Early Design Cycle Timing Simulation of Caches

Preliminary Exam Report

Edward S. Tam
estam@eecs.umich.edu

Advisor: Edward S. Davidson
davidson@eecs.umich.edu

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan

September 9, 1996

Early Design Cycle Timing Simulation of Caches

Table of Contents

2.0 Cache overview

3.0 Overview of cache simulation

4.0 Implementing the LE cache model
4.1 Dinerolll

4.2 Resource Conflict Methodology

4.3 Implementing LE on top of Dinerolll

4.4 The LE cache model outside ofri@rottt ...~
4.4.1 Trailing edge effects

4.4.2 Bus width issues

4.4.3 Number of outstanding accesses
4.4.4 Port limitations

4.4.5 Flow chart diagramming the operation of the LE cache model
4.5 Using the RCM model to implement LE

5.0 Experimental results

5.1 Characterizing the RS/6000 cache

5.2 Comparing the simulator output to actual machine performance

5.3 Accuracy of the outynt

5.4 Analyzing the flexibility of the LE cache model

Preliminary Exam Report

Early Design Cycle Timing Simulation of Caches

5.4.1 Varying latencies 48
5.4.2 Varying the number ofports 50
5.4.3 Vvarying bus widths 50
5.4.4 Varying the number of outstanding accesses allowable 53
6.0 Execution times 57
7.0 LEoutput 58
8.0 Conclusion 60
9.0 Futurework 62
10.0 Acknowledgments 63
11.0 References 63
Preliminary Exam Report i

Early Design Cycle Timing Simulation of Caches

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Figure 6:
Figure 7:

Figure 8:
Figure 9:

Figure 10:

Figure 11:
Figure 12:

Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 27:

Program 1 9
One block-aligned portion of memory (blocksize=64B) 10
Execution behavior of Program 1 according to unmodified Dinerolll 10

ports are available 12
Execution of Program 1 with words from memory returning in sequential cycles

with only 1 read port to the cache 13
Program2 13
Another block-aligned portion of memory (blocksize=64B) 14

Execution of Program 2 with words returningrh memory in sequential cycles 14

accesses at a time with 1 read port to the cache 15
Progpam3 16
Execution of Program 3 on a processor whose cache can only sustain two outstanding
accesses atatime 16
State of update_buffer when the access to address C is being evaluated 21
State of update_buffer after access to address C has been evaluated 22
Flow chart showing the operation of the LE cache model 27
A high-level picture of the overall processor/cache simulator, RCM_brisc+LE 31
Interaction between the processor simulator, RCM_brisc,andLE =~ 32
Basic cache parameterization progpam 33
Example load kernel 34
Load kernel performance 34
Sample store kernel 35
Store kernel performance =~~~ 35

Execution times of each of the load/store subkernels as simulated by RCM_brisc with
the4 cache models and as measured on an actual RS/60CO 39

Execution times of each of the load/store subkernels as simulated by RCM_brisc with
the 4 cache models and as measured on an actual RS/6000

The effect of varying the number of read ports and the cache-to-memory bus width on

Preliminary Exam Report ii

Early Design Cycle Timing Simulation of Caches

Figure 28: The effect of varying the number of outstanding accesses allowable on the number of
stall cycles due to a blocked cache for kernel loadtranstride4 56
Figure 29: LE simulation output for Livermore Loop Kernel3 59
List of Tables
Table 1: Inputs used to configure the LE cache simulator 31
Table 2: Cache characteristics used to model the RS/6000 Model 320H 37
Table 3: Comparison of relative execution times of each of the Livermore Loop Kernels as
simulated by the four simulators vs. the actual executiontimes 43
Table 4: Comparing the expected number of delayed hits with the actual number of delayed hits
seen from program simulaton 47
Table 5: Relative simulator run time for the LE and LE-nominal cache models over RCM_brisc
alone 57

Preliminary Exam Report v

Early Design Cycle Timing Simulation of Caches

Abstract

Cache prformance is a key component of a microprocessor's overall performance, as it is the
cache that buffers the high speed CPU from the much slower main memory. Behavioral cache
simulators indicate the performance of a given cache configuration in terms of the number of hits anc
misses experienced when running a piece of code. One can attach a leading edge penalty or “effective
penalty estimate to each miss to get a first order idea of run time. However, individual timing penalties
are not assessed within these models, nor are the various factors that can affect each memory acce
latency. Our Latency Effects (LE) cache model accounts for additional latencies due to trailing edge
effects, bus width considerations, the number of outstanding accesses allowable, and port limitations.

