
Optimizing Delay in Delayed-Write File Systems 1

Optimizing Delay in Delayed-Write File Systems

Peter M. Chen

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

University of Michigan
pmchen@eecs.umich.edu

Abstract: Delayed writes are used in most file systems to improve performance over write-through while
limiting the amount of data lost in a crash. Delayed writes improve performance in three ways: by allowing
the file cache to absorb some writes without ever propagating them to disk (write cancellation), by improv-
ing the efficiency of disk writes, and by spreading bursts out over time. For each of these benefits, this
paper determines the optimal value for the delay interval: the smallest delay that achieves as good (or
nearly as good) performance as an infinite delay. The largest value for optimal delay of any of the three

benefits is . This value is 1-10 seconds for current systems, implying that the delay used

today (30 seconds) is much too large; a smaller delay would minimize data loss yet maintain the same per-
formance.

1 Intr oduction
Most file systems cache data in memory to improve performance [Leffler89]. Reading data from the

file cache is straightforward. Writing data to the file cache, however, involves a tradeoff between reliability
and performance that depends on when the new data is propagated to disk. If data is written immediately
and synchronously to disk (write-through), the system’s throughput for writes becomes limited to the
disk’s transfer rate. To mitigate this effect, many systems propagate the new data to disk at some later time;
this is calleddelayed writes. While delayed writes improve performance, they risk losing data on a system
crash or power outage. At the extreme, a file cache with an infinite delay is a pure write-back cache; this is
suitable primarily for temporary files.

A long delay can lose large amounts of data if the system crashes, while a short delay sacrifices per-
formance. Real systems balance these two factors to try to achieve performance almost as high as a pure
write-back file cache while not losing too much data if the system crashes. A common, though somewhat
arbitrary, choice for the delay is 30 seconds.1

Delayed writes affect performance in several ways.
• The most significant effect iswrite cancellation: the ability to absorb writes in the file cache and never

need to write new data to disk. This can happen in a variety of ways. For example, a program such as a
compiler might delete data within 30 seconds of writing it, or a user of an editor might write one ver-
sion of a file, then overwrite the file with a new version after more editing. In general, if the delay is
longer than the lifetime of the file, then no write to disk need be done [Baker91]. At its best, write can-
cellation allows a system to sink new data at memory speeds rather than the disk speeds.

• Second, delayed writes can improve the efficiency of writing data to disk. This can happen in a variety
of ways, most of which take advantage of having more data available to write to disk. For example, disk
scheduling [Seltzer90], logging [Rosenblum92], and clustering [McVoy91] are all more effective when
the amount of data to write increases. Delaying the writes for a longer period of time allows more data
to accrue in the file cache.

• Third, delayed writes allow a system to spread a burst of writes out over time. Write-through caches
limit the rate at which programs can generate file data to the speed of disk. Delayed writes give the sys-
tem the ability to perform the writes from a burst during a future idle period. A benefit related to spread-
ing out bursts is the ability to do asynchronous writes. These writes are scheduled to disk immediately

1. Systems that delay data for 30 seconds will sometimes write certain data through to disk. For example, metadata
such as directories and inodes is often written synchronously to disk [Ganger94], and some Unix systems schedule an
asynchronous disk write as soon as a modification fills an entire block [Mogul94].

fi leCacheSize
diskTransferRate
--

University of Michigan CSE-TR-293-96

Optimizing Delay in Delayed-Write File Systems 2

but return to the user before the disk has completed the write. This increases the amount of overlap
between the processor and the disk system, though asynchronous events can make programming more
challenging.

In this paper’s model for delayed writes, delay is defined as the time between writing new data and
propagating that data to disk. The model assumes that deleting or overwriting data renders that data worth-
less and hence makes it unnecessary to propagate the deleted or overwritten data to disk. Under this model,
data that is touched at least once per delay interval is never written to disk. I believe this is a reasonable
design choice, since overwriting a file vastly diminishes the worth of the old values.2

The goal of this paper is to provide a basis for choosing delay for a given workload and system. For
each reason given above, I determine theoptimal delay, which I define asthe smallest delay that achieves
as high (or nearly as high) performance as an infinite delay. I show that the optimal delay is less than

. This value is 1-10 seconds for current systems, implying that the delay used today (30

seconds) is much too large; a smaller delay would minimize data loss yet maintain the same performance.

