used to prove the correctness of a specification with respect to a safety property, the MAC
tool in conjunction with the Modechart Simulator allows the user to focus explicitly on a subset of the
computations. By monitoring a specification simulation, the MAC tool can be used to trigger the verifier
when certain conditions are observed in a computation.

Our implementation of the monitoring and assertion checking tool automatically translates assertions
into Modechart fragments in order to provide a specification for the monitoring process. These monitor-
ing fragments are symbolically executed together with the original specification to provide monitoring and
assertion checking capabilities.

MT’s specification language, Modechart, is a hierarchical, graphically-oriented specification language
for real time systems and protocols [14]. A first-order language, Real Time Logic (RTL) [16], can be
used to construct assertions which are checked against specification simulations generated from Modechart
specifications. RTL allows the description of ordering and distance requirements between event occurrences.
However, not all assertions expressible in RTL can be effectively monitored. Our tool addresses this challenge
in several ways. First, it provides monitoring and assertion checking for simple RTL assertions by allowing
the user to fill in parameters in a “forms-based” approach. These simple assertions are monitored by



translating the RTL assertions into Modechart monitoring fragments. Second, it provides monitoring and
assertion checking for a wider class of RTL assertions based on comparisons between modes by composing
the above-mentioned fragments into more elaborate Modechart monitoring fragments. And finally, the tool
permits the user to incorporate his or her own monitoring fragments developed in Modechart into the original
specification.

One model for formal specification and monitoring of constraints [13, 14, 15] in time-critical systems is
based on timestamping events as they occur and maintaining an event history of such occurrences. The
event history is then checked to determine whether a given assertion is satisfied by a computation. For a
given assertion, the problem of monitoring and assertion checking can be understood in terms of three issues.
The first of these is the determination of what information needs to be maintained by the monitoring and
assertion checking system and for how long is it necessary to keep that information. In particular, as events
are time-stamped and recorded for future evaluation, the event history can grow quite large. Establishment
of a bound on the size of the event history by examination of the syntaz of an assertion is crucial in order
for monitoring and assertion checking to be effectively performed. The second difficulty of monitoring is
resolution of the issue of when an assertion needs to be checked. Generally, an assertion does not need
to be checked at every moment of a computation. Determining when the occurrence of an event (or its
nonoccurrence) can make an assertion false is a critical element to efficient monitoring. Furthermore, it is
desirable to ascertain the failure of an assertion as early as possible. This way it may be possible for the
system to take some corrective action. Finally, an algorithm for checking the satisfiability of an assertion
must be provided.

Our approach, that of using Modechart monitoring fragments to perform the monitoring and assertion
checking during the symbolic execution of Modechart specifications, provides a tight integration of these
three 1ssues. For example, an explicit representation of the exact occurrence time of events may be unnec-
essary for many assertions, despite the fact that the RTL representation of these assertions contains explicit
references to event occurrence times. Rather, it may be possible to monitor these assertions by recording
the relationships of these event occurrences to each other and to the current time. In this way, the “what to
keep” issue and “how to check” issue are more tightly integrated. Furthermore, by storing these relationships
in a state machine written in Modechart, the “how to check” and “when to check” issues are bound together.

The remainder of this paper is organized as follows: Section 2 further describes the three main problems
to be addressed in monitoring and assertion checking. Section 3 describes the integration of the monitoring
and assertion checking techniques into the Modechart Toolset Simulation Tool. The Modechart language
and the Monitoring and Assertion Checking Tool, MAC, are illustrated by discussion of a robot controller
and manufacturing assembly line example in Section 3. In Section 4, we provide examples of assertions as
well as summarize Real Time Logic, a first-order language for specifying assertions, and describe monitoring
in the context of satisfiability of sentences in this language with regard to a particular computation. In
Section b, we introduce some primitive relationships between modes or intervals of time and describe a rich
class of assertions which can be composed from these primitive relationships. Furthermore, we describe how
these RTL assertions are translated into Modechart monitoring and assertion checking fragments. In Section
6 we discuss related work in monitoring and assertion checking and in Section 7 we describe the direction of
our future efforts.

2 Three Problems of Monitoring

There are there major issues to be addressed in monitoring and assertion checking. The first of these is
the determination of what event occurrences and other information needs to be stored and for how long
that information is necessary. Secondly, it must be decided at what points the assertion must be checked.
And finally, an algorithm must be defined for actually determining the satisfiability of the assertion for an
execution prefix.



2.1 Event Histories

Since assertions are sentences which compare the time of the occurrences of various events in the system,
it is generally the case that determining the satisfiability of an assertion involves recording certain event
occurrences so that they can be used in comparisons with event occurrences that have not yet taken place.
Consider the following Real Time Logic assertion, (eq. 1):

ViQ(E, i)+ 6 < Q(E,i+ 1) (1)

Informally, in this assertion, @(F,1) represents the time of the ith occurrence of event E. Therefore this
assertion states that at least 6 time units must elapse between each occurrence of event E. This type of
assertion is known as a delay.

It is possible to monitor a delay by comparing the last two occurrences of the event. Although it is
intuitively clear that this is a correct approach to monitoring a delay, the problem of syntactically determining
from an assertion what event occurrences to record and maintain as well as when they can be discarded is
the most significant problem of monitoring. Many assertions require the recording of more than just the last
event occurrence.

An event history for a given event type is a set of the most recent occurrences of that event. The time
and occurrence value for each occurrence is kept. It is desirable to be able to examine an assertion and to
determine from its syntax a bound on the size of the event histories that must be maintained for each event.
Furthermore, the bound should be independent of the particular computation over which the assertion is to
be monitored.

This is important for several reasons. Not only would a lack of such a bound be impractical from a storage
perspective, but it would imply that it would be impossible to bound the execution time of checking the
satisfiability of an assertion at a given point in time. Put another way, if the event history were unbounded,
that would mean that a given moment in time a potentially unbounded number of comparisons would be
necessary to affirm or deny the assertion. This is potentially significant for run-time monitoring in a real
time environment. The existence of a bound on the size of the event history forces a constant bound on the
amount of work the monitoring process must do at each moment in time.

Such a bound does not exist for all assertions. For some assertions, additional assumptions about the
possible execution traces must be made in order to restrict the event-history. For example, consider the
assertion:

Vi@(WRITE_LOC, i) < @ READ_LOC: i)V @ W RITE_LOCj, i) < @ READ_LOC,, i) (2)

This assertion states that for each 2, the ith read of location 1 must follow the ith write of that location
or that the ith read of location 2 must follow the ¢th write of location 2. The event history for the monitoring
of this assertions is potentially unbounded. Consider a point in a computation where for some ¢, the first
comparison fails and neither WRITE_LOC, nor READ_LOC; has occurred for that ¢. In this case, the satisfaction
of the assertion for this ¢ cannot be determined until either WRITE_LOC, or READ_LOC, has occurred and the
event history for WRITE_LOC; and READ_LOC; will need to be maintained until the entire assertion can be
evaluated. However, during this period of time, arbitrarily many more WRITE_LOC; and READ_LOC; events
could occur. Each of these could need to be saved until the corresponding events took place on location 2.
Therefore, the event history is potentially unbounded.

2.2 When to Check

The second major issue in monitoring is that of when to check each assertion. The requirement that an
assertion hold at every moment in time does not require that the assertion be checked at each moment in
time. This is of great value because performing such checking at each moment of the computation would
be prohibitively time consuming. Often it is the case that if, at a particular moment in time, no event



mentioned in the assertion occurs, then it is not necessary to check that assertion. Again, consider the
example in Equation 1. The only events relevant to the satisfaction of this assertion are the i1s the event
mentioned in the assertion. If at a given moment in time, this event doesn’t occur, then nothing can happen
to make that assertion become false.

This suggests that monitoring can be performed without checking the satisfiability of the assertion at
every moment in time. Two approaches can be described. The lazy method involves checking the assertion
only at those moments in time where an event mentioned in the assertion actually occurs.

