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Abstract

Sectoring is a cdwe design and magament tekanique
that is e-emeging as cahe sizes @t larger and computer
designes strive to gploit the possible gains dm using
large blok (line) sizes due to spatial localitectoring
allows for a small tg array size to stite retaining addess
tags only for the lage blodks, hut still avoids hug miss pen-
alties by utilizing a smaller éinsfer size between the bac
and the ngt higher level of memonyWith this cathing stiat-
egy comes the need for amappoac for evaluating cabe
performanceespecially elating to cabe space and its best
use hus traffic and so forth.

In this studywe give a lowad oserviev of the tebnique
of sectoring in cdees. W& have intoduced a n& set of met-
rics for cahe performance waluation, stessing calee
block and lus taffic usaye. We use these set of superfluity
metrics to inestigate the behavior ofal scientific applica-
tions, and also to help determine adequate and@pyate
cache design paimetes. & show anxample of how these
metrics can help point to the spatial localityoplems in a
given application codethereby indicating code optimiza-
tion tediniques whikh can most significantly imgre the
codes performance

INTRODUCTION

There is no gument that the &frts of the past couple of
decades focused on increasing processor speedain

to pay of. The result has been the egence of ery high-
speed GFLOPS processors, which aeeywnecessary for
todays lage scale scientific computing demandsweer,
these gins in processor speeds/daot been well matched
by mass memory speeds. Memory mastirers hee
rather been on an upnd swing in increasing the size of

increasing gp between the main-memory access time and
the frequeng of instruction issue, the performance of a pro-
cessing system has become highly dependent on the-beha
ior of high-speed caches. Rieus studies hae shavn hav
significant a cache is as a performanaetdr in &oiding
expensve main-memory accesses in high-performance
computer systems.

As SRAM and DRAM costs continue on awdoward
turn, we see an engng trend in memory design within the
computer architectural communitffhe most olous is
multi-level cache design, where the firgtifnary) level is
normally kept small and direct-mapped, with subsequent
levels being lager in both size and associéty. Also, cache
sizes are getting lger (in the range of 256K and 2M bytes)
for high-performance systems, and in order to reduce the
implementation costs of lge tag stores, most designers
prefer to use lge block sizes. Heever, Hill [1] and Good-
man [3] have shavn, separatelythat for \arious applica-
tions, cache sizes andganizations, the minimum cache
miss ratio is obtained with block sizes in the range of 16 to
64 bytes. Thg go on further to shw that, for optimal mem-
ory trafiic, this byte range is also the most acceptable for
data transfer size. In addition, Eggers and Katz established
in [4] that for a shared memory multiprocessor andyman
parallel applications, lger block sizes lead to moralse
sharing and coherence misses. Hence, in order to gmplo
block sizes in this recommended range (16-64 bytes) while
keeping a small tag array size, matesigners ha beun
to revisit sectored caches. Sectoring is a cache management
technique that has been ixistence since the admut of
caches [5] A sectored cache design alt® a cache block
with a single address tag (the allocation unit in the cache) to
be sub-diided into seeral sectors or subblocks. Each sub-

memories. The consequence of these trends has been drlock (as we prefer to call them) has weovalidity bit, and

upward increase in thevarage number of processarctes
required to satisfy a memory access [18}ith the &er

*This work used resources of the University of Michigan Center for Parallel
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is the minimum unit of data transfer between the respecti
cache and the rehigher level of memory

Due to their significance in system performance, cache
design issues ka been studiedxeensvely [6][7] . Effects
of associatiity [1] , cache size or block size [Bave all



been the focus of mgnstudies. Haever, with some fe The rest of this paper is ganized as follws. In the
exceptions [3] [9], not much performancev&luation has  next section, we introduce the idea and principles behind
been done with respect to sectored caches. A systematisectored caches.&\shaev the rel@ance of this cache design
focus of preious eforts in evaluating designs has been on with respect to maintaining aviotag implementation cost
effects of cache ganization on miss rates and memory traf- while providing lamge cache blocks for bettexmoitation of
fic ratios. These popular metrics are related to tot@tue spatial locality in scientific application programs. In section
tion time, lut are insuicient for sectored cache design. 3, we discuss the methodology behind thisrkvand the
Interestingly enough, balancing performance, cost, area andrace githering methods used. The KSR1 subcache structure
power still remain the goals and constraints within which and its principles of operation are presenteé. a¢o dis-
the computer designer must operate. Therefoyedasign cuss our simulation approach, the application programs and
that leads to a lot of aste and unused space in the cache the performance metrics used in this stu8igction 4 pre-
adwersely afects system performance. Sectored cachesents trace-dven simulation results acrosarious cache
design introduces a significant metric for cache perfor- sizes with arying subblock sizes. Meaningful comparisons
mance ealuation that can no longer beeslooked ason- and traded§ are shan concerning thearious metrics. In
chip andcompanion-hip processor caches getder. This section 5 we introduce code optimization ideas; andvsho
new metric is about space, andvhanuch of it is being reductions in superfluitymiss rate, memory tifid and pol-
wasted in caches. It is also aboutvhmuch unnecessary Iution for an optimized ersion of one of our test applica-
memory trafic is being generated in the form of data items tions. Section 6 presents conclusions to thogkw
transported in and out of the cachus baser used. W intro-
duce thesuperfluity codicient and use this metric to mea- SECTORED CACHES
sure ineficient cache utilization due tsuperfluity and  Sectoring is a cache management technique tastdeel-
pollution. The significance of this metric could bery  oped to help ease bamajor problems in caches [22]:
obvious in coherentus-based shared memory multiproces-  * the tag storage can create a significant space overhead for a
sor systems whereewy lage cache blocks can leadftdse cache design, and o
sharing[10] (i.e. a situation wherein tvdata items that are ~ ° (€ transfer of large cache blocks resuits in lotigs pen-
not being shared happen to reside in the same cache block). alties
False sharing increases the number ohlidations and, Tag Storage
subsequent]ycoherence misses [4teducing the cache per- Reducing tag implementation cost in a cache is an important
formance. Also, we bele this metric can be helpful in design issue that requires much attentiveneas memory
identifying thespatial andtempoal data locality problems ~ gets cheaper and caches gegdarFor traditional caches,
of large scientific application programs, thereby assisting in every cache block has a tagomd associated with it. A tag
tuning or restructuring frts for better cache performance. word normally comprises of an address tag and other status
In this study we examine the performance impact of bits. An address tag mek it possible to retne the eflec-
sectored cache design on high-performance computer systive address (which can be either virtual oyspal) of the
tems. lr our baseline system, we choose K&R1[15] data stored in the cache blockirtMal and plysical
from Kendall Square Research. The KSR1 is a cache-base@ddresses are getting wider (approaching 64 bits for the
shared-memory multiprocessor system that belongs to thdormer and 36 bits for the latter [1fl[2] ) and this has
Cache-Only Memory Architecture (COMArily. The resulted in the tag evd occuping a significant fraction of
memory associated with each processor is managed as a 2he width of the cache block itselfoFFexample, the MIPS
level sectored cache. The primary cache per processoR4000 has a cache block size of 16 bytes maintained by a 3
(called thesubcate) is split into separate instruction and byte (i.e. 24 bits) address tag, not counting the other status
data caches, with each consisting of 128 blocks of thirty- bits. This is an indication of momary tag bits are needed
two 64-byte subblocks. The subcache igaoized as 64 10 maintain a cache block. Besides this spacerhead
sets, with 2-wy associatity and a random replacement Problem, leeping the tag bits to a minimum is an important