A tool implementing the LE cache model has been built on top of a behavioral cache simulator
Dinerolll, in the spirit of the Resource Conflict Methodology developed by J-D Wellman. The tool was
combined with Wellman's RCM_brisc processor simulator to provide a realistic interaction of the cache
with the processor (including the latency masking effects of processor activity) and to assess th
accuracy of the model when simulating the execution of actual programs. The combined tool accuratel
mirrors the effects of changing a cache’s configuration for a given processor configuration running a
variety of programs. While the reported execution times do not exactly match the total execution time
of the same programs running on actual hardware, the tool provides enough useful information to guid
processor/cache designers early in the design cycle toward optimal configurations for target
applications. This addition of cache modeling to the RCM_brisc instruction-level processor simulator
with perfect cache increases simulation time by only 17% (less than 5% over a constant miss penali

cache model), which is reasonable given the added benefits of using the LE cache model.

Preliminary Exam Report %

Early Design Cycle Timing Simulation of Caches

1.0 Introduction

Cache performance is a key component of a microprocessor's overall performance, as it is tr
cache that buffers the high speed CPU from the much slower main memory. Behavioral cach
simulators indicate the performance of a given cache configuration in terms of the number of hits an
misses experienced when running a piece of code. Timing penalties are not assessed within the
models, giving a false perception of a cache's actual impact on a system. In a simple model, which c
be applied to the behavioral simulator output, each miss is simply assigned a minimum (leading edgt
penalty, or an effective (average) penalty. However, there are actually a variety of latency-adding
effects that depend upon such things as which words within a cache block are accessed (upon and st
after a miss), the width of the busses between the CPU and cache and between the cache and next I
of memory, the number of outstanding accesses the cache can sustain, and the number of available pt
to the cache.

Detailed circuit level simulators (timers) do charaizerthese additional effects, but these
simulators are specific to a given machine. As opposed to behavioral simulators, which sacrifice deta
for configurability, circuit level simulators target a specific machine and simulate its actual operation.
Typically, circuit level simulators can only be created after the cache design is near its final, detailec
implementation. A simulator that achieves a compromise between behavioral simulators and timer
would be very useful for assessing the benefits of using a particular cache configuration in a givel
processor. Such a simulator could be employed much earlier in the design cycle than a traditional tim
and could run at comparable speeds, or much faster, while producing results that adequately reflect t
execution of a given program running on actual hardware. Furthermore, it would retain the flexibility of
a behavioral simulator, allowing many configurations to be evaluated in a reasonable time while
producing a much more realistic performance assessment. If the tool adequately models a majority
the effects that would be seen in normal execution, the performance estimate should be quite accura
helping designers to identify the changes that are needed to obtain high performance at a reasona

cost.

Preliminary Exam Report 1

Early Design Cycle Timing Simulation of Caches
We have implemented such a configurable cache simulator that is more realistic, and thus mor

accurate, than a behavioral simulator, yet is more paramaterizeable than a machine-specific timer. T
tool uses an experimentally developed Latency Effects (LE) cache model for a machine of interest an
some parameterized extensions to determine the access latency for each memory access in a trace.
access latency depends not only upon whether the access is a hit or miss, but on its relationship to ott
accesses in process, the width of the memory busses, the number of outstanding accesses that the c:
can sustain, and the number of ports to the cache. Specific latency-adding effects are derived from t
experimental model as a function of the specific reference patterns in the trace.

As a first step in assessing the correctness of the LE cache model, the cache simulator has be
combined with J-D Wellman's RCM_brisc tool [Wellman95], which is based upon his Resource
Conflict Methodology (detailed in Section 4.2). Together, the combined tool, RCM_brisc+LE,
simulates an RS/6000-like (POWER) microprocessor with cache. Our simulation results show that fo
memory stressing codes, the output of the resulting simulator, RCM_brisc+LE, closely follows the
trends seen by the same programs running on actual hardware. Furthermore, detailed analysis of thc
programs and the resulting output of the simulator show that the output corresponds closely to the resu
we would expect to see on a corresponding processor/cache configuration running those programs.
addition, a variety of useful statistics are provided by the new tool which serve to aid computer
architects and programmers in the design and use of caches for target applications. These added ben:
are provided with a maximum increase in simulation time of 17% over a processor-only simulator tha
assumes a perfect cache, and only 4.5% over a combined simulator that assumes a constant miss pen