Although many assertions can be monitored by such an approach, for some assertions, the lazy approach
will permit undetected violations. Equation 3 contains an example of a deadline:

ViQ(E,i+ 1) < @(E, i) + 100 (3)

Informally, this assertion states that at most 100 time units must elapse between each occurrence of event
E. Although the lazy approach is effective for the delay specified in Example 1, if a deadline expires and the
monitored event never occurs, the deadline violation will remain undetected. Therefore, for some assertions,
a more sophisticated approach than merely examining event occurrences is necessary.

Alternatively, an active approach is possible. This mechanism is based on the understanding that it
1s sometimes possible to detect the eventuality of a violation in advance of the occurrence of the events
mentioned in the assertion.

For example, the violation of a deadline can be detected after the deadline expires; it is not necessary to
wait until the late event occurs to raise an error. For assertions such as deadlines, {imers are used to trigger
the monitoring system to check the assertion.

In fact, sometimes it 1s possible to detect the eventual violation of an assertion before the deadline expires.
Generally this is due to sophisticated assertions which contain implicit deadlines which are not directly stated.

2.3 How to Check

The third problem of monitoring is the actual determination of the satisfiability of an assertion when in-
stantiated with actual event occurrence times. In general, determination of the satisfiability of an assertion
reduces to the problem of testing the satisfaction of the assertion for particular event occurrences which have
been recorded on the event history. In Equation 1, the assertion states that the inequality must hold for all
pairs of subsequent event occurrences. That means, simply, that each pair of event occurrence times must
be replaced into the inequality and the inequality test to see if it is satisfied for those particular occurrence
times.

It is intuitively obvious how to do this for the delay example. However, a general mechanism that will
handle more complex assertions must be used. In addition, an active monitoring approach (as described
above in Section 2.2) may require testing the satisfiability of an assertion before all the mentioned events
have occurred. This means that it must be possible to ascertain the satisfiability of inequalities containing
one or more variable terms.

For such assertions, an elegant mechanism [4, 12] for checking satisfiability maps the inequality into a
graph. Each event type is represented by a node and timing constraints between event types are represented
by weighted edges between nodes. The graph is then checked for negative weight cycles using the Floyd-
Warshall algorithm [1].

Alternatively, when a bound has ben established for the event history, it is also possible to define Mode-
chart monitoring fragments or other automata to perform the actual checking. Instead of instantiating the
RTL formula directly with times of event occurrences, event occurrences and timers trigger state changes in
the Modechart monitoring fragments. This approach we have adopted for our tool and is described in more
detail in Sections 3 and 5.



3 Integration of Monitoring with the Modechart Toolset

The Modechart Toolset (MT), developed by the Naval Research Laboratory provides a graphical user inter-
face for entering Modechart specifications [5, 23]. In addition, the toolset provides formal verification, static
completeness and consistency checking, and specification simulation. This section describes the Monitoring
and Assertion-Checking Tool (MAC) and its integration with MT.

The Modechart Simulator provides symbolic execution of Modechart specifications. These symbolic
executions produce execution traces which are examined by the MAC tool. The MAC tool is integrated with
the Simulator and checks execution traces as they occur to ascertain the satisfiability of the assertions.

In Section 3.1, we illustrate the Modechart language using a robot controller for a manufacturing assembly
line. This example is used for purposes of illustration throughout the paper. In Section 3.2, we describe
our approach to monitoring and assertion-checking and the integration of the MAC Tool into the Modechart
Toolset. Finally, in Section 3.3, we return to our robot example to demonstrate our approach.

3.1 Overview of the Modechart Language: A Robot Controller Example

Modechart [14] is a graphical specification language based on concurrent finite state diagrams. It provides
a compact and structured way to represent real time systems. Although similar to Harel’s Statecharts [10],
Modechart is specifically designed for the specification of real time systems. It allows for the specification of
modes which represent control information which impose structure on the operation of a system.

Modechart is extended from Statecharts with constructs for expressing timing constraints. It has a visual
hierarchical structure and a small set of well defined constructs for the definition of event-driven real time
systems. These constructs include modes, mode-transitions, events, and ttming constraints. During a non-
zero moment in time, a mode can be either active or inactive. Informally, the state of a real time system 1s
described by the collection of modes which are active.

Modes are hierarchically arranged in a tree structure; there is a top level mode from which all modes
are descended and each mode has only one parent. The children of each mode can execute serially or in
parallel, allowing Modechart to capture both concurrent and sequential behavior. The hierarchical nature
of Modechart also allows specifications to be evaluated at different levels of abstraction.

The behavior of a real time system is captured by mode transitions. Mode transitions are expressions
which control the exit from one mode and entry into another. These transitions can be specified by timing
constraints or can be triggered by events in the system or by predicates on the behavior of modes in the
specification. Events in Modechart include mode-entry, mode-exit events, transition events, and external
events. When a mode becomes active it is said that a mode entry event corresponding to that mode occurs.
When a mode becomes inactive it is said that a mode exit event occurs. Mode transition events occur where
one mode is exited and another is entered. Finally, external events represent something happening in the
environment which can affect the behavior of the system. If My, and M, are modes, the exit of M; is indicated
by M;—, the entry of M, is indicated by —M,, and the transition from M; to My by M;j— M,. External events
are represented by single letters, e.g. E. These form the atomic units of a system; assertions are described
in terms of timing and ordering relationships between instances of these type of events.

Transitions can also be controlled by predicates on modes. For example, the predicate <M) indicates that
the mode M has been active for at least one unit of time. More precisely, M was entered before the current
moment of time, and since then, M has not exited before the current moment. Further discussion of the
possible predicates on modes can be found in [23, 14]. Finally, more complex mode transition expressions
can be formed from triggers and timing constraints. More elaborate triggers can be composed by taking the
conjuncts of trigger expressions, and these conjuncts can be disjuncted together with timing expressions.

Consider the robot controller for a manufacturing assembly line illustrated in Figure 1. A producer
process generates items to be processed by a robot. The producer process places the items on a conveyer
belt and advances the conveyer belt so that the item approaches the robot. When the item 1is in the proper
position, the robot picks up the item, rotates away from the belt and processes the item in some way; for
example, 1t paints the item. When the robot is done processing the item, it attempts to place the item on
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Figure 1: Diagram of a Robot Controller for a Manufacturing Assembly Line

another conveyer belt where it is removed by a consumer process.

The specification models two main components, the system and the environment. The system includes the
robot controller and the conveyer belt controller for the producer process. This system has no control over the
conveyer belt for the consumer process; that is considered part of the environment. The environment includes
the robot, the producer conveyer belt, and the consumer conveyer belt, together with various sensors. The
sensors in the environment send signals which are received by the controllers in the system and the system
sends control signals to the environment.

Figure 2 contains a Modechart specification for this example. At the top level, we introduce two parallel
modes which model the environment and the system. The System mode i1s a parallel mode; its two child
modes S.Producer Belt and S.Robot_Controller are active simultaneously. Similarly the Environment
mode has seven children which are active simultaneously, with each of the child modes representing some
aspect of the environment in which the controller must function.

The S.Robot_Controller mode is responsible for sending signals to the environment to instruct the
robot to take an item from the processor belt, process it, and place it on the consumer belt. The signals sent
to and received from the environment are represented by various mode entry events as described in Table
1. The mode S.Robot_Controller also responds to various events in the environment indicating that the
robot has performed the last command and is ready for the next one. The S.Robot _Controller mode is a
serial mode. When it becomes active, only one of its child modes become active.

The serial children of the S.Robot_Controller mode become active in turn by transitions. The box
with the thicker outline represents that the S.RC.Wait_to_Grab mode is the initial mode for the S.Robot-
_Controller mode. That is to say, upon entering the S.Robot_Controller mode, Modechart also enters
the S.RC.Wait_to_Grab mode.

