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Abstract
Sectoring is a cache design and management technique

that is re-emerging as cache sizes get larger and computer
designers strive to exploit the possible gains from using
large block (line) sizes due to spatial locality. Sectoring
allows for a small tag array size to suffice retaining address
tags only for the large blocks, but still avoids huge miss pen-
alties by utilizing a smaller transfer size between the cache
and the next higher level of memory. With this caching strat-
egy comes the need for a new approach for evaluating cache
performance, especially relating to cache space and its best
use, bus traffic and so forth.

In this study, we give a broad overview of the technique
of sectoring in caches. We have introduced a new set of met-
rics for cache performance evaluation, stressing cache
block and bus traffic usage. We use these set of superfluity
metrics to investigate the behavior of real scientific applica-
tions, and also to help determine adequate and appropriate
cache design parameters. We show an example of how these
metrics can help point to the spatial locality problems in a
given application code, thereby indicating code optimiza-
tion techniques which can most significantly improve the
code’s performance.

INTRODUCTION
There is no argument that the efforts of the past couple of
decades focused on increasing processor speeds have begun
to pay off. The result has been the emergence of very high-
speed GFLOPS processors, which are very necessary for
today’s large scale scientific computing demands. However,
these gains in processor speeds have not been well matched
by mass memory speeds. Memory manufacturers have
rather been on an upward swing in increasing the size of
memories. The consequence of these trends has been an
upward increase in the average number of processor cycles
required to satisfy a memory access [16]. With the ever

increasing gap between the main-memory access time and
the frequency of instruction issue, the performance of a pro-
cessing system has become highly dependent on the behav-
ior of high-speed caches. Previous studies have shown how
significant a cache is as a performance factor in avoiding
expensive main-memory accesses in high-performance
computer systems.

As SRAM and DRAM costs continue on a downward
turn, we see an emerging trend in memory design within the
computer architectural community. The most obvious is
multi-level cache design, where the first (primary) level is
normally kept small and direct-mapped, with subsequent
levels being larger in both size and associativity. Also, cache
sizes are getting larger (in the range of 256K and 2M bytes)
for high-performance systems, and in order to reduce the
implementation costs of large tag stores, most designers
prefer to use large block sizes. However, Hill [1]  and Good-
man [3] have shown, separately, that for various applica-
tions, cache sizes and organizations, the minimum cache
miss ratio is obtained with block sizes in the range of 16 to
64 bytes. They go on further to show that, for optimal mem-
ory traffic, this byte range is also the most acceptable for
data transfer size. In addition, Eggers and Katz established
in [4]  that for a shared memory multiprocessor and many
parallel applications, larger block sizes lead to more false
sharing and coherence misses. Hence, in order to employ
block sizes in this recommended range (16-64 bytes) while
keeping a small tag array size, many designers have begun
to revisit sectored caches. Sectoring is a cache management
technique that has been in existence since the advent of
caches [5]. A sectored cache design allows a cache block
with a single address tag (the allocation unit in the cache) to
be sub-divided into several sectors or subblocks. Each sub-
block (as we prefer to call them) has its own validity bit, and
is the minimum unit of data transfer between the respective
cache and the next higher level of memory.

Due to their significance in system performance, cache
design issues have been studied extensively [6] [7] . Effects
of associativity [1] , cache size or block size [8] have all
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been the focus of many studies. However, with some few
exceptions [3] [9] , not much performance evaluation has
been done with respect to sectored caches. A systematic
focus of previous efforts in evaluating designs has been on
effects of cache organization on miss rates and memory traf-
fic ratios. These popular metrics are related to total execu-
tion time, but are insufficient for sectored cache design.
Interestingly enough, balancing performance, cost, area and
power still remain the goals and constraints within which
the computer designer must operate. Therefore any design
that leads to a lot of waste and unused space in the cache
adversely affects system performance. Sectored cache
design introduces a significant metric for cache perfor-
mance evaluation that can no longer be overlooked ason-
chip andcompanion-chip processor caches get larger. This
new metric is about space, and how much of it is being
wasted in caches. It is also about how much unnecessary
memory traffic is being generated in the form of data items
transported in and out of the cache but never used. We intro-
duce thesuperfluity coefficient, and use this metric to mea-
sure inefficient cache utilization due tosuperfluity and
pollution. The significance of this metric could be very
obvious in coherent bus-based shared memory multiproces-
sor systems where very large cache blocks can lead tofalse
sharing [10]  (i.e. a situation wherein two data items that are
not being shared happen to reside in the same cache block).
False sharing increases the number of invalidations and,
subsequently, coherence misses [4], reducing the cache per-
formance. Also, we believe this metric can be helpful in
identifying thespatial andtemporal data locality problems
of large scientific application programs, thereby assisting in
tuning or restructuring efforts for better cache performance.

In this study, we examine the performance impact of
sectored cache design on high-performance computer sys-
tems. For our baseline system, we choose theKSR1 [15]
from Kendall Square Research. The KSR1 is a cache-based
shared-memory multiprocessor system that belongs to the
Cache-Only Memory Architecture (COMA) family. The
memory associated with each processor is managed as a 2-
level sectored cache. The primary cache per processor
(called thesubcache) is split into separate instruction and
data caches, with each consisting of 128 blocks of thirty-
two 64-byte subblocks. The subcache is organized as 64
sets, with 2-way associativity and a random replacement
write-back policy. The secondary cache (called thelocal
cache) is a 32 MB cache, organized as a 128 set, 16-way set
associative cache with a least recently used (LRU) replace-
ment policy. For this work, we limit our study to one single
processor and its primary cache and treat the secondary
cache as main memory. A pertinent question we seek to
answer also is: How good is thisall-cache memory design
on a real scientific application?

