The Dynamic Information Integration Model”

Anisoara Nica and Elke Angelika Rundensteiner
Dept. of Elect. Eng. and Computer Science
University of Michigan
1301 Beal Avenue, Ann Arbor, MI 48109-2122
anica | rundenst@eecs.umich.edu

fax: 313-763-1503

Abstract

Challenging issues for processing queries specified over large-scale information spaces (e.g., Digital
Libraries or the World Wide Web) include the diversity of the information sources in terms of their
structures, query interfaces and search capabilities, as well as the dynamics of sources continuously
being added, removed or upgraded. Query processing can no longer be done in a static fashion against a
well-defined schema (which assumes high integration). Rather an interactive query processing strategy
that adapts its behavior to the system resources at hand is needed. In this paper, we give an innovative
solution for query planning in such environments. The foundation of our solution is the Dynamic
Information Integration Model (DIIM) which supports the specification of not only content but also
capabilities of resources without requiring the establishment of a uniform integration schema. Besides
the development of the DIIM model, contributions of this paper include: (1) introduction of the notion
of fully specified queries that are semantically equivalent to a loosely-specified query (we show that
our concept is a consistent and natural extension to the concept of full disjunction); (2) translation
algorithm of a loosely-specified query into a set of semantically equivalent precise query plans that can
be executed against the current configuration of available sources; the steps of the translated query
plans are consistent with the binding patterns of query templates of the individual sources (capability
descriptions in DIIM) and with possible interrelationships between two or more information sources
(expressed as join constraints in DIIM); (3) search restriction algorithm for optimizing query processing
by pruning the search space into the relevant subspace of a query based on information source descriptions;
the search space of the translation algorithm is thus restricted to a query relevant subspace; and (4) the
proofs of correctness for both the search restriction and translation algorithms that show that the plans
obtained by the query planning process correspond to semantically equivalent query plans.

Keywords - Multi- and Heterogeneous Information Systems, Loosely-Specified Queries, Query Refinement,
Query Templates, Planning.

OThis research has been funded in part by the joint NSF/ARPA/NASA Digital Libraries Initiativeunder CERA TRI-9411287,
and by NSF under grants RTA #IRI-9309076 and NYT #IRI-9457609.

1 Introduction

In recent years, more and more information has become available in on-line digital formats such as Digital
Libraries and the World Wide Web which, while offering unique opportunities to everyone of making use of
this wealth of information, also introduces many new challenges to the database community. These include:
(1) a large number of heterogeneous data sources and other information resources available in the system, (2)
a continuously changing configuration of sources joining or leaving the system or changing their interfaces
and content, and (3) a wide diversity in data structures as well as query interfaces ranging from fixed APIs
to declarative languages.

Typical users of these new systems are not database experts, hence they are not familiar with nor willing
to utilize the rigid interfaces and query languages offered by today’s DBMS systems. One key challenge that

thus needs to be addressed is to allow such users to query the information space without having to:

1. be aware of which information sources the data is located in;

2. know the exact query language used by each source (otherwise one would have to learn multiple such

languages);

3. utilize structured query languages (such as SQL) requiring knowledge about the particular schema of

the source accessed;
4. deal with differences between structured and unstructured information sources;
5. know how to rewrite a query into subqueries, each targeting only one information source; and

6. know how to combine data from more than one source into one composite response.

While current DBMS systems have some built-in support for processing queries across distributed (typically
SQL) databases and combining query results, they do not properly address the above challenge by effectively
forcing users to specify queries in their particular query language (i.e., SQL). This clearly is not satisfactory
for many users.

Information-retrieval (IR) based systems, such as WAIS and WWW engines [Cor95b, Cor95a], typically
allow specification of vague queries, that is, users can list search terms in subjects they are interested in
without having to formulate a precise query. Unfortunately, these systems typically work well only with
unstructured data, i.e., textual documents, and perform textual (possibly sophisticated) matching of the
search words within each text object. They do not split queries across diverse sources nor do they combine
information from two separate sources to form composite results. WWW search engines, for example, simply

return all individual items that seem to match one or more of the desired search terms.

The goal of our work is to provide a solution to the above problems that offers both the advantages of IR
based systems (to allow the user to specify high-level queries) and of DBMS-based systems (to automatically
process such queries against a set of distributed possibly structured sources). This requires us to solve the

following issues:

1. develop a language allowing queries ranging from vaguely specified queries (i.e., simply a list of terms)
to more precisely specified ones (i.e., specifying the particular source from which the data is to be

taken, or the join to be performed to combine different sets of data);

2. develop query semantics that specify the notion of the “correct” meaning and hence “correct” answers
for such type of vague queries (clearly, performing pairwise natural joins between all sources ala
universal relation semantics [Ull89] is neither too meaningful nor too practical in the context of modern

information spaces with hundreds of information sources);

3. develop algorithms that map a loosely-specified query into precise well-specified query plans based
on defined query refinement semantics (so that the later can be executed against the set of available

sources in the system);

4. develop optimization techniques to prune the set of potentially correct equivalent query plans in order

to allow the approach to scale up.

The four problems listed above are the focus of this paper, and we make contributions to all of them in
this work.

Our overall approach at tackling these problems, and making them sufficiently well-defined and manage-
able, is based on our proposal of the Dynamic Information Integration Model (DITM). We assume that all
information sources in our space, may they be fully structured like an SQL database management system,
partially structured like SGML files [Gol91], or even an application program like finger, register their ex-
istence as well as a description of their content and capabilities with a knowledge base [ABD*96]. For
this purpose, we have developed the Dynamic Information Integration Model which allows us to capture
information source descriptions such as relationships among the information sources (specified as join con-
straints, integrity constraints and partial and complete information descriptions), and information sources
capabilities i.e., the types of queries they can answer to (modeled as query templates with binding patterns).

The DIIM query language we propose permits high-level query requests (e.g., that don’t specify from
where data is to be retrieved or how information from different sources is to be combined) that the system
refines into fully specified queries which can be satisfied by the available information sources. A loosely-
specified user query such as “Find addresses of on-line journal collections having some articles in the area of

Meteorology or related subjects” could be very easily expressed in the DIIM query language without having

to specify from where the data is to be retrieved or how pieces of information are to be combined to answer
this query.

Our proposed query semantics define a natural way of refining a vague query by imposing how the query is
to be rewritten into more restrictive queries that are consistent with both DIIM source descriptions and the
original query definition. A refined query uses join consistencies among sources and at the same time is in
agreement with their query interfaces. We introduce the notion of connected relation as a natural extension
of the concept of full disjunction [GL94]. In the default case when only natural joins are defined in DITM
we show that, the semantics of the two concepts (connected relation and full disjunction) are equivalent.

We develop two algorithms for query processing in the context of DIIM semantics: (1) the search restriction
algorithm and (2) the query refinement planner.

First, because our target information spaces contain a large number of sources some of which are likely to
be unrelated, we propose a search restriction algorithm that will identify what the subspace of the overall
information space is that a query is addressed to. We define the notion of relevant subspace of a query and
give an algorithm for computing it. The purpose of the algorithm is twofold. On the one hand, it optimizes
query processing by computing the relevant subspace. On the other hand, it also recognizes if a query has
no answer in the current system configuration in which case the relevant subspace is empty.

Second, we present the query planning algorithm. The planning algorithm exploits our proposed semantics
for query refinement to refine a loosely-specified user query into well-defined fully-specified queries that can
be evaluated in the current system configuration. The algorithm based on regression planning algorithm
[RN95] incrementally finds possible plans (corresponding to refined queries) for the given query.

We give proofs of correctness for both the search restriction and translation algorithms that show that
the plans obtained by the query planning process are consistent with our definition of fully specified queries
that are semantically equivalent to a given user query.

The rest of the paper is organized as follows. Section 2 gives an overview of the DIIM system, while Section
3 presents an example from the digital library world which we will use throughout this paper. Section 4
defines the overall framework for our approach, namely, the DIIM model. The DIIM query language and
semantics are introduced in Section 5 as well as a comparison of our query semantics to the full disjunction
[GLY4] for a set of relations. Sections 6 and 7 describe our proposed algorithms for computing semantically-
equivalent query plans for a user query. Namely, Section 6 gives an algorithm for computing the relevant
subspace for a query while Section 7 describes the algorithms used for computing the set of semantically-
equivalent query plans. Proofs of the correctness are given both in Sections 6 and 7. Section 8 presents

related work and Section 9 concludes the paper.

- --->= Query
= Query Result

=~ DIIM description data
- Specific Task Query Language
IS Information Source

Mediator
Agent

Query Result F_%
= @ conabit
Agent ke]

AN
1
/
7
/
/
y
Interface Interface nterface Interface
Agent Agent Agent Agent
" L 2 s
IIS 1S Ce IS IS
INFORMATION SPACE

Figure 1: DITM System Architecture

2 Overview of our Approach

Architectural overview of the DIIM system is given in Figure 1. There are three stages towards query
processing: (1) external information sources join the system by registering their capability and content
description relating them to other known sources if any, (2) a Mediator Agent keeps the knowledge base of
these site descriptions and infers new facts as needed in the process of query planning and execution, and
(3) a high-level user query posed to the system will initiate a query planning process that refines it into a set
of “good” query plans given the current system configuration. The last stage is followed by the execution
of one (or some) of the selected plans by either some system established ranking, or by asking the user for
feedback based on refined queries.

The foundation of our information integration paradigm is DITM (the Dynamic Information Integration
Model). DIIM is used to construct information source descriptions using for example join constraints,
integrity constraints and partial and complete information descriptions which are maintained in the knowl-
edgebase by the mediator agent. The information sources also describe their capability, e.g., the types of
queries they can answer to, which are modeled as query templates with binding patterns in DIIM.

As shown in Figure 1, the agents in our DIIM System Architecture are:

e Mediator Agent has the role of collecting external information source descriptions expressed in DITM.
The DIIM descriptions once processed are stored in the capability knowledge base to be available to

other agents in the system for the purposes of query planning, evaluation and execution.

e Query Planner Agent uses the capability knowledgebase to generate the library of parameterized

action schemas used for query planning. Given a user query, it applies a conditional partial-order

planning algorithm to obtain a set of partial-order query plans.

¢ Query Execution Agent uses the set of plans generated by the Query Planner Agent and the
capability knowledge base to construct the query execution plans. As we will see, the descriptions
of the external information sources could be used to prune some of the plans to avoid the retrieval
of redundant data. In a real information space a user query has specified some global parameters
concerning the result of the query. For example, a user could specify the number of desired query
results or the maximum cost he is willing to pay. These kinds of parameters will be taken into
account in this stage of query processing for incrementally computing the query results until the query

parameters are satisfied.

3 Digital Library Example Scenario

Example 1 We will use the following example in the rest of the paper, a small part of the reference space of the
University of Michigan Digital Library (UMDL) system ([ABD*96]). The reference space contains a thesaurus
database, a Broad System of Ordering (BSO) database, a general name authority index, an IEEE index of all the
authors that published in an IEEE journal, and a metadata database containing information of various on-line
Journal collections maintaining information about the URL addresses, journal names and their subjects. The
databases are stored at different external sites and have their own search engine and query interface that permit
integration into the system via Interface Agents. Part of the description of this space is given throughout this
paper.

Given a user query “Give me at most ten addresses of on-line journal collections having some articles in the
area of Meteorology”, the system will have to use the information sources described above to formulate the
answer. If the first step of going directly to the metadata database fails (i.e., no collection is classified under the
Meteorology subject) then it should consider other alternatives for searching, like going to the thesaurus or BSO
database for reformulating the query using a synonym or a broader term instead of Meteorology. If there are
collections classified with Hydrography then a good plan in obtaining an answer to the query is: (1) take from
the thesaurus database all the related terms for Meteorology; the list will contain Hydrography; (2) go back and
use this list to extract all the collection addresses that have a subject in the related term list. Note that if the
thesaurus database is not available or using the above plan gives no results then the system has to dynamically
find new plans to process the query. Even in a small system like our example the number of possible query plans
rises exponentially with the number of information sources that could be available at a given time. Hence, we
have to exclude the solution of hardcoding fixed strategies for executing a query and instead we propose to look

for more scalable approaches.