write-back polig. The secondary cache (called toeal performance issue for most microprocessor systems since
cadhe) is a 32 MB cache, ganized as a 128 set, 1@wset  the tag array may need to servicemccesses peyde: a
associatie cache with a least recently used (I)Replace- ~ shooping transaction on theus for maintaining cache

ment po||g/ For this work, we limit our Study to one Sing|e coherence and a transaction from the processor for access-
processor and its primary cache and treat the secondarynd the cache [9] This calls for the tag array to be double-
cache as main memonA pertinent question we seek to ported while the data array may remain Slngle ported. Thus,

answer also is: He good is thisall-cache memory design  for off-chip caches, the tag array cannot be easillf With
on a real scientific application? the same RAM chips as the data arrby most designs



today [13][14][15], an attractie solution has been to adwantage of small to medium block size fasff data trans-
include the tag array and the whole control logic for the fer, revisiting sectoring might be anxeellent option for
cache in a single companion-chip. Hence the upper bounctache designers.

on size for the tag array is limited by that chipitegration

density In a sectored cache, each cache block contaiesaesub-
Lar ge Block Sizes blocks with each subblock Wiag its avn validity and
The choice of a cache block size (the amount of data storedtohereng bits. The important property here is that all the
in a single cache block) still remains a debatable issue insubblocks in a block share a single address tag.twa or
cache design. Since there is no single, optimum block sizemore subblocks that arealid in a particular block in the
for all machine and cache designs, the specific design goalsache belong to the same block in memory (i.e. their
for the machine pretty much determines the block size usedaddresses dér only by the block déet).

A cache imprges system performance bypéoiting the

Principles of Sectoring

two types of locality of referencdaemporl and spatial Valid
Ad%et Bit Address &g Data
i H H ress

Temporal locality is the property that programs arelyiko 0 1] Address Big 0] [ Valid Data
reuse recently referenced items. Spatial locaditythe other 1 0] N/A Garbage
hand, suggests that programs areljiko reference items 2 |L{  |Address@g2 | Valid Data |
that arenear recently referenced items. Thiouid lead 3 4 pAddessBg 3 vald Dala

a_r arrecently r r I_ S. ! . . ad us 4 11] Address &g 4| | Valid Data
to beliese that lage cache blocks impve application per- 5 0] N/A Garbage
formance when there is substantial spatial localltyis 6 |L{  |Address@g6 | Valid Data |
might not, havever, be the case for some parallel applica- ! L AddressBo 7| ValdDala
nig ) g me para pp — A A —]
tions and coherent cache-based multiprocessing systems as
described belw.

Several studies hae shaevn that the performance of
coherent caches depends on the relationship between the
granularity of sharing and localityleibited by a program

FIGURE 1. Tag and data oganization of a non-
sectored cache. Block size = 1 ovd

and the cache block size [A4]7]. If cache blocks are

smaller than the data objects used on gppetessor basis, _

then accessing a single object can result inymzache Ad%?éssvé{{d | /?ﬁjdressﬁﬁ_l :_Ddata

block references, leading to more misses in order to acquire 0 13 |AddessRol) Vg;rbzgf‘ Subbiock 0

the needed data objects and possibly more conflict misses. [1] Valid Data_| Subblock 2

Corversely if cache blocks are too e, then there is the 11 ; | Valid Data | Subblock 3

likelihood of Bise sharing, which also increases the number 1 (Y laddressBo1] | vald Data |Subblock

of invalidations. [1] Valid Data_| Subblock 2
Reducing the implementation cost of tags is a major L Valid Data_| Subblock 3

reason for designers to choose agéatlock size; bt -

research findings ka generally &vored small to medium

cache blocks:

e Hill [1] has shown that, for a large number of applications
and for many cache sizes and organizations, the minimum
cache miss ratio is obtained for line sizes in the 16-64 byte
range.

FIGURE 2. Tag and data oganization for a
sectored cache. Block size = 4ovds, sulblock
size = 1 vord.