The rest of this paper is organized as follows. In the
next section, we introduce the idea and principles behind
sectored caches. We show the relevance of this cache design
with respect to maintaining a low tag implementation cost
while providing large cache blocks for better exploitation of
spatial locality in scientific application programs. In section
3, we discuss the methodology behind this work and the
trace gathering methods used. The KSR1 subcache structure
and its principles of operation are presented. We also dis-
cuss our simulation approach, the application programs and
the performance metrics used in this study. Section 4 pre-
sents trace-driven simulation results across various cache
sizes with varying subblock sizes. Meaningful comparisons
and tradeoffs are shown concerning the various metrics. In
section 5 we introduce code optimization ideas; and show
reductions in superfluity, miss rate, memory traffic and pol-
lution for an optimized version of one of our test applica-
tions. Section 6 presents conclusions to this work.

SECTORED CACHES
Sectoring is a cache management technique that was devel-
oped to help ease two major problems in caches [22]:

• the tag storage can create a significant space overhead for a
cache design, and

• the transfer of large cache blocks results in longmiss pen-
alties.

Tag Storage
Reducing tag implementation cost in a cache is an important
design issue that   requires much attention, even as memory
gets cheaper and caches get larger. For traditional caches,
every cache block has a tag word associated with it. A tag
word normally comprises of an address tag and other status
bits. An address tag makes it possible to retrieve the effec-
tive address (which can be either virtual or physical) of the
data stored in the cache block. Virtual and physical
addresses are getting wider (approaching 64 bits for the
former and 36 bits for the latter [11][12] ) and this has
resulted in the tag word occupying a significant fraction of
the width of the cache block itself. For example, the MIPS
R4000 has a cache block size of 16 bytes maintained by a 3
byte (i.e. 24 bits) address tag, not counting the other status
bits. This is an indication of how many tag bits are needed
to maintain a cache block. Besides this space overhead
problem, keeping the tag bits to a minimum is an important
performance issue for most microprocessor systems since
the tag array may need to service two accesses per cycle: a
snooping transaction on the bus for maintaining cache
coherence and a transaction from the processor for access-
ing the cache [9]. This calls for the tag array to be double-
ported while the data array may remain single ported. Thus,
for off-chip caches, the tag array cannot be easily built with
the same RAM chips as the data array. In most designs
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today [13][14] [15] , an attractive solution has been to
include the tag array and the whole control logic for the
cache in a single companion-chip. Hence the upper bound
on size for the tag array is limited by that chip’s integration
density.

Lar ge Block Sizes
The choice of a cache block size (the amount of data stored
in a single cache block) still remains a debatable issue in
cache design. Since there is no single, optimum block size
for all machine and cache designs, the specific design goals
for the machine pretty much determines the block size used.
A cache improves system performance by exploiting the
two types of locality of reference:temporal and spatial.
Temporal locality is the property that programs are likely to
reuse recently referenced items. Spatial locality, on the other
hand, suggests that programs are likely to reference items
that arenear recently referenced items. This would lead us
to believe that large cache blocks improve application per-
formance when there is substantial spatial locality. This
might not, however, be the case for some parallel applica-
tions and coherent cache-based multiprocessing systems as
described below.

 Several studies have shown that the performance of
coherent caches depends on the relationship between the
granularity of sharing and locality exhibited by a program
and the cache block size [4][17] . If cache blocks are
smaller than the data objects used on a per-processor basis,
then accessing a single object can result in many cache
block references, leading to more misses in order to acquire
the needed data objects and possibly more conflict misses.
Conversely, if cache blocks are too large, then there is the
likelihood of false sharing, which also increases the number
of invalidations.

Reducing the implementation cost of tags is a major
reason for designers to choose a large block size; but
research findings have generally favored small to medium
cache blocks:

• Hill [1]  has shown that, for a large number of applications
and for many cache sizes and organizations, the minimum
cache miss ratio is obtained for line sizes in the 16-64 byte
range.

• Goodman showed in [3] that as the minimum data transfer
size (cache block, in many traditional caches) between
memory and the processors increases, traffic between
memory and the processors increases even with miss ratios
remaining constant

• Another evidence of this is the findings by Eggers and Katz
[4] : for many parallel applications in a coherent shared
memory environment, increasing the block size does in-
crease the amount of false sharing and consequently, coher-
ence communication.
To exploit the gains of large block sizes, while only

paying for a small tag array size, and at the same time take

advantage of small to medium block size for fast data trans-
fer, revisiting sectoring might be an excellent option for
cache designers.

Principles of Sectoring
In a sectored cache, each cache block contains several sub-
blocks with each subblock having its own validity and
coherency bits. The important property here is that all the
subblocks in a block share a single address tag. Any two or
more subblocks that are valid in a particular block in the
cache belong to the same block in memory (i.e. their
addresses differ only by the block offset).

