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Abstract: One of the fundamental limits to high-performance, high-reliability file systems is memory’
vulnerability to system crashes. Because memory igedes unsafe, systems periodically write data back
to disk. The rtra disk trafic lowers performance, and the delay period before data is sedesloeliabil-

ity. The goal of the Rio (RAM I/O) file cache is to maikrdinary main memory safe for persistent storage
by enabling memory to sumé operating system crashes. Reliable memory enables a systemye Huhie
best of both wrlds: reliability equralent to a write-through file cache, whevery write is instantly safe,
and performance equlent to a pure write-back cache, with no reliability-induced writes to disk. T
achieve reliability, we protect memory during a crash and restore it during a rebootafan"weboot).
Extensve crash tests stwothat een without protection, arm reboot enables memory to askieeliabil-

ity close to that of a write-through file system while performing 20 timastef Rio males all writes
immediately permanent, yet perfornester than systems that lose 30 seconds of data on a crash: 35%
faster than a standard delayed-write file system an@88rfthan a system that delays both data and meta-
data. er applications that demanden higher leels of reliability Rio’s optional protection mechanism
makes memory een safer than a write-through file system while whiledong performance 20% com-
pared to a pure write-back system.

1 Introduction

A modern storage hierargltombines random-access memanagnetic disk, and possibly optical
disk or magnetic tape to try t@&p pace with rapid adrces in processor performance. |/@ides such
as disks and tapes are considered reliable places to store long-term data such as/éles. idndom-
access memory is wieed as an unreliable place to store permanent data (files) because it is vulnerable to
power outages and operating system crashasdiibaum95, page 146].

Memory’s vulnerability to pwer outages is easy to understand and fix. A $119 uninterruptivkr po
supply can kep a system running long enough to dump memory to disk irvéim ef a pwer outage
[APC96], or one can use nomlatile memory such as Flash RAM 84]. We do not consider meer out-
ages further in this paper

Memory’s vulnerability to OS crashes is more challenging. Most peoplgdweel nereus if their
system crashed while the sole gayf important data as in memoryeven if the paver stayed on [DEC95,
Tanenbaum95 page 146, Silberschatz94 page 200]. Consegqfiendystems periodically write data to
disk, and transaction processing applications/\transactions as committed only when data is written to
disk. The focus of this paper is enabling memory to sargperating system crashes without writing data
to disk.

Memory’s percered unreliability forces a tradddietween performance and reliability:

* Applications requiring high reliabilitysuch as transaction processing, write data through to disk, b
this limits throughput to that of disk. While optimizations such as logging and group commit can
increase déctive disk throughput [Rosenblum92, Chutani92, D84, disk throughput is stilldr
slower than memory throughput.

* Unix file systems mitigte the performance lost in reliability-induced disk writes hytmg 30 seconds
before writing data, Uit this ensures the loss of data written within 30 seconds of a crash
[Ousterhout85]. In addition, 1/3 to 2/3 ofwig written data Wes longer than 30 seconds [Ba¥l,
Hartman93], so a lge fraction of writes mustwentually be written through to disk under this ppli&
longer delay decreases disk fiatlue to writes bt risks losing ¥en more data. Applications that desire
maximum performance use a pure write-back scheme where data is written to disk only when the mem-
ory is full. This is an option only for applications where reliability is not an issue, such as ceyepier
erated temporary files.

Existing choices for reliable memory are attached via an 1/0O or backplamather than the memory
bus. These special-purposevides include solid-state disks, noalatile disk controllers, and writedlf-
ers such as PrestoserfMoran90]. While these can imw® performancewer disks, their performance is
limited by the lev bandwidth and highverhead of the I/Ous and deice interface. Being able to use ordi-
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nary main memory to store files reliablyowd be much better: systems alreadyeha relatiely lamge
amount of main memory and can acces®it/\quickly Further main memory is random-access, ualik
special-purpose dees.

The goal of the Rio (RAM 1/O) file cache is to ackighe performance of main memayith the eli-
ability of disk:write-back performance with write-through reliabilityfe achige memory performance by
eliminating all reliability-induced writes to disk [Malsick90, Ohta90]. W achi®e reliability by protect-
ing memory during a crash and restoring it during a reboot ganffivreboot). Extense crash tests sho
that een without protection, arm reboot enables memory to askieeliability close to that of a write-
through file system while performing 20 timester Rio males all writes immediately permanent, yet
performs &ster than systems that lose 30 seconds of data on a crastasiéfthfan a standard delayed-
write file system and 8%aster than a system that delays both data and metadatapications that
demand een higher leels of reliability Rio’s optional protection mechanism neakmemory wen safer
than a write-through file system while whileMering performance 20% compared to a pure write-back
system.