Before we discuss the LE cache model and its implementation, we present an overview of cache
and cache simulation in Sections 2.0 and 3.0, respectively. Then, the implementation of the LE cact
model is presented in Section 4.0, followed in Section 5.0 by experimental results from the LE cach
model implementation and an assessment of their accuracy. The cost of using the LE cache model
presented in Section 6.0, followed by a description of the simulator’s output in Section 7.0. Conclusion:

are drawn in Section 8.0 and future work is discussed in Section 9.0.

Preliminary Exam Report 2

Early Design Cycle Timing Simulation of Caches

2.0 Cacheoverview

A cache is a small, fast memory that is managed so that it contains recently accessed blocks
memory. The first level of the memory hierarchy encountered once the address leaves the CPU
generally a cache [Hennessy96]. The use of caches is based on the principle of locality, which says tr
most programs do not access all code or data uniformly. Instead, code or data is accessed in grot
(spatial locality) or it is accessed repeatedly in a short period of time (temporal locality). To make us:
of locality, this small, fast memory is placed between the CPU and the slower, larger next level of
memory. In general, several levels of cache may be used and separate caches at the same level ma
used for instructions and data. The level of hierarchy targeted in this paper is the first level of dat:
cache, known as the L1 data cache.

The L1 data cache (herein referred to simply as cache) is the smallest, fastest memory that tf
CPU can access. It can service memory requests at or near the CPU’s execution frequency, but
incur longer latencies when requested information is not present in the cache. When an access is me
to data not already allocated in the cache, the data must be obtained from the next level of the mema
hierarchy. This process is called servicing a cache miss, and usually takes many more cycles to sati
than a cache hit. Requests that reference data that is allocated in the cache return the desired data in
time than the full miss latency and are called hits to the cache. As we will see in Section 2.2, there a
actually several types of hits with various access delays that they may suffer; for Section 2.1, the simp!

concept that a hit returns data immediately to the CPU will suffice.

2.1 Componentsof cache design

There are many well-known components to cache design. The cache is broken into chunk
called blocks (also referred to as lines). A block is a collection of contiguous data that is treated as
single entity of cache storage. Blocks often consist of multiple words, with the typical word size being
32 or 64 bits for today’s microprocessors. Larger blocks (e.g. blocks consisting of a greater number ¢

words) take more advantage of spatial locality, as more data close to recently accessed data is storec

Preliminary Exam Report 3

Early Design Cycle Timing Simulation of Caches
the cache within one atomic cache allocation unit. However, blocks that are too large sacrifice tempor:

locality, as having larger blocks for a fixed size cache reduces the number of different blocks that can k
stored in the cache at once. Furthermore, using larger blocks can increase the miss latency, as a gre
number of cycles may be required to fill a cache block with data from the next level of memory for a
fixed size cache-to-memory bus. Larger blocks can also increase cache pollution because superfluo
data may be brought into the cache within the referenced blocks. Blocks that are too small sacrific
spatial locality, as data close to, but not in the same block as recently requested data already presen
the cache may have to be fetched from the next level of memory when it is requested. Typically, bloc
sizes in today’s caches range from 32 to 128 bytes.

Each block maps into a single set in the cache. A set is a group of blocks in the cache; in a k
way associative cache, a set can simultaneously hold any k of the blocks that map to it. Highe
associativity provides more flexibility as to which blocks may simultaneously reside in a fixed size
cache, and hence generally results in a higher hit ratio (the fraction of memory accesses found in ti
cache). However, increasing the associativity of a cache increases the number of tags that must
checked to see if the referenced data is in the cache. Thus, the time to access requested data in a hi
associative cache grows due to the increased time required to perform and resolve the increased num
of comparisons within a set to find the desired data. Due to its faster access and simple
implementation, the associativity of caches is kept low in most cache designs. Typically, today’s cache
are direct mapped, two-, or four-way set associative.