The size of the tag array in a sectored cache is signifi-
cantly smaller than the size of the tag array in a non-sec-
tored cache using the same transfer unit size. We illustrate
this with the figures above. Figure1 shows the tag and data
organization of a non-sectored cache where the block size is
one word long. The same cache is shown in Figure2 orga-
nized as a sectored cache with a block size of 4 words and a
subblock size of one word. From Figure2, we see that the
cache data and the valid bits for every word (i.e. the sub-
block size in this case) have been kept, but the address tag
store has only one-fourth as many entries. This obvious sav-
ings in the tag array size explains why the sectored organi-
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zation is being reconsidered to save silicon in integrated
cache controllers, whose address tag storage is on the same
die as the cache controller. An example is Intel’s 82385 con-
troller for the 386 microprocessor.

Cache Misses :The transfer granularity from memory to the
processor on a sectored cache is a subblock. Goodman [3]
showed that this low granularity of data transfer reduces bus
traffic. Two kinds of misses are distinguishable in the sec-
tored cache environment:

• Block misses: the subblock that contains the referenced
word is missing and no subblock in the same memory block
is alive in the cache (i.e. the referenced block is not allocat-
ed). This is the same as the actual misses that would have
occurred if sectoring was not implemented, with block size
remaining the same.

• Subblock misses: the subblock that contains the referenced
word is missing, but some othersubblock(s) of the same
memory block is(are) alive in the cache. That is to say, the
referenced block is allocated in the cache but the referenced
subblock in it is invalid.
When a cache miss occurs, the block that must be

replaced is invalidated (if the miss was as a result of a block
miss and there is a block to replace); a new block is allo-
cated if necessary; and the subblock of the requested word is
loaded into the cache. The valid bit of this subblock is then
set; and those of the other subblocks in the block are reset,
for a newly allocated block. Good spatial locality would
lead us to believe that words in nearby subblocks may soon
be requested by the CPU. When any of those subblocks is
indeed referenced, the cache controller loads the subblock
into the cache and sets the valid bit for that subblock within
the block. Only the subblocks that contain words that the
CPU actually requested would be brought into the cache
from main memory, a positive measure in controlling the
memory-to-cache bus traffic.

For systems with bus architectures capable of burst read
cycles, an ideal subblock size need to be more than a single
word in order to take advantage of spatial locality. However
in a coherent shared memory multiprocessor, the bus may
easily become a performance bottleneck if the system gets
caught in theping-pong phenomena (a thrashing problem
among private coherent caches due to false sharing). The
good news is that, using small cache blocks can help allevi-
ate this performance problem [4], and this can well be
achieved by using sectoring.

Examples of Real Sectored Caches:The following are a
few examples of sectored caches that are commercially
available today:

• The KSR1 [15] has 2-levels of sectored caches associated
with each processor. Thesubcache (as the primary level is
called) consists of 128 blocks; each block has 32 subblocks
of size 64 bytes. Thelocal cache (i.e. the secondary cache)
comprises of pages, each of size 16 Kbytes; each page con-

tains one hundred twenty eight 128 byte subpages.
• The Motorola MC68030 primary cache has 4K blocks of 16

bytes each. There are four 4 byte subblocks in each block.
• The TI SuperSparc instruction cache has 64 byte blocks

each with two 32 byte subblocks.
• The Power601 on-chip unified cache also has 64 byte

blocks, each with two 32 byte subblocks.

METHODOLOGY
We use trace-driven simulations to study the trade-offs in
the performance of different sectored cache configurations.
In this section, we give a brief description of our simulation
environment and the specific architecture on which it is
based, the trace generation process, the characteristics of the
applications used, and the metrics used for performance
evaluation.

 The KSR1 Processor Cache
Each KSR1 node contains a 64-bit custom processor with a
20 MHz clock. Even though the basic architecture is a load/
store RISC, an added enhancement allows a 2-instruction
issue per clock cycle: one address calculation, branch, or
memory instruction and one integer or floating-point calcu-
lation instruction. The processor is connected to memory by
two 64-bit wide buses, one for instructions and the other for
data. The data bus has the capability of providing an 8-byte
word to the processor per clock cycle.

A KSR1 node has two levels of private cache. The first
level consists of a 0.25MB data subcache and a 0.25MB
instruction subcache. The subcache is a companion-chip
cache; it is 2-way set associative and uses random replace-
ment, write back policy. Each processor has four cache con-
trol units (CCU) that manage the subcache and local cache.
Space allocation in the subcache is done by the CCU on a
block basis. However the unit of data transfer from the sec-
ond level cache to the subcache is a subblock. A block is
2048 bytes long and contains 32 subblocks, each of which is
64 bytes.

The second level cache, called local cache, is 32MB in
size, organized as 128-sets, 16-way set associative, with
LRU replacement. Our present study considers only the first
level data subcache, and views the local cache as main
memory. It is our assumption that the instruction subcache
in every configuration we consider is big enough for all
instruction references to hit in the cache. Figure3 shows the
KSR1 memory structure.

Windheiser [19] et al. conducted a series of timing
experiments to determine memory access latencies for vari-
ous levels of the KSR1 memory hierarchy. We provide these
estimates in Table1 for the subcache and local cache.

 Simulation Envir onment
Our trace-driven simulation environment is modeled around
two tools: K-Trace anddineroSf for generating and inter-
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preting memory references respectively. The overall simula-
tion environment is as shown in Figure 4. K-Tracea, a trace
generator for memory references on the KSR1, was used to
generate address traces for the application programs.