2 Design and Implementation of a Reliable File Cache

This section describes Wwove modify an gisting operating system to enable the files in memory (the
file cache) to survie crashes.

We use DEC Alpha wrkstations (DEC 3000/600) running Digital Unix V3.0 (OSF/1), a monolithic
kernel based on Mach 2.5. Digital Unix stores file data sndistinct luffers in memoryDirectories, sym-
bolic links, inodes, and superblocks are stored in the traditional Wifertlwache [Leter89], while rgu-
lar files are stored in the Unified Beif Cache (UBC). Theuffer cache is stored in wired virtual memory
and is usually only a ¥ megabytes. © consere TLB slots, the UBC is not mapped into therels vir-
tual address space; instead it is accessed usirgicphaddresses. The virtual memory system and UBC
dynamically trade dfpages depending on systerarkload. for the 1/0O-intensie workloads we use in this
paper the UBC uses 80 MB of the 128 MB on each computer

2.1 Protection

The first step in enabling the file cache to stend crash is to ensure that the system does not acciden-
tally overwrite the file cache while it is crashii"ng.he reason most people widattery-backd memory as
vulnerable during a crash yet wiglisk as protected is thieterfaceused to access thedvgtorage media.

The interfice used to access disksXplEit and complg. Writing to disk uses déce drivers that form /O
control blocks and write to I/O gesters. Calls to the the vee driver are cheakd for errors, and proce-
dures that do not use thevie driver are unlilkely to accidentally mimic the complections performed

by the deice driver. In contrast, the inteste used to access memory is simpley-store instruction by

ary kernel procedure can easily changg data in memory simply by using the wrong address. It is hence
relatively easy for may simple softvare errors (such as de-referencing an uninitialized pointer) to acci-
dentally corrupt the contents of memory [Bed2a].

The main issue in protection isla@o control accesses to the file cache. Wint to mak it unlikely
that non-file-cache procedures will accidentally corrupt the file cache, essentially making the file cache a
protected module within the monolithietel. © accomplish this, we use ideas froriséing protection
technigues such as virtual memory and sandboxirahpa93].

At first glance, the virtual memory protection of a system seems ideally suited to protect the file cache
from unauthorized stores [Copeland89]. By turninigtied write-permission bits in the page table for file
cache pages, the system will cause most unauthorized stores to encounter a protection violation. File cache
procedures must enable the write-permission bit in the page table before writing a page and disable writes
afterwards. The only time a file cache page is vulnerable to an unauthorized store is while it is being writ-
ten, and disks k& the same vulnerabilithecause a disk sector being written during a system crash can be
corrupted. File cache procedures can check for corruption during thiswvmdeerifying the data after
the write. Or the file cache procedures can create awtagy and implement atomic writes.

Unfortunately mary systems alle certain lernel accesses to bypass the virtual memory protection
mechanism and directly access/pilsal memory [Kane92, Sites92]oFexample, addresses in the DEC

1. We will see in Section 3.3 thaten without protection, most crashes do not corrupt files in mertdence we
recommend that protection be turnetifof most systems. Wdescribe Ri@ optional protection mechanism first
because most people (including the authors) assume it is needed.
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Alpha processor with the twwmost significant bits equal 0 bypass the TLB. Rio uses dwdifferent
methods to protect agnst these pJsical addresses.

Our current method, callecbde pathing, is to modify the &rnel object code by inserting a check
before @ery kernel store [Velhbe93]. If the address is aygital address, the inserted code checks temak
sure the address is not in the file cache, or that the file cachephiaile registered the address as writ-
able. The idea of inserting code befovenry store instruction sounds prohitdly slav, but several opti-
mizations mak the actualerhead only 20% (Section 4).

* The checking code isevy eficient: 6 instructions for a virtual address (the normal case), 28 instruc-
tions for a plgsical address. Wanin eficiengy over more general tools such a8@M [Srivastaa94]
by inlining the check for virtual addresses and by increasing each prosestack rather than creating
a temporary stack frame for each check.