Several kinds of mode transition expressions can be observed in this specification. The transition between
the S.RC.Wait_to_Grab mode and the S.RC.Extend mode is controlled by the expression (E.P.Ready). This
expression indicates that the transition from S.RC.Wait_to_Grab into S.RC.Extend is to be taken if the
mode E.P.Ready is active. The transition from S.RC.Extend to S.RC.Grab is controlled by the expression
—E.AE.Extended. That is to say the transition is taken when the mode E. AE.Extended is entered. Finally,
the transition from E.AE.Extending to E.AE.Extended is controlled by a timing condition, (1,5). This
indicates that the transition occurs at least one unit of time and not more than five units of time after the
mode E.AE.Extending becomes active. A summary of the timing constraints is depicted in Table 2.

This system concisely demonstrates many of the usual properties of real time systems. Many of the
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Figure 2: Modechart Specification of a Robot Controller for a Manufacturing Assembly Line
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Table 1: Signals and Corresponding Modechart Events

Time Minimum | Maximum
Robot arm rotation time (90 deg) 2 3
Robot arm rotation time (180 deg) 4 6
Robot arm extension time 3 )
Robot arm retraction time 3 )
Robot hand grabbing time 1 )
Robot hand dropping time 1 )
Robot hand processing time ) 10
Producer item ready time 1 15
Time to move item away on consumer belt 3 3
Consumer belt moving time 3 100
Consumer belt stopped time 1 100

Table 2: Timing Constraints for Robot




typical safety (including real time) properties can be tested for such a system. For example, one may want
to know “Does the robot ever enter the mode E.HP.Processing when there is no item in position?”, “Does
an item ever move from the Producer to the Consumer without being processed?”, or “Does an item ever
wait in position more than 20 time units before being processed?”

3.2 Approach to Monitoring and Assertion-Checking Monitoring in the Mode-
chart Toolset

In this section, we discuss the implementation of the Monitoring and Assertion Checking tool (MAC). The
MAC tool complements the existing tools in MT, allowing testing to take place for program specifications
and assertions for which formal verification is impractical. This tool provides valuable feedback to system
designers during the initial design process. The overall architecture of the Modechart Toolset is displayed in
Figure 3.

Graphical User Interface

Specification
Editor

Formal
Specification

Simulator

Assertions

Static Analyzer

<

ofile

Monitor

Simulation

Traces

Figure 3: The Architecture of the Modechart Toolset

Users of the Modechart Toolset enter specifications via the specification editor. The specification ed-
itor has a graphical interface via which the user draws the modes and transitions which comprise the
specification. Generally, once a user has entered a specification she or he will want to perform certain
application-independent consistency checks. The static analyzer checks the specification to guarantee that
the specification is well-formed and fully specified. It also checks for various conditions often associated with
errors in specifications such as sink modes.

After these static checks have been performed, analysis of the more dynamic properties of the system
may be desirable. The two tools for checking dynamic properties of the specification are the Modechart
Verifier and the Modechart Simulator. The verification tool provides a model checking approach for verifying
properties of specifications by examination of a computation graph using a model-checking approach. The
verified properties are stated in Real Time Logic (RTL). The verifier is currently implemented for specific
classes of RTL assertions that are likely to be of interest to system developers. These classes of assertions
are also handled by the MAC tool.

The verifier is complemented by the Simulator Tool. The simulator generates a symbolic execution of
the Modechart specification. One use of the simulator is to ascertain whether a Modechart specification
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satisfies the developer’s intent. The tool user can generate an execution trace and examine it for errors or
variations from informal specifications of the system. That is, simulation of execution traces is often very
useful during the design phase of system development because it allows the developer to informally evaluate
system behavior as well as to test for specification violations for particular execution traces.

The MAC Tool is a component of the Modechart Simulator. The key idea is to augment a Modechart
specification with a monitoring fragment which represents the assertion to be checked. The monitoring
fragment, also expressed as a Modechart specification, is used to represent the satisfaction or violation of an
assertion. The goal 1s to use the Modechart simulator to produce a possible execution trace of the augmented
specification. The monitoring fragment is symbolically executed together with the original specification
generating an execution trace that highlights the violation of the original assertion. What is attractive
about this approach is that instead of generating an operational description (or algorithm), an indicator of
the status of the assertion i1s provided.

Original Assertions
Modechart Modechart
Specification
Monitor: Fragment Generator
Extended Modechart Spec. Profile
Event List
and Handlers

‘ Simulator ‘

Event Sequence

User-defined
‘ Monitor: Satisfiability Checker Handlers

I

Log File

Figure 4: Implementation Design

Figure 4 illustrates the MAC Tool and its relationship to the Modechart Toolset. As described later
in this section, there are several ways to specify an assertion. The Fragment Generator produces a Mode-
chart specification designed to perform monitoring during simulation. This supplemental specification (or
fragment) is appended to the original specification. The MT simulator produces possible execution traces
from a Modechart specification and a user-defined profile. The monitoring specification is symbolically
executed along with the original specification. The execution traces generated by the MT simulator are
examined by the Satisfiability Checker to test for violations of system constraints. Satisfiability checking is
simplified to checking for particular events generated by the newly created monitoring fragment. The tool
also supports user-defined handlers that are invoked by the monitor when a particular property 1is satisfied
or a violation is detected.

There are several ways in which assertions can be specified by the user:

(a) The user may provide his or her own monitoring fragment as a Modechart specification. This allows

11



the user the maximum flexibility in terms of what kind of properties can be monitored. Modechart
monitoring fragments can be developed in the specification editor in much the same manner as are
ordinary system specifications. The only real difference is that the user must identify to the MAC Tool
which mode represents a violation of the assertion and what handler should be invoked upon entry to
the violating mode.

(b) Classes of assertions which are supported by the MT verifier are also supported by the MAC tool.

These assertions include:

e Separation

e Mutual Exclusion

e Cover Mode

e Under Mode

e Inner Universal

e QOuter Universal

e Reachability

e Elapsed Time
These assertions are specified in Real Time Logic via a graphical, forms-based interface. (One such a
form is displayed in Figure 5.) The user fills the relevant information into the RTL formula, but is not
required to write RTL formulae from scratch. Each of these assertions corresponds to a Modechart

monitoring fragment. The necessary information is filled in the fragment and the resulting fragment
is attached to the original Modechart specification.

[#] Cover Mode
Mode selected: ?77
Vi EI i [@(\%J—)IS‘RC.PROCESS L+ a €= @(ﬁ?’u—)}iHPPROCESg &
@( \Z‘S")JE‘HP‘PROCESS Ly e= @(\%‘SWUS.RC‘PROCESS -,
Result:
_Clear) Calculate offset ) Evaluate ]  pbot? Dismiss ) Clear & Dismiss )

Figure 5: Specifying an Assertion via the Forms Interface

(¢) The user can specify more complex assertions, composing primitive relationships described above in
part (b). Again the user can fill mode names into a form to specify the primitive assertions; these
are then very easily composed using the usual logical connectives. In this case, the MAC Fragment
Generator composes monitoring fragments written in Modechart to develop a complex monitoring
fragment tailored to the user’s request. The resulting fragment is appended to the original specification
and simulated together with it.

3.3 A Monitoring Example: The Robot Controller Revisited

In Figure 6, the robot example described in Figure 2 has been supplemented with a monitoring fragment.
In this example, the assertion to be monitored is designed to test whether the mode S.RP.Process is ever
active for fewer than 6 time units. Such delay assertions are further discussed in Section 4.3.

The mode Monitor contains the monitoring fragment. This fragment could be provided by the user or it
could be generated by the tool to provide monitoring for an assertion specified in RTL. As long as the mode
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Figure 6: A Modechart Specification of a Assembly-Line and Robot Arm Controller with Monitoring Com-
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S.RP.Process stays active for at least 6 units of time, the system stays in modes Monitor.G1, Monitor.G2,
or Monitor.G3. However if the mode exits earlier, the system will enter mode Monitor.B1.

It may be noted that there are many possible Modechart fragments which could be used to monitor
this assertion. The particular fragment shown in Figure 6 is designed for simplicity. Later, we demonstrate
another approach to monitoring a delay which can be composed with other monitors to monitor more complex
assertions. This is described in Section 5.