The performance simulator, dineroSf, is a modified ver-
sion of dineroIII, originally developed by Mark Hill [2].
dineroIII  is a trace-driven sectored cache simulator. Simula-
tion results are determined by the input trace and the set of
given cache parameters. It uses the priority stack method of

a.K-Trace was developed by Shih-Hao Hung of the PPP
project at the University of Michigan.

memory hierarchy to increase flexibility and improve simu-
lator performance in highly associative caches. The modifi-
cations that we added to produce dineroSf incorporate
additional cache parameters and provide the added capabil-
ity of measuring superfluity and pollution in the cache. In
addition to the capability of marking a subblock valid or
invalid, reference bits are associated with individual words
within a subblock that can be set to mark word usage. For
each memory reference, the tag store gets checked first. On
a hit (a reference to a word in a valid subblock) if the refer-
ence bit for the word has not been previously set, it is done
at this time. We deal with two types of misses as explained
earlier. Missing on an absent block forces a new block to be
allocated for the reference, and this calls for invalidating all
the valid subblocks of the block being replaced. All valid
subblocks of this evicted block that are marked dirty need to
be written-back to memory. We also take statistics for the
number of subblocks that were marked valid during the
block’s lifecycle in the cache, enabling us to record the
number of words that were actually referenced in each sub-
block. The tag store is then updated, and the respective sub-
block of the block being fetched is marked valid and the
data loaded. At this time, a bit for the actual referenced
word is also set. Misses to subblocks that belong to blocks
already allocated in the cache carry less penalty; the sub-
block is fetched, its valid bit turned on and the referenced
word is marked valid. At the end of the simulation run, we
collect validity statistics on all blocks still resident in the
cache.

Applications Overview
For performance simulation, we selected two major scien-
tific application programs. We avoided benchmark suites
since they generally do not exercise the cache sufficiently,
and we are also interested in the performance of the KSR1
data subcache on a real application. We believe that under-
standing memory performance on real applications is a
major tool for deducing restructuring techniques to improve
such applications. We study two main scientific application
programs in this work.

FEMC is a radiation modeling application developed at
the University of Michigan [18]. It determines the fre-
quency response obtained from broadcasting a pulse of elec-
tromagnetic radiation at a solid object, where the object and
the surrounding space is modeled as a mesh of finite ele-
ments. The discretization of the Maxwell equations leads to
a system of complex linear equations which is solved using
a diagonal-preconditioned symmetric biconjugate gradient
method. The method iteratively refines an approximate solu-
tion of the given linear system until convergence. We used a
version of FEMC that we refer to as FEM3K. It was run
with a 3KB dataset for 90 time-steps on a single KSR1 pro-
cessor, generating 36.5 million memory references.

TABLE 1. KSR1 cache typical access times.

Memory Component
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Memory
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(Cycles)

Each Subcache 0.25 2 (1 per
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Structur e (for one processor)
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FIGURE 4. The simulation envir onment (tracing
and simulating program a.out).
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The other program is also a finite element application
we call FEA. FEA follows a common parallel program
structure [21] that consists of a series of parallel sections,
each enclosed by a parallel construct that enforces barriers
at the beginning and end of each section. The parallel sec-
tions may be separated by serial sections. The entire
sequence is enclosed in an iteration loop where an iteration
corresponds to a time step. For our purposes, we run FEA
on a single processor and collect traces for two time-steps,
totalling 7 million references.

Cache designs must be evaluated in an accurate and
time-efficient manner. To obtain accurate and typical cache
behavior, trace-driven simulations require programs that are
realistic and representative of typical programs, such as the
applications we have described above. However, traces that
are long enough to properly evaluate many types of systems
are almost impossible to obtain or even store. Ideas like
trace sampling[20]  andtimesampling have been suggested
to address this problem. To limit our trace size and still have
traces long enough for proper evaluation, we useselective
tracing. In most scientific applications, memory reference
behavior is very similar across time-steps of the same loop.
It is therefore our conjecture that a substantial percent of the
time-steps is highly representative of the main procedure, or
loop, memory behavior. For example, the memory reference
behavior of a finite element procedure or loop that requires
300 time-steps to converge can very well be captured by
tracing the first 50 time-steps. It is important that more than
one time-steps are run to reduce the impact of possible ini-
tialization and cold start effects.

PERFORMANCE METRICS,
EVALUATION AND ANALYSIS

Miss Ratios
Cache miss ratio is the total number of cache misses divided
by the total number of memory references throughout the
execution of a program. Two kinds of cache misses consti-
tute the total misses in sectored caches: block misses and
subblock misses. Non-sectored caches only have to consider
block misses and we can always expect those misses to be
significantly fewer than the total misses in a corresponding
sectored cache with the same cache size and block size.
Quite important, however, is the respective cost paid per
cache miss. We compare miss ratios usingrelative miss
ratio defined as:
Definition 1: (Relative Miss Ratio): Let C denote a non-sectored

cache with size CS, block size B, and associativity degree A. Let
C1 denote a sectored cache with size CS, block size B, and as-
sociativity degree A. We define relative miss ratio (RMR) of C1
to C as the miss ratio on C1 divided bythe miss ratio on C.
For a fairly simple machine organization, it is easy to

use the miss ratio for predicting more direct measures like

memory access latency and program execution time. How-
ever, as machine organization gets more complex a major
factor that cannot be ignored for performance analysis is the
particular penalty associated with various kinds of misses. If
there are misses for which a lesser cost is paid as against
those requiring substantially higher costs, then we can
employ design techniques that do increase these inexpensive
misses as long as the overall (average) miss penalty is
reduced. Hence, it can be argued that a relatively higher
miss ratio, by itself, is no longer a sufficient metric for com-
paring relative performance between a sectored and a non-
sectored cache even if they have the same block configura-
tion and management policies since, after all is said and
done, the goal of a memory hierarchy is to reduce program
execution time, not cache misses.

