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Abstract

 

This report introduces GRASP (Generic seaRch Algorithm for the Satisfiability Problem), an integrated algorithmic frame-
work for SAT that unifies several previously proposed search-pruning techniques and facilitates identification of additional
ones. GRASP is premised on the inevitability of conflicts during search and its most distinguishing feature is the augmentation
of basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their causes enables
GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions of the search
space. In addition, by “recording” the causes of conflicts, GRASP can recognize and preempt the occurrence of similar con-
flicts later on in the search. Finally, straightforward bookkeeping of the causality chains leading up to conflicts allows GRASP
to identify assignments that are necessary for a solution to be found. Experimental results obtained from a large number of
benchmarks, including many from the field of test pattern generation, indicate that application of the proposed conflict analy-
sis techniques to SAT algorithms can be extremely effective for a large number of representative classes of SAT instances.
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1 Intr oduction

 

The Boolean satisfiability problem (SAT) appears in many contexts in the field of computer-aided design of integrated cir-

cuits including automatic test pattern generation (ATPG), timing analysis, delay fault testing, and logic verification, to name

just a few. Though well-researched and widely investigated, it remains the focus of continuing interest because efficient tech-

niques for its solution can have great impact. SAT belongs to the class of NP-complete problems whose algorithmic solutions

are currently believed to have exponential worst case complexity [11]. Over the years, many algorithmic solutions have been

proposed for SAT, the most well known being the different variations of the Davis-Putnam procedure [5]. The best known ver-

sion of this procedure is based on a backtracking search algorithm that, at each node in the search tree, elects an assignment

and prunes subsequent search by iteratively applying the 

 

unit clause

 

 and the 

 

pure literal

 

 rules [30]. Iterated application of the

unit clause rule is commonly referred to as 

 

Boolean Constraint Propagation

 

 (BCP) [30] or as 

 

derivation of implications

 

 in the

electronic CAD literature [1].

Most of the recently proposed improvements to the basic Davis-Putnam procedure [2, 9, 10, 17, 28, 30] can be distin-

guished based on their decision making heuristics or their use of preprocessing or relaxation techniques. Common to all these

approaches, however, is the chronological nature of backtracking. Only in [19] is a non-chronological backtracking procedure

outlined for solving SAT, but it is only sketched and no experimental results are presented. Nevertheless, non-chronological

backtracking techniques have been extensively studied and applied to different areas of Artifi cial Intelligence, particularly

Truth Maintenance Systems (TMS) [7, 27], Constraint Satisfaction Problems (CSP) [6, 12, 13, 21] and Automated Deduction

[3], in some cases with very promising experimental results [6, 13].

Interest in the direct application of SAT algorithms to electronic design automation (EDA) problems has been on the rise

recently [4, 17, 20, 28]. In addition, improvements to the traditional structural (path sensitization) algorithms for some EDA

problems, such as ATPG, include search-pruning techniques that are also applicable to SAT algorithms in general [14, 16, 25].

This report introduces GRASP (

 

Generic seaRch Algorithm for the Satisfiability Problem

 

), an integrated algorithmic

framework for SAT that unifies several previously proposed search-pruning techniques and facilitates identification of addi-

tional ones. GRASP is premised on the inevitability of conflicts during search and its most distinguishing feature is the aug-

mentation of basic backtracking search with a powerful 

 

conflict analysis

 

 procedure. Analyzing conflicts to determine their

causes enables GRASP to backtrack non-chronologically to earlier levels in the search tree, potentially pruning large portions

of the search space. In addition, by “recording” the causes of conflicts, GRASP can recognize and preempt the occurrence of

similar conflicts later on in the search. Finally, straightforward bookkeeping of the causality chains leading up to conflicts

allows GRASP to identify assignments that are necessary for a solution to be found. Experimental results obtained from a

large number of benchmarks [8] indicate that application of the proposed conflict analysis techniques to SAT algorithms can

be extremely effective for a large number of representative classes of SAT instances.

Several features distinguish the conflict analysis procedure in GRASP from others used in TMSs and CSPs. First, conflict

analysis in GRASP is tightly coupled with BCP and the causes of conflicts need not necessarily correspond to decision assign-

ments. Second, clauses can be added to the original set of clauses, and the number and size of added clauses is user-controlled.

This is in explicit contrast with nogood recording techniques developed for TMSs and CSPs. Third, GRASP employs tech-

niques to prune the search by analyzing the implication 

 

structure

 

 generated by BCP. Exploiting the “anatomy” of conflicts in

this manner has no equivalent in other areas.
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Some of the proposed techniques have also been applied in structural ATPG algorithms [14, 18, 26]. The GRASP frame-

work, however, permits a unified representation of all known search-pruning methods and introduces several others. The basic

SAT algorithm in GRASP is also customizable to take advantage of application-specific characteristics to achieve additional

efficiencies [24, 25]. Finally, the framework is organized to allow easy adaptation of other algorithmic techniques, such as

those in [4, 16], whose operation is orthogonal to those described here.