The size of the tag array in a sectored cache is signifi-

Goodman showed in [3fhat as the minimum data transfer
size (cache block, in many traditional caches) between
memory and the processors increases, traffic between
memory and the processors increases even with miss ratios
remaining constant

Another evidence of this is the findings by Eggers and Katz
[4] : for many parallel applications in a coherent shared
memory environment, increasing the block size does in-
crease the amount of false sharing and consequently, coher-
ence communication.

To exploit the qins of lage block sizes, while only

cantly smaller than the size of the tag array in a non-sec-
tored cache using the same transfer unit size.ilMstrate

this with the figures abe. Figurel shavs the tag and data
organization of a non-sectored cache where the block size is
one word long. The same cache is smoin Figure2 omga-
nized as a sectored cache with a block size abrflsvand a
subblock size of one avd. From Figur@, we see that the
cache data and thahd bits for eery word (i.e. the sub-
block size in this case) ta been kpt, lut the address tag
store has only one-fourth as nyamtries. This olious sa-

paying for a small tag array size, and at the same tinee tak iNgs in the tag array sizeqglains wly the sectored gani-



zation is being reconsidered toveasilicon in intgrated tains one hundred twenty eight 128 byte subpages.
cache controllers, whose address tag storage is on the same® The Motorola MC68030 primary cache has 4K blocks of 16

die as the cache controlldm example is Inteb 82385 con- bytes each. There are four 4 byte subblocks in each block.
troller for the 386 microprocessor e The Tl SuperSparc instruction cache has 64 byte blocks

) ) each with two 32 byte subblocks.
Cache MissesThe transfer granula”ty from memory to the e The Power601 On_chip unified cache also has 64 byte

processor on a sectored cache is a subblock. Goodman [3] plocks, each with two 32 byte subblocks.

shaved that this ler granularity of data transfer reducesb

traffic. Two kinds of misses are distinguishable in the sec- METHODOLOGY

tored cache efironment: We use trace-dren simulations to study the traddsofn

* Block missesthe subblock that contains the referenced the performance of ddrent sectored cache configurations.

word is missing and no subblock in the same memory block  In this section, we ge a brief description of our simulation
is alive in the cache (i.e. the referenced block is not allocat- environment and the specific architecture on which it is
ed). This is the same as the actual misses that would have  hased, the trace generation process, the characteristics of the

occur_rgd if sectoring was not implemented, with block size applications used, and the metrics used for performance
remaining the same. evaluation

Subblock misseshe subblock that contains the referenced
word is missingbut some othesubblock(s) of the same The KSR1 Processor Cache
memory block is(are) alive in the cache. That is to say, the ~ Each KSR1 node contains a 64-bit custom processor with a
referenced block is allocated in the cache but the referenced 20 MHz clock. Een though the basic architecture is a load/
subblock in it is invalid. store RISC, an added enhancementwall@ 2-instruction
When a cache miss occurs, the block that must bejssue per clockyzle: one address calculation, branch, or
replaced is imalidated (if the miss @s as a result of a block  memory instruction and one inger or floating-point calcu-
miss and there is a block to replace); a f#ock is allo-  |ation instruction. The processor is connected to memory by
cated if necessary; and the subblock of the requestetlis’  two 64-bit wide lises, one for instructions and the other for
loaded into the cache. Thalid bit of this subblock is then  data. The dataus has the capability of priging an 8-byte
set; and those of the other subblocks in the block are rese{yord to the processor per clocyote.
for a nevly allocated block. Good spatial localityowid A KSR1 node has tovlevels of prizate cache. The first
lead us to beliee that vords in nearby subblocks may soon |evel consists of a 0.25MB data subcache and a 0.25MB
be requested by the CPU. Whery af those subblocks is  nstruction subcache. The subcache is a companion-chip
indeed referenced, the cache controller loads the subbloclache; it is 2-way set associat and uses random replace-
into the cache and sets thaid bit for that subblock within ment, write back po]w Each processor has four cache con-
the block. Only the subblocks that contaiords that the  trol units (CCU) that manage the subcache and local cache.
CPU actually requestedould be brought into the cache Space allocation in the subcache is done by the CCU on a
from main memorya positve measure in controlling the  plock basis. Havever the unit of data transfer from the sec-
memory-to-cacheus trafic. ond level cache to the subcache is a subblock. A block is
For systems with s architectures capable afrbt read 2048 bytes long and contains 32 subblocks, each of which is
cycles, an ideal subblock size need to be more than a singlg4 pytes.
word in order to taé adantage of spatial locality{ovever The second kel cache, called local cache, is 32MB in
in a coherent shared memory multiprocessioe tus may  sjze, oganized as 128-sets, 1@w set associate, with
easily become a performance bottleneck if the system get§ RU replacement. Our present study considers only the first
caught in theping-pongphenomena (a thrashing problem |evel data subcache, and wie the local cache as main
among pwate coherent caches due @isé sharing). The  memory It is our assumption that the instruction subcache
good nevs is that, using small cache blocks can helpvialle  in every configuration we consider is big enough for all
ate this performance problem [4pnd this can well be instruction references to hit in the cache. Figighavs the

achiered by using sectoring. KSR1 memory structure.
Examples of Real Sectad CachesThe folloving are a Windheiser [19] et al. conducted a series of timing
few examples of sectored caches that are commercially€xperiments to determine memory access latenciesafor v
available today: ous levels of the KSR1 memory hierarchMe provide these
« The KSR1 [15] has 2-levels of sectored caches associated ~ €stimates in dblel for the subcache and local cache.
with each processor. Tiseibcachdgas the primary level is Simulation Envir onment

called) consists of 128 blocks; each block has 32 subblocks
of size 64 bytes. Thiecal cache(i.e. the secondary cache)
comprises of pages, each of size 16 Kbytes; each page con-

Our trace-drren simulation evironment is modeled around
two tools: K-Trace anddinerSffor generating and inter-
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FIGURE 3. KSR1 Processor and Cache
Structur e (for one processor)

TABLE 1. KSR1 cache typical access times.