Figure 7 contains a simulation of the robot together with the monitoring fragment as generated and
displayed by the Modechart Simulator. Mode names are listed on the vertical axis on the left and the
elapsed time is displayed across the top in this “time-process diagram” [21]. A thick horizontal line indicates
the period of time during which each mode is active. The particular execution displayed violates the delay
assertion. It can be seen from this diagram that at time point 27, S.RC.Process becomes active and exits at
time point 32. Moreover, at time point 32, the mode Monitor.B1 becomes active, while the mode Monitor. G2
becomes inactive.

4 Specification of Assertions in RTL

In the previous section, we described how assertions may be specified by the user in either Real Time Logic
(RTL) or in Modechart. Users may prefer specifying a property of interest in a more concise notation using
an assertional language like RTL over a language based on state transition diagrams. Moreover, it is desirable
for the MAC tool to handle many of the same classes of RTL assertions which are supported in the verifier
tool.

In this section we provide an informal overview of Real Time Logic. In order to define the idea of
the satisfiability or violation of an assertion, we introduce the concept of a computation in terms of event
occurrences. This leads to the definition of a computation prefiz which is used to provide interpretations for
RTL. These interpretations are used to determine whether or not an assertion is violated during simulation of
a specification. Finally, we illustrate several examples of assertions specified in RTL and their corresponding
Modechart monitoring fragments. These examples correspond to the primitive relationships from which
more complex assertions are composed.

4.1 RTL Overview

Rather than creating Modechart monitoring fragments directly, the user may want to specify assertions
for which the monitoring tool can generate the relevant monitoring fragments. The general specification
language for assertions is Real Time Logic (RTL). RTL is currently used by the toolset users to specify
certain classes constraints which are verified to hold for all possible executions. Moreover, RTL appears to
facilitate the specification of assertions as constraints which must always hold over the computation.

Real Time Logic is a first order language designed to describe order relationships and timing constraints
about event occurrences in real time computations.

The language elements of RTL include event constants, positive and negative integer constants, a binary
function, 4, a binary relation, <, the logical symbol, =, and a binary function, @.

In this model, a real time system is a collection of event types. It is assumed that the collection of event
types is finite with each event type having a unique name. Each event can have multiple occurrences. The
event occurrences for each event type are ordered. Each occurrence of a particular event is described by
an occurrence index which indicates its ordinarily, i.e. whether it is the first, second, third, etc. occurrence
of that event type. Furthermore, connected with each event occurrence is the time at which that event
occurred. In addition, it is assumed that an event cannot occur more than once at a particular moment
in time. (Time is modeled by a strictly increasing monotonic sequence with a starting point, such as the
natural numbers.) An event occurrence can be represented by a triplet (E,4,¢) indicating the name of the
event, its occurrence index, and the time when that occurrence took place.
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4.2 Computation Prefixes and Interpretations for RTL

Here we introduce the concepts of a computation and a computation prefix. The computation prefixes
provide an interpretation to RTL by assigning values to the occurrence function. Monitoring of assertions
is defined in terms of checking the satisfiability of an RTL sentence by the sequence of computation prefixes
which compose a computation. Because each computation prefix is consistent with the previous computation,
only the impact of the most recent events on the satisfiability of the assertion needs to be considered.

A real time computation is defined to be a generally infinite sequence of sets of occurrences of events:

Y=, 5,5, ...

where each X; represents the finite set of event occurrences which took place at time ¢ = i. Each o;€3; is
an event occurrence represented by some (F, i,t) subject to the constraint that for a fixed event type, E, the
occurrence index ¢’s strictly increase as the time values, t’s strictly increase. Moreover, the same event may
not occur more than once at each moment in time, that is, for a given ¢, if (£, ¢,¢)€X;, then the 7 is unique
for that ¢. Notice that no ordering of event occurrences can be determined for events which took place at
the same moment in time; we model simultaneous events with true concurrency rather than by using an
interleaved model.

A prefix of a computation is an initial subsequence of sets of event occurrences such that all the events
occurrences in the prefix occurred at or before some time, ¢, indicated by P;. Each prefix of a computation
is a subset of any prefix that follows it and of the entire computation. Therefore, a computation can be
seen to be the union of a chain of computation prefixes defined by each moment in time. Each prefix of
a computation will partially define an interpretation for RTL. Each such interpretation will assign to the
universe the positive and negative natural numbers (to which the corresponding constants are assigned), and
additional elements for each event type that can occur in the system.

The function, +, the binary relation, <, and the logical symbol, = are interpreted in their usual ways on
the integers for each interpretation defined by a prefix. The function symbol @ is defined on

Ex 2T =N

and is interpreted by each so that @(F, ) indicates the time of the ¢th occurrence of event E, for i > 0.
Therefore, any prefix, P;, has an interpretation of the @ function is consistent with every prefix which ended
before P. The reduct of @ to Py is exactly the reduct of @ to P,_1U{@(E, i) : Q(FE, i) =t for some event E}.
That is, each prefix P; interprets the @ function exactly as its predecessor on event occurrences that happen
before time ¢ and newly interprets @ on event occurrences that happen at time ¢.

For @(FE, i) where the ith occurrence of event E has not happened at time ¢, it is unclear how the
occurrence function should be interpreted by P;. Here we consider that there are very many, probably
infinitely many, possible eztensions of the computation prefix to complete computations. In each of these
possible extensions, the ith occurrence of E may take place at different times. All that is known at time ¢
is that the ¢th occurrence happens in the future. Therefore, any natural number greater than time ¢ can be
assigned to @(F,1).

In summary,

t if the 1’th occurrence of E happens at time t
Q(E,i)p, = Q(E,i)p,_, if the 1’th occurrence of E happens before time t
t'eN —{0,1,...¢} otherwise

To monitor an assertion is to check its satisfiability over a computation. In order to do this, monitoring
is performed on each prefix of the computation. The computation is the union of all of its prefixes so
the ascertaining the satisfiability of an assertion over a computation can be achieved by ascertaining the
satisfiability of that assertion for each prefix of the computation.

15



To check the satisfiability of an assertion on a computation prefix, we check whether the assertion is
satisfiable on some extension of that prefix into a complete computation. Because the interpretation provided
by the computation prefix P; is consistent with interpretations of prefixes preceding F;, the satisfiability of
an assertion by an interpretation P; involves checking only the satisfiability of the assertion with regard to
event occurrences which happen at time ¢ and following.

Assertions are limited to sentences, that is, formulas with no free variables.

The following is an example of a common type of assertion, a delay:

Vi{@(—Process, i) + 3 < @(—Process, i+ 1)} 4)

This assertion states that each occurrence of event £ must be separated from the subsequent occurrence
by at least 6 time units. Note that if F first occurs at time ¢ = 2 and occurs the second time at ¢ = 10,
the assertion will be satisfiable under the interpretation provided by the prefix Pjg. In addition, subsequent
interpretations will not need to re-check the assertion for i = 1 since all subsequent interpretations are
supersets of Pjg and consistent with Pjq.

4.3 Examples of Assertions

MODE_MONITOR
WAITING TO_GET_IN JUST_GOT_OUT

(€3]

1.1) ->M&->JUST_GOT_OUT

NO_TIME\IN_.NOW_OUT ~ NO_TIME_@UT_NOW_IN

->M M->

(G5}

M-> & ->JUST_GOT_IN
JUST_§OT_IN AITING_TO |GET_OUT

(€3]

Figure 8: Modechart Monitoring Fragment for a Single Mode

In this section, a variety of example assertions are presented in order to further illustrate the problems in
bounding the event history and in deciding when in a computation it is necessary to check the satisfiability of
an assertion. These example assertions correspond to some of the primitive monitoring fragments described
above. They also demonstrate how monitoring is simpler for assertions describing the behavior of modes
than for assertions describing the behavior of general Modechart events. In this section we use capital letters
to indicate general Modechart events. These events could be mode-entry, mode-exit, or external events.