4 Dynamic Information Integration Model

A DIIM description of an information source E in &£ contains three types of information specifying its data
structures, its query capabilities as well as the relationships with other exported relations that semantically
express the operations allowed between information sources. The description of the information sources
will be used first in the process of query refinement of a loosely-specified query into semantically-equivalent
fully specified queries. This process is constrained by using the available information sources and by being
consistent with the binding patterns (i.e., query capabilities) of the selected information sources. Second, the
query optimization process of the resulting set of equivalent queries is based on the information descriptions
like query templates, access costs and semantic relationships among information source contents (e.g., the
knowledge that a site relation contains a fragment of another external site relation could be used to prune

out some of the query plans that would result in redundant data).

4.1 Data Content Description in DIIM

For every site, the description of the local data is done using n-ary relations with attributes of either primitive
or complex types. The model used is a combination of the nested relational data model [KS91] and the
logic-based data model [UlI89]. A relation has a unique name and fixed arity where the attributes are not
explicitly named but have the values determined by their positions. In our model, every attribute has a
type which can be a primitive type represented by an unary relation or a complex type represented by a
name of another relation. The primitive type-relations are virtual in the sense that their extent is unknown
with real data being stored only in the external information sources. The model permits us to express a

generalization hierarchy among the relations by using the integrity constraints as defined in Section 4.3!.

Example 2 In our Example 1 the external relation Conspectus (Url, Journal, Subject) contains the Url of
primitive type Address for collections of documents published in Journal of complex type Publication with
the attribute Subject of primitive type ThesaurusTerm. The second attribute of the relation Conspectus is
of complex type expressed by the fact that the relation Publication is defined as Publication(T'itle, Address)
with T'itle of primitive type PublicationName and Address of primitive type Address.

The complete content descriptions for our example from Section 3 are:

o The relation Nasa_Thesaurus(Tword, TwordEq) contains pairs of words that are synonymous. Both

Tword and TwordEq have the primitive type ThesaurusTerm.

o The relation Bso_Eq(Bword, BwordFEq) contains pairs of equivalent BSO terms. Bword and BwordFEq

have the primitive type BsoTerm, a subtype of ThesaurusTerm.

1'We make the convention throughout this paper to have the names of the relations starting with a capital letter.

o The relation Bso_Broader(Bword, BwordB) contains pairs of BSO terms with the second term one level

broader than the first term. Bword and BwordB have the primitive type BsoTerm.

o The relation Bso_Narrower(Bword, BwordN) contains pairs of BSO terms with the second term one level
narrower than the first term. Bword and BwordN have the primitive type BsoTerm. The Bso relations

are stored at the same site.

o The relation Name_Authority(Name, NameS) contains pairs of synonymous names, where Name and

NameS have the primitive type GeneralName.

o The relation leee_Authors(Author, Birthday) contains all the authors that published in an IEEE journal.

Author is of primitive type AuthorName, a subtype of GeneralName.

o The relation Conspectus(Url, Journal, Subject) contains the Url of primitive type Address for collections
of documents published in Journal of complex type Publication with the topic Subject of primitive type
ThesaurusTerm. The second attribute of the relation Conspectus is of complex type expressed by the
fact that the relation Publication is defined as Publication(Title, Address) with Title of primitive type

PublicationName and Address of primitive type Address.

Because in our model one can define complex objects, we must have a way to specify the “path expressions”
to access the attributes of an object. Thus to define a subobject of a complex object, we use a binary relation
with the same name as the type of the contained object starting with a lower-case letter. For example, to
indicate that the object T'itle of primitive type PublicationName is a subobject of the object Journal of

complex type Publication, we use the binary relation notation publicationName(.Journal, T'itle).

4.2 Capability Description in DITM

An external site description must contain information about what kinds of queries a source can handle, i.e.,
the query templates the site could answer to. Formally, a query template is a parameterized query: assigning
values to the parameters of the template results in a query that a target site could handle. Using this formal-
ism, we can uniformly describe sites with fixed APIs as well as sites with declarative languages. For example,
the Unix command “finger” could be describe as a relation Finger(Last Name, First Name, Unique N ame, Host)
that supports only queries for which Host is provided (i.e., bound) and one of the other attributes is provided
as well. On the other hand, if a source is an SQL database, its relations support all possible combinations
of bound/free arguments for a query.

In the query process, once the query template which is going to be used for extracting information from a
source (a relation) is established, the execution will consist of a sequence of operations that must be carried

out to answer the query corresponding to an instantiation of that query template. Thus, the capability

descriptions should contain both the query templates and a set of rules that define the sequence of operations
to be executed for an instantiated template.

In our model, if £ € &£ is an n-ary relation, the query templates for E are denoted by a set AF =
{af al . .af} of adornments (or binding patterns) with af[i] € {b, f} for all i € {1,2,...,n} (see
[U1189]). If the ith symbol of the adornment aF is b then the ith argument of the relation must be bound
when a query is asked. If the ith symbol of af is f then the ith argument is free and may be returned as

result of executing the query 2.

Example 3 For example, the adornment set for the relation Name_Authority(Name, NameS) is the set {[bf]}
which describes the fact that the relation Name_Authority could only answer queries when the first argument is
given as input and the second is free. For example, the query “Retrieve all the synonymous names for’ JoeSmith'”
is expressed as Name_Authority('.Joe Smith’ X) which is an instantiation of the query template corresponding
to the binding pattern [bf]. However, the query Name_Authority(X, Joe Smith') with the second argument

bound to a constant is not supported given the set {[bf]} of binding patterns.

Because we represent a primitive type as an unary relation, we assume that a type-relation E has the
capability set {[b]}, i.e., we can check that a given object has the type E. The same assumption is made
for the complex attributes represented by the binary relations. If a complex attribute ¢ has an attribute c_a
of type A then this is represented by the binary relation a(c, c_a) having the capability set {[bf]}, i.e., we

assume that given a complex object we can “extract” its components.

4.3 Constraint Description in DITM

In order to generate the query plans and optimize the number of sites that need to be accessed to answer
a query?, the information source description also contains information characterizing the content in terms
of its relationship with other sources in the system. In our model such relative descriptions are done in two
ways: (1) constraints that relate different external relations and (2) integrity constraints for a site itself.
Throughout this paper we will use E to represent a relation from &, X to represent a tuple of variables
(unless it is specified that it is a free tuple, i.e., it may use either constants or variables), and C(Y) a
conjunction of arithmetic comparison predicates, i.e., built-in predicates. A built-in predicate has the form

X0Y where 6 € {<,<,=,>,>}, X is a variable and Y is a variable or a constant.

2We make the observation here that a query template describes beside the directly supported queries (i.e., the queries
obtained by instantiating the template) also the indirectly supported queries. An indirected supported query could be broken
down into a directly supported query and a filter applied to the result of the directed supported query. For example, a query
over the relation Finger with three arguments set LastName, FirstName and Host could be split into a directed supported
query where LastName and Host is set followed by a filter that chooses only the results with the given FirstName.

3 Actually, in the long-term we plan to incorporate actual cost functions into individual sources and utilize this to further
optimize the interpreted query beyond the means of the number of sources used.

oo

4.3.1 Integrity Constraints

Integrity Constraints define order and type constraints over the attribute set of a relation. Assume that E

is an n-ary relation and X is a n-free tuple.

Definition 1 The order constraint for the relation E is defined as:

E(X) C C(X) (1)

where C(X) is a conjunction of built-in predicates over the set of variables X.
Another form of integrity constraint defines the primitive or complex types of the attributes of a relation.

Definition 2 The type constraint is specified as

E(X1,Xa,...,X0) C E1(X1), ..., B(Xs), ..., En(Xy) (2)

where E is an n-ary relation, (X1, X, ..., Xy) is a n-tuple of variables, and F; is a primitive or complex

type-relation for all 1 < i < n*.

Expressions of type (2) could be used for modeling the type-subtype relationship (see (ic8) below): if T}
is a subtype of Ty then T1(X) C T2(X), i.e., all tuples in 71 (i.e., of type T1) are also in Ty (i.e., have type
Ts).

Example 4 For our example, the complete set of integrity constraints of type (2) is given below. The constraint
(ic5) defines the attribute types for the relation Conspectus while the constraint (ic8) defines the subtype

relationship between the primitive types Bso and ThesaurusTerm.

(ic1) Nasa_Thesaurus(Twordl, Tword2) C ThesaurusTerm(Twordl), ThesaurusTerm(Tword2)
(ic2) Bso_Eq(Bwordl, Bword2) C BsoTerm(Bwordl), BsoTerm(Bword2)

(ic3) Bso_Narrower(Bwordl, Bword2) C BsoTerm(Bwordl), BsoTerm(Bword2)

(ic4) Bso_Broader(Bwordl, Bword2) C BsoTerm(Bwordl), BsoTerm(Bword2)

(ic5) Conspectus(Url, Journal, Subject) C Address(Url), Publication(Journal),

ThesaurusTerm(Subject)

(ic6) Name_Authority(Namel, Name2) C GeneralName(Namel), GeneralName(N ame2)

*The notation we use to express the integrity constrains “C” is natural if we think of these constraints as a way of expressing
the relationship between the extents of an n-ary relation & and the type-relations: if the ith attribute of F is of type F; then
the object set corresponding to the projection of the :th attribute from the tuple set of relation £ must be a subset of the F;
extent.

(ic7) leee_Author(Author, Birthday) C AuthorName(Author), Date(Birthday)
(ic8) Bso(Bword) C ThesaurusTerm(Bword)

(ic9) AuthorName(Author) C GeneralName(Author)

For the rest of the paper, we assume that the conjunctive expressions have a special format called £-normal
form defined below. Any safe rule-based conjunctive query using relations from & could be transformed into

E-normal form as discussed below.

Definition 3 We say that a logical rule v : Q(V) := E1(X1), Eo(Xa), ..., En(Xy), C(Xo) is in £-normal

form if it has the following properties:

Pl. VCXoUX U...UX,, ie., 7 is a safe rule.
P2. V., X1,...,X, are tuples of variables and X is a free tuple.

P3. All variables in VU XU X1 U ...UX, are relevant to the query (i.e., any variable is used at least

twice in r). If there are nonrelevant variables (i.e., anonymous variables), we replace them with ’_".

P4. For any relevant variable X the body of the rule r contains its type relations according to the DIIM
descriptions. That 1s, for each variable X that appears in a non-type relation as the jth argument
E(...,\X/,) in the body of the rule r, then E;(X) is also in the body of the rule r where E; is the
type of]éhe jth argument defined in DIIM for the relation E. If X doesn’t appear in a non-type relation

then it must appear in a type relation.

We say that an expression El(Xl), EQ(XQ), el En(Xn), C’(Xo) is in &-normal form if it has properties P2
and P/ from Definition 3. Throughout this paper, the examples use expressions that are not in £-normal form
as long as the context is very well understood. For example, an expression Ey(X1), B2(X2), ..., En(Xys),
C’(Xo) could be transformed into an equivalent expression that has property P2 if for all constants ¢ €
VUX;UX3U...UX, we do the following: (1) replace the constant ¢ with a new variable (never used

before) X7*% and (2) add a new constraint X?°% = ¢ to the expression C(Xj).
4.3.2 Join constraints

A join constraint relates a site to some other known site. This is done by defining how information across

two disjoint sites could be integrated in a meaningful way.