Miss Penalty
Miss penalty is the cost incurred in both time and space in
servicing a cache miss. Characterizing this metric for a sec-
tored cache design is becoming increasingly difficult due to
the non-uniformity of cache block invalidation and the rate
at which these invalidations are necessary, especially in
coherent shared cache environments.

The miss penalty is highly dependent on the data trans-
fer unit size of the cache, the memory latency and the trans-
fer rate. A sectored cache miss results in one of three
penalties:

Case 1: A subblock miss, where the referenced
block is already allocated in the cache: Let Lm be
the memory latency to the first word, Bc be the
time per word (8-bytes) transfer and Wsb be the
subblock size in words, then the miss penalty is
given by:

Case 2: A block miss, where the miss results in a
cache block replacement and the block that is
being replaced is clean. Hence the only added
overhead is the cost for allocating the new block.
Let this cost be Ac, then the miss penalty
is:

Case 3: A miss that results in a cache block
replacement and the block being replaced is dirty.
The cost of allocating the new block in this situa-
tion includes the write-back time. Suppose the
write-back time isWB, then the miss penalty is
given as:
There is no clear distinction between cases 2 and 3,

since quantities Ac and WB are very design dependent.
Invalidating a cache block can be a costly operation, requir-
ing at the very least a write to the address tag store to invali-
date the block. If the block being invalidated has data
marked dirty then the overhead may be larger. However, this

Lm Bc Wsb 1–( )×+

Ac Lm Bc Wsb 1–( )×+ +

WB Ac Lm Bc Wsb 1–( )×+ + +
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might not be the case with many designs. Some systems
have the capability of hiding this write-back latency. A com-
mon technique is to dump the stale data in a write buffer and
proceed to service the cache miss while the write completes
in the background.

Due to the difficulty in determining accurate miss pen-
alties, we analyze our applications by counting events like
miss rate and words transferred, while ignoring the time fac-
tor at this time.

Memory Traffic
High memory bandwidth requirements can lead to degraded
performance in a system. A cache miss results in a full data
transfer (block in non-sectored caches, subblock in sectored
caches) from the next higher level of memory to the cache.
If some of the words in the block/subblock are unused
before the block is replaced then some bus bandwidth and
transfer time was wasted in fetching the unused portion of
the block. Obvious causes that can be cited for fetches of
unused data include isolated scalar references and non-unit
strides, and isolated gather/scatter references to data struc-
tures. We expect this effect to be higher for smaller caches
where there is less chance that words in a block will be used
before the block has to be replaced.
Definition 2: (Memory Traffic Ratio): Memory Traffic Ratio

(MTR) is defined as the number of words transferred between
main memory and a data cache divided by the total number of
memory references.
 MTR can be viewed as the average number of words

transferred per memory reference. The MTR of a cacheless
system is therefore equal to 1. MTR grows with data trans-
fer unit size and shrinks with data reuse, and will exceed 1
for large transfer unit size and poor reuse. However, even an
MTR greater than 1 for a cache system is no indication that
a corresponding cacheless system will show better perfor-
mance. As we saw earlier, miss penalty is linear in, but not
proportional to transfer unit size. Hence the cumulative miss
penalty for a program executed in the cacheless system
could far exceed that for the same program in a cache sys-
tem.

Superfluity
Superfluity addresses the cost of unused cache space. We
introduce two metrics for measuring superfluity in a cache:
Block-size superfluity coefficient (Sfc) and Fetch-size super-
fluity coefficient (Wfc). Both Sfc and Wfc are in the range 0
<= [Sfc, Wfc] < 1. Sfc equals 0 if every subblock in a loaded
block in the cache is referenced at least once before the
block is replaced. It approaches 1 for very poor usage of
cache space. Wfc is 0 if every word loaded into the cache is
referenced by the processor and approaches 1 if there are a
lot of unused words. Both Sfc and Wfc are needed for proper
superfluity evaluation of a sectored cache. Non-sectored

cache superfluity analysis requires only Wfc since fetch size
is the same as block size, implying Sfc = 0.