* Modifications to the stack pointer occur much less frequently than stores to memory that use the stack
pointer In addition, the stack pointer is almosivays modified in small increments, and these small
increments cannot change a virtual address toysigdal address. W/can hence replace the checks on
local, stack wriables with a fe checks on the stack pointer f#\be93].

* We replace indidual checks in commonly used loops with @ feigherlevel checks. Br example,
procedures such as bgomodify sequential blocks of data; these blocks can be elewkce rather
than checkingery indvidual store.

* Further optimizations are possible, such as recognizing loggiants and eliminating redundant
checks within a basic blockrdnds tavard maving functionality out of the é&rnel and relately faster
CPUs will further lover the @erhead of code patching.

A second method to protectaigst plysical addresses is specific to the Alpha proce3$mr Alpha
CPU can be set to trap to a special handler ifygiphl addresses is issued. This handler can thiaate
the address and issue or gdine request. This methodigs eficiency over code patching byaiding the
check on virtual addresses. Wever, the handler must bevioked on both reads and writes toypital
addresses. Which method will bester depends on the mix ofysical and virtual addresses and on the
mix of reads and writes. $\believe the second method couldver the eerhead to a mere 1-2%.

Kernels that use memory-mapping to cache files must be modified to map the file refulemealy
dures that write to the memory-mapped file must be modified a® abdirst enable writes to memory
The Digital Unix kernel does not use memory-mapping in teenkl. User memory-mapped files, which
are supported by Digital Unix, require no changes to émadt, because we protect memory solely from
kernel crashes; users are responsible for thairarrors.

2.2 Warm Reboot

The second step in enabling the file cache to weiicrash is to dovaarm reboot When the system
is rebooted, it must read the file cache contents that were presepsicepmemory before the crash and
update the file system with this data. Because system crashes are infrequent, our first priority in designing
the warm reboot is ease of implementation, rather than reboot speed.

Two issues arise when doing anwn reboot: 1) what additional data the system maintains during nor-
mal operation, and 2) when in the reboot process the system restores the file cache contents.

Maintaining additional data during normal operation esit easier to find, identiiyand restore the
file cache contents in memory during tharm reboot. Whout additional data, the systenowd need to
analyze a series of data structures, such as internal file cache lists and page tables, and all these intermedi-
ate data structuresowld need to be protected. Instead of understanding and protecting all intermediate
data structures, weekp and protect a separate area of memdrich we call theegistry, that contains all
information needed to find, identjfgnd restore files in memoiyor each bffer in the file cache, thege
istry contains the pfsical memory address, file id (dee number and inode number), filéset, and size.
Registry information changes relegily infrequently during normal operation, so thveread of maintain-
ing it is low. It is also quite small; only 40 bytes of information are needed for each 8 KB file cache page.

The second issue is when to restore the dirty file cache contents during rebaanifize the
changes needed to the VM and file system initialization procedures, we performartheekoot in tw
steps. Before the VM and file system initialization procedures are run, we dump alsiefpmemory to
the svap partition. This saes the contents of the file cache argistey from before the crashwWe also
restore the metadata to disk during this step, using the disk address stored gisthe ge that the file
system is intact before fsck runs. After the system is completely booted;laves@rocess analyzes the
memory dump and restores the UBC using normal system calls such as open and write.
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2.3 Effectson File System Design

The presence of a reliable file cache changes some aspects of the file system. First, reliability-induced
writes to disk are no longer needed, because files in memory are as permanent and safe as files on disk.
Digital Unix includes tunable parameters to turhrefiable writes for the UBC. @/disable bffer cache
writes as in [Ohta90] by turning most bwrite anaviige calls to bdwrite; we modify sync and fsync calls
to return immediatel; and we modify the panic procedure tmia writing dirty data back to disk before
a crash. Wh these changes, writes to disk occur only when the UBQiiterbcache werflow, so dirty
blocks can remain in memory indefinite@yne could also ta&ka less @reme approach, such as writing to
disk during idle periods.

Second, metadata updates in théfdr cache must be as carefully ordered as those to disk, because
buffer cache data is mopermanent. Third, memosyhigh throughput mads it feasible to guarantee atom-
icity when updating critical metadata information. When the systamismo write to metadata in the
buffer cache, it first copies the contents to a shagage and changes thajistry entry to point to the
shadev. When it finishes writing, it atomically points theigtry entry back to the originaufier.

3 Reliability
The lkey to Rio is reliability: can files in memory truly be made as safe from system crashes as files on
disk? T answer this, we measurevhoften crashes corrupt data on disk and in mentanyeach run, we

inject faults to crash a running system, reboot, themméne the file data and measure the amount of cor-
ruption.