Definition 4 For two relations E1 and E5 in £, we can define the join constraints of the form:

E1(X), $1(X0) =1 Ea(Y), ¢2(Yo) (3)

10

where the expressions (E1(X), ¢1(Xo)), (Ea(Y), ¢2(Yo)) are in E-normal form. The expressions ¢,
and ¢2 are conjunctions of buill-in predicates, unary relations (representing the types of the variables) and
binary relations used to represent path expressions. If (X UXo)N (Y UYy) = 0 we say that the join constraint

1s unconnected. Otherwise, the join constraint is said to be a connected join constraint.

The semantics of a join constraint in Equation (3) is that the tuples of the two relations £y and E5 could
be combined using as join predicate the conjunction of ¢1 and ¢2. Specifically, if £ is an n-ary relation and
FEq is an m-ary relation and X = (X1,...,X,), and Y = (Y1,...,V;,), then the join constraint explicitly

defines that the relations £; and E could be joined using the join predicate cp, g, defined as follows:

emy By = 01(Xo) A ¢2(Yo) A{ELV = B2V | VYV € (X UXo)N (Y UYy)}. (4)

Example 5 The join constraints for our example are given below. The unconnected join constraint (j5) states
that two tuples from the relations Conspectus and leee_Author respectively could be semantically combined
(i.e., are join-consistent conforming to the join constraint (j5)) in a join tuple if and only if the complex attribute

Journal has the name 'ieee’ in the Conspectus relation.

(j1) Nasa_Thesaurus(_, Tword2) =5 Bso_Eq(Tword2,.)

(j2) Nasa_Thesaurus(_, Tword2) =; Bso_Broader (Tword?2, _)

(j3) Nasa_Thesaurus(_, Tword2) =; Bso_Narrower (T'word2,)

(j4) Name_Authority(_, Name2), AuthorName(Name2) =; leee_Authors(Name2,)
(j5) Conspectus(_, Journal,_), publicationName (Journal,iecee’) =; leee_Authors(_,)
(j6) Conspectus(_,_, Subject), BsoTerm(Subject) =5 Bso_Eq(_, Subject)

(j7) Conspectus(_, _, Subject), BsoTerm(Subject) =; Bso_Broader(_, Subject)

(j8) Conspectus(_, _, Subject), BsoTerm(Subject) =; Bso_Narrower(_, Subject)

4.3.3 Partial and Complete Information

The partial and complete information description makes it possible to describe that a fragment of a relation

is part of or equal to a fragment of another relation for all instances of the two relations.

Definition 5 For two relations F1 and E5 the partial/complete information constraint

E1(X), ¢1(Xo) 0 Ea(Y), 62(Yo) (5)

5I.e., the “natural” join attributes are defined in the expression 3 by using the same variables names in the lefthand and
righthand sides.

11

specifies that®:
T ax (04,x0) E1(X)) 0 Tyax (04,7, E2(Y)) (6)

where 8 1s C or = for the partial or complete information constraint, respectively.

Example 6 The partial and complete information description will be used by the Query Evaluation Agent in
the process of optimization and execution of the query plans. For example, let's assume that a new site joins
the reference space having the relation Technical_Authors(Name, Company, Journal), an author index with
authors that published in engineering journals, their work addresses and the journal they published in. The fact
that for all authors found in the leee_Authors relation there exists an entry with the same author name in

Technical_Authors could be expressed using the complete information description as in (5).

o (cil) leee_Authors(Name,), AuthorName(Name) = Technical_Authors(Name, _, Journal),

E1(X) $1(Xo) Eq(Y)
Publication(.Journal), publicationName(Journal,Y),Y =' icee’

$2(Yo)
When executing a query plan that has to access the relation Technical_Authors in order to retrieve the author
names for a given Journal, the complete information description (cil) states that the relation leee_Authors
could be accessed instead (we obtain the same result as going to Technical_Authors relation) if the Journal

name is 'ieee’. The decision should be made based on the costs associated with the two relations.

5 Query Semantics in DITM
5.1 DIIM Query Language

A query in DIIM is formulated by defining a set of constraints over the domain concepts (e.g., ontology)

that are to participate in the query-result.

Definition 6 A DIIM query is formulated as a logical rule in E-normal form as defined in Section 4.3,
Definition 3:

Q(V) . —El(Xl),Ez(Xz),...,En(Xn),C(XQ) (7)

where C’(XO) is a conjunction of built-in predicates, E; € £ for 1 < i < n are relations and V C Xq U X; U

...UX, a set of variables defining the query-result IDB relation”.

With this syntax, users can either simply list attributes (concepts) of interest they want to retrieve without

giving any constraints, or they can make the query more precise by adding constraints as built-in predicates

65 represents the selection operator and 7 represents the projection operator.

"For naive users, a query interface could be designed as a filled-in form that could be automatically translated into the
internal system query language. The filled-in form would contain the ontology of terms as well as built-in predicates.

12

(query (8) in Example 7) or imposing an information source from which to acquire the data (query (9) in

Example 7).

Example 7 Here are two examples of queries of type (7):
(1) The query “Retrieve URL addresses of on-line collections, their subjects and the participating authors for

‘ieee’ journals” is expressed in DIIM:

Q(U, S, A) : —Address(U), BsoTerm(S), AuthorName(A4), Publication(J), publicationName(J, ‘iece’) (8)

(2) If the user wants to impose an information source relation to be used for his request® then the relation
could be specified in the body of the rule. For example, the query “Retrieve URL addresses of on-line collections,
their subjects and the participating authors that are found in the information source exporting the relation

Technical_Authors” is expressed in DIIM:

Q(U, S, A) : —Address(U), BsoTerm(S), AuthorName(A), Technical _Authors(A4, _,) (9)

5.2 Query Specification Refinement
5.2.1 Steps of Query Processing

The DIIM query language permits loosely-specified queries which in general cannot be evaluated given the
permissible adornments for the external relations that appear in the body of the query rule. For example,
if the query rule is expressed using only type relations (like in the above query (8) in Example 7) then
the answer to the query cannot be constructed by directly accessing the type relations. The reason 1s that
primitive type relations are virtual, i.e. their extents are not explicitly stored®. Thus the DIIM system
will first “refine” a query rule into the set of semantically-equivalent feasible query rules by combining data
from existing information sources when meaningful. These equivalent refined query rules will be shown to
be consistent with the integrity and join constraints declared in DIIM.

There are three stages of query execution in DIIM: (1) Refinement Stage. Given a loosely-specified user
query, the system will use the information source descriptions to refine the query into a semantically-
equivalent set of queries in the form of query access plans. All generated plans will be guaranteed to have
feasible orders for their steps (subgoals), i.e., all needed bound variables for a subgoal are obtained from
previous subgoals or are bound by an equality built-in predicate. (2) Optimization Stage. We then identify
the minimum set of query rules from the complete set of refined query rules. At this stage we will use

partial and complete information descriptions to eliminate from the complete set of refined rules, the queries

8This option could come from the past experience with the same kind of query.
9Complex type relations could be stored if they are relations exported by an information In this case the objects of complex
types are identifiers of objects stored at the information sources exporting the complex type relations.

13

that are contained in some other queries. (3) Query-Fzecution-Plan Generation Stage. The result of the
Optimization Stage, i.e., the set of query access plans, is used to generate query execution plans.

In this section we introduce the notion of connected relation as being the result relation defined by a
loosely-specified query that cannot be evaluated given its definition. We show that the connected relation
is a natural generalization of the notion of the relation defined by a feasible query rule and we generalize

the well-known containment theorem for loosely-specified queries.

5.2.2 Extended Notion of Containment

We give next some basic definitions that we use in the rest of the paper.

Definition 7 Let r1 and ro be two conjunctive query rules with ordinary and buili-in subgoals. We say that
r1 is contained in vy, 1 C ro, if the relation for the head predicate defined by r1 is contained in the relation

for the head predicate defined by ro for all instances of the relations that appear in the bodies of ri and rs.

Definition 8 Let ry and ry be two conjunctive query rules in E-normal form where every symbol "~ was
replaced with a unique variable name. A containment mapping h from ro to ry is a symbol mapping from
the symbols of the query ro to the symbols of the query r1 with h equal to identity for constants, relation
names and built-in predicate symbols. Moreover, h maps the head of the query ro into the head of the query

r1 and every ordinary subgoal of ro into an ordinary subgoal of r.

To show that one conjunctive query is contained in another conjunctive query, we have the following well

known theorem (see [Ul189]).
Theorem 1 Let 1 and rs be two conjunctive queries with buili-in subgoals for which the following holds:

1. There is a containment mapping h from the symbols of ro to the symbols of r1 that satisfies Definition
8. That is, for each R(X) an ordinary subgoal of ro, h(R(X))(= R(h(X))) is an ordinary subgoal of 1 ;
and if Q2(V2) is the head of the query ro then h(Q2(V2)) is the head of the query ry, i.e., h(Q2(Va)) =
Q1(h(V2)) = Q1(V1).
2. For each C a built-in subgoal of ro, h(C) is implied by the buill-in subgoals of ry.
Then 71 ts contained in rq, t.e., 11 C 7ro.

Definition 7 applies to two queries r; and ry that could be evaluated given their definitions. For the
purpose of our work, we extend the notion of containment for two queries that cannot be evaluated given

their definitions (examples of such queries are query rules (8) and (9 in Example 7).

Definition 9 Let r1 and ro be two conjunctive query rules with ordinary and buili-in subgoals. We say that
r1 s a restriction of ro if there exists a containment mapping h from the symbols of r5 to the symbols of

r1 that satisfies Definition 8 plus for each buili-in subgoal C of ra, h(C) is implied by buili-in subgoals of ry.

14

If queries r; and rs could be evaluated over £ and r; is a restriction of r5 then rqy is contained in r5 by
Theorem 1. Our purpose here is to extend the containment definition for two queries that could not be
directly evaluated against &£, 1.e., those high-level vague queries permitted in our system. We will define
the result of such a query to be the relation defined by the union of all relations obtained from the “good”
rewritten rules of the original queries and show that Theorem 1 still applies for this extended definition.

We now extend Definition 9 for two conjunctive expressions in £-normal form.

Definition 10 Let ¢ and ¢o be two conjunctive expressions in €-normal form with ordinary and buili-in
subgoals. We say that ¢1 is a restriction of ¢o if there exists a containment mapping h from the symbols
of ¢ to the symbols of ¢1 with the properties defined in Definition 8 plus for each built-in subgoal C of ¢,

h(C) is implied by the buili-in subgoals of ¢1.

The next definition introduces the notion of a partition defined by a relevant variable of a query r by being

the set of subgoals that participate in a defined DIIM join constraint in query r.

Definition 11 Let r be a conjunctive query rule with built-in subgoals in £-normal form. Let X be a variable

in the variable set of r. We define the partition of the query r relative to a variable X by:

part,(X) = {p(Y) | (I) p(Y) is a subgoal of r such that X €Y or
(II) there exists q(Y') € part,(X) such that there exists a join constraint as in Equation (3)
R(V),0(Vo) =5 R(Z),¢'(Zo) such that the expression R(V), ¢(Vo), R'(Z), #'(Zo) is a restriction

(according to Def. 10) of the body of query-rule v and it contains p(Y') and ¢(Y') as subgoals }.
If X is a subset of the variable set of v, we define part,(X) = Uxexpart,(X).