The remainder of this report is organized in four sections. In Section 2, we introduce the basics of backtracking search,

particularly our implementation of BCP, and describe the overall architecture of GRASP. This is followed, in Section 3, by a

detailed discussion of the procedures for conflict analysis and how they are implemented. Extensive experimental results on a

wide range of benchmarks, including many from the field of ATPG, are presented and analyzed in Section 4. In particular,

GRASP is shown to outperform two recent state-of-the-art SAT algorithms [9, 28] on most, but not all, benchmarks. The report

concludes in Section 5 with some suggestions for further research.

 

2 Backtrac k Search for CNF Satisfi ability

 

2.1 Basic Defi nitions and Notation

 

A conjunctive normal form (CNF) formula  on 

 

n

 

 binary variables  is the conjunction (AND) of 

 

m

 

 

 

clauses

 

 each of which is the disjunction (OR) of one or more literals, where a literal is the occurrence of a variable or its

complement. A formula  denotes a unique 

 

n

 

-variable Boolean function  and each of its clauses corresponds to

an implicate of 

 

f 

 

[15, p. 288]. Clearly, a function 

 

f

 

 can be represented by many equivalent CNF formulas. A formula is com-

plete if it consists of the entire set of prime implicates for the corresponding function. In general, a complete formula will have

an exponential number of clauses. We will refer to a CNF formula as a 

 

clause database

 

 and use “formula,” “CNF formula,”

and “clause database” interchangeably. The satisfiability problem (SAT) is concerned with finding an assignment to the argu-

ments of  that makes the function equal to 1 or proving that the function is equal to the constant 0.

A backtracking search algorithm for SAT is implemented by a 

 

search process

 

 that implicitly traverses the space of 

possible binary assignments to the problem variables. During the search, a variable whose binary value has already been deter-

mined is considered to be 

 

assigned

 

; otherwise it is 

 

unassigned

 

 with an implicit value of . A 

 

truth assignment

 

 for

a formula  is a set of assigned variables and their corresponding binary values. It will be convenient to represent such assign-

ments as sets of variable/value pairs; for example . Alternatively, assignments can be denoted

as . Sometimes it is convenient to indicate that a variable 

 

x

 

 is assigned without specifying

its actual value. In such cases, we will use the notation  to denote the binary value assigned to 

 

x

 

. An assignment 

 

A

 

 is com-

plete if ; otherwise it is partial. Evaluating a formula  for a given a truth assignment 

 

A

 

 yields three possible out-

comes:  and we say that  is satisfied and refer to 

 

A

 

 as a 

 

satisfying assignment

 

;  in which case  is

unsatisfied and 

 

A

 

 is referred to as an 

 

unsatisfying assignment

 

; and  indicating that the value of  cannot be

resolved by the assignment. This last case can only happen when 

 

A

 

 is a partial assignment. An assignment partitions the

clauses of  into three sets: satisfied clauses (evaluating to 1); unsatisfied clauses (evaluating to 0); and unresolved clauses

(evaluating to 

 

X

 

). The unassigned literals of a clause are referred to as its 

 

free literals

 

. A clause is said to be 

 

unit

 

 if the number

of its free literals is one.
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2.2 Form ula Satisfi ability

 

Formula satisfiability is concerned with determining if a given formula  is satisfiable and with identifying a satisfying

assignment for it. Starting from an empty truth assignment, a backtrack search algorithm traverses the space of truth assign-

ments implicitly and organizes the search for a satisfying assignment by maintaining a 

 

decision tree

 

. Each node in the decision

tree specifies an elective assignment to an unassigned variable; such assignments are referred to as 

 

decision assignments

 

. A

 

decision level

 

 is associated with each decision assignment to denote its depth in the decision tree; the first decision assignment

at the root of the tree is at decision level 1. The search process iterates through the steps of:

1. Extending the current assignment by making a decision assignment to an unassigned variable. This 

 

decision
process

 

 is the basic mechanism for exploring new regions of the search space. The search terminates successfully
if all clauses become satisfied; it terminates unsuccessfully if some clauses remain unsatisfied and all possible
assignments have been exhausted.

2. Extending the current assignment by following the logical consequences of the assignments made thus far. The
additional assignments derived by this 

 

deduction process

 

 are referred to as 

 

implication assignments

 

 or, more
simply, 

 

implications

 

. The deduction process may also lead to the identification of one or more unsatisfied
clauses implying that the current assignment is not a satisfying assignment. Such an occurrence is referred to as
a 

 

conflict

 

 and the associated unsatisfying assignment is called a 

 

conflicting assignment

 

.