3.1 Fault Models

This section describes the types afilts we inject. Our primary goal in designing themdt§ is to
generate avide varietyof system crashes. Thauits we inject range fromvelevel hardvare fwults such
as flipping bits in memory to highvel software fults such as memory allocation errore ¥lassify the
faults we inject into three caeries: bit flips, lav-level software faults, and high-lel software faults.
Unless otherwise stated, we inject 2@ilfs for each run to increase the chances thatilaill be trig-
gered. Most crashes occurred within 15 seconds afteatiievias injected. If adult does not crash the
machine after ten minutes, we discard the run and reboot the $ystem.

The first catgory of faults flips random bits in theeknel's address space [Barton90, Kaati95]. We
taiget three areas of thekels address space: tkernel tet, heap andstak. These dults are easy to
inject, and the cause a ariety of diferent crashes. Theare the least realistic of ouudps, havever. It is
difficult to relate a bit flip with a specific error in programming, and most teaedbit flips vould be
caught by parity on the data or address.b

The second cafery of fault changes indidual instructions in the éknel tet. These &ults are
intended to approximate the assemblyelananifestation of real Calel programming errors [Kao93]. &V
corrupt assignment statements by changingthiee or destinationregister We corrupt conditional con-
structs by deletinpranches We also deleteandom instructiongboth branch and non-branch).

The last and mostxeensve catgory of faults imitate specific programming errors in trerrel
[Sullivan91]. These are more gated at specific programming errors than theipuos fault catgory. We
inject aninitialization fault by deleting instructions responsible for initializingasiable at the start of a
procedure [Kao93, Lee93a].aNhjectpointercorruption by 1) finding a gister that is used as a basg-re
ister of a load or store and 2) deleting the most recent instruction before the load/store that modifies that
register [Sullvan91, Lee93a]. W do not corrupt the stack pointegister as this is used to access local
variables instead of as a pointariable. V¢ inject amallocation mangementfault by modifying the &r-
nel malloc procedure to occasionally start a thread that sleeps 0-256 ms, then prematurely fredys the ne
allocated block of memaorMalloc is set to inject this errovery 1000-4000 times it is called; this occurs
approximately eery 15 seconds. &inject acopy aerrun fault by modifying the &rnels bcojy proce-
dure to occasionally increase the number of bytes it copies. The length ekthenonas distriluted as

2. This is similar to performing a crash dump as the system is going ti¢hile a standard crash dump oftaits,
however, this dump is performed on a hegltbooting system and willaays work.

3. We do preide a vay for a system administrator to easily enable and disable reliability disk writes for machine
maintenance ongended pwer outages.

4. These long-lategdaults will propagte data to disk and hence not change thevelatliability between memory
and disk.
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follows: 50% corrupt one byte; 44% corrupt 2-1024 bytes; 6% corrupt 2-4 KB. Thisdistiilvas cho-
sen by starting with the datatipered in [Sullian91] and modifying it soméhat according to our specific
platform and rperience. bcopis set to inject this errorvery 1000-4000 times it is called; this occurs
approximately eery 15 seconds. B\Mnjectoff-by-oneerrors by changing conditions such as > to >=, and <
to <=, and so on. W mimic commorsyndironizationerrors by randomly causing the procedures that
acquiref/free a lock to return without acquiring/freeing the lock.

Fault injection cannot mimic thexact behaior of all real-world operating system crashes.viwer,
the wide wariety of faults we inject (13 types), the dm number of w&ys the system crashed in omperi-
ments (e.g. 74 unique error messages, including ettt lernel consistencerror messages), and the
sheer number of crashes we performed (195@) g$ confidence that ouxgeriments ceer a wide range
of real-world crashes.

3.2 Detecting Corruption

File corruption can occur in twvays. Indirectcorruption, a series offents @entually causes a pro-
cedure (usually a non-I/O procedure) to accidentally write to file data. Memory is more vulnerable than
disks to direct corruption, because it is nearly impossible for a non-disk procedure to dirutiyte the
disk drive. Havever, direct memory corruption canfeft disk data if the system stays up long enough to
propagte the bad memory data to diskiridirectcorruption, a series offents @entually causes a proce-
dure to call an I/O procedure with the wrong parameters. The 1/O procedure obediently carries out the
request and corrupts the file cache. Disks and memory are both vulnerable to indirect corruption.