2 Write Cancellation
In this section, I determine the optimal delay using a simple, steady-state workload. Sections 3 and 4

refine the workload and system to include bursts and the feedback effect of delay on efficiency. In this sec-
tion, optimal delay is defined as the smallest delay that achieves the same performancein terms of write
cancellation as an infinite delay.

2.1 Basic Model
Start with the following simple workload: the user is continuously writing a set of files at a fixed

throughput. Each file is deleted a fixed lifetime after being written. The amount of live data at any given
time (thefile set size) is thus . For the time being, I will assume there
are no reads or bursts; these will be addressed in later sections. With this simple workload, it is straightfor-
ward to determine the optimal delay according to the following three rules:
Rule 1: If workload thr oughput is less than the throughput that the disk can sustain, optimal delay is

zero.
This rule argues that if the disk can sustain the entire workload, then write cancellation is not
needed and the delay can be chosen to minimize data loss. This is the most controversial and per-
vasive rule in this paper: that a low amount of write traffic should be optimized for reliability, not
performance. This assumes that the user’s workload is fixed; in other words, the user does not
issue a workload that proceeds as rapidly as possible over the long term. Short-term bursts that do
proceed as rapidly as possible will be addressed in Section 4. The effect of this assumption on read
performance will be addressed later in this section. Readers uncomfortable with this rule can pick
a lower value for disk transfer rate; for example, it is easy to accept that writing to disk at 0.01
MB/s is no worse than not writing to disk at all. Section 3 will show that a small delay allows the
disk to write at close to the disk transfer rate, so this rule places a lower bound on workload
throughput of 1-10 MB/s with current disk technology. A delay of zero refers to an immediately
issued, asynchronous write.

Rule 2: If the file set size is greater than the file cache size, optimal delay is zero.
This rule argues that if the workload will thrash the file cache, no write cancellation will occur,
even with an infinite delay. Thus a delay of zero achieves the same performance as an infinite
delay.

Rule 3: If neither of the first two rules applies, optimal delay is equal to the file lifetime.

2. Some users may require that the disk holds some version of the data even if the data has been overwritten. To sat-
isfy this, the system could write overwritten data to disk periodically, where the period used is much longer than the
normal delay (reflecting the diminished value of the old data). The model in this paper assumes that the period used to
write old data is infinite.

fi leCacheSize
diskTransferRate
--

workloadThroughput fi leLi fetime×

Optimizing Delay in Delayed-Write File Systems 3

This delay allows all data to be deleted before they are written to disk, just as with an infinite
delay.

Figure 1 illustrates these rules by graphing the optimal delay versus file set size and workload
throughput for a fixed file cache size of 100 MB and disk transfer rate of 5 MB/s. Optimal delay is zero
over much of the range shown and has a maximum value of only 20 seconds. The maximum value for opti-
mal delay occurs at the largest file set that fits in the file cache and the slowest workload throughput that is
greater than the disk can sustain.

Rule #1 argues that the workload throughput must be above a certain threshold for write cancellation
to improve performance (). Rule #2 argues that the file set size
must be below a certain threshold for write cancellation to occur even with an infinite delay
(). Multiplying these two rules together implies that for delay to be non-zero,

, which can be re-written as:

Equation 1

This constrains the maximum value for the optimal delay in Rule #3 to be less than the time it takes to
write the entire file cache to disk.

Knowing either file set size or workload throughput allows a tighter bound on optimal delay than
Equation 1. For example, consider the Sprite file system measurements [Baker91], where the file cache
size ranged from 0-24 MB with an average of 7 MB. The Sprite study measured a very low steady-state
workload throughput of 8 KB/s per active user (including both reads and writes). With this low workload
throughput, Rule #1 recommends a delay of zero. However, given the average file cache size of 7 MB,
Equation 1 constrains the maximum optimal delay underany workload throughput to be no more than

. With a disk transfer rate of 1 MB/s, the maximum optimal delay would range from 0-7

seconds.
Thus only a short delay is needed to achieve the primary benefits of write cancellation. This conclu-

sion differs from prior work such as [Baker92] and [Ousterhout85], which sought to minimize the number
of disk writes by lengthening the delay. The key difference is Rule #1, which argues that with a low