In general, we will consider assertions concerned with the behavior of modes. We describe timing con-
straints on individual modes, as well as restrictions on the behavior of pairs of modes. Therefore, it is
necessary to address carefully the behavior of a single mode. As described above, a given mode may be ac-
twe or inactive. A mode is active from the time that its mode entry event occurs until the time its mode exit
event occurs (and, respectively, inactive from the time that its mode exit event occurs until its mode entry
event occurs). However, since the semantics of Modechart allow simultaneous events, it is possible for the
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mode entry event and mode exit event to occur at the same moment of time. When these two events occur
simultaneously it can be difficult to ascertain whether the mode is active or inactive at the next moment in
time.

For this reason, we introduce a monitoring fragment (see Figure 8) which is useful in indicating the precise
behavior of a mode—whether it is active or or in active and whether it exited and entered at the same moment
of time. In this example, the modes Just_Got_In, No_Time In Now Out, and Waiting To_Get Out indicate
that mode M is active. The remaining three modes indicate that mode M is inactive. This monitoring
fragment used to specify the more complex monitoring fragments described in the remainder of this section.
Delay Assertion.

DELAY_MONITOR
WAITING TO_GET_IN JUST_GOT_OuT ALARM

M-> &{<ALARM)}

->M&->JUST_GOT_OUT

M-> & ->ALARM

(11

NO_TIME_IN\NOW_OUT NO_TIME_UT_NOW_IN FAILED/DELAY

(n-1,n-1)

->M

M->&->FAILED_DELAY

M-> & ->JUST_GOT_IN

JUST_GOT_IN WAITING_TO\|GET_OUT

[E0)

Figure 9: Modechart Monitoring Fragment for a Simple Delay

Consider the following assertion:
ViQ(E,i)+6 < @Q(E,i+1) (5)

This assertion, a delay, states that every occurrence of the event E must be separated by at least 6 time
units. As described above, it is sufficient to maintain the time of the last occurrence of the event £ in order
to monitor this assertion. Each time an E event occurs, the time of that event is compared to the time of
the last event stored in the event history for this assertion. The satisfiability is checked by instantiating the
formula with the actual times of the two occurrences. Finally, the previous event occurrence is discarded
from the event history and replaced by the record of the time of the most recent event occurrence. Here it is
easy to see that the event history does not need to maintain more than one “old” occurrence of any event.
It is sufficient to compare the time of any event occurrence with the time of the last occurrence of that event
type.

There is, however, another approach to monitoring this assertion. For a given occurrence of event E|
it possible to determine the truth of the assertion after 6 time units have passed, whether or not the next
occurrence has taken place. If it has taken place, then, in fact, the assertion has been violated. If, however,
it has not taken place, then it can be seen that if it ever happens, then it will happen at least six moments
after the last occurrence, because if it hasn’t occurred yet, it can only occur in the future.
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A Modechart fragment to monitor a similar assertion, one involving the duration of a mode, using this
approach is depicted in Figure 9. This assertion states that the mode is active for at least n time units. The
corresponding RTL assertion is:

ViQ(—M,i) + n < Q(M—, 1) (6)

This Modechart monitor extends the technique depicted in Figure 8 by adding an alarm mode and a mode
(Failed Delay) to indicate that the delay has been violated. While the previous monitor indicated whether
a mode is active or not, this monitor indicates whether a mode is active long enough to satisfy the delay.
(In the figure, n indicates the duration of the delay.) Also, note that entering the mode No_Time_In_Now Out
also indicates a violation of the delay.

Another type delay is shown below:

VZ"@(El, Z) +4 < @(E2, ’L) (7)

Monitoring of this delay is more complicated than monitoring of the apparently similar delay involving
modes described in Equation 6. Unlike mode entry and exit events, the events E; and E, are unrelated. As
a consequence, it is insufficient to keep each occurrence of E; and wait for the corresponding E, event to
happen before checking. It is impossible to determine without additional assumptions about the execution
trace or the system that there is any bound of the number of E; events that can occur (and would need to be
recorded) before the corresponding E; event. (In contrast, we know that a mode exit event will occur before
a subsequent mode entry event. This is described in more detail in Section 5.) For Equation 7, the only way
to make a bound on the event history for E; is to record each E; event, wait four time units and determine
whether the assertion is satisfied. After four time units the satisfiability of the assertion for that particular
1 1s known and the record of that particular E; event occurrence can be discarded. As a consequence, the
bound on the event history is four since no occurrence of E; needs to be kept longer than four moments. This
example demonstrates that the establishment of a bound on the size of the event history is sometimes closely
tied to the determination of a bound on the duration for which an event occurrence must be maintained.

Vi:@(E,i)+ 100 < @(E, i + 3) (8)

Equation 8 demonstrates yet another type of delay. In this case there is an added complication in that
the delay is enforced not for the subsequent event occurrence but for the 3th subsequent event occurrence.
In this case, it 1s necessary to keep each occurrence in the event history for 100 time units or until there
are 3 of them. That is, the maximum size of the event history is 3 because there can be up to 3 i’s for
which the satisfaction of the delay is unknown. For each event occurrence, if 100 moments pass before the
3th subsequent occurrence takes place, the assertion is satisfied. Alternatively, if the 3th subsequent event
occurrence happens before 100 time units have elapsed, the assertion will have been violated for that 2.

A Modechart monitoring fragment for such a delay would require separate fragments to monitor each of
the three occurrences of event E for which the satisfaction of the delay would be unknown at a given moment
in time.

Deadline Assertion. Consider the following assertion:

Vi:@(—M,i)+n > Q(M—,i) 9)

This type of assertion, a deadline is generally monitorable in much the same fashion as are delays. This
assertion states that the mode M must exit within n time units of when it is entered. A monitor for this
deadline is displayed in Figure 10. Variants similar to those described above for delays are also possible and
are monitored in much the same manner.

Mutual Exclusion Assertion. Consider the following assertion:
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()

Figure 10: Modechart Monitoring Fragment for a Deadline

Vi, V7 - [@(M2—>,j) < @(—>M1, Z) \% @(M1—>, Z) < @(—>M2,_])] (10)

This assertion, mutual exclusion, states that two modes, indicated by M; and My must be disjoint. Here
the transitivity of order relations is used to establish a bound on the event history. For a fixed occurrence
of the mode My, if the last M; mode exited before that My started, then all previous My’s exited before that
M; started. That is, despite the fact that the RTL form of this assertion has two universal quantifiers, it is
not necessary to compare every occurrence of My with every occurrence of My. Rather, as each occurrence of
—M; takes place, it is sufficient to check that M, is not active and that throughout the period of time that
M; is active, that My does not become active. This is demonstrated in Figure 11. Observe how the monitor
enters the mode Just _Became Bad under precisely these circumstances. That is to say, — Just Became Bad
occurs if M1 is active and M2 starts or if M2 is active and M1 starts.

Similarly, the satisfiability of the assertion with regard to each My interval can be determined by watching
during each Mj interval for the occurrence of any My intervals. Therefore, it is only necessary to observe and
keep the last entry and exit events for each of M; and My. Notice that a violation can be observed comparing
the last entry and exit events for each interval. This idea is further developed in Section 5.

Is_Contained Assertion. Consider the following assertion:

Vidj : [Q(J1,5) < @(I1,8) A Q(Iz, i) < @(Js, §)] (11)

This assertion gives a very general example where one interval is required to be contained within another
interval. Here, the events J; and J, can be seen as forming an interval of time referred to as the “j-interval.”
Similarly, the events I; and I form the “i-interval.” This assertion indicates that each “i-interval”, comprised
of the events I; and I, must be contained in some surrounding “j-interval” comprised of the events J; and
J5. Intervals and modes are described in more detail in Section 5.1.
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Figure 11: Modechart Monitoring Fragment for Mutual Exclusion

The event history is potentially unbounded unless additional restrictions are made. Consider the com-
putation:

J1,14,731,14,J1,I1.... This sequence indicates a computation where there are multiple “j-intervals” and
“I-intervals” open simultaneously. That is to say, the intervals overlap each other.