We are interested primarily in protecting memory from direct corruption, because this is the weak
point of random-access memories. Note that the mechanisms described in Section 2.1 proteginshly ag
direct corruption; indirect corruption will circureat our protection mechanism.

We use tw stratgies to detect file corruption: checksums detect direct corruption, and a synthetic
workload callednem&stdetects direct and indirect corruption.

The first method to detect corruption maintains a checksum of each memory block in the file cache
[Baker92b]. W update the checksum in all procedures that write the file cache; unintentional changes to
file cache hffers result in an inconsistent checksure Wentify blocks that were being modified while
the crash occurred by marking a blockchangingbefore writing to the block; these blocks cannot be
identified as corrupt or intact by the checksum mechanism. Files mapped intcsaaddegss space for
writing are also maid changing as long as thare in memorythough this does not occur on theri
loads we use.

Catching indirect corruption requires an applicatiorelecheck, so we create a speciairkioad
calledmem&stwhose actions and data are repeatable and can beedraftlr a system crash. Checksums
andmem&stcomplement each othérhe checksum mechanism pides a means for detecting direct cor-
ruption for ay arbitrary workload; memeE&stprovides a highetevel check on certain data by kmimg its
correct alue at gery instant.

memEest generates a repeatable stream of file and directory creations, deletions, reads, and writes,
reaching a maximum file set size of 100 MB. Actions and dateemEstare controlled by a pseudo-ran-
dom number generatof\fter each stepnemEstrecords its progress in a status file across theonketw
After the system crashes, we reboot the system anmheomEstuntil it reaches the point when the system
crashed. This reconstructs the correct contents of the test directory at the time of the crash, and we then
compare the reconstructed contents with the file cache image in memory (restored durirgnthe w
reboot).

As a final check for corruption, we&p two copies of all files that are not modified by owrkioad
and check that the twcopies are equal. These files were not corrupted in our tests.

In addition tomem&st we run four copies of the Andrebenchmark [Havard88, Ousterhout90], a
general-purpose file-systenorkload. Andrev creates and copies a source hiergrekamines the hierar-
chy using find, Is, du, grep, and wc; and compiles the source higrarch

3.3 Reliability Results

Table 1 presents reliability measurements for three systems: a disk-based (write-through) file cache,
Rio without protection (just arm reboot), and Rio with protection.e¢onducted 50 tests for eactult
category for each of the three systems (disk, Rio without protection, Rio with protection); this represents 6
machine-months of testing.
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Rio’s goal is to match the reliability of disk, so we start by measuring the reliability of a write-through
file cache. W use the functionality and setup of theadétf Digital Unix kernel. That is, we do not use
warm reboot or protection, nor do we turti adliability-induced disk writes. @ achi&e write-through
semanticsmnem€stcalls fsync aftereery write—without this, manruns would lose data written within
30 seconds of the crash. Our only tool for detecting corruption on dis&nsEst because our checksum
method cannot detect disk corrupfioffable 1 shas that corruption is quite rare, which agrees with our
intuition that disks are usually safe from operating system crashes. Of 650 crasheseon{}.46é6) cor-
rupted aw file data, and each of those runs corrupted onlywg Te4) files/directorie§.

The middle section ofdble 1 shas the reliability of the Rio file cacheithoutthe protection mech-
anisms described in Section 2.1eWirn of all reliability-related disk writes (Section 2.3) and usamw
reboot (Section 2.2) to reeer the files in memory after a crash. These runs thus measudtha files in
memory are corrupted during an operating system crash if misjors are made to protect theme W
experienced ten corruptions out of 650 crashes (1.5%). As with the disk tests, each corrignied af
small number of files/directories, usually just a small portion of onenféen€stdetected all ten corrup-
tions, and checksums detecteafof the ten. Interestinglyhe corrupted data in the otherfigorruptions
resided on disk rather than the file cache. This implies that the system remained running long enough to
propagte the corruption to disk. Cppverruns hge a relatrely high chance of corrupting the file cache

Disk-Based Rio without Protection Rio with Protection
Fault Type #orashes | FOOTUP Iy craches | FOOTTUP- Il 4 rashes | T OOMTUP-
tions tions tions
kernel tet 50 2 50 1 50
kernel heap 50 50 50
kernel stack 50 50 1 50 1
destination rg. 50 50 50
source rg. 50 2 50 50 1
delete branch 50 1 50 1 50
delete random inst, 50 1 50 50
initialization 50 50 50
pointer 50 50 1 50
allocation 50 50 50
copy overrun 50 50 4 50
off-by-one 50 1 50 2 50 1
synchronization 50 50 50
Total 650 7 (1.1%) 650 10 (1.5%) 650 3 (0.5%)