Memory Memory
Memory Component | Size Access
(MBytes) (Cycles)
Each Subcache 0.25 2 (1 per
clock)
Local Cache 32.0
(Allocated block) 23.4
(Unallocated block) 49.2

preting memory references respeely. The werall simula-
tion ervironment is as shen in Figure 4. K-Tacé, a trace
generator for memory references on the KSR4s used to
generate address traces for the application programs.
The performance simulatatinernSf is a modified er-
sion of dinemwlll, originally developed by Mark Hill [2].
dinemlll is a trace-drien sectored cache simulatS8imula-

memory hierarch to increase flability and improve simu-
lator performance in highly associaticaches. The modifi-
cations that we added to producénernSf incorporate
additional cache parameters andvinle the added capabil-
ity of measuring superfluity and pollution in the cache. In
addition to the capability of marking a subblocklis or
invalid, reference bits are associated with vidlial words
within a subblock that can be set to marravusage. &
each memory reference, the tag store gets elaefifst. On

a hit (a reference to aond in a \alid subblock) if the refer-
ence bit for the wrd has not been prieusly set, it is done

at this time. V& deal with tw types of misses agmained
earlier Missing on an absent block forces avrgock to be
allocated for the reference, and this calls fealiating all

the \alid subblocks of the block being replaced. Adligt
subblocks of this\écted block that are maekl dirty need to

be written-back to memory\Me also tak statistics for the
number of subblocks that were meadk\alid during the
block’s lifecycle in the cache, enabling us to record the
number of vards that were actually referenced in each sub-
block. The tag store is then updated, and the respexuib-
block of the block being fetched is madk\alid and the
data loaded. At this time, a bit for the actual referenced
word is also set. Misses to subblocks that belong to blocks
already allocated in the cache carry less penalty; the sub-
block is fetched, itsalid bit turned on and the referenced
word is marled \alid. At the end of the simulation run, we
collect \alidity statistics on all blocks still resident in the
cache.

Applications Overview
For performance simulation, we selected tmajor scien-
tific application programs. & avoided benchmark suites
since thg generally do notxercise the cache didiently,
and we are also interested in the performance of the KSR1
data subcache on a real applicatiore bélieve that under-
standing memory performance on real applications is a
major tool for deducing restructuring techniques to imagro
such applications. ¥study tve main scientific application
programs in this wark.

FEMC is a radiation modeling applicatiornveéoped at

tion results are determined by the input trace and the set ofhe Unersity of Michigan [18]. It determines the fre-
given cache parameters. It uses the priority stack method oflueny response obtained from broadcasting a pulse of elec-

a.og‘ K-Trace Memory dinerSf Performﬂce
N simulato data’

(trace generato

FIGURE 4. The simulation ervironment (tracing
and simulating program a.out).

a-K-Trace vas deeloped by Shih-Hao Hung of the PPP
project at the Uwiersity of Michican.

tromagnetic radiation at a solid object, where the object and
the surrounding space is modeled as a mesh of finite ele-
ments. The discretization of the Maxwell equations leads to
a system of compielinear equations which is s@s using

a diagonal-preconditioned symmetric bicorgtey gradient
method. The method iteragly refines an approximate solu-
tion of the gven linear system until ceargence. V& used a
version of FEMC that we refer to as FEM3K. lasvrun

with a 3KB dataset for 90 time-steps on a single KSR1 pro-
cessorgenerating 36.5 million memory references.



The other program is also a finite element application memory access lateyp@and program xecution time. Hw-
we call FEA. FEA follevs a common parallel program ever, as machine ganization gets more complex major
structure [21] that consists of a series of parallel sections, factor that cannot be ignored for performance analysis is the
each enclosed by a parallel construct that enforces barrierparticular penalty associated witarious kinds of misses. If
at the bginning and end of each section. The parallel sec-there are misses for which a lesser cost is paid @ssig
tions may be separated by serial sections. The entirethose requiring substantially higher costs, then we can
sequence is enclosed in an iteration loop where an iteratioremploy design techniques that do increase theseamesve
corresponds to a time steporFour purposes, we run FEA  misses as long as thesavall (average) miss penalty is
on a single processor and collect traces far twme-steps,  reduced. Hence, it can begaed that a relately higher
totalling 7 million references. miss ratio, by itself, is no longer a faient metric for com-

Cache designs must beatuated in an accurate and paring relatie performance between a sectored and a non-
time-eficient mannerTo obtain accurate and typical cache sectored cacheven if they have the same block configura-
behaior, trace-dnven simulations require programs that are tion and management policies since, after all is said and
realistic and representadi of typical programs, such as the done, the goal of a memory hieraydk to reduce program
applications we ha described abve. Havever, traces that  execution time, not cache misses.
are long enough to properlyaduate map types of systems  \1iss Penalty
are almost impossible to obtain oree store. Ideas Ik \iss penalty is the cost incurred in both time and space in
trace sampling20] andtimesamplinghave been suggested  garyicing a cache miss. Characterizing this metric for a sec-
to address this problemoTimit our trgce size and still lga tored cache design is becoming increasingfiodit due to
traces long enough for propevaguation, we useelective  he non-uniformity of cache blockvalidation and the rate
tracm.g In most §c!ent|f|c appll.catlons, memory reference ¢ \which these walidations are necessargspecially in
behaior is very similar across time-steps of the same 100p. .oherent shared cachevennments.
If[ is therefore our conjecture thqt a substqntlal percentof the  The miss penalty is highly dependent on the data trans-
time-steps is highly representatiof the main procedure, or o1 it size of the cache, the memory lageand the trans-

loop, memory behaor. For example, the memory reference o (a1 A sectored cache miss results in one of three
behaior of a finite element procedure or loop that requires penalties:

300 time-steps to comige can ery well be captured by
tracing the first 50 time-steps. It is important that more than ~ Case 1: A subblock miss, where the referenced

one time-steps are run to reduce the impact of possible ini-  block is already allocated in the cache: Lgfhe
tialization and cold start fefcts. the memory latencto the first vord, B. be the
time per vord (8-bytes) transfer and ybe the
PERFORMANCE METRICS, subblock size in wrds, then the miss penalty is
EVALUATION AND ANALYSIS given byl +B.x (Wg,—1)
Miss Ratios

Case 2: A block miss, where the miss results in a

Cache miss ratio is the total number of cache missetedi cache block replacement and the block that is

by the. total number of memory references t.hroughout .the being replaced is clean. Hence the only added
execution of a p_rograr_n.vtro kinds of cache misses g:onsu- overhead is the cost for allocating theanielock.
tute the totgl misses in sectored caches: block misses and | ot this cost be A then the miss penalty
subblock misses. Non-sectored caches onhg bhaconsider iStA_+L_+B, x (W, 1)

block misses and we canalys epect those misses to be ¢ m Tem s

significantly fever than the total misses in a corresponding Case 3: A miss that results in a cache block
sectored cache with the same cache size and block size. replacement and the block being replaced is .dirty

Quite important, hwever, is the respeate cost paid per The cost of allocating the weblock in this situa-
cache miss. W compare miss ratios usinglative miss tion includes the write-back time. Suppose the
ratio defined as: write-back time isWB, then the miss penalty is
Definition 1: (Relative Miss Ratio): Let C denote a non-sectored given aswB + A, + L + B, x (W, —1)

cache with size CS, block size B, and associativity degree A. Let  There is no clear distinction between cases 2 and 3,
Cy denote a sectored cache with size CS, block size B, and assince quantities A and WB are \ery design dependent.
sociativity degree A. We define relative miss ratio (RMR)0f C  |nvalidating a cache block can be a costly operation, requir-
to C as the miss ratio ony@ivided bythe miss ratio on C. ing at the ery least a write to the address tag storevalin
For a firly simple machine ganization, it is €asy 10 gate the block. If the block beingvaidated has data
use the miss ratio for predicting more direct measures lik marked dirty then thexerhead may be Iger However, this



might not be the case with mamlesigns. Some systems cache superfluity analysis requires only.\8ihce fetch size

have the capability of hiding this write-back latgné com- is the same as block size, implying, SfO0.

mon technique is to dump the stale data in a wutkeband Block-size Superfluity Coefficient Sf. is a measure of

proceed to service the cache miss while the write completespace wasted in a cache block. In particyliats the fraction

in the background. of the subblocks in allocated blocks that are stifalid
Due to the diiculty in determining accurate miss pen- when the block is replacedvexaged wer all blocks loaded

alties, we analyze our applications by countingres lile into the cache. It thus measures thierage fraction of sub-

miss rate and wrds transferred, while ignoring the tinecf blocks that are ner referenced during a bloskallocated

tor at this time. lifetime in the cache. A more detailed picture of subblock

usage is a histogram FREQ = <FREBQREQ,..., FREQ>,
High memory bandwidth requirements can lead gratéed where FREQIs the number of block replacements that con-

performance in a system. A cache miss results in a full datd@n i Valid (i.e. referenced) subblocks, asids the number
transfer (block in non-sectored caches, subblock in sectoredf Subblocks in a block. The accuyaof FREQ is further
caches) from the me higher level of memory to the cache. |mprq/ed by including data for the blocks thgt are still resi-
If some of the wrds in the block/subblock are unused dentin the cache atthe end of the rue. ddtain the block-
before the block is replaced then sonus bandwidth and ~ SiZ€ superfluity measure as:

transfer time \&s wasted in fetching the unused portion of s

the block. Olious causes that can be cited for fetches of z i x FREQ

unused data include isolated scalar references and non-unit '

Memory Traffic

_ i=1
strides, and isolatedather/scatter references to data struc- Sfo = 1-= (EQD)
tures. V& expect this dict to be higher for smaller caches Sx z FREQ,
where there is less chance thatrds in a block will be used i=1
before the block has to be replaced. Fetch-size Superfluity Coefficient Wf, has implica-

Definition 2: (Memory Traffic Ratio): Memory Traffic Ratio
(MTR) is defined as the number of words transferred between
main memory and a data cache divided by the total number of
memory references.

MTR can be viered as the\wrage number of @rds
transferred per memory reference. The MTR of a cacheles
system is therefore equal to 1. MTR geowith data trans-

tions for both space in the cache and cache-memofictraf
Wi is a measure of spatial localityuperfluous data and
redundant trdic. It gives an indication of the ratio ofer-

age words not used peralid (i.e. referenced) subblock in
the cache. Since on each miss, one subblock of data is
fetched into the cache, we can calculate the portion of the

fer unit size and shrinks with data reuse, and witeed 1~ MTR due to superfluous dataorFarerage verd usage per

for large transfer unit size and poor reuseweer, even an  Subblock, consider the histogram freq = <frefeq,...,
MTR greater than 1 for a cache system is no indication thatT®wsp> where freq is measured when each block is

a corresponding cacheless system willvsttter perfor- replaged and at the end of the run and is equal to the number
mance. As we saearlier miss penalty is linear inubnot of_vqhd subblocks (summed/qr all such blocks) that_ con-
proportional to transfer unit size. Hence the cumudatiiss ~ [@in | accessed avds, and W, is the number of wrds in a
penalty for a programxecuted in the cacheless system Subblock. WEis calculated as folles:

could far exceed that for the same program in a cache sys-

tem. st )
) z i x freg
Superfluity WE = 1 _i=1 (EQ2)
Superfluity addresses the cost of unused cache space. W c T T Wy
introduce tvo metrics for measuring superfluity in a cache: Wy, X Z freq;
Block-size superfluity cotient (Sf,) andFetdh-size super- i=1

fluity coeficient (Wf.). Both S and W§ are in the range O
<= [Sf,, Wi ] < 1. S§ equals O if eery subblock in a loaded
block in the cache is referenced at least once before th
block is replaced. It approaches 1 fary poor usage of
cache space. Wis 0 if every word loaded into the cache is
referenced by the processor and approaches 1 if there are
lot of unused wrds. Both Sfand W§ are needed for proper
superfluity ®aluation of a sectored cache. Non-sectored

A superfluity codicient near 1 indicates that a smaller
block or subblock, or restructuring the application code or
§ts data structures may achéebetter gploitation of locality
in the cache. This is because a high measure of superfluity is
an indication of poor spatial locality in the cache; and may
Bk due to a poorly structured application code andites
sively lamge cache block.

Definition 3: (Traffic Superfluity Ratio): We define Traffic Super-
fluity Ratio (TSR) as the portion of the Memory Traffic Ratio



that is superfluous. TSR is calculated as:
TSR = Wf x MTR (EQ 3)

TSR is thus thewerage number of superfluouonds

was defined and inddual parameters wereakied. W\
looked at cache sizes succesyy doubling from 64K to
1M. For each cache size, wedikthe subblocks per block at
32 and varied subblock sizes by succesty doubling from
1W (8 bytes) to 32WEwery doubling of the subblock size

transferred per memory reference. In some sense, TSR MaYiso implies the doubling of the block size. The base-line

be thought of as the pollution ratio.

PERFORMANCE EVALUATION AND
ANALYSIS

In this section, we present our simulation results and analy-

sis for the KSR1 data subcachee \dmitted the instruction

subcache in this study mainly for the reason that all the con-

figurations that we consider are big enough for our applica-
tion working set to fit in the cache.

The behwior of sectored cachesas measured on the
data and compute intemsi programs described in Section
3.3. Besides determining Wwothe miss ratio and relag
miss ratio change based on particular cache structures, w
computed superfluity coétients (Sf and W{), the arerage
traffic ratio between the cache and the main memory (MTR)
and the werage superfluous tfaf ratio (TSR). Ir testing
the efect of a particular cache parametibase-line cache

TABLE 2. Average miss ratesdr FEM3K per

cache vas defined as 2ay, random replacement with
write-back poligy and no prefetching.

Cache Size

Effects of \arying cache size on miss ratiovhabeen stud-

ied extensiely [7] but never in conjunction with superfluity
analysis. Sectoring miss rates do nmactly follow the
commonly accepted folk wisdom of traditional cache miss
rate behaior. For example, doubling cache size does not
necessarily reduce sectored cache misses by 30% as sug-
gested by Smith [8]

Table2 gives the @erage miss rates for FEM3K with
yarying cache sizes. \hae included the miss rate beha
ior for cache sizes 64K, 128K, 256K, 512K and 1M using
different subblock sizes. Generallgs cache size doubles
we see a gradual reduction in miss rate for FEMR&ept
that the @in is not substantial enough.

various sulblock/block and cache sizes

Words per Subblock / Bytes per Block
Cache Size| 1W/.25K 2W/.5K 4W/1K 8W/2K 16W/4K 32W/8K
64K 58.97% 29.55% 15.14% 7.97% 4.93% 7.16%
128K 55.71% 27.90% 14.18% 7.28% 3.99% 3.09%
256K 53.18% 26.61% 13.44% 6.82% 3.54% 2.01%
512K 47.28% 23.69% 11.96% 6.05% 3.12% 1.75%
1024K 27.19% 13.73% 6.99% 3.57% 1.88% 1.01%

TABLE 3. Relative Miss Ratio br FEM3K f or various
subblock/block and cache sizes

Words per Subblock / Bytes per Block
Cache
Size | IW/ | 2W/ | 4w/ | 8W/ | 16W/ | 32W/
25K | 5K 1K 2K 4K 8K
64K 28.49 | 26.15| 22.68 | 14.76 | 4.88 | 1.48
128K | 29.63| 28.18 | 25.78 | 21.41| 10.23 | 2.66
256K | 30.00| 30.00| 28.00 | 25.26 | 16.86 | 7.18
512K | 31.31| 31.17| 29.90| 26.30| 18.35| 7.95
1024K | 31.61| 31.20| 30.39| 29.75| 31.33 | 25.25

As expected, the miss rates fainous cache configura-
tions is generally much higher than non-sectoring with the
same block size.able3 shavs the RMRs (relate to a non-
sectored cache with the same block size and total cach

size) for FEM3K. There is a correlation between RMR and
the block-size superfluity of the application. The closer
RMR is to the maximum number of subblocks in a block
(thirty two, in our case), the better the block usage and the
lower the block-size superfluity cdiefents (Sf). Our
explanation is that when FEM3K has a high RMR, thetv
majority of the misses are subblock, not block misses and
refer to already allocated blocks. This translates to good
block usage (lwver superfluity) and less penalty per miss.
Figure5 plots block-size superfluity for FEM3K for all
the cache sizes. Figubegives a clear indication that as
cache size doubles (also implying doubling the number of
sets) there is an accompyarg sharp drop in $f an indica-
tion of good cache space usage. All cache sizes &w
St (belav 0.3 for most cases) up to the 2K block size. &
cache size of 1024K, thesry lov Sf; pattern strongly sug-