In order to monitor such a computation for the Is_contained relationship, for each I; event occurrence, the
preceding J; event occurrence must be preserved. This is because at every point in the above sequence there
is insufficient information to affirm or refute the assertion. The first J; could begin an interval that encloses
all of the “i-intervals”. Alternatively, that “j-interval” could end before the end of any of the “i-intervals.”

However, for each open “i-interval”, we need keep only one J; event occurrence. Consider the J; occur-
rence that is the last one occurring before the opening of an “i-interval.” All previous J; event occurrences
will occur before the beginning of the “i-interval.” Therefore all such J; occurrences are candidates for the
surrounding interval. When a J, event occurs after the “i-interval”, if its index is less than or equal to the
last Jy index preceding the interval, then a “surrounding” interval is detected.

In summary, the event history for Is_contained is unbounded on the “i” dimension, but bounded on the
“” dimension. For each open “i-interval”, the event history is bounded. Therefore an overall bound can
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Figure 12: Modechart Monitoring Fragment for the Is_contained Relationship
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only be obtained if a bound is established for the number of open “i-intervals.”
There are several approaches to bounding the event history for this type of assertion.

e The user may assume the existence of such a bound. In this case monitoring will fail should the
assumption be violated.

e Assert a deadline on the duration of the “i-interval”. If the “i-interval” is constrained in length, then
only a finite number of them can be open simultaneously.

e Restrict the “i-intervals” to be modes. A mode has the property that only one instance of the mode
may be open at a given time. That is to say, each mode-entry event must be followed by a mode-exit
event before a subsequent mode-entry event can occur. Modes are described in more detail in Section
5; this kind of constraint is the basis for the development of a large class of assertions which can be
monitored with a bounded event history.

A Modechart monitoring fragment for monitoring the Is_contained relationship for the case where all
intervals are modes is presented in Figure 12; the RTL assertion is provided in Equation 12.

Vidj : [@(—=My, j) < @(—M;, i) A @(My—, i) < @(My, j)] (12)

Here, the fact that modes do not overlap is exploited to facilitate monitoring. In fact, to show that
every occurrence of mode M1 is contained within some occurrence of mode M2 is equivalent to showing that
every occurrence of mode M1 excludes the occurrence of the intervals when mode M2 is not active. Note the
similarity of this monitor with the monitor described for mutual exclusion in Figure 11.

Contains Assertion. Consider the following assertion:

Vidj [, 1) < Q(J1, §) A Q(Js, ) < @(I, )] (13)

This assertion states that the interval indicated by I; and I, must contain an occurrence of the inter-
val indicated by J; and J,. Just as for the Is_Contained relationship, the sequence I;,Jy,I5,J35,14,735...
demonstrates that the event history is potentially unbounded. Furthermore, the event history is bounded
only on the dimension indicated by the existential quantifier, but is unbounded if the number of intervals
indexed by the universal quantifier is unrestricted. The same approaches to bounding the number of open
intervals can be considered.

A Modechart monitoring fragment for monitoring the contains relationship for the case where all intervals
are modes is presented in Figure 13. This monitor evaluates the RTL assertion:

Vidj 1 [Q(—=My, i) < @(—Ma, j) A @(Mi—, j) < @(Ma—, i)] (14)

Note that we require the relationship to be strict; that is, the contained mode, My, must start strictly
after M; starts and end strictly before My ends.

5 Translating RTL Assertions into Modechart Specifications

In this section we describe the Fragment Generator part of the MAC tool. The Fragment Generator translates
assertions in Real Time Logic into monitoring fragments written in Modechart. As described in Section 3.1,
modes are one of the most basic elements of the Modechart language. As a consequence, many of the safety
and real time properties likely to be of interest for Modechart specifications are those concerning the behavior
of modes. In this section we show that an expressive class of assertions can be composed from primitive
relationships between modes and from timing constraints. In addition, we show that the semantics of Mode-
chart can be exploited to guarantee that this particular class of assertions can be monitored with a bounded
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Figure 13: Modechart Monitoring Fragment for the Contains Relationship

23




event history. (As described in 4.3, not all assertions which can be specified in RTL can be monitored with
a bounded event history; similar assertions describing more arbitrary events and intervals are not likely to
be monitorable with a bounded event history.)

In this section, we first give a formal definition of modes and intervals This is followed by a description of
ways in which two modes can be related as well as definitions of RTL assertions capturing these relationships
(Section 5.1). We also describe Modechart monitoring fragments for each of these relationships. This is
followed by a discussion of how more complex RTL assertions can be composed from RTL formulas describing
these primitive relationships (Section 5.2). Finally, we present our approach for automatic composition of
the corresponding Modechart fragments to generate Modechart fragments to monitor these more complex
RTL assertions.

5.1 RTL Fragments Describing Relationships Between Two Modes

As described above, modes are one of the basic constructs of the Modechart language. A mode can be viewed
in terms of the interval of time during which the mode is active, that is, the time elapsed between a mode-
entry and the corresponding mode-exit event. In this section, we provide an explicit RTL representation
for both intervals and modes. We also describe a set of assertions based on relationships between pairs of
modes; these relationships correspond to the monitoring fragments described above in Section 4.3.

Since modes are the primary control mechanism in Modechart, expression of assertions which describe
the behavior of modes is likely to be very useful in that environment. Consider the Is_contained relationship
discussed in Section 4.3. This assertion describes the relationship between two intervals. Each “j-interval”
must be contained within some “i-interval.” As described above, in its general form, this assertion cannot be
monitored with a bounded event history. Moreover, the reason it is potentially unbounded is the possibility
of an arbitrary number of “j-intervals” can be open at a given time. When the “j-intervals” are restricted
to be modes, a bound can be easily established for the event history.

This example suggests that it may be easier to establish bounds on assertions describing relationships
between modes rather than those describing relationships between arbitrary intervals or even more general
statements about events. By restricting our assertions to those describing the manner in which modes can
be related to each other, we can ensure that all expressible assertions are monitorable.

An interval can be represented in RTL as a pair of terms (corresponding to the starting and ending
points) having the following form:

@(El, 1+ Cl) + (7 and ‘@(Ez,i+ Cz) + Cy

Each of the terms is called an endpoint. The two endpoints share a single free variable in the occurrence
index. One endpoint is designated as “opening” the interval and the other as “closing” the interval. By that
is meant that the following axiom is added for each interval:

VZ‘@(El,Z—i— Cl) +C1 < @(E2,2+ 62) + Cy

That is to say, each occurrence of an interval must open before it closes.

A mode can be represented as one type of interval with the mode entry event indicating the first endpoint
and the mode exit event indicating the second endpoint. Such an interval has the additional property that
no two occurrences of that interval can be open simultaneously. The following axiom is added for each mode:

VZ@(EQ, Z) +C5 < ‘@(El, 1+ 1) + C1

Allen [2] introduced a taxonomy of temporal relationships for two intervals of time. We introduce in Table
3 a set of primitive relationships loosely derived from his system. The relationships we describe represent a
simplification of his scheme; we do not disambiguate pairs of simultaneous events from pairs of that happen
in succession. For example, the relationship A contains B included the possibility that A and B are equal; the
relationship need not be strict. A more detailed set of relationships more closely parallel to his is possible.
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Table 3 also contains the RTL definitions for the primitive relationships. Each relationship describes the
relationship between a base mode and another mode, called the relative mode. In Table 3, the base mode 1s
always indicated as A and the relative mode is indicated by B. Note that in these expressions the occurrence
index variable for each base mode is a free variable and that the index variable for each relative mode is
quantified. In these examples, each of these primitive relationships describes how other modes relate to a
given occurrence of mode A.