Every time memory is accessed, a check must be made to see if the referenced data is in t
cache. If the data is in the cache, the reference is a cache hit, and the data is returned directly from
cache. If the desired data is not in the cache, the reference is a miss and the transaction must acce:
higher level of the memory hierarchy. In detail, a miss may be handled in different ways, depending
upon the configuration and management policies of the cache and whether the access is a read or a wr

When a read miss occurs, a block in the cache is replaced with the desired data. There a
several methods to determine which block should be replaced (Least Recently Used, random, ar
optimal, among others) [Hennessy96]. Some approximation of the LRU replacement algorithm is

usually used in today’s caches. Random replacement is sometimes used in large caches to reduce

Preliminary Exam Report 4

Early Design Cycle Timing Simulation of Caches

implementation cost. Our simulations assume LRU replacement, but other strategies can be selectt
The optimal algorithm may be used to determine an upper bound on cache performance; however, it
not implementable as it requires knowledge of the future in order to make its replacement decisions.

For all write accesses, be they hits or misses, the next level of memory must eventually be
updated with the new changes. Two write policies are commonly used: write through and write back
In the write through policy, the information written to the cache is written to the next level of memory at
the same time or soon thereafter. In write back, the information is initially written only to the cache; the
modified cache block is written to the next level of memory only when it is replaced. For uniprocessors
the write back policy is normally used. In many cases, the data in a block may be changed multipl
times before the block is replaced and then written out to the next level of memory. By delaying the
update, multiple writes to a block can be grouped into one update, which generally results in highe
performance.

When a write miss occurs, the referenced block need not be loaded into the cache. In writ
allocate caches, the block is loaded on a write miss; a block replacement process similar to that for rei
misses is then used, followed by the update of the block in the cache. In no-write allocate cache
however, the referenced block is modified directly in the next level of memory and is not loaded into the
cache. Write back caches generally use write allocate, hoping that subsequent writes to that block w
be captured by the cache. Write through caches often use no-write allocate, since subsequent writes
that block will still have to go to memory.

The width of the busses between the Gifid cache and between the cache and the next level of
memory can affect the latencies of the memory accesses. Most accesses are word-sized, a wc
typically being 32 or 64 bits (4 or 8 bytes) in size. The busses between the levels of the memon
hierarchy are usually some multiple of the word size, though they are rarely as wide as the size of ¢
entire cache block. As a result, portions of the block, called subblocks, are filled on consecutive bu
cycles by data returning from the next level of memory when satisfying a cache miss. For instance,
the cache-to-next-level-of-memory bus width is 1/4 of the size of a block, it will take four bus cycles to
fill the entire cache block. The subblock containing the desired word is normally returned first; in this

case, the block starts “filling” at the desired subblock and wraps around to the beginning of the block t

Preliminary Exam Report 5

Early Design Cycle Timing Simulation of Caches
complete the block fill. While this minimizes the time to access the desired (missing) word, the other

words in the cache block must wait additional cycles before they are present in the cache; this addition
wait can adversely affect the latency of future memory accesses, as we will see in Section 3.2.

Since the advent of pipelining, multiple memory accesses are often in flight at once. In a
blocking cache, an access that follows a miss must wait to begin execution until the miss completes i
access. A cache allowing hit-under-miss, on the other hand, would allow hits to complete while a mis:
is outstanding; a new miss would still have to wait until the earlier miss completes. A cache capable c
sustaining more than one outstanding miss is called a non-blocking cache. The number of allowabl
outstanding accesses is defined as the maximum number of uncompleted misses that the cache
support while still allowing new memory requests to begin execution. Once this threshold is crossed, a
future accesses, be they hits or misses, must wait until at least one of the outstanding misses comple
before they can begin execution.

The number of ports to the cache also affects cache performance. A port is a point of access
the cache — it can either be a read port, write port, or both. Transactions can take place only when a p:
of the desired transaction type is available. If a read (load) is requested and no read ports are availak
the access must wait until a read port becomes free; in most cases, the port becomes free the very n
cycle, as a port is normally used for only one cycle per transaction. However, if a transaction uses tr
port for multiple cycles or there are older (pending) accesses waiting to use the desired port, the ne
access may have to wait additional cycles to obtain the use of the port. Increasing the number of ports
the cache can alleviate this problem, though this approach is usually avoided due to its high cos

Today's caches often have two ports so that potentially two accesses can be completed in each cycle.

2.2 Terminology

In this section, we review some of the terminology that will be used throudhesttper:

Cache hit- an access to the cache that requests data that is presently in the cache. F¢

reads, the desired data is returnedAaHE_HI T_LATENCY cycles.