3. Undoing the current assignment, if it is conflicting, so that another assignment can be tried. This 

 

backtracking
process

 

 is the basic mechanism for retreating from regions of the search space that do not correspond to
satisfying assignments.

The decision level at which a given variable 

 

x 

 

is either electively assigned or forcibly implied

 

 

 

will be

 

 

 

denoted by . When

relevant to the context, the assignment notation introduced earlier may be extended to indicate the decision level at which the

assignment occurred. Thus,  would be read as “

 

x

 

 becomes equal to 

 

v

 

 at decision level 

 

d

 

.”

The average complexity of the above search process depends on how decisions, deductions, and backtracking are made. It

also depends on the formula itself. The implications that can derived from a given partial assignment depend on the set of

available clauses. In general, a formula consisting of more clauses will enable more implications to be derived and will reduce

the number of backtracks due to conflicts. The limiting case is the complete formula that contains all prime implicates. For

such a formula no conflicts can arise since all logical implications for a partial assignment can be derived. This, however, may

not lead to shorter execution times since the size of such a formula may be exponential.

 

2.3 Function Satisfi ability

 

Given an initial formula  many search systems attempt to augment it with additional implicates to increase the deductive

power during the search process. This is usually referred to as “learning” [22] and can be performed either as a preprocessing

step (static learning) or during the search (dynamic learning)

 

1

 

.

Our approach can be classified as a dynamic learning search mechanism based on diagnosing the causes of conflicts. It

considers the occurrence of a conflict, which is unavoidable for an unsatisfiable instance unless the formula is complete, as an

 

1. Learning as defined in [17, 22] only yields implicates of size 2 (i.e. non-local implications) but the concept can be readily
extended to implicates of arbitrary size.
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opportunity to “learn from the mistake that led to the conflict” and introduces additional implicates to the clause database only

when it stumbles. 

 

Conflict diagnosis

 

 produces three distinct pieces of information that can help speed up the search:

1. New implicates that did not exist in the clause database and that can be identified with the occurrence of the
conflict. These clauses may be added to the clause database to avert future occurrence of the same conflict and
represent a form of 

 

conflict-based equivalence

 

 (CBE).

2. An indication of whether the conflict was ultimately due to the most recent decision assignment or to an earlier
decision assignment.

a. If that assignment was the most recent (i.e. at the current decision level), the opposite assignment (if it has
not been tried) is immediately implied as a necessary consequence of the conflict; we refer to this as a

 

failure-driven assertion

 

 (FDA).

b. If the conflict resulted from an earlier decision assignment (at a lower decision level), the search can
backtrack to the corresponding level in the decision tree since the subtree rooted at that level corresponds
to assignments that will yield the same conflict. The ability to identify a backtracking level that is much
earlier than the current decision level is a form of non-chronological backtracking that we refer to as

 

conflict-directed backtracking

 

 (CDB), and has the potential of significantly reducing the amount of
search.

These conflict diagnosis techniques are discussed further in Section 3.

 

2.4 Structure of the Sear ch Process

 

The basic mechanism for deriving implications from a given clause database is Boolean constraint propagation (BCP) [9,

30]. Consider a formula  containing the clause  and assume . For any satisfying assignment to , 

requires that 

 

x

 

 be equal to 1, and we say that  implies  due to . In general, given a unit clause 

of  with free literal , consistency requires  since this represents the only possibility for the clause to be satisfied. If

, then the assignment  is required; if  then  is required. Such assignments are referred to as

 

logical implications

 

 (implications, for short) and correspond to the application of the unit clause rule proposed by M. Davis

and H. Putnam [5]. BCP refers to the iterated application of this rule to a clause database until the set of unit clauses becomes

empty or one or more clauses become unsatisfied.

Let the assignment of a variable 

 

x

 

 be implied due to a clause . The 

 

antecedent assignment

 

 of 

 

x

 

,

denoted as , is defined as the set of assignments to variables other than 

 

x

 

 with literals in . Intuitively, 

 

 

 

designates

those variable assignments that are directly responsible for implying the assignment of 

 

x

 

 due to . For example, the anteced-

ent assignments of 

 

x

 

, 

 

y

 

 and 

 

z

 

 due to the clause  are, respectively, ,

, and . Note that the antecedent assignment of a decision variable is

empty.

The sequence of implications generated by BCP is captured by a directed 

 

implication graph

 

 

 

I

 

 defined as follows (see

Figure 2-1):

1. Each vertex in 

 

I

 

 corresponds to a variable assignment .
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2. The predecessors of vertex  in 

 

I 

 

are the antecedent assignments  corresponding to the unit clause
 that led to the implication of 

 

x

 

. The directed edges from the vertices in  to vertex  are all
labeled with . Vertices that have no predecessors correspond to decision assignments. 