Table 1. Comparing Disk and Memory Reliability. This table shws hav often each type of error corrupt:
data for three systems. The disk-based system uses fsynovafieneite, achiging write-through reliability
The two Rio systems test memory reliability by turning rfliability writes to disk and usingavm reboot tc
recover the in-memory data after a crash. Blank entries had no corruptiensaMllate the normalize
corruption rate by first calculating the % corruption for eactgcayethen aeraging across all cageries. This
weights each dult catgory equally independent of the number of runs in the gatg Even without
protection, Rics reliability is nearly the same as a write-through system, and this is the system we recc
With protection, Rio achiges the same or higher reliability as a write-through system.

5. Checksumming the disk datawid be done immediately before writing to disk. Data on disk is not subject to
direct corruption, so the checksum is guaranteed to be correct.

6. W& plan to trace wafaults propagte to corrupt files and crash the system instead of treating the system as a black
box. This is &remely challenging, wever, and is bgond the scope of this paper [Kao93].
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because the injecteddlt directly averwrites a portion of memaorand this portion of memory has a rea-
sonable chance of/erlapping with a file cacheuffer.

While slightly less reliable than disks, Rio without protectiomisth more reliable than we had
expected and is reliable enough for most systemsllidstrate, consider a system that crashes ones/ e
two months (a somhat pessimistic estimate for production-quality operating systems). If these crashes
were the sole cause of data corruption, the MTTF (mean tinaéltoef) of a disk-based systenowd be
15 years, and the MTTF of Rio without protectioould be 11 years. That is, if your system crashes once
every two months, you carxeect to lose a fe file blocks about once a decade with Rierewith no pro-
tection! Exen though thedults we inject probably do not perfectly represent realdicrashes, the quali-
tative conclusion is cleawarm reboot enables a file che to be about asliable as disk, en with no
protection

These results stand in sharp contrast to the general feeling among computer scientists that operating
system crashes often corrupt files in memfy believe the results are due to the multitude of consigtenc
checks present in a production operating system, which stop the systesowun after aalilt is injected
and thereby limit the amount of damage. In addition to the standard sanity checks written by programmers,
the virtual memory system implicitly checks each load/store address ssuakit is aalid address. &-
ticularly on a 64-bit machine, most errors are first detected by issuinggah dtidress [Kao93, Lee93a].

Thus, @en without protection, Rio stores files about as reliably as a write-through file system, and
this is the configuration we recommend for most systemael#s, some applications will requireszen
higher lerels of safetyThe rightmost section ofdble 1 shws the reliability of the Rio file cache with pro-
tection turned on. Out of 650 crashes, we measured only three corruptions (0.5%). Thus Rio with protec-
tion provides reliability @en higher than a write-through file cache while issuing no reliability-induced
writes to disk! V& recorded six crashes where the Rio protection mecharésnirveked to preent an
illegal write to the file cache (three for gopverruns, three for pointer); these indicate cases where the file
cache wuld hare been corrupted if the protection mechanism had béewefbelieve that Rios protec-
tion mechanism prades higher reliability than a write-through file cache because it halts the system when
it detects an attempted Wjal access. Write-through file caches, in contrast, may continue to run and thus
propagte corrupted memory data to disk.

4 Perfor mance

We consider the main benefit of Rio to be reliability: all writes to the file cache are immediately as
permanent and safe as files on disk. Rio also ivgsrperformance by eliminating all reliability-induced
writes to disk. @ble 2 compares the performance (on the Amdile system benchmark) of Rio withvse
eral \ariations on the Unix file system, each\pding different guarantees on when data is made perma-
nent [Havard88, Ousterhout90]. Rio without protection performs 3-20 timsteif than systems with
comparable reliability guarantees (write-through on write, write-through on close). Rio also performs 35%
faster than the standard Unix file system. Much of thiamtdge is due to UFS'synchronous (write-

Data Per manent Running Time

Memory File System never 12.3 seconds

UFS with delayed metadata updates | after 30 seconds 15.4 seconds

UFS after 30 seconds 21.8 seconds

UFS with write-through after each close after close 49.0 seconds

UFS with write-through after each write after write 305.4 seconds
Rio without protection after write 14.2 seconds