0

50

100

150

200

fileSetSize (MB)

0

2

4

6

8

10

workloadThroughput (MB/s)

0
5

10

15

20

optimalDelay (s)

0

50

100

150

200

fileSetSize (MB)

Figure 1: Example of Optimal Delay as a Function of File Set Size and Workload Thr oughput. The
three rules in Section 2.1 constrain the delay that minimizes data loss while still performing as well (in
terms of write cancellation) as an infinite delay. This figure graphs the optimal delay for a system with a
100 MB file cache and disk transfer rate of 5 MB/s. For most of the range shown, the optimal delay is zero
(fileSetSize > fileCacheSize or workloadThroughput < diskTransferRate). In the range where optimal
delay is non-zero, delay is equal to fileSetSize / workloadThroughput. Note that the maximum value for
optimal delay is only 20 seconds.

workloadThroughput diskTransferRate>

fi leCacheSize fi leSetSize>
workloadThroughput fi leCacheSize× diskTransferRate fi leSetSize×>

fi leLi fetime
fi leSetSize

workloadThroughput
---=

fi leCacheSize
diskTransferRate
--<

7MB
diskTransferRate
--

Optimizing Delay in Delayed-Write File Systems 4

enough workload throughput (such as that used in [Baker92]), there is no benefit gained by lowering the
number of disk writes. A moderately high workload throughput, say 2 MB/s, makes it difficult to achieve
the high file lifetimes reported in [Baker91] without thrashing the file cache. For example, achieving a 100
second file lifetime while writing at 2 MB/s requires a 200 MB file cache!

2.2 Effect of Reads on Write Cancellation
The above analysis assumes that the user only issues writes. The presence of reads changes Rules #1

and #2. Fortunately, the following analysis shows that these changes effectively cancel each other out.
If the read workloadat disk is intense, it becomes important to decrease the number of writes to disk

even if the write throughput is low; this increases optimal delay. On the other hand, the presence of read
traffic implies that the workload’s write throughput is less than the total workload throughput; this
decreases optimal delay. For example, the write throughput in the Sprite traces was only 1.6 KB/s. Rule #1
then becomes:
Rule 1’: If workload write throughput is less than the throughput that the disk can sustainwithout

slowing read traffic at the disk, optimal delay is zero.
This may decrease the lower-bound on workload throughput used in Section 2.1. However, the
disk may be able to sustain a write traffic close to the total disk transfer rate without causing read
performance to suffer. First, file caches filter reads quite effectively, so many workloads will not
significantly load the disk with read traffic. Without any write cancellation, a relatively small frac-
tion of disk traffic will be reads [Rosenblum92]; thus reads will only decrease moderately the
lower bound on write throughput derived from Rule #1.
The second reason that the disk may be able to sustain a high write traffic without hurting read per-
formance is that disk reads can be serviced at a higher priority than disk writes [Carson92]. This
makes read performance largely independent of write traffic, as long as the disk can sustain the
total traffic in the steady state. Prefetching also decouples read performance independent of write
traffic, as long as the disk can sustain the aggregate read and write traffic [Patterson95].

Read traffic can also lower the optimal delay by decreasing the file cache space available for holding
dirty data. For example, file caches in the Sprite traces averaged 7 MB, but much of this was likely used to
hold clean data. This changes Rule #2 to be
Rule 2’: If the file set size is greater than the file cache sizeavailable for dirty data, optimal delay is

zero.
Combining these two changes to Rule #1 and #2, reads change the optimal delay to be either zero or

. The following analysis shows that this ratio is less than

, implying that optimal delay in the presence of reads is even smaller than the optimal

delay with no read traffic.
Consider the system shown in Figure 2. The file cache size available for writes can be estimated as

. This assumes that the amount of space used by each compo-

nent of a workload is proportional to the intensity of the component. The disk transfer rate available for

writes is . We can then rewrite as:

Equation 2

fi leCacheSizeAvai lableForWr i tes
diskTransferRateAvai lableForWr i tes
--

fi leCacheSize
diskTransferRate
--

wr i tef i l eCache

wr i tef i l eCache read f i l eCache+
--- fi leCacheSize×

diskTransferRate readdi sk–
fi leCacheSizeAvai lableForWr i tes

diskTransferRateAvai lableForWr i tes
--

delay
fi leCacheSizeAvai lableForWr i tes

diskTransferRateAvai lableForWr i tes
--

fi leCacheSize
wr i tef i l eCache

wr i tef i l eCache read f i l eCache+
---×

diskTransferRate readdisk–
---= =

Optimizing Delay in Delayed-Write File Systems 5

The numerator of Equation 2 shows that a higher fraction of write traffic at the file cache (relative to
reads) increases delay. To bound delay, the next step is to express the maximum value for write traffic in
terms of read traffic. Note that writedisk with an infinite delay must be less than

, otherwise the system cannot sustain the workload under any delay interval.
This constraint can be written as

Equation 3

If we estimate the write miss ratio with an infinite delay to be the same as the read miss ratio, that is,

, Equation 3 can be written as

Equation 4

Equation 4 expresses the maximum amount of write traffic into file cache, and this yields the largest
value for delay in Equation 2. Plugging this maximum value for writefileCache into Equation 2 reduces

Equation 2 to . Hence the largest value for optimal delay in the presence of reads is no

larger than the optimal delay without read traffic.
This result is consistent with intuition: reads lower the file cache size available for storing data by the

same amount as they lower the disk transfer rate available for writes. For example, workloads with more
reads will likely use more file cache space for storing read data than workloads with more writes.

3 Increasing the Efficiency of Writes
The second way that delayed writes can improve performance is by increasing the efficiency of writ-

ing to disk. A variety of optimizations depend on delayed writes, such as disk scheduling, clustering, and
logging. Most of these optimizations take advantage of the extra data accrued during the delay to make
writes more efficient. Longer delays allow more data to accrue, and this improves efficiency, where effi-
ciency is defined as the effective disk throughput divided by the disk transfer rate. The efficiency of writing
to disk affects the lower bound on workload throughput used in Rule #1 and throughout the paper.

The relationship between efficiency and delay depends on workload throughput, data locality, and
disk characteristics, as well as the optimizations used to improve efficiency. Efficiency can be calculated as

Figure 2: Analyzing the Effect of Reads on Optimal Delay. This figure presents the terminology used
in analyzing the effect of reads on optimal delay. The label on each arrow indicates the amount of read or
write traffic between each component.

CPU

File Cache

readfileCache

readdisk

writefileCache

writedisk

diskTransferRate readdi sk–

wr i tedi sk infini teDelay() diskTransferRate readdisk–<

wr i tedi sk infini teDelay()
wr i tef i l eCache

--
readdisk

read f i l eCache
-------------------------------=

wr i tef i l eCache

read f i l eCache

readdisk
------------------------------- diskTransferRate readdi sk–()×<

fi leCacheSize
diskTransferRate
--

Optimizing Delay in Delayed-Write File Systems 6

follows for systems that use logging (or some similar optimization such as clustering) to collect data into a
single write [Rosenblum92, Seltzer95]:

Equation 5

Equation 6

For example, a DEC RZ26L disk can sustain a data transfer rate between 2.7 and 5.5 MB/s (assume
an average of 4 MB/s) and has a positioning time (average seek + average rotation) of 15 ms. With these
characteristics, collecting 60 KB before writing achieves 50% efficiency, 540 KB achieves 90% efficiency,
and 6 MB achieves 99% efficiency. Because workload throughput must be greater than the disk throughput
(Rule #1), this amount of data accrues quickly.3 Within two seconds, enough data is collected to achieve
99% efficiency. This result allows us to assume throughout the paper that the disk can sustain traffic close
to its transfer rate (minus the portion of the transfer rate needed for reads, as discussed in Section 2.2).

Several things may increase the delay needed to achieve high efficiency. Systems that only use less
powerful optimizations such as disk scheduling will require more data and a correspondingly longer delay
to achieve high efficiency. Also, a high level of read traffic at the disk decreases the amount of write
throughput the disk can sustain, which decreases the lower bound on workload throughput and increases
the delay needed.

4 Spreading out Bursts
The third way that delayed writes can improve performance is by allowing the system to spread bursts

of user activity over a longer period of time. My analysis assumes that a burst instantaneously fills the file
cache with a given amount of dirty data. An instantaneous burst represents a worst-case scenario for
bounding delay, because it requires the longest time to write the last byte of the burst to disk.