3. Special conflict vertices are added to 

 

I

 

 to indicate the occurrence of conflicts. The predecessors of a conflict
vertex  correspond to variable assignments that force a clause  to become unsatisfied and are viewed as the
antecedent assignment . The directed edges from the vertices in  to  are all labeled with .

The decision level of an implied variable 

 

x

 

 is related to those of its antecedent variables according to:

(2.1)

 

2.5 Search Algorithm Template

 

The general structure of the GRASP search algorithm is shown in Figure 2-2. We assume that an initial clause database 

and an initial assignment 

 

A

 

, at decision level 0, are given. This initial assignment, which may be empty, may be viewed as an

additional problem constraint and causes the search to be restricted to a subcube of the 

 

n

 

-dimensional Boolean space. As the

search proceeds, both  and 

 

A

 

 are modified. The recursive search procedure consists of four major operations:

1.

 

Decide()

 

, which chooses a decision assignment at each stage of the search process. Decision procedures are
commonly based on heuristic knowledge. For the results given in Section 4, the following greedy heuristic is
used:

 

Figure 2-1: Example of clause database and partial implication graph
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At each node in the decision tree evaluate the number of clauses directly satisfied by each assignment to each
variable. Choose the variable and the assignment that directly satisfies the largest number of clauses.

 

Other decision making procedures have been implemented in the GRASP algorithmic framework, particularly
those described in [9]. For these heuristics, preference is given to assignments that simplify the clauses the most,
and can lead to more implications due to BCP. This is in explicit contrast with our heuristic which always
attempts to satisfy the largest number of clauses.

2.

 

Deduce()

 

, which implements BCP and (implicitly) maintains the resulting implication graph. The pseudo-
code for this procedure is shown in Figure 2-3.

3.

 

Diagnose()

 

, which identifies the causes of conflicts and can augment the clause database with additional
implicates. Realization of different conflict diagnosis procedures is the subject of Section 3.

4.

 

Erase()

 

, which deletes the assignments at the current decision level.

 

//

 

 Global variables: Clause database 

 

//

 

Partial variable assignment 

 

A

 

//

 

 Return value: FAILURE or SUCCESS

 

//

 

 Auxiliary variables: Backtracking decision level 

 

//

 

GRASP()

{

 

return

 

 ((Search (0, ) 

 

!

 

= SUCCESS) 

 

?

 

 FAILURE 

 

:

 

 SUCCESS);

}

 

//

 

 Input argument: Current decision level 

 

d

 

//

 

 Output argument: Backtracking decision level 

 

//

 

 Return value: CONFLICT or SUCCESS

 

//

 

Search (

 

d

 

, 

 

&

 

)

{

 

if

 

 (Decide (

 

d

 

) == SUCCESS)

 

return

 

 SUCCESS;

 

while

 

 (TRUE) {

 

if

 

 (Deduce (

 

d

 

) 

 

!=

 

 CONFLICT) {

 

if

 

 (Search (

 

d

 

 + 1, ) == SUCCESS) 

 

return

 

 SUCCESS;

 

else if

 

 (  

 

!=

 

 

 

d

 

) { Erase(); 

 

return

 

 CONFLICT;}

}

 

if

 

 (Diagnose (

 

d

 

, ) == CONFLICT) {Erase(); 

 

return

 

 CONFLICT;}

Erase();

}

}

	

	

	

	

	
	

	

 

Figure 2-2: Description of GRASP
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We refer to 

 

Decide()

 

, 

 

Deduce()

 

 and 

 

Diagnose()

 

 as the 

 

Decision

 

, 

 

Deduction

 

 and 

 

Diagnosis

 

 

 

engines

 

, respectively. Dif-

ferent realizations of these engines lead to different SAT algorithms. For example, the Davis-Putnam procedure can be emu-

lated with the above algorithm by defining a decision engine, requiring the deduction engine to implement BCP and the pure

literal rule, and organizing the diagnosis engine to implement chronological backtracking.

 

3 Confl ict Anal ysis Pr ocedures

 

When a conflict arises during BCP, the 

 

structure

 

 of the implication sequence converging on a conflict vertex  is analyzed

to determine those (unsatisfying) variable assignments that are directly responsible for the conflict. The conjunction of these

conflicting assignments is an implicant that represents a sufficient condition for the conflict to arise. Negation of this implicant,

therefore, yields an implicate of the Boolean function 

 

f

 

 (whose satisfiability we seek) that does not exist in the clause database

. This new implicate

 

2

 

, referred to as a 

 

conflict-induced clause

 

, provides the primary mechanism for implementing failure-

driven assertions, non-chronological conflict-directed backtracking, and conflict-based equivalence (see Section 2.3).