As described in Section 4, RTL assertions must be sentences. Therefore, each of these relationships
forms the basis for a primitive assertion formed by universally quantifying the variable connected with the
base mode. For example, one assertion based on a primitive relationship, taken from the robot exam-
ple described above, states that every occurrence of E.HP.Holding contains some occurrence of the mode
E.RP.Processing. In other words, this captures the constraint that every time an item is held by the robot,
it is processed by the robot during that period of time.

In RTL, this is represented as:

Vv3j@Q(—E.HP.Holding, v) < @(—E.RP.Processing, j) A @(E.RP.Processing—, j) < @Q(E.HP.Holding—, v)
(15)
which is formed by substituting the mode E.HP.Holding into the RTL representation for the contains
primitive relationship and universally quantifying the resulting expression.

Moreover, these primitive relationships can be composed into more complex assertions as described in
Section 5.2.

(B[)A] A left_overlaps B 35 @Q(—B,j) < Q(—A,va)A
@(—>A A) S @(B—> j)/\
@(B—>,_]) S @(A—> VA )
[(B)A] A contains B 35 @Q(—A,v4) < @(—B,jH)A
@(B—,j) < Q(A—,v4)
[A(B]) A right_overlaps B | 3 @(—A,va) < Q(—=B, j)A
@Q(—B,j) < Q(A—,va)A
@Q(A—,va) < Q(B—,J)
([A]B) A is_contained_.in B | 3j @(—>B J) < @(—A, va)A
@ (A va) < O(B—, j)
[A](B)or(B)[A] | A excludes B Vi @Q(B—,j) < @(—A,v4)V
@(A—> va) < @Q(—B,j)
[«~maxn, A—] A deadline n @(A—,v4) < @(—A,va)+n
[«min n, A—] A delay n @Q(—A,v4) + n < QA=)

Table 3: RTL Definitions of Simple Primitive Relationships

We have described Modechart monitoring fragments for most of the primitive relationships in Section
4.3 (Figures 9 to 13). These fragments are used by the monitoring and assertion-checking tool to monitor
primitive relationships as well as to compose larger fragments to monitor more complex RTL assertions; this
is discussed in Section 5.2.

5.2 Composition of Primitive Relationships

The primitive relationships described above can be composed into more complex assertions. We have de-
scribed how each primitive relationship has a corresponding Modechart monitoring fragment; similarly, com-
plex assertions have monitoring fragments composed from the Modechart monitoring fragments for primitive
relationships. Primitive Relationships concerned with the same base mode can be composed using the logi-
cal connectives into a single-base-mode assertion. For example, a single-base-mode assertion composed from
two primitive relationships concerned with the same base mode might be “Every occurrence of the mode
S.RC.Process has a deadline of 9 and has a delay of 6.”
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When single-base-mode assertions are composed, the result is a complez assertion. For example, here is
a complex assertion taken from the robot specification: “Every occurrence of the mode S.RC.Process has a
deadline of 9 and every occurrence of the mode E.RP.Processing has a delay of 6.” Note that the complex
assertion describes the behavior of different modes over the computation.

Single-base-mode assertions are fully quantified and, therefore, so are complex assertions. As a conse-
quence, single-base-mode assertions and complex assertions describe constraints on the entire computation.
In contrast, each primitive relationship describes the behavior of each occurrence of the base mode because
it has a free variable as the occurrence index variable for the base mode. The free variable in primitive
relationships permits the the composition of more complicated assertions about the behavior of the base
mode.

Composition of RTL Assertions. The rules for generating a composed RTL assertion from the primitive
relationships are:

1. Let a(M,vpr) and B(M, vpr) represent primitive relationships with M the base mode and vys the free
variable in @ and 3. The primitive relationships are specified in RTL as indicated in Table 3.

2. Primitive relationships can be composed using the usual logical connectives to from the matrix of a
single-base-mode assertion, thus:

o Y(M,vpr) = a(M,vpr)

o Y(M,var) = (¢(M,vpr) A p(M,vpr)) where ¢(M,vpr) and @(M, vpr) are matrices of single-base-
mode assertions.

o Y(M,var) = (¢(M,vpr) V (M, vpr)) where ¢(M,vpr) and @(M, vpr) are matrices of single-base-
mode assertions.

o Y(M,vpar) = (—¢(M,var)) where ¢(M, var) is a matrix of a single-base-mode assertion.

Note that without loss of generality it is possible to assume that the primitive relationships are com-
posed in disjunctive normal form.

3. Replace each single-base-mode assertion with its universal closure:

¢ =Yuprd(M,vpr) where ¢(M, vpr) is a matrix of a single-base-mode assertion.

4. Single-mode assertion may be composed together in disjunctive normal form using the usual logical
connectives. For example,

¢* A ¢* where ¢* =Vva¢(A,va) and ¢* = Vopp(B,vp) is a complex assertion.

Again, without loss of generality it is possible to assume that the single-base-mode assertions are
composed in disjunctive normal form.

For example, the second assertion described above is specified in RTL as:

Vi@(S.RC.Process—,i) < @(—=S.RC.Process, i) + 9 A @Q(—S.RC.Process, i) + 6 < @(S.RC.Process—, 1)
(16)

Incidentally, the simple phrases, “contains,” *

excludes,” “left_overlaps,”, etc. can be used to describe
these composed assertions in a straightforward manner. These phrases correspond to the templates presented
to the user in the “forms” interface for specifying assertions. In this way the burden of writing RTL directly
is avoided—the user has only to fill in correct mode names. Furthermore, the task of writing assertions that
conform to the above requirements for composed assertions is simplified by permitting the user to state
assertions in terms of these phrases linked with the propositional connectives.

Composition of Modechart Monitoring Fragments. Monitoring fragments for composed RTL as-

sertions (such as the one described in Equation 16) can be constructed by using Modechart monitoring
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fragments corresponding to each of the primitive components of the assertion. Each time any of the mon-
itoring fragments has a mode change, the monitoring system combines the values of the modes for each
primitive relation using the logical connectives to determine the satisfiability for the composite assertion.

The composition of the Modechart Monitoring fragments is structurally similar to that of the RTL
assertions; that is, monitoring fragments are instantiated for each primitive relationship and composed to
form monitoring fragments for single-base-mode assertions. The resulting Modechart monitoring fragments
for single-base-mode assertions are then composed to develop Modechart monitoring fragments capable of
monitoring the entire complex assertion.

Modechart monitoring fragments for primitive relationships are based on the fragments depicted above in
Figures 9 to 13. To simplify the construction of the monitoring fragments, each of the fragments for primitive
relationships is composed in parallel with a control mode. That is to say, a parent mode is created having
two serial children, one of which is the relevant monitoring fragment instantiated for the particular primitive
relationship and the other of which is the control mode. The control mode has two atomic children, one
representing all of the “good” or satisfiable modes in the template and one representing the disjunction of
the “bad” or unsatisfied modes of the template. A transition from the satisfiable to the unsatisfied mode 1is
triggered by the disjunction of all of the entry events into unsatisfied modes in the template mode; similarly,
a transition back into the satisfiable mode is triggered by the disjunction of all of the entry events into
satisfiable modes in the template mode. Thus, the control mode contains a simplified representation of the
template mode, entering a satisfiable mode any time the template is in a satisfiable mode and entering an
unsatisfied mode any time the template is in an unsatisfied mode. The purpose of the control mode is merely
to simplify the representation of the behavior of the template mode to facilitate parallel composition with
monitoring fragments for other primitive relationships.

For each single-mode assertion consisting of two or more primitive relationships, a higher level monitoring
fragment is created. This parallel mode has as children each of the relevant monitoring fragments for primitive
relationships (as described above with control modes) as well as its own control mode. The control mode
for each simple assertion has two modes, one for satisfiable modes and one for unsatisfiable modes, just as
the control mode for primitive relationships does. However, there 1s just one transition, from the satisfiable
mode to the unsatisfied mode. The trigger condition for this transition is the negation of the matrix of
the RTL specification of the single-mode assertion. Each primitive assertion is replaced by the name of the
corresponding unsatisfied mode for its monitoring fragment and the resulting expression is negated to derive
the trigger condition for the transition into the unsatisfied mode for the simple assertion.