To determine optimal delay, note that the largest burst that the file cache can store has burst size equal

to the file cache size. This takes time units to drain to disk, so delay equal to this time is

as good as an infinite delay. Taking read traffic into account follows the same analysis as in Section 2.2.
For bursty workloads, the system must take into account the time it takes to write the burst to disk

when calculating when to start writing to disk. For example, if the burst size is 10 MB, the maximum delay
is 15 seconds, and the disk transfer rate is 5 MB/s, the system should start writing to disk after

 seconds.

5 Effect of Technology Trends
The rules developed above depend on system parameters, and it is interesting to examine how current

technology trends affect optimal delay.
As CPU speeds continue to increase, workload throughput will also tend to increase, though perhaps

not quite as rapidly as CPU speeds [Baker91]. This lowers the optimal delay for the first two effects. The

3. By setting workload throughput to be equal to disk throughput, and substituting (workload throughput * delay) for
size, Equation 5 can be solved for the minimum delay needed for the disk to sustain a given workload

throughput:

effectiveDiskThroughput
size

diskPosi tioningTime
size

diskTransferRate
--+

---=

efficiency
effectiveDiskThroughput

diskTransferRate
--- size

size diskPosi tioningTime diskTransferRate×+
---= =

delay
diskPosi tioningTime

1 workloadThroughput
diskTransferRate

---–
--=

fi leCacheSize
diskTransferRate
--

15 10
5
------– 13=

Optimizing Delay in Delayed-Write File Systems 7

file lifetime () of any workload that fits in the cache will decrease, which lowers the

optimal delay for write cancellation. In addition, the increased data traffic into the file cache lowers the
delay needed to make writes efficient.

As memories get cheaper, file cache sizes will continue to grow. This increases the optimal delay for
write cancellation and spreading out bursts, since the file cache will be able to store larger file set sizes and
larger bursts.

As disk transfer rates continue to rise, the lower bound on workload throughput will also rise. This
decreases optimal delay for the same reasons as CPUs getting faster, and it also decreases the time needed
to write the largest possible burst to disk.

[Mogul94] combines current technology trends for memory sizes and disk transfer rates and estimates

that was approximately 1 second in 1993 and will increase to 14 seconds in 2003,

implying that the 30 second delay used today is much too long and will stay too long for another decade.

6 Experimental Verification
The main goal of this paper is to derive some simple rules for determining optimal delay, and hence a

thorough experimental performance study is beyond the scope of this paper. To help ensure that the analy-
sis did not overlook any important effects, however, I modified Digital Unix V3.0 running on a DEC AXP
3000/600 to conform to my model of delayed writes and verified the rules on a few simple workloads. The
disk used was a 1.0 GB DEC RZ26L, with an average seek time of 9.5 ms, an average rotational latency of
5.6 ms (5400 RPM), and a transfer rate of 2.7-5.5 MB/s. The tested system had 128 MB of memory, and
the file cache can grow as large as 80-90 MB.

The standard version of Digital Unix usesperiodic update, where sync runs every 30 seconds and
writes out all dirty data to disk. This policy guarantees that dirty data stays in the file cache at most 30 sec-
onds; however the average age of a block when it is written to disk is only 15 seconds. I implementinterval
periodic update in a manner similar to [Mogul94]. This policy writes dirty data out to disk approximately
delay seconds after it has last been modified. This is accomplished by modifying sync to only write data to
disk if it is older than the delay interval, and calling sync once a second to check for data that has crossed
this threshold. I implemented interval periodic update only for data; metadata is writtenasynchronously
whenever sync is called (once per second).

I start by verifying the rules regarding write cancellation. Running the Andrew benchmark
[Howard88, Ousterhout90] serves to verify Rule #1, because the disk can easily sustain the write traffic
generated by Andrew. The Andrew working set also fits easily in the file cache [Chen94], hence most of
the disk bandwidth is available for disk writes. Andrew’s running time is approximately the same for both
infinite delay (16.3 seconds) and zero delay (16.7 seconds). Note that zero delay may allow dirty data to
remain in the file cache for up to one second and is not equivalent to synchronous write-through. Perfor-
mance with a synchronous, write-through file system is much worse4 than with zero delay for several rea-
sons. First, a synchronous, write-through system would write to disk much more often than once per
second, and this drastically lowers disk efficiency. Second, writes would be synchronous, and this prevents
the overlap of processing and I/O.