We denote the conflicting assignment associated with a conflict vertex  by  and the associated conflict-induced

clause by . The conflicting assignment is determined by a backward traversal of the implication graph starting at .

Besides the decision assignment at the current decision level, only those assignments that occurred at previous decision levels

 

2. Conditions similar to these implicates are referred to as “nogoods” in TMS [7, 27] and in some algorithms for CSP [21]. Nev-
ertheless, the basic mechanism for creating conflict-induced clauses differs.

 

Figure 2-3: Description of the deduction engine
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are included in . This is justified by the fact that the decision assignment at the current decision level is directly respon-

sible for all implied assignments at that level. Thus, along with assignments from previous levels, the decision assignment at

the current decision level is a sufficient condition for the conflict. To facilitate the computation of  we partition the ante-

cedent assignments of  as well as those for variables assigned at the current decision level into two sets. Let 

 

x

 

 denote either

 or a variable that is assigned at the current decision level. The partition of  is then given by:

(3.1)

For example, referring to the implication graph of Figure 2-1,  and . Deter-

mination of the conflicting assignment  can now be expressed as:

(3.2)

where  is defined by:

(3.3)

The conflict-induced clause corresponding to  is now determined according to:

(3.4)

where, for a binary variable 

 

x

 

,  and . Application of (3.1)-(3.4) to the conflict depicted in Figure 2-1 yields the

following conflicting assignment and conflict-induced clause at decision level 6:

(3.5)

 

3.1 Standar d Confl ict Dia gnosis Engine

 

The identification of a conflict-induced clause  enables the derivation of further implications that help prune the

search. Immediate implications of  include asserting the current decision variable to its opposite value and determining

a backtracking level for the search process. Such immediate implications do not require that  be added to the clause

database. Augmenting the clause database with , however, has the potential of identifying future implications that are

not derivable without . In particular, adding  to the clause database insures that the search engine will not regen-

erate the conflicting assignment that led to the current conflict.
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assignments as failure-driven assertions (FDAs) to emphasize that they are implications of conflicts and not decision assign-

ments. We note further that their derivation is automatically handled by our BCP-based deduction engine and does not require

special processing. This is in contrast with most search-based SAT algorithms that treat a second branch at the current decision

level as another decision assignment. Using our running example (see Figure 2-1) as an illustration, we note that after erasing

the conflicting implication sequence at level 6, the conflict-induced clause  in (3.5) becomes a unit clause with  as

its free literal. This immediately implies the assignment  and  is said to be asserted.

 

3.1.2 Conflict-Dir ected Backtracking

 

If all the literals in  correspond to variables that were assigned at decision levels that are 

 

lower

 

 than the current

decision level, we can immediately conclude that the search process needs to backtrack. This situation can only take place

when the conflict in question is produced as a direct consequence of diagnosing a previous conflict and is illustrated in

Figure 3-1 (a) for our working example. The implication sequence generated after asserting  due to conflict  leads to

another conflict . The conflicting assignment and conflict-induced clause associated with this new conflict are easily deter-

mined to be

(3.6)

and clearly show that the assignments that led to this second conflict were all made prior to the current decision level.

In such cases, it is easy to show that no satisfying assignments can be found until the search process backtracks to the

highest decision level at which assignments in  were made. Denoting this 

 

backtrack level

 

 by , it is simply calculated

according to:

(3.7)

When , where 

 

d

 

 is the current decision level, the search process backtracks 

 

chronologically

 

 to the immediately

preceding decision level. When , however, the search process may backtrack 

 

non-chronologically

 

 by jumping back

over several levels in the decision tree. It is worth noting that all truth assignments that are made after decision level  will
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force the just-identified conflict-induced clause  to be unsatisfied. A search engine that backtracks chronologically

may, thus, waste a significant amount of time exploring a useless region of the search space only to discover after much effort

that the region does not contain any satisfying assignments. In contrast, the GRASP search engine jumps 

 

directly

 

 from the cur-

rent decision level back to decision level . At that point,  is used to either derive a FDA at decision level  or to cal-

culate a new backtracking decision level.

For our example, after occurrence of the second conflict the backtrack decision level is calculated, from (3.6), to be 3.

Backtracking to decision level 3, the deduction engine creates a conflict vertex corresponding to . Diagnosis of this

conflict leads to a FDA of the decision variable at level 3 (see Figure 3-1 (b)).

The pseudo-code for the diagnosis engine in GRASP is shown in Figure 3-2 and illustrates the main features of standard

conflict diagnosis described above. The GRASP search algorithm described in this report is sound and complete. General

proofs of this claim can be found in [13, 26].

 

3.2 Variations on the Standar d Diagnosis Engine

 

The standard conflict diagnosis, described in the previous section, suffers from two drawbacks. First, conflict analysis

introduces significant overhead which, for some instances of SAT, can lead to large run times. Second, the size of the clause

database grows with the number of backtracks; in the worst case such growth can be exponential in the number of variables.