Rio with protection after write 17.0 seconds

Table 2: Performance Comparison. This table compares the performance (on the Amdike system
benchmark) of Rio with seral \ariations on the Unix file system, each\pding different guarantees on wh
data is made permanent. Rio without protection @sakata permanent after each write, yet has perforn
35% better than the standard Unix file system and 8% better than a system where metadata updates
by 30 seconds before being written to disk [Ganger94]. Adding protectims & performance @m by
20%, lut some applications may require thdra magin of safety this pnades. Other file systems th
guarantee data permanence after each file write or close perform 3-20 tiwerstsn Rio. MFS, which i
completely memory-resident and does no disk I/O, isvalfor comparison.
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through) metadata updates, so we also measure UFS after delaying all metadata updates by 30 seconds (the
optimal “no-order” system in [Ganger94]). Rio still performs 8%tér than this system due to the sync

every 30 seconds. et while these systems lose 30 seconds of recently written data on a crash, Rio loses
none. MFS, which is completely memory-resident and does no disk I/Ows stdlustrate optimal per-

formance [McKisick90]. Though suitable only for temporary files, MFS aasesuperior performance

because of its simplicity—its code is 1/10 the size of WF&dding protection slws Rio performance

down by 20%, ot some applications may require thxéra magin of safety this pnades.

5 Architectural Support for Reliable File Caches

The conclusion that memory can be considered a safe place for permanent datarabsrgsica-
tions for architects. A small amount of haate support at the memorywét would male protection eas-
ier. An ideal memory controller guld enable file system procedures tovpre writes to certain pisical
pages [Banatre91]. One simplayto implement this is for the controller to store a write-permission bit
for each memory page and map the write-permission bits into the prosesdamess space. The system
could then use these write-permission bits tovigie fine-grained protection at theysical page leel,
replacing the virtual memory and code-patching schemes described in Section 2.1.

There are seeral engineering implications as well if memory contains permanent data. A system
should be able to be reset without erasing memory; and CPU caches, becausattdie memory data,
should also presegvtheir contents on a normal reset. DEC Alphasvatioeset and boot without erasing
memory or the CPU caches [DEC94]; the PCs wa ltasted do not.of'male data accessible during a
hardware filure, it should be possible to m@a memory board to a fiifent machine without losing
power (just as disks can be weal without losing data) [Moran90, Bai92a].

6 Related Work

We dvide the research related to this paper into aneas: field studiesfflt injection and protection
schemes.

6.1 Field Studies and Fault I njection

Studies hee shaovn that softvare is the dominant cause of system outages [Gray90], eechlsstud-
ies hae investicated system softave errors. Sullian and Chillarge classify softare fults in the MVS
operating system; in particulghey analyze &ults that corrupt program memorwéolays) [Sullvan91].
Lee and lyer study and classify softve failures in indem$ Guardian operating system [Lee93a]. These
studies pruide \valuable information abougilures in production efronments; in &ct, may of the fult
types in Section 3.1 were inspired by the major errogeaites from [Sulvan91] and [Lee93a]. Heever,
these studies do not pide data on ho often system crashes corrupt the file cache, which may di&
ferent filure characteristics than randomly accessed data structuregdiS28ij.

Software fault injection is a popular technique faratuating the behaor of prototype systems in the
presence of hardave and softare faults. See [lyer95] for arxeellent introduction to thewverall area and
a summary of much of the pasbsk on fault injection, such as FINE [Ka093], FIABarton90], and FER-
RARI [Kanawvati95]. As with field studies of system crashes, these papeatlbinfection inspired man
of the fault catgories used in this papdtowvever, we knav of no paper ondult injection that has specifi-
cally measured the fetcts of fiults on permanent data in memory

6.2 Protecting Memory

Sereral researchers va proposed ays to protect memory from sofne filures [Copeland89],
though to our knwledge none he esaluated hw effectively memory withstood thesaifures.