To verify Rule #2 of write cancellation, I run a synthetic workload that simultaneously reads a 120
MB file and writes a different 120 MB file. Both reads and writes are done sequentially in 1 MB units.
Since the workload thrashes the file cache, no extra write cancellations occur by delaying writes to disk.
Hence the total throughput achieved with infinite delay (3.1 MB/s) is about the same as the total through-
put achieved with zero delay (3.0 MB/s).

To verify Rule #3 of write cancellation, I run a synthetic workload composed of two simultaneous
processes. One process reads a 120 MB file from disk as fast as possible; the other process repeatedly

4. Using a synchronous, write-through file system increases the running time of Andrew to over 300 seconds
[Chen96].

fi leSetSize
workloadThroughput

fi leCacheSize
diskTransferRate
--

Optimizing Delay in Delayed-Write File Systems 8

writes a 60 MB file into the file cache at a target throughput of 10 MB/s. Lifetime for the written file is
fixed at 6 seconds. As before, both reads and writes are done sequentially in 1 MB units. The resulting
graph (Figure 3) has two distinct regions of performance. When delay is less than 7 seconds, sync writes
data to disk. This limits write performance to less than the target throughput of 10 MB/s, and it also hin-
ders read performance. When delay is at least 7 seconds, no writes to disk occur. Note that increasing delay
to infinity achieves no better performance than a delay of 7 seconds.

Figure 4 shows how write efficiency improves as the amount of data to be written increases. I measure
write throughput by writing a specific amount of data to a single file, then measuring the time fsync takes
to write the data to disk. No other syncs are done in the system while this test is taking place. As predicted
in Section 3, writing a few MB to disk at a time achieves nearly optimal performance. For example, writing

Figure 3: Verifying Rule #3 of Write Cancellation. This figure shows that any delay greater than the
file lifetime achieves the same performance as an infinite delay. Two processes ran simultaneously: one
reads a 120 MB file from disk as fast as possible; the other writes a 60 MB file to disk repeatedly at a
target throughput of 10 MB/s. This yields a file lifetime of 6 seconds. When delay is less than the file
lifetime, the file cache must write data back to disk. This limits writes to disk speeds and hinders read
performance.

0 10 infinite
Delay (seconds)

0

5

10

15
T

hr
ou

gh
pu

t (
M

B
/s

)

writes

reads

5

Figure 4: Improving Write Efficiency. As predicted in Section 3, writing a few MB to disk at a time is
sufficient to achieve nearly optimal efficiency.

0 10 20 30 40
Burst Size (MB)

0

1

2

3

4

T
hr

ou
gh

pu
t (

M
B

/s
)

Optimizing Delay in Delayed-Write File Systems 9

5 MB to disk achieves 97% of the maximum performance. The disk can sustain 3 MB/s, so a 2-second
delay allows enough data to be collected to achieve nearly very high efficiency.

Figure 5 measures the time required to drain bursts of different sizes to disk, using the same workload
used to measure write efficiency. The file cache can absorb at most 80-90 MB; bursts longer than that force
some data to be written to disk during the burst. Hence the largest burst that needs to be drained to disk at
the time of the call to fsync is 80-90 MB, and this takes about 30 seconds.

7 Related Work
Much past work has been done on using delayed writes to improve file system performance, though I

know of none that has determined the optimal delay interval for a given system and workload. One of the
earliest papers on the topic examines the file cache miss ratios for a zero-second (write-through), 30-sec-
ond, 5-minute, and infinite (pure write back) delay [Ousterhout85]. This is closely related to file lifetimes
(more recent measurements appear in [Baker91]). Focusing on miss ratio ignores Rule #1, which argues
that misses do not matter if write throughputs are below a certain threshold. In fact, the throughputs in
[Ousterhout85] are well below any reasonable threshold: total workload throughput for both reads and
writes is only a few hundred bytes/second. [Baker91] finds more intense workloads (8 KB/second), but
these are still easily sustainable by a disk. My analysis suggests a delay of zero (asynchronous writes) for

these light workloads, or at most for any arbitrary workload on the system.