The first drawback is inherent to the algorithmic framework we propose. Fortunately, the experimental results presented in

Section 4 clearly suggest that, for specific instances of SAT, the performance gains far outweigh the procedure’s additional

overhead.
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Figure 3-2: Description of the standard diagnosis engine
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//
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//
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//
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if

 

 (

 

β

 

L

 

 

 

!

 

= 

 

d

 

) {

add new conflict vertex  to 

 

I

 

;

record ;

 

return

 

 CONFLICT;
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One solution to the second drawback is a simple modification to the conflict diagnosis engine that guarantees the worst

case growth of the clause database to be polynomial in the number of variables. The main idea is to be selective in the choice

of clauses to add to the clause database. Assume that we are given an integer parameter 

 

k

 

. Conflict-induced clauses whose size

(number of literals) is no greater than 

 

k

 

 are marked 

 

green

 

 and handled as described earlier by the standard diagnosis engine.

Conflict-induced clauses of size greater than 

 

k

 

 are marked 

 

red

 

 and kept around only while they are unit clauses. Implementa-

tion of this scheme requires a simple modification to procedure 

 

Erase()

 

, which must now delete red clauses with more than

one free literal, and to the diagnosis engine, which must attach a color tag to each conflict-induced clause. With this modifica-

tion the worst case growth becomes a 

 

k

 

th-order polynomial in the number of variables.

Further enhancements to the conflict diagnosis engine involve generating stronger implicates (containing fewer literals) by

more careful analysis of the structure of the implication graph. Such implicates correspond to the dominators [29] of the con-

flict vertex . These dominators, referred to as 

 

unique implication points

 

 (UIPs), can be identified in linear time with a single

traversal of the implication graph.

 

4 Experimental Results

 

In this section we present experimental results for GRASP. Several benchmarks are used and GRASP is compared with

other state-of-the-art and publicly available SAT programs. In particular, we compare GRASP with TEGUS [28] and POSIT

[9]. TEGUS is included in SIS [23]. It was adapted to read CNF formulas and augmented to continue searching when all its

default options were exhausted

 

3

 

. No changes were required with POSIT.

GRASP and POSIT are implemented in the C++ programming language, whereas TEGUS is implemented in the C pro-

gramming language. All programs were compiled with GCC 2.7.2 and run on a SUN SPARC 5/85 machine with 64 MByte of

RAM. In order to evaluate the three programs, two different sets of benchmarks were tested:

• The UCSC benchmarks, available from [8], that include instances of SAT commonly encountered in test pattern

generation of combinational switching circuits for bridging and stuck-at faults.

• The DIMACS challenge benchmarks, also available from [8], that include instances of SAT from several authors

and from different application areas.

While GRASP has a large number of configuration options, for the experimental results given below, it was configured to

use the decision engine described in Section 2.5, to allow the generation of clauses based on UIPs, and to limit the size of

clauses added to the clause database to 20 or fewer literals. All SAT programs were run with a CPU time limit of 10,000 sec-

onds (about three hours).

For the tables of results the following definitions apply. A benchmark suite is partitioned into classes of related bench-

marks. In each class, 

 

#M

 

 denotes the total number of class members; 

 

#S

 

 denotes the number of class members for which the

program terminated in less than 10,000 CPU seconds; and 

 

Time

 

 denotes the total CPU time, in seconds, taken to process all

members of the class.

 

3. Otherwise TEGUS would abort almost all benchmark examples.

�
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4.1 UCSC Benc hmark Results

 

The results obtained for the UCSC benchmarks are shown in Table 4-1. The BF and SSA benchmark classes denote,

respectively, CNF formulas for bridging and stuck-at faults

 

4

 

. These results are separated into benchmark classes according to

the given benchmark circuit (which are taken from the ISCAS’85 benchmark circuits). GRASP performs much better than any

other program on these benchmarks. The other two algorithms abort an extremely large number of problem instances, whereas

GRASP aborts none. Furthermore, both the CPU times and the number of decisions of GRASP are extremely small when

compared with the results of other programs. These benchmarks are characterized by extremely sparse CNF formulas for

which BCP-based conflict analysis works particularly well. The performance difference between GRASP and TEGUS, a very

efficient ATPG tool, illustrates the power of the search-pruning techniques included in GRASP.

Despite the extremely good results of GRASP when compared with the other algorithms, some caution is required.

GRASP performs well in separate instances of SAT without knowledge of the circuit structure. In ATPG systems the structure

of the circuit is known and can be used to improve efficiency. This is what is done with TEGUS when applied to ATPG [28].