gests that with its higher set size, the configuration ggelar



TABLE 5. Relative Miss Ratio br FEA per subblock/

5 block sizes
=
IS Words per Subblock / Bytes per Block
E Cache
5 Size 4W/1K 8W/2K 16W/4K
® 128K | 4.76 2.71 1.72
256K | 9.86 6.34 3.66
512K | 13.91 10.11 6.30
- 1.0 t t
%
8 081
z
256 512 1024 2048 2096 8192 =
Block Size (in bytes) “g’.
%] 0.6+
FIGURE 5. Block-size Superfluity Measue St for a----a 128K
FEM3K. Cache sizes 64K, 128K, 256K, 512K, 1024k wal i gigi |
enough to allev blocks to stay sfitiently long in the cache
to be almost fully filled with acte subblocks. Comrsely
the relatvely high S§ pattern for the 64K cache size can be o2 T
blamed on the relattly small cache. & small cache sizes,
pathological block conflicts are prominent resulting in 00 | |
1024 2048 4096

blocks getting replacedséter before being fully utilized.
Similar analysis on FEA, which is arfmore compte

code, portrays a ddrent picture, although the trends are

similar. Table4 and Bble5 shav the aerage miss rate and

RMR, respectiely. We chose toxelude both gtreme cache

sizes (64K and 1024K) in order to focus first on the centerall, FEA exhibits very poor subblock utilization, as the.Sf

of the table. The miss rates are higher than FEM3K for eachhumbers indicate. ghumbers approaching 1 indicate high

cache size asxpected. The RMR numbers, \aever, are  superfluous belor.

very low given that there are thirty swsubblocks per block.  Fetch (Sutblock and Block) Size Effects

This indicates that the miss rates are high for non-sectoredncreasing the block size often helps cache performance

caches as well. @n, Table5 indicates that as cache sizes because of Spatia| |Oca|ity [8}ut can resultin a huge/er-

double, FEA shes a gradual impre@ment in cache space head in fetching the data during a cache miss. Meehead
usage. Unlike FEM3K, FEA &hibits a lot of misses that do is what Sectoring attempts to address.

not map into already allocated blocks, and the block-size A cache miss results in a fetch into the cache. Auto-
superfluity remains high as skio in Figure6. FEA shavs matic prefetchings brought about if the fetch size is more
poor usage of space in the cache since onvéiage blocks  than one wrd long. This can create a memoryficahmpli-

do not stay in cache long enough for full utilization. e®v fication problem if the application has poor spatial locality
Also, if the size of the cache is small enough for significant
mapping/conflict misses to be prominent, this can increase
memory trafic. The same can be said about\egicache if

Block Size (in bytes)

FIGURE 6. Block-size Superfluity Measue St. for
FEA. Cache sizes 128K, 256K and 512K

TABLE 4. Average miss ratesdr FEA per various
subblock/block sizes

Words per Subblock / Bytes per Block block sizes arexeessiely long so that only fe sets/blocks
Cache can reside in the cacheo Bvaluate this, we measured the
Size | 4W/1K 8W/2K 16W/4K effects of \arious fetch sizes whileeleping cache size con-
128K | 27.72% 20.74% 19.80% stant.
0 0 Table6 gives the fetch-size superfluity measure. Vaf
256K | 24.56% 15.22% 11.03% FEM3K. The ‘ery low coeficients indicate that, aIrSl:ost all
512K | 23.50% 13.56% 8.63% (except for lage subblocks in small cachespmds in a

fetched subblock are utilized during the subblsgbériod



of occupang in the cache. Consequentlitle superfluous
data is transmitted to the cache for this application. The only
cases under FEM3K that do nowginear optimal space
usage in the cache are: 1) using a 32W subblock with 64K
and 128K size caches; and 2) using a 16W subblock with a
64K cache.

We expect the memory tr€ to be generally b for
FEM3K since, as Figurg shavs, superfluous tré€ is
almost non-gistent, ecept for the three cases wevila
pointed out. These three cases confirm our assertion that
small caches with lge blocks sudér a great deal from map-
ping/conflict/replacement misses. MTRxpécitly for
FEM3K for cache sizes 64K, 128K and 512K arevahn
Figure7. MTR numbers g the aerage wrds transferred
between the cache and the main memory per memory refer-
ence; hence where this number is less than one the reuse
effect overcomes the superfluity fe€t and the cache is
reducing total memory tri€ in addition to streaming it in
subblock long brsts.

TABLE 6. Fetch-size Superfluity Measue Wf; for various
subblock sizes (FEM3K)

Words per Subblock / Bytes per Block

Cache | 1W/ | 2W/ | 4w/ | 8W/ | 16W/ | 32W/
Size 25K | .5K 1K 2K 4K 8K

64K .0000 | .0009 | .0216 | .0640 | .2250 | .6927

128K | .0000 | .0006 | .0132| .0331 | .0998 | .3443

256K | .0000 | .0004 | .0079 | .0196 | .0475 | .1478

512K | .0000 | .0003 | .0037 | .0102 | .0314 | .1147

1024K | .0000 | .0004 | .0015| .0034 | .0062 | .0117

Wi, numbers for FEA are not encouraging asrshm
Table7. Higher codfcients indicate more superfluous traf-
fic. Again we concentrate on the three moderate cache sizes
(128K, 256K and 512K) andavy subblocks from 4 erds
to 16 words. As &pected, the MTR is greater than 1 for all
the cases we simulated. This indicates that the application
has \ery lov reuse of data (temporal locality at therds
level). To shav how much superfluous triaé occurs in each
case, Figur® plots the MTR and TSR data side-by-side.
Averaged wer all cases, close to half of all data transferred
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FIGURE 7. MTR plots for FEM3K.
Cache sizes 64K, 128K and 512K.

to the cache are not utilized. Theseage superfluous tfaf
per memory reference as shoin Figure9 clearly demon-
strates thex@essie hurden placed on the cache-to-memory
bus.