Two recent papers form the groundwork for my analysis. Carson and Setia compare a delay of zero
(write-through) with the standard, 30-second delay (periodic update) [Carson92]. Their main metric is the
average response time seen by reads. They find that, under light load
(), the large batch of updates generated by periodic update hurts
read response time; this favors write-through and is consistent with Rule #1. Periodic update performs bet-
ter than write-through only if there is a large amount of write cancellation or a large gain in efficiency. Car-
son and Setia propose two ways to prevent periodic update from hurting read response time, interval
periodic update and periodic update with read priority. My analysis uses interval periodic update, which
writes data out after a certain delay; this spreads writes to disk more evenly in time than periodic update.
Periodic update with read priority allows reads to bypass the write queue to disk; this allows the read
response time to be largely independent of the write traffic, as long as the disk is not saturated.

Figure 5: Measuring the Time Required to Drain to Disk Bursts of Different Sizes. The workload
generates a burst of a specific size, then measures the time required to fsync that burst. The file cache can
absorb at most 80-90 MB; bursts longer than that force some data to be written to disk during the burst.

0 50 100 150 200 250
Burst Size (MB)

0

10

20

30

T
im

e
to

 D
ra

in
 B

ur
st

 to
 D

is
k

(s
ec

on
ds

)

fi leCacheSize
diskTransferRate
--

workloadThroughput diskTransferRate<

Optimizing Delay in Delayed-Write File Systems 10

Mogul compares read response time in Ultrix under periodic update, interval periodic update, and
write-through [Mogul94]. His workload is carefully tailored to avoid write cancellation, thus his work
focuses on the efficiency gains made possible by delayed writes. He finds that delayed writes can lower
read response time by making writes more efficient, although the large batch of writes introduced by peri-
odic update increases the variance in read response time. The efficiency gained by delaying writes was
fairly small (10-20%) because the system used did not re-order, log, or cluster disk requests.

My analysis extends the work of Carson, Setia, and Mogul. I use the interval periodic update pro-
posed and implemented in [Carson92, Mogul94] and determine the optimal delay based on the characteris-
tics of the workload and system.

Many researchers are investigating the use of non-volatile RAM to improve file system performance
and reliability [Baker92, Wu94, Akyurek95, Chen96]. This paper argues that the delay used in delayed-
write file systems should be much smaller than the current 30 seconds. However, a delay of a few seconds
is still inferior to the synchronous, write-through semantics guaranteed by non-volatile RAM. This is
because the permanence guaranteed by any delayed-write file system is asynchronous and depends on
time; in contrast, a synchronous, write-through file system can guarantee permanence after a particular
step in a program (for example, after each write or fsync). Lowering delay thus shrinks but can not elimi-
nate the window of data vulnerability.

8 Summary and Recommendations
This paper has analyzed the three main performance benefits of delayed writes: cancelling writes,

making disk writes more efficient, and spreading out bursts of writes. For each, I have derived the optimal
delay, which is the shortest delay that achieves as high (or nearly as high) performance as an infinite delay.
For all three benefits, the optimal delay is zero if the disk can sustain the workload’s write traffic without
penalizing read traffic. This places a lower bound on workload throughput throughout the analysis.

For write cancellation, the optimal delay is zero if the file cache is smaller than the file set size. If the
file cache can hold the workload’s file set, then the optimal delay is the file lifetime, that is

. This limits delay to be less than , because

 and . The presence of read traffic
was shown to not increase optimal delay.

For improving the efficiency of disk writes, the optimal delay depends on data layout, locality, and
scheduling. A simple model for disk efficiency for a logging file system shows that a relatively small delay
(1-2 seconds) provides enough data to make writes 99% as efficient as an infinite delay, assuming the
workload is writing data quickly enough to require delayed writes.

For spreading out bursts of writes, the optimal delay is equal to the time it takes the largest burst to

drain to disk, or .

For all benefits, the maximum possible value for optimal delay is . [Mogul94] esti-

mates at 1 second in 1993 and 14 seconds in 2003, implying that the 30 second delay

used today is much too long. I therefore recommend that systems use a lower delay to minimize data loss
without losing performance.

9 References
[Akyurek95] Sedat Akyurek and Kenneth Salem. Management of partially safe buffers.IEEE Transac-

tions on Computers, 44(3):394–407, March 1995.