Given the greater overhead of GRASP, TEGUS is likely to perform better on a larger number of easy faults. However, GRASP

is ideal for the hard faults, for which TEGUS applies learning techniques and iterates over several decision making orderings.

As a result the optimum organization for ATPG is expected to be a combination of TEGUS for the simple faults, followed by

GRASP for the hard faults.

 

4.1.1

 

Database Growth Versus CPU Time

 

It is interesting to evaluate how the growth of the clause database affects the amount of search and the CPU time. For this

purpose the UCSC benchmark suites are used. The same decision making procedure is used and GRASP is run allowing

clauses of size at most 0, 5, 10, 15, 20, 30, 40, 60, 80 and 100 to be added to the clause database in each experiment. The CPU

time and the number of backtracks for the SSA and BF benchmarks are shown in Figure 4-1.

As the maximum size of added clauses grows, the number of backtracks decreases and the CPU time decreases accord-

ingly. Eventually, this tendency is reversed, and even though the number of backtracks continues to decrease, the CPU time

begins to increase. We can thus conclude that adding larger clauses leads to additional overhead for conducting the search pro-

 

4. These CNF formulas were developed at the University of California, Santa Cruz.

 

Benchmark 
Class

#M
GRASP TEGUS POSIT

#S Time #S Time #S Time

 

BF-0432 21 21 47.6 19 53,852 21 55.8

BF-1355 149 149 125.7 53 993,915 64 946,127

BF-2670 53 53 68.3 25 295,410 53 2,971

SSA-0432 7 7 1.1 7 1,593 7 0.2

SSA-2670 12 12 51.5 0 120,000 12 2,826

SSA-6288 3 3 0.2 3 17.5 3 0.0

SSA-7552 80 80 19.8 80 3,406 80 60.0

 

Table 4-1: Results on the UCSC Benc hmarks
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cess and hence it eventually costs more than what it saves in terms of backtracks. These results also suggest that it may possi-

ble to experimentally identifying optimal growth rates for different classes of problem instances. For example, for the SSA and

BF benchmarks the optimal bound is near 30.

 

4.2 DIMACS Benc hmark Results

 

Finally, we illustrate the application of GRASP to other benchmarks, not directly related with EDA applications. For this

purpose the DIMACS benchmarks are used [8]. The results of running GRASP and the other algorithms are shown in Table 4-

2 and again are separated into classes of benchmarks. GRASP performs better than any of the other programs for the AIM-100,
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Figure 4-1: UCSC benchmarks with different growths of the clause database
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AIM-200, BF, DUBOIS, PRET and SSA benchmark classes, whereas POSIT performs better than GRASP for the II-8, JNH,

PAR-8 and PAR-16 benchmarks. It can be concluded that for benchmarks where GRASP performs better the other programs

either take a very long time to find a solution or are unable to find a solution in less than 10, 000 seconds. We have also

observed that benchmarks for which POSIT performs better than GRASP are also handled by GRASP with a similar amount

of search; only the overhead inherent to GRASP becomes apparent. TEGUS and POSIT each perform better on different

classes of instances. In general, however, POSIT seems to be slightly more efficient than TEGUS.

It is also interesting to measure how well conflict analysis works in practice. For this purpose statistics regarding some

DIMACS benchmarks are shown in Table 4-3, where 

 

#B

 

 denotes the number of backtracks, 

 

#NCB

 

 denotes the number of non-

chronological backtracks, 

 

Lar gest jump

 

 is the size of the largest non-chronological backtrack, 

 

#UIP

 

 indicates the number of

unique implication points found, 

 

% of Gr owth

 

 denotes the variation in size of the clause database, and 

 

Time

 

 is the CPU time

in seconds. For these examples several conclusions can be drawn. First, the number of non-chronological backtracks can be a

significant percentage of the total number of backtracks. Second, the jumps in the decision tree can save a large amount of

search work. As can be observed, in some cases the jumps taken potentially save searching millions of nodes in the decision

tree. Third, the growth of the clause database is not necessarily large. Fourth, UIPs do occur in practice and for some bench-

marks a reasonable number is found given the number of backtracks. Finally, for most of these examples conflict analysis

causes GRASP to be much more efficient than POSIT. Nevertheless, POSIT and TEGUS can be more efficient in specific

benchmarks, as the examples of the last three rows indicate. TEGUS performs particularly well on these instances because

they are satisfiable and because TEGUS iterates several decision orderings. Hence, for these instances, iterating different deci-

sion making orderings is likely to lead to a solution.