Example 8 let r be:
Q(U, A) : — leee_Author(4, _), AuthorName(A4), Conspectus(U, J,T), Address(U), Publication(.J),
publicationName(J, V), PublicationName(N), N = 'ieee’, ThesaurusTerm(T'), T = ‘greenhouse effect’.
part,(U) = {Conspectus(U, J,T), leee_Author(4,_), AuthorName(A), Conspectus(U, J,T'), Address(U),
Publication(.J), publicationName(.J, N), PublicationName(N), N ='ieee’, ThesaurusTerm(T) }.
For constructing part,(U) we start with the subgoals Conspectus(U, J, T') and Address(U) that satisfy property
(1) from Definition 11. Then the subgoals leee_Author(A, _), AuthorName(4), Publication(.J), publicationName(J, V),
PublicationName(N), N = ‘jeece’, and ThesaurusTerm(T) are included in part,(U) because they satisfy prop-
erty (I1): there exists Conspectus(U,J,T) in part.(U) and the join constraint (j5) such that the expression
Conspectus(X1, Journal, X5), Publication(.Journal), publicationName(Journal, X), PublicationName(X)
X ='leee’,

leee_Authors(X3, X4) and AuthorName(X3) is a restriction (according to Def. 10) of the body of rule r.

15

5.2.3 The Connected Query Rule Concept

We now give our connected rule definition that describes the constraints we impose for refining a vague user
query into a more precise rules computable given our system resources. The proposed planning algorithm
is then guaranteed to generate a set of plans that correspond to the set of connected rules for the given user
query. In other systems, the user is typically required to specify his queries directly in the connected rule

format and the system just executes them [PGMU95, PGMW95, GMHI*95].

Definition 12 Connected Query Rule in DIIM

Let @@ be a query in £-normal form defined by the logical rule r:

T Q(V) : —El(Xl),EQ(Xz),...,En(Xn),C(Xo) (10)

We say that a rule r° defined by:

T’C : Q(V) . —El(Xl),Eg(Xg),...,En(Xn),C(Xo),Rl(Yl),RQ(YQ),...,Rk(Yk) (11)

r

is @ connected rule for the query (10) if and only if the following conditions hold:

1. Restriction: r° is a resiriction of r (according to Def. 9} such thai the containment mapping is the

tdentity function and the set of buili-in subgoals of r° 1s equal to the set of built-in subgoals of r.
2. Minimum Joins: A relation from £ appears only once in the body of the query rule r°.

3. Feasible: r° has a E-feasible order for ils subgoals (i.e., there is a feasible order for the subgoals of
r¢ such that the adornment for each subgoal R(X) is permissible (given the adornment set of R) and
correct. Ie., all the bound variables are obtained from the previous subgoals or are bound by a built-in

subgoal of the form X = ¢ with ¢ being a constant).

4. Minimum Rewriting: partrc(f/ UXoUX;U...U Xn) = {El(Xl), EQ(XQ), C En(Xn), C’(Xo),
Ri(Y1), Ro(Y2), ..., Ri(Y3)}, i.e., all subgoals are part of the partition generated over r° by the original

set of variables of query r.

5. Connected: The rule r® represents connections among the relations in £ that are consistent with
the wnitial query. Formally, the following property must hold:

For any variable X € VUX U. . UX,, part,e(X) D {El(Xl), EZ(XZ)’ .. .,En()i(n)7 Rl(fﬁ), RQ(YZ)’ e
Rk(Yk)}, t.e., the partition of any variable contains all subgoals of r with the possible exception of the

built-in subgoals (C(Xo) is not necessary in part,-(X)).

16

6. Mazimal: r° is mazimal with the above properties. Le., Ar'® with the above properties such that

c c
r Cr'" and v £ ",

Definition 13 For a given query rule r, we define the set of the equivalent query rules /¢ as being the set

of 1ts connected rules.

Observation 1 If r is a query rule that has a connected rule equal to itself then ¥/ = {r} following from
Restriction and Mazimal properties of Definition 12. Assume that there exists another connected query
rule ¢ such that r® # r. From Definition 9 and property Restriction we have that r® C r. Bui, because
r is itself a connected query rule, this contradicts the Maxzimal property. Then the assumption that there

exists a connected query rule not equal to v is false. We will call such a query rule a connected query rule.

The above definition formalizes the fact that a refined connected rule corresponding to a query must
represent some connections among its subgoals and at the same time be a restriction of the original query.
This semantics of how a user query could be refined in order to be evaluated is imposed to assure that not
arbitrary unrelated items are put together (since there would be an exponential number of such possible
combinations) all likely to be meaningless. Note that our model makes it possible to semantically describe

the join constraints that must be used in the process of rule generation.

Observation 2 Let r° be a connected rule in 7)¢. If E(X) is a subgoal in the body of r° and there exists an
integrity constraint of the form given in Fquation 1, E(X) C Cg(X) then r° is equivalent to the augmented
query rule obtained by adding CE(X) to the body of the query r°. Indeed, an integrity constraint of the form
given in Equation 1 holds for any instance of the relation E which implies that it must hold for the tuples
of E that are used in evaluating the relation defined by r°. Following this observation, it is safe to assume
that 7/¢ contains the augmented connected query rules obtained by adding built-in subgoals corresponding to
DIIM integrity constraints and for which the conjunction of the buili-in subgoals is satisfiable (i.e., there are

no coniradictions).

Example 9 Let leee_Author(_, BD) C BD > '1950' be a DIIM integrity constraint. Then the rule

Q(U, A) : — leee_Author(A4, D), Date(D), D > '1945', AuthorName(A4), Conspectus(U, J,T), Address(U),
Publication(.J), publicationName(J, ‘iece’), ThesaurusTerm('greenhouse effect’)

is equivalent to

Q(U, A) : — leee_Author(A4, D), Date(D), D > '1945', AuthorName(A4), Conspectus(U, J, T'), Address(U),
Publication(.J), publicationName(J, ‘ieee’), ThesaurusTerm(‘greenhouse effect’), D > '1950"

le., we can add this additional constraint to the query to refine it.

17

Definition 14 Let 7 be a set of rules v1, 73, ..., Ty, having the same head'®. Then the relation defined by
7 is the union of the relations defined by ri,72,...,7n. Let 7 be a conjunctive query and v/¢ the set of ils

connected query rules. We call the connected relation CR g (r) defined by r the relation defined by 7).

Definition 15 Given two query sets 71 and 75 such that the queries in each set have the same head, we
say that 7 is contained in 75 and write 7y T 75 iff the relation defined by 71 is contained in the relation

defined by 7'

The following theorem is a generalization of the containment theorem (Theorem 1) that holds for the

connected relations defined by two loosely-specified queries.

Theorem 2 Let ry and ry be two conjunctive queries. If vy is a restriction of ro (according to Def. 9) with
the same set of built-in subgoals and vy is not empty then CRg(r1) is contained in CR g (r2), i.e. ¥1/¢

Crae.

Proof: Let t be a tuple from CR¢(r1). Then there exists a connected rule r{ of r; such that ¢ is in the
relation defined by r{. We must show that there exists 75 a connected rule for r5 such that ¢t € rj. We claim
that r{ is a connected rule for ro except possible the property Maximal. From Definitions 12 and 9 and
the hypothesis, we have that r{ is a restriction of r; (property Restriction) which is a restriction of rs.
Then r{ has all the properties from Definition 12 relative to r2 except possible the property Mazimal. If
there exists r§ € ra/¢ such that r{ C rj then ¢ is a tuple in the relation defined by r5. If no such rule exists

then r{ is itself a connected rule for r2. In both cases we have that ¢ € CR/g(Tz).

Observation 3 Ifry and ry are two connected query rules then 71,¢ = {r1} and ro;¢ = {ra} and Theorem
2 1s equivalent to Theorem 1. In this case the extended definition of containment is equivalent to the original

containment definition as given in Definition 7.

The following theorem shows that the full disjunction is the default case for our concept of connected
relation when all (arbitrary) natural joins are permitted between sources. For obvious reasons, we developed
in this paper the tightened hence more practical definition of combining data from disparate sources to

construct answers to a query.

Theorem 3 Let £ contain a set of relations {R1, Ra, ..., Ry} over a set of primitive atiribute types
{E1,Ey,...,En}. The relations accept any adornment and the set of join constraints is defined to be all
the natural joins. Let R be the “natural” full disjunction ([GL94], [RU96]) of the relations Ry, Ra, ..., Ry.

10

7 is a datalog program defining the same intensional relation over the variables V.l.e., if 7 = {r1,72,..., 75} then the heads
for the rules 71,73, ... and rn, are Q1(V),Q2(V),... and Q»(V), respectively, defining relations over the variables V.

Note that Definition 15 is stronger than the following definition: 77 is contained in 75 iff Vry € 77, 3r2 € 73 such that r; is
contained in 75.

18

Let {E;,,Ei,,...,Ei,} C{E1,Es,...,En} be a subset of attribute types and rg

i1 Eigy By be the following
query rule:
e, m, QX)) 1 =B (X1), Biy(Xa), ..., Ei (Xk) (12)
where X = (X1, Xa, ..., Xg).
Then CRe(TE,,, B,) = TX1,Xa, . X2 (OX1#niln AXxznil R).-
Proof “DO”. The full disjunction R of the relations R, ..., R, contains all tuples of the relations combining

them as a single tuple whenever they match. Let ¢ € mx, x,. . x,(0x,#niin.. aXe2nilR). Then there exists
t' € R such that nonnull components of ¢’ contain (at least) the attributes corresponding to X1, ..., X3. Then
there exists a connected subset {R;,,..., R;, } of the relation set {R1, ..., R,} such that (1) schema of the
connected set {Rj,,..., R; } contains the attributes corresponding to X1, ..., X and (2) there exist tuples
t1 € Rj,,...,t1 € Rj, which are join-consistent (nonnull) for any attribute corresponding to Xy, ..., X} and

agree with each others and with ¢ on these attributes. Let r® be the rule (in £-normal form):

r QX)) —R;,(V1), ..., Rj (1), Ei,(X1), Eiy(X2), .., iy (Xi), Ema, (V1) .o, B (Vi) (13)

where {X1,..., XU {Vi,...,.V;} =Y1U...UY, and E,,,,..., En, are the types of the attributes corre-
sponding to V1, ..., V;, respectively. The relation defined by r¢ contains ¢ (the body of the rule r° generates
t"). We show that r° is a connected rule (with possible exception of Maximal property) for the rule

rE E By construction r¢ has the properties Restriction and Minimum Joins of Definition 12.

LS IEERREE S

From hypothesis, r¢ has the property Feasible. The properties Minimum Rewriting and Connected
are true following the fact that the set {R;,,..., R;, } is a connected subset of the relation set. If #° does not

have the property Maximal then there exists a connected rule r'¢ of TE:,, .E such that r® C r’¢, which

'k
implies that ¢ is in the relation defined by 7/¢. If no such rule exists, then r¢ is itself a connected rule for

TR E,, - In both cases, we have that ¢ € CR/E(TEH,...,E%).

T

“C”. Let t € CRye (TE117"'7E’k). Then there exists a connected rule r¢ for the rule TEiy,. B, such that ¢ is

in the relation defined by r°. By Definition 12 there exists a subset {R;,,..., R; } of the relation set such

that r¢ is defined as following (in £-normal form):

QX)) —R;,(M1), ..., Rjy(N), iy (X1), Eiy(X2), -+ o B (Xi), By (VA), -+« o, B (Vi) (14)

where {X1,..., Xp}u {Vi,...,V,} = Y1 U...UY; and E,,,,..., E,. are the types of the attributes cor-
responding to Vi, ..., V;, respectively. From the property Connected of the Definition 12, we have that

the subset {Rj,,...,R;,} is a connected subset of the relation set {R:1,..., R,}. Moreover, there exist

19

t1 € Rj,,..., t1 € Rj, such that ¢1,...,#; are join-consistent and they agree (and are nonnull) with ¢ on
the attributes corresponding to Xi,..., Xi. Then, according to the definition of the full disjunction R the
tuple ¢’ obtained by padding ¢ with null for all other attributes of the relation R, must be subsumed by a
tuple t € R. Thus, ¢ is obtained by projecting ¢ on the attributes corresponding to X1, Xs,..., Xz and
t" € ox,2niln.. AX,2nil R given that all the components corresponding to X, ..., Xy are nonnull. Then,

1€ mx, x5, % (OX1 2niln A Xy £nil R).
6 Restriction to the Relevant Subspace of a Query

Given a potentially big information space including most probably unrelated sources, a user query targets
only a small subspace of the sources and thus, the query process should be limited to that subspace. We call
the set of relevant sites the relevant subspace of the query. In this section we give a formal definition as
well as an algorithm for computing the relevant subspace for a given query that depends on both the content
of the information sources and their capabilities (i.e., query templates). If the relevant subspace of a query
is empty then the query cannot be answered in the current system configuration. However, the smaller the
subspace we consider during query processing the better the performance of the planning algorithm can be

expected to be.