Block-size Superfluity Coefficient: Sfc is a measure of
space wasted in a cache block. In particular, it is the fraction
of the subblocks in allocated blocks that are still invalid
when the block is replaced, averaged over all blocks loaded
into the cache. It thus measures the average fraction of sub-
blocks that are never referenced during a block’s allocated
lifetime in the cache. A more detailed picture of subblock
usage is a histogram FREQ = <FREQ1, FREQ2,..., FREQs>,
where FREQi is the number of block replacements that con-
tain i valid (i.e. referenced) subblocks, ands is the number
of subblocks in a block. The accuracy of FREQi is further
improved by including data for the blocks that are still resi-
dent in the cache at the end of the run. We obtain the block-
size superfluity measure as:

(EQ 1)

Fetch-size Superfluity Coefficient: Wfc has implica-
tions for both space in the cache and cache-memory traffic.
Wfc is a measure of spatial locality, superfluous data and
redundant traffic. It gives an indication of the ratio of aver-
age words not used per valid (i.e. referenced) subblock in
the cache. Since on each miss, one subblock of data is
fetched into the cache, we can calculate the portion of the
MTR due to superfluous data. For average word usage per
subblock, consider the histogram freq = <freq1, freq2,...,
freqWsb>, where freqi is measured when each block is
replaced and at the end of the run and is equal to the number
of valid subblocks (summed over all such blocks) that con-
tain i accessed words, and Wsb is the number of words in a
subblock. Wfc is calculated as follows:

(EQ 2)

A superfluity coefficient near 1 indicates that a smaller
block or subblock, or restructuring the application code or
its data structures may achieve better exploitation of locality
in the cache. This is because a high measure of superfluity is
an indication of poor spatial locality in the cache; and may
be due to a poorly structured application code and/or exces-
sively large cache block.
Definition 3: (Traffic Superfluity Ratio): We define Traffic Super-

fluity Ratio (TSR) as the portion of the Memory Traffic Ratio

Sf c 1

i FREQi×
i 1=

s

∑

s FREQi
i 1=

s

∑×

------------------------------------–=

Wf c 1

i freqi×
i 1=

Wsb

∑

Wsb freqi
i 1=

Wsb

∑×

---------------------------------------–=
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that is superfluous. TSR is calculated as:

(EQ 3)

TSR is thus the average number of superfluous words
transferred per memory reference. In some sense, TSR may
be thought of as the pollution ratio.

PERFORMANCE EVALUATION AND
ANALYSIS

In this section, we present our simulation results and analy-
sis for the KSR1 data subcache. We omitted the instruction
subcache in this study mainly for the reason that all the con-
figurations that we consider are big enough for our applica-
tion working set to fit in the cache.

The behavior of sectored caches was measured on the
data and compute intensive programs described in Section
3.3. Besides determining how the miss ratio and relative
miss ratio change based on particular cache structures, we
computed superfluity coefficients (Sfc and Wfc), the average
traffic ratio between the cache and the main memory (MTR)
and the average superfluous traffic ratio (TSR). For testing
the effect of a particular cache parameter, a base-line cache

was defined and individual parameters were varied. We
looked at cache sizes successively doubling from 64K to
1M. For each cache size, we fixed the subblocks per block at
32 and varied subblock sizes by successively doubling from
1W (8 bytes) to 32W. Every doubling of the subblock size
also implies the doubling of the block size. The base-line
cache was defined as 2-way, random replacement with
write-back policy and no prefetching.

Cache Size
Effects of varying cache size on miss ratio have been stud-
ied extensively [7]  but never in conjunction with superfluity
analysis. Sectoring miss rates do not exactly follow the
commonly accepted folk wisdom of traditional cache miss
rate behavior. For example, doubling cache size does not
necessarily reduce sectored cache misses by 30% as sug-
gested by Smith [8].

 Table2 gives the average miss rates for FEM3K with
varying cache sizes. We have included the miss rate behav-
ior for cache sizes 64K, 128K, 256K, 512K and 1M using
different subblock sizes. Generally, as cache size doubles
we see a gradual reduction in miss rate for FEM3K except
that the gain is not substantial enough.

As expected, the miss rates for various cache configura-
tions is generally much higher than non-sectoring with the
same block size. Table3 shows the RMRs (relative to a non-
sectored cache with the same block size and total cache

size) for FEM3K. There is a correlation between RMR and
the block-size superfluity of the application. The closer
RMR is to the maximum number of subblocks in a block
(thirty two, in our case), the better the block usage and the
lower the block-size superfluity coefficients (Sfc). Our
explanation is that when FEM3K has a high RMR, the vast
majority of the misses are subblock, not block misses and
refer to already allocated blocks. This translates to good
block usage (lower superfluity) and less penalty per miss.

Figure5 plots block-size superfluity for FEM3K for all
the cache sizes. Figure5 gives a clear indication that as
cache size doubles (also implying doubling the number of
sets) there is an accompanying sharp drop in Sfc, an indica-
tion of good cache space usage. All cache sizes show low
Sfc (below 0.3 for most cases) up to the 2K block size. For a
cache size of 1024K, the very low Sfc pattern strongly sug-
gests that with its higher set size, the configuration is large

TSR Wf c MTR×=

TABLE 2. Average miss rates for FEM3K per various subblock/block and cache sizes

Cache Size

Words per Subblock / Bytes per Block

1W/.25K 2W/.5K 4W/1K 8W/2K 16W/4K 32W/8K

64K 58.97% 29.55% 15.14% 7.97% 4.93% 7.16%

128K 55.71% 27.90% 14.18% 7.28% 3.99% 3.09%

256K 53.18% 26.61% 13.44% 6.82% 3.54% 2.01%

512K 47.28% 23.69% 11.96% 6.05% 3.12% 1.75%

1024K 27.19% 13.73% 6.99% 3.57% 1.88% 1.01%

TABLE 3. Relative Miss Ratio for FEM3K f or various
subblock/block and cache sizes

Cache
Size

Words per Subblock / Bytes per Block

1W/
.25K

2W/
.5K

4W/
1K

8W/
2K

16W/
4K

32W/
8K

64K 28.49 26.15 22.68 14.76 4.88 1.48

128K 29.63 28.18 25.78 21.41 10.23 2.66

256K 30.00 30.00 28.00 25.26 16.86 7.18

512K 31.31 31.17 29.90 26.30 18.35 7.95

1024K 31.61 31.20 30.39 29.75 31.33 25.25
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enough to allow blocks to stay sufficiently long in the cache
to be almost fully filled with active subblocks. Conversely,
the relatively high Sfc pattern for the 64K cache size can be
blamed on the relatively small cache. For small cache sizes,
pathological block conflicts are prominent resulting in
blocks getting replaced faster before being fully utilized.