Preliminary Exam Report 6

Early Design Cycle Timing Simulation of Caches

Latency-adding effects -effects a memory access may experience that add to its nominal execution

Delayed hit—

Miss—

Cold-start miss-

Capacity miss-

Conflict miss-

Read miss latency

Write miss latency

time, e.g. trailing edge effects, bus width considerations, the number of
outstanding accesses allowable, and port limitations.

a hit that experiences latency-adding effects. These are called hits because
they do not incur the full read or write miss latency; furthermore, they do not
generate any additional miss traffic.

an access to the cache that incurs the full read or write miss latency. (Misses
are further categorized below).

a miss access to the cache that occurs because the block that contains th
desired data has never been accessed before. Also known as a compulson
miss.

a miss access to the cache that is not a cold-start miss, but occurs because th
entire working set of the program cannot simultaneously reside in the cache.
The number of capacity plus cold-start misses is the total number of misses
that would occur in a fully associative cache of the same size and block size
with optimal replacement.

all other miss accesses to the cache, which occur because more than k block:
of the working set map to the same set of a k-way associative cache, and
additional misses that may be due to the nonoptimality of the replacement
policy, thereby causing some data to be replaced during execution.

the nominal time to satisfy a read (load) request that misses in the cache, e.g.
the time to return the desired data from the next level of memory to the cache
under ideal circumstances.

the same as read miss latency, except for write (store) requests.

Preliminary Exam Report 7

Early Design Cycle Timing Simulation of Caches
3.0 Overview of cache ssmulation

Cache simulation is widely used to determine the performance of a given cache configuration fol
the execution of a target application. This evaluation can be done using behavioral cache simulator
circuit level simulators (timers), and via the measurement of actual systems (using hardware monitors
Behavioral cache simulators are highly paramaterizeable, but they do not represent the access latenc
of a target machine accurately. Circuit level simulators, on the other hand, are extremely accurate for
single machine, but are not paramaterized to evaluate a variety of dissimilar machine implementation
Finally, the measurement of an actual system, while useful in gauging performance, requires
completely implemented, fully operational system, and even then may not give designers ot
programmers a good idea of the underlying causes of the measured performance. The Latency Effe«
(LE) cache model and its implementation improves upon these techniques by incorporating more of tr
effects that a memory access can experience than a behavioral cache simulator does while providing t
flexibility to change the configuration of the target cache for each simulation run. Furthermore, the
statistics output by the LE tool aid the designers and programmers in determining the bottlenecks ar

underutilized resources of the configuration.

3.1 Currently available behavioral cache simulators

Many behavioral cache simulators are currently available, including Dinerolll [Hill85], ACS
[PARL95], Fast-Cache [Lebeck95], and others. These simulators take cache design parameters, sucl
cache size, block size, and associativity, together with a sequence of memory accesses as input ¢
determine the number of cache hits and misses that would occur if the code were run on a processor w
a cache of the corresponding parameters. Each memory access is analyzed individually, and its res
(whether it is a hit or miss to the cache) is dependent upon the state of the cache at the time of tl
access. The job of the simulator is thus to maintain the cache state and decide whether each succes:

reference is a hit or a miss. After each access is evaluated, its effect on the cache is immediate, e.g.

Preliminary Exam Report 8

Early Design Cycle Timing Simulation of Caches
block of data is loaded into the cache by one access, all of that data is considered to be present a

immediately accessible in the cache when the very next access arrives.

3.2 The LE cache model

While knowledge of the number of cache hits and misses is useful, knowing the effects of thos:
hits and misses on a program’s execution is essential for guiding the design process. One way to a
this functionality to existing cache simulators is to attach a latency to each access. This addition enabl
us to determine the number of cycles required to execute a given sequence of memory accesses.

However, this approach assumes that all memory accesses are independent and decoupled,
once the earlier access to the cache line is evaluated, the requested data is immediately present in
cache until it is replaced. In actuality, if an earlier access has not fully completed before a new access
the same cache line occurs, a trailing edge effect may be seen. The new access to the cache line
then require more thaDACHE_HI T_LATENCY cycles to complete because the referenced data, although
allocated, is not yet actually present in the cache yet. However, since an earlier access to the cache |
is already in flight, this new access will not incur the full read or write miss penalty. Furthermore,
performing this new access to the cache line does not generate any additional miss traffic, as the desi
data is already in transit from the next level of memory to satisfy the earlier request. Current gener
simulators do not address trailing edge effects, as they assume that after an access is made to a c
line, all subsequent accesses to that line are cache hits (until the line is replaced). We call such
reference that experiences trailing edge effects (and other hits that experience other latency-addir
effects) adelayed hit Thus we divide accesses into cache hits, delayed hits, and misses.