Example 10 Consider our Example 2 space with the addition of the relation Finger(Last Name, FirstName,
UniqueName, Host) as defined in Section 4.2. A query “Find all the email addresses for the authors that
published in an IEEE journal” could not be answered by the system because the only source for the email
addresses is the relation Finger which requires the Host name as input that in turn could not be ‘“discovered”
somewhere else. Our goal is to automatically determine if a query could be answered in the current system

configuration and, if yes, what information sources are relevant for a given query, i.e. its relevant subspace.

Definition 16 For a relation E with arity n, we define the set of join constraints of its i 'th attribute relative
to the relation E, Cg(i) = {jr,e' | jr,B' is a DIIM connected join constraint defined for the relations E and

E', with E' € £ such that i’th atiribute is a join altribute }.

Example 11 In the join constraint (j6) (see Example 5), the join attribute for the relation Conspectus is the
third attribute of type Bsolerm while for the relation Bso_Eq it is the second attribute of the same type. Note

that unconnected join constraints have no join attributes.

Definition 17 Capabzlity Graph Given a set of external information source descriptions £ containing
DIIM capability and content descriptions, we define a directed graph Ge = (N, D) with N the set of nodes

and D the set of edges, as follows:
o Step 0. N=0,D=10

20

e Step 1. For every type-relation T' € £, we add a new node to N: N = NU{(T,[bf])}.

e Step 2. For every relation E € £ and for every & € AP (flE is the minimal adornment set for E'?)

we add a new node to the node set N: N = N U{(E,a)}.

The binary relations used to access the components of the complex type atiributes have the binding

pattern [bf] as stated in Section 4 and we add only a node corresponding to this adornment set to N.

e Step 3. For every non-type relation E € &€ for which a DITM integrity constraint of the form (2) exists:
E(X1,Xs,...,Xn) C E1(X1), ..., En(X,) (in our model defining the types of the atiributes), and for

all & € AP and i such that a[i] = f, we add an edge (E, &) 1.Ce ()

(Ei,[bf]) to D. In Figure 2 the
edges added at this step are called “Oulput edges” as they represent the objects that could be outputs

from the non-type relations.

e Step 4. For every type-relation T € & for which a DITM iniegrity constraint of the form (2) erists:
T(X) C Ti(X) (i.e., defining sublype relationship between T and Ty), we add an edge (T, [bf]) 19
(Th,[bf]) to D.

e Step 5. For every non-type relation E € & for which a DITM integrity constraint of the form (2) exists:
E(X1,Xs,...,Xn) C E1(X1),...,En(X,) and for all B € AT and j such that B[j] = b, we add an

edge (E;,[bf]) j’C—E(>j) (E,B) to D.

In the Figure 2 the edges added at step 5 are called “Input edges” as they represent the input objects

used to instantiate a query template for a non-type relation.

e Step 6. For every unconnected join constraint jg, g, of the form (3) E1(X1),C1(X) =5 Ea(Y1), Co(Y),

we add a new node (jg, g,,) to N, witha =[b...b b...b] wheren and m are the arities of E1 and
ntimesmiimes .
F5, respectively. For each atiribute i of type F; of the relation E1 we add an edge (F;, [bf]) BB
. . . . +7.7 B4,
(JE1 Es, @). For each atiribute j of the type E; of the relation Ey we add an edge (Ej, [bf]) e e

(JE1 E., @) to the edge set D. In the Figure 2 the edges added at this step are called “Join edges”.

Definition 18 Query Capability Graph and Relevant Subspace
Given a query r : Q(V) : —El(Xl),Eg(Xz),...,En(Xn),C(Xo) in £-normal form and the capability
graph for £,Ge = (N, D), we define the query capability graph for the query v, G, = (N,,D,) and ils

RelevantSubspace, = (R,, JC;) as follows:

12Ullman defines in [UlI89] the adornment set and the partial order relation “<” over it as follows: if A is an adornment
set and o, 3 € A two adornments, we say that o < g iff § has b in every position where o has 5. We now define the minimal
adornment set A C A to be the minimal set so that Yo € A there exists & € A with & < o. The computation of A is
straightforward given that A is a finite set and it is clear that it is uniquely defined.

21

3, (16)

Conspectus (ffb) Conspectus (bff)

/
Name_Authority (bf) leee_ Author (ff)
)

2, (j4) 1,0 1,34 2,0

Nasa_Thesaurus (bf) Bso_Eq (bf) E

s :
'
2,1 VL0 '
GeneralName AuthorName BirthDate

ThesaurusTerm

: 10 ;
T X R S : 4,(j4) 5.0

— . Output edges

........ S

> Join edges

Figure 2: Capability Graph for Example 1.

In constructing the query capability graph corresponding to the query r, we start with the capability graph
for & and mark the nodes that could be used in constructing connected rules. For each node N; corresponding
to a type-relation F; the algorithm keeps a set of join constraints, denoted by const(N;), indicating first that
an object of type E; could be bound, and second what are the join constraints in which this object could

participate. We have a special join constraint v indicating that an object of type E; 1s bound by the query.
e Step 1. Marked =0, YN € N, const(N) =0

o Step 2. For every variable X € XoUX U.. UX, that is bound in the query, i.c., there exists a constraint
X = c where c is a constant in C(Xg) or there exists X =Y and Y is bound in C(Xy), if E;(X) is the
type of X in the query r and N; is the node corresponding to E; then (1) Marked = Marked U {N;}
and (2) const(N;) = {r}. The above consiruction is a representation of the fact that X could be used

as an input for any E* with the adornment o € A® such that afi] = b.

o Step 3. For every relation F that has a free adornment o (i.e., a[i] = f for all i) and ils corresponding
node N do (1) Marked = MarkedU{N} and (2) for every type-relation node N; corresponding to the
type-relation F; denoting the type of the i’th atiribute of E do (2.1) const(N;) = const(N;) U Cg(i) U
{je,E' | jB E' is an unconnected join constraint }, and (2.2) Marked = Marked U {N;}. Le., objects

of type F; could be obtained from E and they could participate in joins defined for F.

e Step 4. For every relation E and o € A” such that for every i with a[i] = b, const(N;) N Cp(i) # 0 or
const(N;) D {r} do (1) Marked = Marked U{N} (N is the node corresponding to E*) (2) for every
type-relation node N;j corresponding to the type-relation E; denoting the type of the j'th attribute of

E do (2.1) const(N;) = const(N;) UCg(j) U{Jjr g | jE B is an unconnected join constraint }. (2.2)

22

Marked = Marked U {N;}. Le., relation E could be used with the adornment o iff all the needed

bound attributes are obtained from relations that are “allowed” to join with F.
Step 5. Repeat Step 4 until no more nodes could be marked.

Step 6. For every join node N = (jg g, [bb...b]) in N for which Vi € {1,...,1}, the type-relation node

!
N;'3 is marked and const(N;) 3 jg g do: (1) Marked = Marked U {N}.

Step 7. If there exists E(X) in the body of r such that there is no node corresponding to E in the set

Marked then RelevantSubspace(r) = (0,0).

Step 8. Let’s define Gprarkea the subgraph corresponding to the marked set. G, = (N;,D;) where

N, ={N | N e NN Marked and there exists E in the body of r such that N is in the same connected
component of the subgraph Gurarked with a node corresponding to E}

D, = (| 3 = (5. [/]) " (B.7) € D and (B, [bf]), (.) € Ny, COp(i) Neonst{(E;. [bf]) # 0.
¢ = (Ej,[bf]) 3,Cr()neonst((Ey,[5f1) (E,[;’)} U

{e | 3e = (B.3) " (B;, [bf]) € D and (B, [bf]), (E.B) € N, Cid) 1 const((Ey, [141)) # 0,
o — (E,B) 1,CE(j)ﬂcon_ﬂ>((Ejy[bf])) (E’B)} U

{ele= (B, bf]) 25 (ipm,[b...b]) €D such that (jp.p,[b...b]) € Ny}

N, is a subgraph of N corresponding to the set of connected components determined by the relations
used in r in the subgraph of the marked nodes. The sets of join constraints associated with edges are

restricted o computed const() sels.

Step 9. If N, is an unconnected graph then RelevantSubspace, = (0,0). Else if N; is a connected
graph then RelevantSubspace, = (R, JC,) where

R, ={(E,a)| F is a noniype-relation such that IN = (F,a) € N, } and

JCr = {je,p | jE B’ is a connected join constraint and o, § such that (E,a) € N, and (E',B) € N,

or jg,g is un unconnected join constraint such that N = (jg g/, [b...b]) € N }.

The above definition of the relevant subspace of a query gives a polynomial algorithm for recursively

constructing a directed graph that will be used to generate connected rules for a given query. For a query

and a capability graph corresponding to the current state of the information space £, the query capability

graph is defined by removing some relation-nodes if they never could be used to generate some data, because

the input arguments needed could not be obtained from any other relations nor are they bound in the query.

iVJE,E’

13The edge N; —= (jg, g, [bb...D]) exists in G.

i

23

We now give a theorem that establishes the connection between a connected rule (Def. 12) for a query and
its capability graph (Def. 18). Intuitively, a connected rule corresponding to a query r could be represented
by a connected graph that must be a subgraph of the query capability graph. If the later is not connected

then there exists no subgraph of it containing all the relations from the query rule that is connected.

Theorem 4 Necessary Condition for Existence of a Connected Query Rule. If the Query Capa-

bility Graph G, for a query r is disconnected there exists no connected rule for the query, i.c., 77e = 0.

Proof: Let r be:

T Q(V) : —El(Xl), EQ(XQ), .. ,En(Xn), C(Xo) (15)

its query capability graph G,, and a connected rule r° corresponding to it:

TC . Q(V) . —El(Xl),EQ(Xg),...,En(Xn),C(XQ),Rl(Yl),Rg(Yg),...,Rk(Yk) (16)

r® has a feasible order by property Feasible (Def. 12) in which the joins are executed. This means that each
nontype-relation E in the body of 7 has an adornment a and for each attribute i a set of join constraints
Cg/re(i) that are used in the connected query rule 7°. Let’s define the subgraph of G, corresponding to r°,
denoted by Gre. Then G,c has all the nodes (E, @) where E is a relation in r® and « its adornment in a
feasible order of ¢ (for type-relation « is [bf]). It has edges with the edge labels restricted to Cg/e(7) for
each attribute i of F. By property Minimum Rewriting all relations from the body of the query r have
anode in Gre. According to the property Connected, G, is connected. Thus, G, is a connected subgraph
of G, that contains all the relations from the body of the query r. But G, has been constructed to have only
connected components corresponding to the relations from the body of the query r. Then existence of r°

proves that there is only one such connected component and thus G, must be connected.

Example 12 let's consider in our example the query requesting the on-line collection addresses that have topics

“greenhouse effect” and their authors. The query could be expressed in our language as follows:

r: Q(U,A): —Address(U), AuthorName(A), ThesaurusTerm('greenhouse effect’) (17)

The computation of RelevantSubspace, is shown below. The table summarizes the const() sets for each step

of the algorithm given in Definition 18 and the set Marked. The capability graph used is shown in Figure 2.