For example, the generation of the Modechart monitoring fragment for the assertion stated in Equation
16 1s depicted in Figure 14. Here, the assertion to be monitored states that for each occurrence of the mode
S.RC.Process that occurrence does not exit in less than 6 time units and it exits within 9 time units.

Note that this monitoring fragments is structured according to the above description with monitoring
fragments corresponding to each of the primitive relationships. Each of the two primitive relationships,
S.RC.Process has a delay of 6”, and S.RC.Process has a deadline of 9” are monitored by the correspond-
ing modes Al.Deadline and Al.Delay. Al.Deadline.Controls and A1.Delay.Controls are the relevant
control modes which summarize the behavior of each of the monitoring fragments for each primitive rela-
tionship. The single-base-mode assertion which is composed of these two primitive relationships is moni-
tored by the mode A1 having control mode A1.S.RC.Process.Controls. Al1.S.RC.Process.Controls is
a new control mode introduced to monitor the behavior of the single-base-mode assertion composed of the
deadline and the delay relationships. This control mode has two children A1.S.RC.Process.Satisfiable
and A1.S.RC.Process.Unsatisfied. The transition from A1.S.RC.Process.Satisfiable to A41.S.RC.-
Process.Unsatisfiedis controlled by a transition triggered by the disjunction of the two modes representing
the unsatisfied modes of the primitive relationships. As this is a single-base-mode assertion, this monitoring
fragment is sufficient. If it were a complex assertion, a further level of controls would be introduced to
monitor the composition of the single mode assertions.

Modechart monitoring fragments for single-mode assertions can be composed into monitoring fragments
for complex assertions in exactly the same way. The monitoring mode for a complex assertion has as children
monitoring fragments for each simple assertion (as described above) as well as its own control mode. This
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Figure 14: Composed Modechart Monitoring Fragments for example 16.
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control mode has satisfiable and unsatisfied modes with a single transition from the satisfiable mode to the
unsatisfied mode defined in exactly the same manner as for the composition of single-mode assertions.

6 Related Work

The foundations for our work are found in [12] which develops the framework for understanding a system
computation in terms of an event-based model. The problem of bounding event histories is described here as
well as the distinction between synchronous and asynchronous monitoring. In addition, this work presents
several classes of assertions which can be monitored with bounded event histories, one of which (Exclu-
sion/Inclusion/Overlapping of Intervals) serves as the impetus for the primitive relationships we describe.
A more formal approach to real time monitoring, including the development of the idea of a computation
prefix is provided in [13].

More attention has been given to the issues of on-line or run-time monitoring than to that of monitoring
and assertion checking of symbolic executions of real time systems. Run-time monitoring systems must
address problems related to the probe effect including perturbation and event reordering, in addition to the
issues we describe. Moreover, the research has focused on monitoring facilities for parallel and distributed
systems, rather than for real time systems. See [28] for many of the major contributions with regard to
distributed systems as well as several which address monitoring in the context of real time systems.

Special hardware support for collecting run-time data in real time applications has been considered in a
number of recent papers [8, 19, 27]. These approaches introduce specialized co-processors for the collection
and analysis of run-time information. The use of special-purpose hardware allows non-intrusive monitoring of
a system by recording the run-time information in a large repository, often for post analysis. A related work
[9] studies the use of monitoring information to aid in scheduling tasks. The underutilization of a CPU due
to the use of scheduling methods based on worst-case execution times is addressed by the use of a hardware
real time monitor which measures task execution times and delays due to resource sharing. The monitored
information is fed back to the operating system for achieving an adaptive behavior. These approaches
emphasize event detection rather than the issues connected with monitoring more complex behaviors of a
system.

[24] gives an overview of the important issues of run-time monitoring for real-time distributed systems
and illustrates these issues in terms of the test methodology developed for the MARS system [19]. This
approach uses special monitoring nodes between system nodes to collect communication events which are
saved for later analysis. Because the monitoring nodes do not contribute any network traffic, interference is
avoided.

A work closer to our approach is a system for collection and analysis of distributed/parallel (real time)
programs [18]. The work is based on an earlier system for exploring the use of an extended E-R model for
specification and access to monitoring information at run-time [25]. The assumption is that the relational
model is an appropriate formalism for structuring the information generated by a distributed system.

A real time monitor developed for the ARTS distributed operating system is presented in [26]. The
proposed monitor requires certain support from the kernel, such as notification of the state changes of a
process, including waking-up, and being scheduled. In particular the ARTS kernel records these events that
are seen by the operating system as the state changes of a process. These events are sent periodically by the
local host to a remote host for displaying the execution history. The invasiveness of the monitoring facility
is included in the schedulability analysis.

Monitoring and detecting violations of certain predefined timing constraints have been proposed in real
time languages, such as FLEX [17]. The FLEX language provides the constructs for specifying delay and
deadline constraints in a program.

For a discussion of an approach to run-time monitoring of RTL assertions in distributed real time systems
see [15]. This paper discusses the additional issues of early detection of violations, minimization of the number
of messages required for monitoring, and clocks and timer granularity.

The STATEMATE system [11], based on Statecharts [10], provides symbolic execution of system spec-
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ifications. In an approach similar to ours, these executions can be monitored via special “watchdog” code
which is defined by the user in Statecharts. There is no automatic generation of watchdog code. Tt is
also possible to set breakpoints in the Statechart code. In addition, the STATEMATE system provides a
simulation control language to provide additional control over the generation of execution traces.

History-checking of TRIO specifications is provided in the recent work of [6]. TRIO is a first order
temporal logic which deals with time in a quantitative way by providing a metric to indicate distance in time
between events. History-checking is provided by applying a tableaux-based algorithm to a history (execution
trace) of a TRIO specification. In addition to the fact that a specification of real time systems in a temporal
logic such as TRIO looks very different from one specified in the state-transition diagrams of Modechart, one
important way that their approach differs from ours is that their history-checker examines an entire history
which has been stored in a data structure, rather than examining a computation as it is generated as we
do. In contrast, an important goal in our research was identifying assertions for which a bound on the event
history could be established independently from the duration of the compuation, whereas the bound in the
TRIO approach results from an assumption of a finite temporal domain.

7 Future Work and Conclusions

In this paper we have presented a framework for monitoring execution traces generated from Modechart
specifications. We have presented an assertion language, Real Time Logic, and defined monitoring in terms
of determining satisfiability of those assertions under a sequence of interpretations generated by computation
prefixes. In addition, we have identified the three primary challenges of monitoring, namely, bounding of the
amount of information that must be recorded, when checks must be performed, and how to check a particular
instance of an assertion. We have exploited the semantics of Modechart to guarantee that monitoring is
possible with a bounded event history for an expressive class of assertions based on comparisons between
two modes and on timing constraints for individual modes. We have described an approach to monitoring
these assertions based translating assertions specified in Real Time Logic into monitoring fragments specified
in Modechart. An implementation of a monitoring and assertion checking tool (MAC) for for the Modechart
Toolset has been completed.

Future work includes enriching the Modechart Toolset by extending simulator options to allow developers
more control over the generation of execution traces. Ideally, the monitoring system would be capable of
providing feedback to the simulation to permit “steering” of an execution. In addition, we would like to
augment the user interface to the simulator tool, supplementing the current “time-process” display with an
animated display of the execution of the specification. An animated display would use color or highlighting
to indicate active modes and enabled transitions. These extensions to the current toolset would further
integrate the monitoring and assertion-checking tool with the rest of the toolset and would make the tool
more useful for system designers.

Finally, we would like to incorporate actions into the Modechart Toolset. Actions are procedures attached
to modes that are executed upon the occurrence of a mode-entry event. In addition to providing Modechart
with general data handling capabilities, actions would provide a valuable extension to the monitoring and
assertion-checking tool. For example, actions connected to monitoring fragments could compile performance
statistics concerning the simulated execution.
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