 Similar analysis on FEA, which is a far more complex
code, portrays a different picture, although the trends are
similar. Table4 and Table5 show the average miss rate and
RMR, respectively. We chose to exclude both extreme cache
sizes (64K and 1024K) in order to focus first on the center
of the table. The miss rates are higher than FEM3K for each
cache size as expected. The RMR numbers, however, are
very low given that there are thirty two subblocks per block.
This indicates that the miss rates are high for non-sectored
caches as well. Again, Table5 indicates that as cache sizes
double, FEA shows a gradual improvement in cache space
usage. Unlike FEM3K, FEA exhibits a lot of misses that do
not map into already allocated blocks, and the block-size
superfluity remains high as shown in Figure6. FEA shows
poor usage of space in the cache since on the average blocks
do not stay in cache long enough for full utilization.   Over-

all, FEA exhibits very poor subblock utilization, as the Sfc
numbers indicate. Sfc numbers approaching 1 indicate high
superfluous behavior.

Fetch (Subblock and Block) Size Effects
Increasing the block size often helps cache performance
because of spatial locality [8] but can result in a huge over-
head in fetching the data during a cache miss. This overhead
is what sectoring attempts to address.

A cache miss results in a fetch into the cache. Auto-
matic prefetchingis brought about if the fetch size is more
than one word long. This can create a memory traffic ampli-
fication problem if the application has poor spatial locality.
Also, if the size of the cache is small enough for significant
mapping/conflict misses to be prominent, this can increase
memory traffic. The same can be said about a given cache if
block sizes are excessively long so that only few sets/blocks
can reside in the cache. To evaluate this, we measured the
effects of various fetch sizes while keeping cache size con-
stant.

Table6 gives the fetch-size superfluity measure Wfc for
FEM3K. The very low coefficients indicate that, almost all
(except for large subblocks in small caches) words in a
fetched subblock are utilized during the subblock’s period

TABLE 4. Average miss rates for FEA per various
subblock/block sizes

Cache
Size

Words per Subblock / Bytes per Block

4W/1K 8W/2K 16W/4K

128K 27.72% 20.74% 19.80%

256K 24.56% 15.22% 11.03%

512K 23.50% 13.56% 8.63%
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FIGURE 5. Block-size Superfluity Measure Sfc for
FEM3K. Cache sizes 64K, 128K, 256K, 512K, 1024K

TABLE 5. Relative Miss Ratio for FEA per subblock/
block sizes

Cache
Size

Words per Subblock / Bytes per Block

4W/1K 8W/2K 16W/4K

128K 4.76 2.71 1.72

256K 9.86 6.34 3.66

512K 13.91 10.11 6.30

FIGURE 6. Block-size Superfluity Measure Sfc for
FEA. Cache sizes 128K, 256K and 512K
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of occupancy in the cache. Consequently, little superfluous
data is transmitted to the cache for this application. The only
cases under FEM3K that do not give near optimal space
usage in the cache are: 1) using a 32W subblock with 64K
and 128K size caches; and 2) using a 16W subblock with a
64K cache.

We expect the memory traffic to be generally low for
FEM3K since, as Figure8 shows, superfluous traffic is
almost non-existent, except for the three cases we have
pointed out. These three cases confirm our assertion that
small caches with large blocks suffer a great deal from map-
ping/conflict/replacement misses. MTR explicitly for
FEM3K for cache sizes 64K, 128K and 512K are shown in
Figure7. MTR numbers give the average words transferred
between the cache and the main memory per memory refer-
ence; hence where this number is less than one the reuse
effect overcomes the superfluity effect and the cache is
reducing total memory traffic in addition to streaming it in
subblock long bursts.

 Wfc numbers for FEA are not encouraging as shown in
Table7. Higher coefficients indicate more superfluous traf-
fic. Again we concentrate on the three moderate cache sizes
(128K, 256K and 512K) and vary subblocks from 4 words
to 16 words. As expected, the MTR is greater than 1 for all
the cases we simulated. This indicates that the application
has very low reuse of data (temporal locality at the word
level). To show how much superfluous traffic occurs in each
case, Figure9 plots the MTR and TSR data side-by-side.
Averaged over all cases, close to half of all data transferred
to the cache are not utilized. The average superfluous traffic
per memory reference as shown in Figure9 clearly demon-
strates the excessive burden placed on the cache-to-memory
bus.