24

Thesaurus Term BsoTerm Address Publication GeneralName AuthorName Date Marked

Step1 0 0 0 0 0 0 0 0
Step 2 r ThesaurusTerm
Step 3 leee_Author
Jj4, j5 AuthorName
j5 Date
Step 4 Conspectus(ffb)
J6.45
J5 Address
J5 Publication
Jj4 GeneralName
Jj1 Nasa_Thesaurus
Step 4 Name_Authority

Following the steps from Definition 18 we have that R, = {(Conspectus, [ffb]), (Name_Authority, [bf]),
(leee_Author, [ff]), (Nasa_Thesaurus, [bf]) } and JC, = {jl,j4,jb,j6}.

7 Dynamic Query Planning Process

7.1 Generation of the Library of Parameterized Action Schemas

Given a user query, the first stage in the query process is to compute the relevant subspace of the query,
as defined in Section 6. Then we transform this DIIM subspace into a format processed by the planning
algorithm (this format is referred to as parameterized action schemas). Thus, the Parameterized Actions
(PAs) are generated only for the information sources that are relevant to a given user query, i.e., they could
be used in the refine process. The planning algorithm generates query plans corresponding to the set of
connected rules of a user query using only the information sources found in the system at the query time
reflected by the fact that the library of actions is obtained only from the relevant subspace of the query.
The generated query plans must not only define what external sites are to be used to answer the query, but
they also must define a partial-order among the steps to be executed in the process of query execution. For
the process of defining the consistent query plans in the DIIM system we thus use a regression planning
algorithm based on the conditional partial-order planning algorithm (CPOP) defined in [RN95].

We now discuss our solution for transforming our given information source descriptions kept in the capability
knowledge base (see Figure 1) expressed in DITM model into a set of parameterized actions that can be used

by the planning agent (see [RN95], [LS93])!*. We start by making the observation that the act of obtaining

14We use a STRIPS-like language to describe parameterized actions.

25

data from an information source corresponds to a sensing action as defined in [RN95], i.e., we cannot know
at the planning time what will be the output at the execution time. For every relation and for every one of
its query templates, we define a new parameterized action (PA) which, at the execution time, corresponds
to querying the relation with an instantiation of that query template.

We propose the following 2-step algorithm for automatically generating the parameterized action library
given the restriction of the information space to the relevant subspace of the query:
Algorithm: Parameterized Action Set Generation
INPUT: RelevantSubspace, = (R,, JC,) the relevant subspace of the query r.
OUTPUT: actions the library of parameterized actions
Step 1: For every (F,a) € R,, F an n-ary relation and the adornment o € AT in its minimal adornment
set, we define a parameterized action (PA) as following: Let B(a) = {b1,bs,...,b; | a[b;] =b,1 < j < k} and
Flay=A{f1,fo,-. s Jack | alf;] = F,1 < j < n—k} correspond to the positions where « has the value b and
[, respectively. Let F(X1, Xs,...,X,) C E1(X1),..., En(Xy) be an integrity constraint of the form (2) and
E(X1,X5,...,X,) CC(X1,Xa,...,X,) be an integrity constraint of the form (1), with C(X1, Xa, ..., Xp)
a conjunction of built-in predicates X;6;Y; with X;,Y; € {X1,Xs, ..., X} for l € {l1,..., [} C{l,...,n}
and j € {j1,...,Jn} € {1,...,n} and built-in predicates X, 9,,,Y,, with X, € {X1,Xs,..., X} and Y},
a constant for m € {ms,...,mp} C {1,...,n} and 6;,9,, € {<,<,=,>,>}. The parameterized action
corresponding to (F, «) is defined by Equation (18). The precondition (defined 7t E; 7R) assures the fact
that when the action will be executed 7t is bound to an object of type E; after querying relation ?R. The
predicates (6 7z ?y) will trigger search control rules at the planning time that will add these constraints to
the plan constraints (see Step 5.7. in the algorithm DynamicQueryPlanning in Section 7.2 and [BCea95])

which must be satisfied at the execution time.

Op(ACTION: E©
PARAMS: (7t1,...,7t,)
PRECOND: (:and
(: exists (relation TR1) (defined 7y, Ep, TR1))

(: exists (relation ?Rk) (defined 7ty, Ep, 7REk))
(new — object 7ty)...(new — object Tty)
EFFECT: (: and (relation E)
(variable ?ty)) ... (variable 7ty)
(defined ?ty, Ey, E)...(defined 7y, , Ef, , E)
(defmed %y, Ep, F)...(defined Ty, Fb, F)
(01 7ty 7t5,) .. (0 7y, 7t5,) (01 Pty Yy) oo (Pp Ptm, Yim,)))

(18)

Example 13 For the Conspectus relation, we have the adornment set AConspectus _ {[6f 1, [ffb]}. For
the adornment [f fb] and using the integrity constraint (ic5), we obtain the parameterized action (19) by the first

step of the Algorithm Parameterized Action Set Generation from Section 7.1.

26

Op(ACTION: Conspectusl//’]
PARAMS: (77 7S 7A)
PRECOND: (:and

(: exists (relation ?7R2) (defined 7S ThesaurusTerm ?R2))
(new — object 7A) (new — object 7J)) (19)

EFFECT: (:and (relation Conspectus)
(variable ?A) (variable ?.J)
(defined ?A Address Conspectus)
(defined ?J Publication Conspectus)))

Step 2: For a given join constraint jg g € JC, of the form (3) E(X),QS(XO) = E’(Y), (;5’(}70) we define
a parameterized action as follows: Let X = (Xi,...,X,) C Xo = (X1,...,Xy,) and YV = (YV1,..., V)
CYo=M,...,Ym,). #(Xo) and ¢'(Yy) are conjunctive expressions with built-in predicates and binary
relations (corresponding to complex subobjects). For each built-in predicate XY in ¢(X,), ¢'(Yy), X and
Y variables in X, and Y, we construct a precondition (0 7z ?y) (?x, 7y are the parameters corresponding
to variables X and Y, respectively). If Y is a constant, the precondition is (¢ 7z V). The preconditions
corresponding to built-in predicates are implemented as facts that will add these constraints to the plan
constraints (see Step 4 in the algorithm DynamicQueryPlanning). Binary relations e(X,Y) in ¢(Xo),
¢'(Yo) have corresponding preconditions (e ?z ?y) that are implemented as facts and will be added to the
plan constraints at the planning time.
PARAMS: (?z1,...,72n,, 71, - - 7Um,)
PRECOND: (: and (relation E) (relation E')

(defined ?xq Fq1 E)...(defined Tz, Epn, E)

(defined Ty E] E') ... (defined Tym, E;, E')
(01 P21 T01) ... (05 Tz5 Tvs)
(’(91 ?tl ‘7w1) . (’lgp ?tp ‘7wp)
(e1 781 7t1) ... (e1 Ts;p M))
(

cand (join ?x1 Ei jeg)...(join ?¢n, En, jE,B')
(jOiTL ?yl Ei jE,E’) (_]027’1, ?ymu E;ng jE,E')))

EFFECT:

Example 14 We present here the parameterized action corresponding to (j5) in Example 5.

27

Op(ACTION: JConspectus,leee_Author
PARAMS: (?ADD ?J 7S ?N ?A?D)
PRECOND: (: and (relation Conspectus) (relation leee_Author)

(defined ?ADD Address Conspectus)
(defined ?J Publication Conspectus)
(defined ?S ThesaurusTerm Conspectus)
(defined ? A AuthorName leee_Author)
(defined ?D Date leee_Author) (21)
(publicationName 7J ?7N) (= 7N 'ieee’))

EFFECT: (:and (join TADD Address j5Conspectus leee_Author)

(
(join ?J Publication j5Conspectus,Ieee_Author)
(join 7S ThesaurusTerm j5Conspectus,Ieee_Author)
(

(

join 7A AuthorName j‘5Conspectus,Ieee_Author)
join 7D Date J5Conspectus,Ieee_Author))

)

As we discussed before, the join constraint explicitly defines some conditions to be met so the two relations
could be joined. We model this semantics by imposing at the execution time that before the join is done the

constraints should be met and that we know the tuples corresponding to the two relations could be joined.

7.2 The Conditional Partial-Order Planning Algorithm for Query Planning

In this section we describe the planning algorithm we use to generate query plans for a given user query and
a system configuration reflected in the parameterized action set.

Given the set of parameterized actions defined for our problem domain, we now propose a conditional
partial-order planning algorithm (see Figure 3). The algorithm is a regression planning algorithm ([RN95])
that incrementally finds possible plans (corresponding to refined queries) for the given query. We have
made several modifications to CPOP defined in [RN95] as required for our problem at hand. First, our
algorithm performs a breadth-first search with the goal of finding all the plans ordered by the number of
total steps'®. Our algorithm will find only the plans that represent connected rules pruning out plans that
are inconsistent or incomplete using the function SOLUTION((plan) (Step 2 in the algorithm) that checks
for this condition. In the following subsections, we discuss how the function SOLUTION() is defined by

expressing the connected rule properties in terms of partial-order plan characteristics.

Algorithm MakelnitialPlan

Input: A query rule in &-normal form r : Q(V) : —Rl(Xl), RQ(XQ)’ o Rn(Xn),C(Xo)
Output: The initial plan plan for DynamicQueryPlanning Algorithm
Step 1.

15Tn the AT literature, typically finding one single plan is considered sufficient, hence depth-first search is utilized [RN95]. For
future work we plan to have more efficient ways of finding the set of query plans based on a real cost reflecting the information
source transaction costs. If we assume that a query has a maximum total cost, the planning algorithm strategy would be a
fixed-depth best-first search with the fixed-depth determined by the total cost constraint.

28

plan = (STEPS: {S; : Op(ACTION START
PRECOND: 0
EFFECT: 0)
Sy 1 Op(ACTION: FINISH
PRECOND: 0
EFFECT: 0)}
ORDERINGS: {S; < S5}
BINDINGS: 0
CONSTRAINTS: 0
LINKS: 0

Step 2. for all built-in subgoals X = ¢ in C(Xp) such that ¢
is a constant, X is a variable and F(X) its type in » do
S1.EFFECT := S, .EFFECT U{(defined X E query)}
plan BINDINGS := plan. BINDINGS U{X = ¢}
end
Step 3. for all built-in subgoals X; = X; in C(Xo), such that X; and X; are variables do
plan. BINDINGS := plan.BINDINGS U{X; = X;}
end
Step 4. for all variables X with F(X) its type, in plan.BINDINGS indirectly bound to a constant do
S1.EFFECT := S1.EFFECT U{(defined X E query)}
end
Step 5. for allY € VU X, U ...U X, with the type E(Y)
such that AR(X), R'(Y) non-type relations in the body of the rule r
such that Y € X N Y'¢ do
S2.PRECOND := S3. PRECOND U{(: exists (?j) (join Y E 75))}
end
Step 6. all new variables must be part of a join
S2.PRECOND := S3; PRECOND U {(: forall (variable ?v)
(: exists (77) (: exists (TE) (join Tv TE 7§))))}
end
Step 7. for all non-type relations R(f() in the body of the query rule r do
S2.PRECOND := S3; . PRECOND U{(relation R))}
for all variables X € X with E(X) its type do
S, PRECOND := S5, PRECOND U{(defined X E R))}
end
end
Step 8. for all built-in subgoals Z0W with § € {<,<,>,>} in C(Xp) do
plan. CONSTRAINTS := plan. CONSTRAINTS U{Z6W}

7.3 Partial-Ordered Plan Description

A partial-order query plan obtained by the planning algorithm (Figure 3) consists of the following com-
ponents: (1) A set & = {S1,52,...,5,} of plan steps which in our domain are parameterized actions. A
parameterized action corresponds to an information source query that is an instantiation of a particular
query template. (2) A set O of ordering constraints. S; < .S; € O means that step .S; must occur sometime
(not necessarily immediately) before S;. (3) A set B of variable binding constraints. A variable constraint
is of the form v = where v is a variable and z is a variable or a constant. (4) A set C of built-in predicates
of the form Z6W where 6 € {<, <, >, >} that must be consistent to the binding constraints. (5) A set £ of

causal links. A causal link S; = S; means that S; achieves the precondition ¢ for the step S;.