 

Benchmark 
Class

#M
GRASP TEGUS POSIT

#S Time #S Time #S Time

 

AIM-100 24 24 1.8 24 107.9 24 1,290

AIM-200 24 24 10.8 23 14,059 13 117,991

BF 4 4 7.2 2 26,654 2 20,037

DUBOIS 13 13 34.4 5 90,333 7 77,189

II-32 17 17 7.0 17 1,231 17 650.1

PRET 8 8 18.2 4 42,579 4 40,691

SSA 8 8 6.5 6 20,230 8 85.3

AIM-50 24 24 0.4 24 2.2 24 0.4

II-8 14 14 23.4 14 11.8 14 2.3

JNH 50 50 21.3 50 6,055 50 0.8

PAR-8 10 10 0.4 10 1.5 10 0.1

PAR-16 10 10 9,844 10 9,983 10 72.1

II-16 10 9 10,311 10 269.6 9 10,120

H 7 5 27,184 4 32,942 6 11,540

F 3 0 30,000 0 30,000 0 30,000

G 4 0 40,000 0 40,000 0 40,000

PAR-32 10 0 100,000 0 100,000 0 100,000

 

Table 4-2: Results on the DIMA CS Benc hmarks
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5 Conc lusions and Resear ch Directions

 

This report introduces a procedure for conflict analysis in satisfiability algorithms and describes a configurable algorith-

mic framework for solving SAT. Experimental results indicate that conflict analysis and its by-products, non-chronological

backtracking and identification of equivalent conflicting conditions, can contribute decisively for efficiently solving a large

number of classes of instances of SAT. As a result, the proposed SAT algorithm is shown to be more efficient than other state-

of-the-art algorithms for a large number of SAT instances.

The natural evolution of this research work is to apply GRASP to different EDA applications, in particular test pattern

generation, timing analysis, delay fault testing and logic verification, among others. Despite being a fast SAT algorithm,

GRASP introduces noticeable overhead that can become a liability for some of these applications. Consequently, besides the

algorithmic organization of GRASP, special attention must be paid to the implementation details. One envisioned compromise

 

Benchmark #B #NCB
Lar gest
jump

#UIP
% of

Growth
GRASP

Time
TEGUS

Time
POSIT
Time

 

aim-200-2_0-yes1-2  109 50 13 25 152.63 0.38 2.80 7,990.71

aim-200-2_0-yes1-3 74 35 16 15 99.67 0.31 0.64

 

>

 

 10,000

aim-200-2_0-no-1 29 20 12 5 22.9 0.13 69.93

 

>

 

 10,000

aim-200-2_0-no-2 39 20 37 4 43.6 0.19 87.53

 

> 

 

10,000

bf0432-007 335 124 17 32 47.99 5.18 6,648.68 11.79

bf1355-075 40 20 24 2 6.50 1.25 4.83

 

> 

 

10,000

bf1355-638 11 7 8 4 1.11 0.32

 

> 

 

10,000

 

> 

 

10,000

bf2670-001 16 8 22 2 3.02 0.40 > 10,000 25.64

dubois30 233 72 16 21 465.83 0.68 > 10,000

 

> 

 

10,000

dubois50 485 175 26 51 631.92 2.80 > 10,000

 

> 

 

10,000

dubois100 1438 639 67 150 1033.54 26.22 > 10,000

 

>

 

 10,000

pret60_40 147 98 17 8 407.08 0.41 652.30 175.49

pret60_60 131 83 16 10 353.54 0.35 639.27 173.12

pret150_25 428 313 38 35 588.17 4.84 > 10,000

 

>

 

 10,000

pret150_75 388 257 49 20 446.75 3.85 > 10,000

 

>

 

 10,000

ssa0432-003 37 6 5 1 30.80 0.15 221.71 0.01

ssa2670-130 130 45 34 10 17.26 2.07 > 10,000 14.23

ssa2670-141 377 97 16 28 65.71 3.42 > 10,000 70.82

ii16a1 110 19 13 0 0.03 13.61 5.99 > 10,000

ii16b2 2664 120 9 39 63.46 175.85 6.94 16.38

ii16b1 88325 2588 41 624 131.94 > 10,000 21.65 16.73

 

Table 4-3: Statistics of Running GRASP on Representative DIMA CS Benc hmarks
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is to use GRASP as the second choice SAT algorithm for the hard instances of SAT whenever other simpler, but with less over-

head, algorithms fail to find a solution in a small amount of CPU time.

Future research work will emphasize heuristic control of the rate of growth of the clause database. Another area for

improving GRASP is related with the deduction engine. Improvements to the BCP-based deduction engine are described in

[26] and consist of different forms of probing the CNF formula for creating new clauses. This approach naturally adapts and

extends other deduction procedures, e.g. recursive learning [16] and transitive closure [4], since it completes the clause data-

base with additional implicates, in addition to being able to identify as many necessary assignments.

The actual practical usefulness of improved deduction engines needs to be experimentally validated. Finally, we propose

to undertake a comprehensive experimental characterization of the instances of SAT for which conflict analysis provides sig-

nificant performance gains.
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