Observations
Our analysis of FEM3K and FEAveals tvwo interesting

cated block misses. High miss rate does not translate to
more memory trdic, which implies high data reuse an/lo
superfluity FEA, on the other hand, represents a poor data
locality application. A significant proportion of the misses
cause allocation of meblocks, a strong indication that this
application does not ka small-enough stride or local

behaiors. FEM3K represents an app|icati0n with gOOd Spa- gather/scatter reference belm.

tial locality. Most misses are to subblocks within already

From our analysis, the KSR1 data subcache is a good

allocated blocks, which implies less penalty than unallo- cache configuration for FEM3K. &\contend hoever that

10
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FIGURE 8. Traffic Superfluity Measure TSR br
FEM3K. Cache sizes 64K, 128K, 256K, 512K and
1024K

TABLE 7. Fetch-size Superfluity Measue Wf, for
various sulblock sizes (FEA)

Words per Subblock / Bytes per Block
Cache
Size | 4W/1K 8W/2K 16W/4K
128K | .2281 .4805 7244
256K | .1361 .3021 5175
512K | .1018 2192 .3853

even such a good-betiag application could benefit further
from a subblock prefetch policWe hae considered tav
such policies and found our preliminary results encourag-
ing, ut premature for presentation here at this time. The
KSR1 cache configuration is, Wever, not appropriate for
FEA and it shws very poor superfluity resultsser all con-
figurations studied. In our wie such application requires
code optimization techniques or a substantiallyfedsnt
cache aganization for performance imprement. A good
cache configuration must dedr lowv superfluity low cache-
memory trafic, and misses with W@ total penalty

We looked at other parameterséilcache associsify
and replacement polic As epected, 2-\ay associatity
performs better than a direct-mapped cacheatt, fwith
larger subblock sizes, direct-mapped configurationsveto
relatively higher superfluity coétients. The performance
differences between lURand random replacement were not
substantial enough to report, especially forgéarcache
sizes.
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FIGURE 9. MTR and Traffic Superfluity
comparisons br FEA (128K, 256K and 512K)

CODE OPTIMIZATION

Our discussion and results alodemonstrate that cache
performance depends not only on the design of the cache,
but also on the reference patterns of the running programs.
This, in our opinion, suggests that judging cache perfor-
mance with benchmarks and generalizing the results must
be done with considerable care. Benchmarks can be easily
designed for a 100% hit ratioytthose results are meaning-
less when attempting to apply them to real applications.
Applications like FEA need restructuring to be able to
exploit the @uins that a cache can potentially yode for
performance. There are a number of static (compile time)

Ratio

1.0

0.5

0.0



code optimization techniques for impiog the data locality 4.0
behaior of programs for both uniprocessor and multipro- = FEA
cessor evironments [21] Techniques of interest to us x3 FEA.new
include loop unrolling, data blocking, data gom, and
array grouping and cgmg. The last technique is attuted
to Shih[21]. 20
To validate our ealuation technique, we studied an

improved \ersion of FEA that has undgme code restruc-

turing with array grouping and cpipng [21]. We call this 1.0
new version FEA.ne. There is substantial imprement in
superfluity as compared to FEA, an indication that the
grouping increases the number of useful items in a block

Ratio
w
o

0.0 4 8 16
Subblock Size (in words)

and reduces misses due to conflicts. Blocks willeha 0 2.0

longer life occupancin the cache, promoting better utiliza- ' p—
tion. FigurelO shevs the memory tréit ratio comparison
between FEA and FEA.ne and as Figurél shevs, there % 15

is close to half reduction in superfluous fiafor all the &

cases studied. On theesiage, FEA.n@ displayed Sf coef- 10

ficients that are a 10% imprement oer FEA, and Wf
coeficients that are a 20% imprement. The & erage 20%
improvement in W§ can \ery well account for the decline in 0.5
the superfluous tri€. Array grouping imprees the code by

stacking useful items together in a subblock/block.

0.0 4 8 16
CONCLUSION AND FUTURE Subblock Size (in words)

DIRECTIONS e

This study gres a broad\ervien of the technique of sec- X3 FEA.new
toring in caches for scientific applications while introducing
a nev set of metrics for cache performancealaation;
which stress on cache block angshrafic usage. The norm
has been that memory is cheap and space is free. It is our
hope that the approach here will question this myth.

We hare used the superfluity metrics in an attempt to 0.5
understand the betiar patterns of real scientific applica-
tions; and also to help determine what cache parameters
(like fetch size, block size, cache size) are adequate and 0.0 4 8 16
appropriate for an application.aMelieve that these metrics Subblock Size (in words)
can be helpful in determining and analyzing the spatial and FIGURE 10. MTR comparison between FEA
temporal locality behaors of a scientific application. and FEA.new (128K, 256K and 512K)

We plan to do more application and cache studies withof the 11th International Symposium on Computehitec-
our tool. The goal is to be able twt@act common behéor ture, June 1984
patterns that will be helpful in choosing cache parameters[3] Goodman, J.R., “Using Cache Memory to Reduce Pro-
like cache size, block size and fetch size that fit our “goodcessoiMemory Traffic,’ Proceedings of the 10th Interna-
cache” description. Wexpect that such studies will help us  tional Symposium on Computerchitectue, June 1983

deduce better techniques for restructuring application coded4] Eggers, S.J., and Katz, R.H., “Thefdet of Sharing on

; ; ot the Cache and Bus PerformaficBroceedings of the 8r
to improve data locality and application performance. Confeence on Aghitectural Support for PogrammingLan-
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