29

Algorithm DynamicQueryPlanning (Q(V) : —C’(Xo), Rl(Xl), RQ(XQ), el Rn(Xn), actions, plans)

/* Generate consistent plans for the query Q(f/), actions is the library of parameterized actions generated

from the relevant subspace of the query @Q*/

plans = ()

MakeInitialPlan(Q(V) : —C(Xo), R1(X1), R2(X2), ..., Ra(Xy,), plan)

Qplans ‘= [Plll’n]

for all plan € qpians do:

1. gptans := REST|[gpians) /* we discard plan from the queue of plans*/

if SOLUTION(plan)
plans = plans U {plan}

2.

continue

choose a subgoal to be considered next S,..q with an open condition ¢

if ¢ is a built-in predicate then
if ¢ is consistent with plan. BINDINGS and plan. CONSTRAINTS

then
plan. CONSTRAINTS = plan. CONSTRAINTS U{c}, ¢pians = APPEND(plan, qpians)
continue
for all S,44 from actions or plan.STEPS that has cq4q as effect such that « = UNIFY(c, cqaq,

plan BINDINGS), construct a new plan plang

1

2
3
4
5

2 plang

.aa as follows:

plans,,, = plan /* we make a copy of the plan first */
BINDINGS = plans, ,, .BINDINGS U{u}

LINKS = plans, ,, LINKS U{Sadq < Sneed}

plans,,, ORDERINGS = plans,,, ORDERINGS U{Ssd44 < Sneed}

If Sgaq 1s a new parameterized action from actions then plans,,, . ORDERINGS =
plang,,, ORDERINGS U{ S; < Sudd, Sada < FINISH }
STEPS = plang,,, STEPS U{Sz44}

Check if the plan is consistent, i.e., there is no contradiction in the ordering or binding

add *

plans,,, .

plang

add add

constraints. If some inconsistency then continue

Add to plans,,, CONSTRAINTS all built-in and binary relations predicates from the effect
set of the step S,q4

Check all the constraints from plang,,, CONSTRAINTS against the new

.BINDINGS set. If some inconsistency then continue.

add

planSadd

6. gpians = APPEND(plans,,,, qpians) and continue

Figure 3: The Conditional Partial-Order Planning Algorithm in DIIM.

30

The initial plan consists of the two special steps START and FINISH and the sets S, 0, B,C, £ defined
using the algorithm MakelnitialPlan. The planning algorithm obtains only complete and consistent plans in
the sense defined in [RN95]. A complete plan is one in which every precondition of every step is achieved
by some other step, and no other step can possibly cancel out the condition. More formally, a step S;
achieves a precondition c¢ of the step S; if (1) S; < S; and ¢ € S; . EFFECT and (2) there is no step Sy such
that =c € S; EFFECT, where S; < Sp < S; in some linearization of the plan. A consistent plan is one in
which there are no contradictions in the ordering or binding constraints. A contradiction occurs when both
S; < S;j and S; < S; hold or both v = x and v = y hold with z and y different constants. We have extended
the basic CPOP algorithm as described in [RN95] to handle the built-in predicate set € that permits query
language and information source descriptions to include the conjunctions of built-in predicates. Step 4 of
the algorithm verifies that the set of bindings and the set of built-in predicates are consistent and discards

the plans that do not have this property.

7.4 Connected Rule Representation

The presented algorithm finds only plans that represent connected rules. We give here the necessary and
sufficient conditions for a plan generated by the algorithm presented in Figure 3 to be a representation of
a connected rule for a query. This condition is used by the SOLUTION() function (Step 2 in Figure 3) to

check if a consistent and complete plan is a representation of a connected rule for that query.

Definition 19 Common-Bound Partial-Order Set (CB-set) We say that a partial-order set (P, <)
is a Common-Bound (CB) set if and only is for every two elements p1,ps € P, there exisis p € P so that
either (1) p < p1 and p < ps or (2) p1 < p and py < p*".

Theorem 5 A plan generated by the Algorithm DynamicQueryPlanning is a representation of a connected
rule for the input query if and only if (1) Ye € S1.EFFECT, 3S so that Sy = S and (2) the set plan.O; =
{S; < S;|3S; = S; € plan.L} is a CB-sel.

Proof: | Property (1) is equivalent to property Restriction (see Def. 12) imposing that all the inputs are
used in the query. Because the plan is complete and consistent ([RN93]), it is assured that all the variables
will be obtained from some join constraints (as asked for in the precondition set of the FINISH step) which
is equivalent to the properties Maximal and Feasible from Definition 12. Property (2) from above imposes

that a plan corresponds to a rule that is connected according to property Connected.

Example 15 Consider the query “Retrieve the addresses and related authors for on-line collections that have

the topics 'greenhouse effect’ published in an IEEE journal “, is expressed by:

Q(U, A) : —Address(U), BsoTerm(‘greenhouse effect’), AuthorName(A), Publication(J), publicationName(.J, icec’)
(22)
Figure 4 shows a graphical representation of two plans generated by the planning algorithm for query 22. The
dashed lines represent the outputs for the parameterized actions. The connected rules r1 and ry are the rules

corresponding to plan 1 and 2, respectively.

In the Algorithm GenerateOrdering we give the algorithm for obtaining a feasible ordering for a connected
rule by constructing the solution graph G,. The algorithm starts with (type or non-type) relations that don’t
need any binding, i.e., the relations having [ff...f] among their adornment sets or the type relation E for
which exists a bound variable X such that E(X) is in the body of r. At any step the algorithm finds new

bound variables that could be obtained from the relations that need as input already bound variables until

17If p1 < p2, then p is one of the two.

31

(defined SBsoTerm query) (defined N PublicationName query) (defined SBsoTerm query) (defined N PublicationName query)
plan.BINDINGS
S='greenhouse effect”
Bso_Eq[bf] N= et
- -~ —: plan.CONSTRAINTS
[Tose Autrof] | - ' ey
Conspectus [\ffb] Ieeei/lkuthor[ff] (defined S1 BsoTerm Bso_Eq) ' Ieeei»'kmhor [ff]
~ < ’ Conspectus[ffb] 1 f
N ’ - [
S ’ \ Te-a v !
N /) L |
N 4 \ 1
N \
(defined U Address Conspectus) | (defined A AuthorName ece Author) (defined U Addr ess Conspectus) (defined A AuthorName leee_Author)
(defined J Pybllca(lon Conspectus) (defined B Date leee Author) (defined J Pyblica!ion Conspectus) (deﬂr?ed B Dateleee Author)
~ (relation Conspectus) Y (relation I ece Author) (relation Conspectus) Y (relation leee_Author)
(defined S BsoTerm Conspectus) = (defined S1 BsoTerm Conspectus)
[T5Conspectus, leee_ Author | [15Conspectus, leee_Author |
(a) Query Plan 1 (b) Query Plan 2

Figure 4: Two query plans for query (22) and their corresponding rules:

(a) r1 : QU,A) : =S = ‘greenhouse effect”, BsoTerm(S), Conspectus(U,J,S), Address(U),
Publication(J), publicationName(J, N), N =’ iece’, AuthorName(A4), leee_Authors(A, B)

(b)r2 : Q(U, A) :- S = “greenhouse effect”, BsoTerm(S), Bso_Eq(S, S1), Conspectus(U, J, S1), Address(U),
Publication(J), publicationName(J, N), N = “jeee”, AuthorName(A), leee_Authors(A, B)

no more variables could be bound. If all relevant variables are bound and all relations from the body of the
rule r have attached a permissible binding pattern the algorithm ends successfully. As a last step, the join
constraints used in the connected rule are added to the solution graph.

Using the Algorithm GenerateOrdering, we can prove that the connected relation of a loosely-specified
query r (as defined in Definition 14) is equivalent to the relation defined by the set of rules corresponding

to the plans obtained by the Algorithm DynamicQueryPlanning.

Theorem 6 Let v be a query rule with 7/¢ not empty. Let rpians be the set of plans obtained by the
Algorithm DynamicQueryPlanning and Tpians the set of rules corresponding one by one to the set rpians.

Then 7/e = Tpians -

Algorithm GenerateOrdering (r: Q(V) := E1(X1), E2(X2), ..., Ea(X,), C(Xo))

/* Given r a connected query rule in £-normal form and the adornment sets for all relations contained in
the body of the rule, the algorithm finds a subgoal ordering for r */

Note that a rule r has no feasible ordering if there exists a nonrelevant variable (i.e., it appears only once
in the body of the rule) such that X appears as i’th argument in a relation F and F has no adornment o
such that «fi] = f. It is clear that in any feasible ordering for r, £ must have an adornment with f on i’th
position. Thus for all £ containing nonrelevant variables, we restrict their adornment sets to this type of
adornments.

Construct a solution graph G, = (V;, &) as following:

There are two types of nodes in G,: (1) complete nodes of the form (E, X, &, k) where E(X) is an expression
from the body of the rule r, & € AF is the adornment assigned to F and k is the sequence number for £
corresponding to the fact that all the needed bound arguments for E(X) depend on the relations having
the sequence numbers smaller than k; at any stage of the algorithm, there is at most one complete node
for an expression F(X); (2) an incomplete node (F, X, a,_) with E(X) an expression from the body of the
rule r, @ € AP, specifies that there is no complete node corresponding to the expression E(f() and that
not all the needed bound arguments for the expression E(X) with the adornment & could be obtained from
the existing complete nodes; at any stage of the algorithm there could be more than one incomplete node

corresponding to an expression F(X).

32

Initialize the graph

(1) STARTontype =1 (£, X,a,0) | E(X) is a non-type relation in the body of r and & € AE guch that &
has only f’s }

STARType = {(E,V,[bf],1) | E(V) is a type relation in the body of r and V is a bound variable in C'x, }

START, s, = {(V,V,[f],0) | V is a bound variable in C(X,) }

Ny = START pontype U START ype U START 4y

gr = {(V’ e [f]: 0) i’ (E’ Va [bf], 1) | (V’ e [f]: 0) € STARTuar: (E’ Va [b.f]’ 1) € STARTtyPe}

while 3(E, X, &, k) a complete node unmarked in A, do

xpend a unmarked complete node

—~ o~
W N

N N
[\S2 N
=D D D=

PN

(7) choose (E, X, &, k) € N, and mark it
(8) if F is a type relation (i.e., (E, X, &, k) must be of the form (E, X;,[bf], k)) then
(9) E =& U{(E,X;,[bfl, k) 24 (R, X,B,.) | A acomplete node for R(X) in N,, R(X)
is a non-type relation in the body of the rule r such that the j’th argument is of type E,

- BeAtfll=band X[j]=X; }

N, =N, U{(R, X, ,-) | for all new incomplete nodes added above}
(10) else if F is a non-type relation then
(11) E =& U{(E X, a k)% (R X;,[bf],2) | A a complete node for R(X;) in N, R(X;) is a type relation

in the body of r such that 3¢ where the i’th argument of the
relation F is of type R and a[i] = f, X[i] = X;}

Ny =N, U{(R, X;,[bf],0) | for all new incomplete nodes added above}
(12) end
Add new complete nodes
(13) for all incomplete nodes (R, X, &,) in N, such that for all i with &[i] = b

E,Y, 3,0 2 (R X, a,) €&, do
(14) N = MU {(R, X6 k+ D)\ {(R, .3,) | ¥3)
(15) & =&UEY, BN (R X, ak+1)|(EY,30)2% (R X a_)&}
(B, X, f,m) 24 (R, X,5,) | Y5, and (B, X, f,m) € A}

(16) end
(17)end
(18)if every E(X) from the body of the rule r is marked in N, i.e., (E, X, &, k) € N, a complete node
(19) then the solution is given by A,
(20) else r doesn’t have a feasible solution
(21)end

If r is a connected query rule then by property Connected from Definition 12 3.J4, Jo, ..., J,, DIIM join
constraints where for any i,1 < 7 < m, (J;) is defined as E]lyl(}?l),(z)'jhl(yfl) =5 E]l’g(Yv) (bJ“g(Y’g) and
there exists a unifier 7; that unifies the join constraint J; with the body of the rule =, i.e., 3k;, l;, 1 < k;, [; < n
such that Ti(EJ“l(Yl)) = Ekl(j(kl) and Ti(Eth(Yz)) = E;l()?ll). The solution graph of r is modified by
adding the nodes (Ji, (Xx,, X1,), [bb], s) to N;, and the edges (Ex,, Xx,, &, J) L (Ji, (Xx,, X1,), [bb], 5) and
(B, X0, B,p) = (Ji, (Xi,, X0,), [B], 5), for all 1 < i < m.