The only file system we arevare of that attempts to malall permanent files reliable while in mem-
ory is Phoenix [Gait90]. Phoenixekps tw versions of an in-memory file system. One of thegsions is
kept write-protected; the otheension is unprotected angadves from the write-protected one via gep
on-write. At periodic checkpoints, the system write-protects the unproteetsidrv and deletes obsolete
pages in the originalersion. Our proposed mechanism in Section 2ferdifrom Phoenix in tev major
ways: 1) Phoenix does not ensure the reliabilityvef g write; instead, writes are only made permanent at
periodic checkpoints; 2) Phoenirdps multiple copies of modified pages, while wegkonly one cop

Harp protects a log of recent modificationsreglicatingit in volatile, battery-baakd memory across
seseral serer nodes [Liskv91]. The Recwery Box leeps special system state in gioa of memory
accessed only through a rigid ineeé [Baler92b]. No attempt is made to peat other procedures from
accidentally modifying the regery box, although the system detects corruption by maintaining check-
sums. Banatre, et. al. implement stable transactional membigh protects memory contents with dual
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memory banks, a special memory controlierd eplicit calls to allav write access to specified memory
blocks [Banatre91]. Our avrk seeks to makall files in memory reliable without special-purpose haréw
or replication.

General mechanisms may be used to help protect memory fromasoftwits. [Needham83] sug-
gests changing a machieghicrocode to check certain conditions when writing a memorg vl his is
similar to modifying the memory controller to enforce protection, as are Jobresmh'Véihbes sugges-
tions for \arious hardwre mechanisms to trap the updates of certain memory locations [Johnson82,
Wahbe92]. Hre uses the Flash fimall to protect memory agnst wild writes by other processors in a mul-
tiprocessor [Chapin95]. Mé preemptiely discards pages that are writable ayed processors, an option
not available when storing permanent data in mem@yject code modification has been suggested as a
way to proide data breakpoints B&sler90, \@Whbe92] anddult isolation between sofawe modules
[Wahbe93].

Other projects seek to impm the reliability of memory agnst hardwre aults such as peer out-
ages and boardailures. eNVy implements a memory board based on otatie, flash RAM [Wi94].
eNVy uses copon-write, page remapping, and a small, battery-bdclSRAM Mhuffer to hide flash
RAM'’s slav writes and blk erases. The Durable Memory RS/6000 uses batteries, replicated processors,
memory ECC, and alternate paths to tolerate a wadety of hardware filures [Abbott94].

Finally, several papers hee examined the performance ahtages and management of reliable mem-
ory [Copeland89, Bak92a, Bisws93, Alyurek95], and countless papers/@asought to impnee disk
performancevia data placement, logging, scheduling, and so forth.

7 Conclusions

We hare made a case for reliable file caches: main memory that cavesapérating system crashes
and be as safe and permanent as disk. Our reliabifigrienents shw that e’en without &tra protection,
warm reboot mads files in memory about as safe as files written through to disk while performing 20
times faster than write-through file systems. Rio ewmlall writes immediately permanent, yet performs
faster than systems that lose 30 seconds of data on a crastasi&ffiifan a standard delayed-write file
system and 8%akter than a system that delays both data and metadatacdnmend Rio without pro-
tection for most situations.oF applications that demanden higher leels of reliability Rio’s optional
protection mechanism mek memory een safer than a write-through file system while whilgdiong
performance 20% compared to a pure write-back system.

Reliable file caches ke striking implications for future system designers:

* Write-backs to disk are no longer needgdept when the file cache fills up, changing the assumptions
about write traic behind some file system research such as LFS [Rosenblum@29Bjak

* Delaying writes to disk until the file cache fills up enables tlgekrpossible number of files to die in
memory and enables remaining files to be written didiexfitly in arbitrarily lage units. Thus Rio
improves performance moderatelyes delayed-write systems.

* Applications requiring instant permanence need no longer write synchronously to dislastys v
improves performancever write-through systems.

* Applications need no longer lose 30 seconds of data on a crash, because all updates are permanent as
soon as thereach the file cache. Thus Rio impes reliability significantly ver delayed-write sys-
tems. Br systems without battery backupanm reboot can be used to eliminate the 30 seconds of data
often lost when systems crash.

To further test and pve our ideas, we ka installed a departmental file serwsing the Rio file
cache without protection and with reliability-induced writes to disk turnedAafiong other things, this
file sener stores the aste copy of this paper and the sole gopf the authors’ mail. & plan to redo this
study on a dierent operating system and to perform a simdaitfinjection &periment on a database sys-
tem. V\& believe these will sher that our conclusions about memaryésistance to sofawe crashes apply
to other lage software systems.

The Rio file cache prades a ne storage component for system design: one that iasislage,
common, and cheap as main memagmst as reliable and stable as disle Wok forward to seeing he
system designers use thissngtorage component.
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