Trailing edge effects can have an enormous effect on a program’s actual execution time. Th

greatest impact is made when there is a series of memory accesses as in Program 1:

1LDF A

2 LDF B

3LDFC

4 LDF D
Figure1l: Program 1

Preliminary Exam Report 9

Early Design Cycle Timing Simulation of Caches
Suppose that the data in memory is laid out as follows:

Byte Offset: 0 8 16 24 32 40 48 56
Data: A B C D E F G H

Figure 2: One block-aligned portion of memory (blocksize = 64B)

For simplicity, suppose that access requests are sent to the cache in the first Execute stage of t
processor pipeline and that loads complete in the same cycle that the data returns from the cact
Assuming that the access to address A is the first access to that cache line, the LDF (floating-point loa
at line 1 will always miss (it is a cold-start miss). In a cache with a block size of 64 bytes, the three
subsequent LDFs will be recorded as hits to the cache in a cache simulator such as Dinerolll, since ec

load requests 8 bytes of data and all the desired data is in the same block. This situation is shown belc

in Figure 3:
O I Xeomomo-- W
1) A
2) BA------- >A (m ss)
3) CB------- >B (hit)
4) DG ------ >C (hit)
5 D------ >D (hit)

Figure 3: Execution behavior of Program 1 according to unmodified Dinerol |

In the figure above, Cy indicates the cycle number, | indicates the issue stage of the pipeline, X show
the start of the execution phase, and W is the writeback ‘sti¢jthout any modification, Dinerolll

would indicate that all the accesses complete in the same cycle that they begin execution, regardless
whether they hit or miss. The information about whether the access actually hits or misses in the cacl
is recorded for statistical purposes. If Dinerolll were used to model memory accesses in conjunctio
with a processor simulator, all Execute and Writeback stages for these loads would be merged into o

cycle, and this sequence of instructions would require five cycles to execute.

! The target machine in this example is a uniprocessor with a single load/store execution unit that can handle one memo

request per cycle. This machine model will be used throughout this study to simplify the analysis; the following
examples can easily be extended to execute on a machine allowing multiple memory accesses per cycle.

Preliminary Exam Report 10

Early Design Cycle Timing Simulation of Caches
The first step to improving this model would be to add leading edge latencies to each memon

access. These latencies would describe the time that the access spends in the Execution and Writeb
stages of the pipeline, with the Writeback stage usually requiring a single cycle. For instance, the acce
latency for a load miss could be 10 cycles (9 cycles for Execute and 1 cycle for Writeback), whereas
load hit would only require 2 cycles (1 cycle each for Execute and Writeback). The simulation of

Program 1 with Dinerolll augmented with these latencies is shown in Figure 4.

QY [Xoooooo-- W
1) A

2) BA

3) CBA

4) DC A B
5 D A C
6) A D
7) A

8) A
9) A
10) A
11) A

Figure 4: Execution behavior of Program 1 for
leading edge latency-augmented Dinerol ||

Here, the program execution is more realistic in terms of overall execution latency (11 cycles total)
However, the accesses to B, C, and D cannot complete before the access to A, since A, B, C, and D
reside in the same block of memory and the earliest datum to return to the cache is A! At the earlies
the accesses to B, C, and D can return to the processor in cycle 11 along with the access to .
completing any earlier would not be possible because the data would not be in the cache yet!