Observations
Our analysis of FEM3K and FEA reveals two interesting
behaviors. FEM3K represents an application with good spa-
tial locality. Most misses are to subblocks within already
allocated blocks, which implies less penalty than unallo-

cated block misses. High miss rate does not translate to
more memory traffic, which implies high data reuse and low
superfluity. FEA, on the other hand, represents a poor data
locality application. A significant proportion of the misses
cause allocation of new blocks, a strong indication that this
application does not have small-enough stride or local
gather/scatter reference behavior.

From our analysis, the KSR1 data subcache is a good
cache configuration for FEM3K. We contend however that

TABLE 6. Fetch-size Superfluity Measure Wfc for various
subblock sizes (FEM3K)

Cache
 Size

Words per Subblock / Bytes per Block

1W/
.25K

2W/
.5K

4W/
1K

8W/
2K

16W/
4K

32W/
8K

64K .0000 .0009 .0216 .0640 .2250 .6927

128K .0000 .0006 .0132 .0331 .0998 .3443

256K .0000 .0004 .0079 .0196 .0475 .1478

512K .0000 .0003 .0037 .0102 .0314 .1147

1024K .0000 .0004 .0015 .0034 .0062 .0117

FIGURE 7. MTR plots for FEM3K.
Cache sizes 64K, 128K and 512K.
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even such a good-behaving application could benefit further
from a subblock prefetch policy. We have considered two
such policies and found our preliminary results encourag-
ing, but premature for presentation here at this time. The
KSR1 cache configuration is, however, not appropriate for
FEA and it shows very poor superfluity results over all con-
figurations studied. In our view, such application requires
code optimization techniques or a substantially different
cache organization for performance improvement. A good
cache configuration must deliver low superfluity, low cache-
memory traffic, and misses with low total penalty.

We looked at other parameters like cache associativity
and replacement policy. As expected, 2-way associativity
performs better than a direct-mapped cache. In fact, with
larger subblock sizes, direct-mapped configurations showed
relatively higher superfluity coefficients. The performance
differences between LRU and random replacement were not
substantial enough to report, especially for large cache
sizes.

CODE OPTIMIZATION
Our discussion and results above demonstrate that cache
performance depends not only on the design of the cache,
but also on the reference patterns of the running programs.
This, in our opinion, suggests that judging cache perfor-
mance with benchmarks and generalizing the results must
be done with considerable care. Benchmarks can be easily
designed for a 100% hit ratio, but those results are meaning-
less when attempting to apply them to real applications.

Applications like FEA need restructuring to be able to
exploit the gains that a cache can potentially provide for
performance. There are a number of static (compile time)

TABLE 7. Fetch-size Superfluity Measure Wfc for
various subblock sizes (FEA)

Cache
 Size

Words per Subblock / Bytes per Block

4W/1K 8W/2K 16W/4K

128K .2281 .4805 .7244

256K .1361 .3021 .5175

512K .1018 .2192 .3853
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FIGURE 8. Traffic Superfluity Measure TSR for
FEM3K. Cache sizes 64K, 128K, 256K, 512K and

1024K

FIGURE 9. MTR and Traffic Superfluity
comparisons for FEA (128K, 256K and 512K)

4 8 16
Subblock Size (in words)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
at

io

4 8 16
Subblock Size (in words)

0.0

0.5

1.0

1.5

2.0

R
at

io

4 8 16
Subblock Size (in words)

0.0

0.5

1.0

1.5

2.0

R
at

io

MTR
Traffic Superfluity

MTR
Traffic Superfluity

MTR
Traffic Superfluity



12

code optimization techniques for improving the data locality
behavior of programs for both uniprocessor and multipro-
cessor environments [21]. Techniques of interest to us
include loop unrolling, data blocking, data copying, and
array grouping and copying. The last technique is attributed
to Shih[21].

To validate our evaluation technique, we studied an
improved version of FEA that has undergone code restruc-
turing with array grouping and copying [21] . We call this
new version FEA.new. There is substantial improvement in
superfluity as compared to FEA, an indication that the
grouping increases the number of useful items in a block
and reduces misses due to conflicts. Blocks will have a
longer life occupancy in the cache, promoting better utiliza-
tion. Figure10 shows the memory traffic ratio comparison
between FEA and FEA.new; and as Figure11 shows, there
is close to half reduction in superfluous traffic for all the
cases studied. On the average, FEA.new displayed Sfc coef-
ficients that are a 10% improvement over FEA, and Wfc
coefficients that are a 20% improvement. The average 20%
improvement in Wfc can very well account for the decline in
the superfluous traffic. Array grouping improves the code by
stacking useful items together in a subblock/block.

CONCLUSION AND FUTURE
DIRECTIONS

This study gives a broad overview of the technique of sec-
toring in caches for scientific applications while introducing
a new set of metrics for cache performance evaluation;
which stress on cache block and bus traffic usage. The norm
has been that memory is cheap and space is free. It is our
hope that the approach here will question this myth.

We have used the superfluity metrics in an attempt to
understand the behavior patterns of real scientific applica-
tions; and also to help determine what cache parameters
(like fetch size, block size, cache size) are adequate and
appropriate for an application. We believe that these metrics
can be helpful in determining and analyzing the spatial and
temporal locality behaviors of a scientific application.

We plan to do more application and cache studies with
our tool. The goal is to be able to extract common behavior
patterns that will be helpful in choosing cache parameters
like cache size, block size and fetch size that fit our “good
cache” description. We expect that such studies will help us
deduce better techniques for restructuring application codes
to improve data locality and application performance.
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