[Baker91] Mary G. Baker, JohnH. Hartman, MichaelD. Kupfer, KenW. Shirriff, and JohnK. Ouster-
hout. Measurements of a Distributed File System. InProceedings of the 13th ACM Sympo-
sium on Operating Systems Principles, pages 198–212, October 1991.

fi leSetSize
workloadThroughput
--- fi leCacheSize

diskTransferRate
--

fi leCacheSize fi leSetSize> diskTransferRate workloadThroughput<

fi leCacheSize
diskTransferRate
--

fi leCacheSize
diskTransferRate
--

fi leCacheSize
diskTransferRate
--

Optimizing Delay in Delayed-Write File Systems 11

[Baker92] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer. Non-Vol-
atile Memory for Fast Reliable File Systems. InFifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-V), pages 10–
22, October 1992.

[Carson92] ScottD. Carson and Sanjeev Setia. Analysis of the Periodic Update Write Policy for Disk
Cache.IEEE Transactions on Software Engineering, 18(1):44–54, January 1992.

[Chen94] PeterM. Chen and DavidA. Patterson. A New Approach to I/O Performance Evaluation–
Self-Scaling I/O Benchmarks, Predicted I/O Performance (full version).ACM Transactions
on Computer Systems, 12(4):308–339, November 1994.

[Chen96] PeterM. Chen, WeeTeck Ng, Gurushankar Rajamani, and ChristopherM. Aycock. The Rio
File Cache: Surviving Operating System Crashes. Technical Report CSE-TR-286-96, Uni-
versity of Michigan, March 1996.

[Ganger94] GregoryR. Ganger and YaleN. Patt. Metadata Update Performance in File Systems.1994
Operating Systems Design and Implementation (OSDI), November 1994.

[Howard88] JohnH. Howard, MichaelL. Kazar, SherriG. Menees, DavidA. Nichols,
M. Satyanarayanan, RobertN. Sidebotham, and MichaelJ. West. Scale and Performance in
a Distributed File System.ACM Transactions on Computer Systems, 6(1):51–81, February
1988.

[Leffler89] SamuelJ. Leffler, MarshallKirk McKusick, MichaelJ. Karels, and JohnS. Quarterman.
The Design and Implementation of the 4.3BSD Unix Operating System. Addison-Wesley
Publishing Company, 1989.

[McVoy91] L. McVoy and S.Kleiman. Extent-like Performance from a Unix File System.Winter Us-
enix 1991, pages 33–44, January 1991.

[Mogul94] Jeff Mogul. A Better Update Policy. InProceedings of the Summer 1994 USENIX Confer-
ence, pages 99–111, June 1994.

[Ousterhout85]JohnK. Ousterhout, HerveDa Costa, etal. A Trace-Driven Analysis of the UNIX 4.2 BSD
File System. InProceedings of the 1985 Symposium on Operating System Principles, pages
15–24, December 1985.

[Ousterhout90]JohnK. Ousterhout. Why aren’t operating systems getting faster as fast as hardware? In
Proceedings USENIX Summer Conference, pages 247–256, June 1990.

[Patterson95]R. Hugo Patterson, GarthA. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka. In-
formed Prefetching and Caching. InProceedings of the 1995 Symposium on Operating Sys-
tems Principles, pages 79–95, December 1995.

[Rosenblum92]Mendel Rosenblum and JohnK. Ousterhout. The Design and Implementation of a Log-
Structured File System.ACM Transactions on Computer Systems, 10(1):26–52, February
1992.

[Seltzer90] MargoI. Seltzer, PeterM. Chen, and JohnK. Ousterhout. Disk Scheduling Revisited. In
Proceedings of the Winter 1990 USENIX Technical Conference, pages 313–324, January
1990.

[Seltzer95] Margo Seltzer, KeithA. Smith, Hari Balakrishnan, Jacqueline Chang, and Venkata Pad-
manabhan. File System Logging Versus Clustering: A Performance Comparison. InPro-
ceedings of the Winter 1995 USENIX Conference, pages 249–264, January 1995.

[Wu94] Michael Wu and Willy Zwaenepoel. eNVy: A Non-Volatile, Main Memory Storage System.

Optimizing Delay in Delayed-Write File Systems 12

In Proceedings of the 1994 International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), October 1994.