Proof
(1) 7/¢ C Tplans-
We now show that for every connected rule r° from 7,¢ there exists a plan such that its corresponding rule

18 in Fprans. Let r® be defined as follows:

’PC . Q(V) . —El(Xl), EQ(XQ), ey En(Xn), C(Xo), Rl(Yl), RQ(Y2), cey Rk(Yk) (23)

r

33

Let Gre = (Nye,&rc) be its solution graph constructed by the Algorithm GenerateOrdering. Then we

construct a plan corresponding to G, as follows:

(1) MakelInitialPlan(r, plan)

(2) for all nodes (R, X, &, k) € Nye
we construct an instantiated parameterized action Sig x 4 1)
from the parameterized action R&" by unifying X = (X1, Xo, ..., X,)) with 7t = (71, %a,..., 7).
plan. STEPS = plan.STEPS U{S(g x 51}
plan. CONSTRAINTS = plan. CONSTRAINTS U{g | g € S(g x a,): 9 is a built-in subgoal in
EFFECT or PRECOND}

end

(3) for all edges (E,X,B, m) i (R,Y,%,n)
in &.c with S; and Sy their corresponding steps added at (2) do
plan.LINKS = plan.LINKS U{S, (/42 B B) gy
plan.ORDERINGS = plan.ORDERINGS U{S; < S5}

(4) for all nodes (J;, (X, X1,), [bb], 5) € Npe
we construct an instantiated parameterized action S(J“(Xkly)gll)’[bb]’s)
from the parameterized action .J; by unifying (X, X1,) = (X1, X2, ..., Xng, Y1, .-, Yim,) With
2= (721,72, ., 200, TYL, - - - Yo)-
plan. STEPS = plan. STEPS U{ 5(;, (x, x,)p0),5) }

end

We claim that the plan constructed above is obtained by the Algorithm DynamicQueryPlanning less a
symbolic mapping.

(2) Tplans C 7/¢

Any plan obtained by the Algorithm DynamicQueryPlanning has a connected rule representation. This is
true because function SOLUTION in the algorithm is checking exactly this property.

8 Related Work

This research is conducted in the general context of a large, interdisciplinary project of constructing a dis-
tributed agent-based architecture for UMDL, the University of Michigan Digital Library System [ABD*96].
UMDL assumes a large, decentralized environment of independent agents, including task planners, medi-
ators, and thousands of information sources. The development of a model such as DIIM to describe the
content and capabilities of the information sources, and the efficient processing of user queries across this
large space using planning and other such techniques, as done in this paper, is one of the key issues that
must be tackled as part of this effort.

In the work of Levy et. al [LSK95], a global information system is designed using the world-view approach
where the external information sources are described relative with the unified world-view relations. Put
differently, a global unified schema as common for tightly integrated multidatabase systems is constructed.
Having external sources described relative with the unified world-views is somehow similar with our approach
of imposing join and type constraints for external relations. However, in such tightly-integrated model, the
definition of the world-view relations and descriptions of the external information sources are subject to
“schema evolution” if new sites join the system and they cannot be described relative to the existing world-
view relations. The queries in the global information system are expressed in terms of world-view relations,
i.e., the global multidatabase schema and external sources are assumed to support SPJ queries, i.e., all
sources are relational having the same query capabilities. This approach requires the system users to know

the definitions of the world-view relations.

34

Papakonstantinou et al. [PGMW95, PGMU95] are pursuing a similar goal of information gathering across
multiple sources. However, their proposed language OEM assumes queries that explicitly list the source
identifiers of the database from which the data is to be taken. Thus loosely-specified queries (e.g., that
don’t specify from where the data is to be retrieved) are not handled. However, the query reformulation
process is similar to our planning algorithm both considering the query templates of the external information
sources.

[CKP94] relates to our DIIM approach in as much as our information source descriptions, in particular,
the query templates along with the source descriptions, can be regarded as view definitions. Our planning
algorithm thus effectively constructs and optimizes queries across these ‘views’ - as done in [CKP94]. How-
ever, our query planning is more sophisticated because we also incorporate join and integrity constraints.
In addition, we establish what constitutes a fully-specified refined query and give necessary conditions for
query construction.

The notion of using query templates as part of an information source description is based on [UlI89,
RSU95]. In DIIM, we utilize these query templates as one of the basic building blocks for constructing
the parameterized action set and then to generate ‘good’ executable plans given our semantic of query
refinement, i.e., connected query rule concept.

Our techniques of query planning are based on Al planning techniques [RN95]. However, we make several
important extensions to this previous work in order to handle the DIIM model, e.g., we take care of join
constraints for defining what constitutes an acceptable solution plan and find all the query plans which

represent connected query rules.

9 Conclusions

In this paper, we have presented a novel solution approach towards addressing the problem of integrating
diverse information sources in a dynamically changing information space such as a Digital Library envi-
ronment. Our solution incorporates an interactive query processing strategy that dynamically adapts its
behavior to the system resources at hand, rather than generating plans for a fixed a-priori constructed, uni-
fied global schema across all sources. One contribution of our work is the Dynamic Information Integration
Model (DIIM) which is utilized to model the content and capability descriptions of individual information
sources using query-templates, bindings, and constraints as well as possible interrelationships between two
or more information sources expressed as join constraints. Our approach does not require a unified global
data model nor a uniform interface to all information sources in the environment. Instead, the system will
permit the user to enter loosely-specified queries expressed using the known concepts of the application do-
main (ontology). Our system will then do the work of refining these queries into well-defined fully-specified
query plans that can be executed against the current configuration of available sources.

Contributions of this work include (1) the DIIM model and query language semantics, (2) the introduction
of the notion of fully specified queries that are semantically equivalent to a loosely-specified query permit-
ted in our system (we show that our concept is a consistent and natural extension to the concept of full
disjunction); (2) an algorithm for reducing the search space into a relevant subspace of a query and checking
the necessary condition to be met by the current system configuration in order for the given query to be
answerable by the system; (3) an algorithm based on CPOP that translates a loosely-specified high-level
query into a set of semantically equivalent query plans that can be executed against the current configuration
of available sources; (4) the steps of the resulting query plans are proven to be consistent with the binding
patterns of query templates of the individual sources (capability descriptions in DIIM) and with possible
interrelationships between two or more information sources (expressed as join constraints in DIIM) by defin-
ing the parameterized action library using DIIM descriptions found in the Capability Knowledgebase, and
(5) the proof of correctness of our algorithms shows that the plans obtained by the query planning process

correspond to semantically equivalent query plans.

35

We are in the process of the design and implementation of the first DIIM prototype over the metadata

information space in UMDL [ABDT96] having as information sources a conspectus database using Sybase

DBMS, a number of controlled vocabulary resources, e.g., Broad System of Ordering, Nasa thesaurus and

name authority sources, and some other metadata sources, e.g., author indexes. The planning algorithm

has already been tested in isolation with promising performance. More extensive experimental evaluations

are planned.

References

[ABD*96]

[BCea95]

[BDMS94]

[BS93]

[Cat94]

[CKP94]

[Cor95a]

[Cor95b]

[EN94]

[GL94]

[GMHT+95]

[Gol91]

[KLSS95]

[KS91]

D.E. Atkins, W.P. Birmingham, E.H. Durfee, E. Glover, T. Mullen, E.A. Rundensteiner,
E. Soloway, J. Vidal, R. Wallace, and M. Wellman. Toward Inquiry-Based Education Through
Interacting Software Agents. ITEEFE Computer, May 1996.

A. Barrett, D. Christianson, and M. Friedman et al. UCPOP User’s Manual. Computer Science
and FEngineering, Uniwversity of Washington, Tech. Rep., 1995.

C.M. Bowman, P.B. Danzig, U. Manber, and M.F. Schwartz. Scalable Internet Resource Dis-
covery: Research Problems and Approaches. Communications of the ACM, 37(8), August 1994.

C. Backstrom and E. Sandewall, editors. Current Trends in AI Planning- EWS0’93. 10S Press,
1993.

R.G.G. Cattell. Object Data Management - Object-Oriented and Extended Relational Database
Systems. 1994.

S. Chaudhuri, R. Krishnamurthy, and S. Potamianos. Optimizing Query with Materialized
Views. HPL-DTD-94-16, Hewlett Packard Research Laboratories, Palo Alto, CA, 1994.

Infoseek Corporation. InfoSeek. Technical Report, hitp://www.infoseek.com:80/Home, April
1995.

Netscape Communications Corporation.
Internet Search. Technical Report, hilp://home.mcom.com/home/internet-search.himl, April
1995.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. The Benjamin/Cummings
Publishing Company, Inc., 1994.

C. Galindo-Legaria. Outerjoins as disjunctions . SIGMOD, 1994.

H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom. In-
tegrating and Accessing Heterogeneous Information Sources in TSIMMIS . Proc. of the AAAT
Spring Symposium on Information Gathering in Distributed Heterogeneous Environments, Stan-

ford, California, March 1995.
C.F. Goldfarb. The SGMIL Handbook. Clarendon Press, Oxford, 1991.

T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold. Proceedings of
the AAAI Spring Symposium on Information Gathering in Distributed Heterogeneous Environ-
ments, Stanford, California, March 1995.

H. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill, Inc., 1991.

36

[1.593]

[LSK95]

[NR95]

G. F. Luger and W. A. Stubblefield. AI: Structures and Strategies for Complex Problem Solving
. Benjamin/Cummings Publishing Co., Inc., 1993.

A.Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in Global Information
Systems. Journal of Intelligent Information Systems. Special Issue on Networked Information
Discovery and Retrieval, 1995.

A. Nica and E. A. Rundensteiner. Uniform Structured Document Handling Using a Constraint-
based Object Approach. Advances in Digital Libraries (ADL’95), A Forum on Research and
Technology Advances in Digital Libraries, Virginia, book chapter in ADL’95, Springer Verlag,
May 1995.

[PGMU95] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker: A Mediation Sys-

tem Based on Declarative Specifications. Awailable by fip at db.stanford.edu as the file
pub/papakonstantinou/1995/medmaker.ps, 1995.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across Heterogeneous

[RN95]

[RSU95]

[RU96]

[U1189]

Information Sources. IEEE International Conference on Data Engineering, pages 251-260,
March 1995.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answering Queries Using Templates With Binding
Patterns. Principles of Database Systems, pages 105-112, May 1995.

A. Rajaraman and J.D. Ullman. Integrating Information by Outerjoins and Full Disjunctions.
Principles of Database Systems, 1996.

J.D. Ullman. Principle of Database and Knowledge-Base Systems. Computer Science Press,
1989.

37