As introduced earlier, the accesses to B, C, and D suffer from trailing edge effects caused by A
since the block brought in by the access to A is not available when B, C, or D execute, and since all fot
accesses reside in the same cache block, B, C, and D must wait additional cycles to complete. |If trailir

edge effects were incorporated into the cache model, the execution of Program 1 would look like:

Preliminary Exam Report 11

Early Design Cycle Timing Simulation of Caches

1) A

2) BA

3) CBA

4) DCBA

5) DCBA

6) DCBA
7) DCBA
8) DCBA
9) DCBA

Figure 5: Execution of Program 1 when trailing edge effects
aretaken into account and 4 read ports are available

Here, we see that all four accesses complete in cycle 11. This makes sense because it is possible tha
the data in the cache line is available at cycle 11 and the data can be returned to the desired functio
units in the same cycle (e.g. there are four available read ports to the cache for that cycle). The time
wait for the desired data is represented in the additional stages of Execute that those accesses
experience. As shown in Figure 5, the Execute and Writeback stages represent the miss pipeline in t
cache subsystem. Different machines may handle the actual misses in this pipeline differently, but tf
end result is the same: the desired data is not available until the required latency has passed. Thus, "
representation of the access’ execution shall suffice for understanding the movement of differen
memory accesses through the cache subsystem.

The accesses to B, C, and D are all delayed hits, since they do not incur the full miss latency, ye¢
they do not complete in the time required for a cache hit. Also, these accesses do not generate a
additional miss traffic, as the required data is already in transit to satisfy the earlier request to A.

While a machineould be built to load an entire cache block in one bus cycle, it is likely that the
cache block is loaded from main memory in multiple bus cycles (e.g. one word per cycle, with the
requested word returning from memory first). Thus, in addition to trailing edge effects, a memory
access can experience increased execution times due to bus width considerations. If successive d
words of the block are returned to the cache in successive cycles, the program execution would loc

like:

Preliminary Exam Report 12

Early Design Cycle Timing Simulation of Caches

QY [Xeooooo-- W
1) A

2) BA

3) CBA

4) DCBA

5) DCBA

6) DCBA

7) DCBA

8) DCBA
9) DCBA
10) DCBA
11) DCBA
12) DCB
13) DC
14) D

Figure 6: Execution of Program 1 with words from memory returning
in sequential cyclesor with only 1 read port to the cache

There may also be port limitations that affect an access’ latency — in the program execution o
Figure 5, four read ports from the cache are assumed to be available at once. Typically, processc
today have one read/write port to the cache; some have more than one port and in such cases, some [
may be read-only or write-only. If the target processor has one read port to the cache, regardless
whether data is returned from memory simultaneously or sequentially, Program 1 would execute &
shown in Figure 6, above. Since there is only one read port, only one of the words can be returned to t
processor from the cache in each cycle. In this example, subsequent requests must wait for earlier or
to complete before a port is freed and the desired word can be transferred from the cache to tt
processor.

Words in memory are often accessed nonsequentially. For instance, if we run Program 2 witl

the memory layout shown in Figure 8,

1LDFI

2 LDFJ

3 LDF K

4 LDF L
Figure 7: Program 2

Preliminary Exam Report 13

Early Design Cycle Timing Simulation of Caches
Byte Offset: 0 8 16 24 32 40 48 56
Data: I K L J M N @) P

Figure 8. Another block-aligned portion of memory (blocksize = 64B)

the program’s execution might look like:

O I Xemoomnn- W
1 1

2) JI

3) KJI

4) LKJI

5) LKJI

6) LKJI

7) LKJI

8) LKJI

9) LKJI
10) LKJI
11) LKJI
12) LIK
13) JL
14) J

Figure 9: Execution of Program 2 with wordsreturning from
memory in sequential cycles

While the overall program execution time remains the same as Program 1's execution time (1«
cycles), the desired data returns in a different order; this is entirely a function of the location of the
requested words of data in memory. For Program 1, the data returned in the order it was requested.
Program 2, the data returned in the order that the data was retrieved from memory (first I, then K, L, an
J). Typically, caches fill their blocks from the next level of memory in the order that the data is found in
memory, not the order the data is requested. Thus, instead of returning one cycle after I, the access t
returns three cycles after | returns since it is the last word of the four in the block to be returned whe
word | is requested first. The increased latency required to complete the access to J is shown by t
increased time that J spends in the Execute stage; the accesses to I, K, and L complete as their des
data is loaded into the cache block. This effect is not very apparent in a simple program consisting ¢
only memory accesses; however, if there were a fixed- or floating-point operation that depended upc

the data at address J, that dependent instruction would have to wait three additional cycles: one cyc

Preliminary Exam Report 14

Early Design Cycle Timing Simulation of Caches
due to the cache being unable to load the entire cache block in one cycle and two more cycles due to-

placement of J within memory.

There is one more effect that we must consider. Most caches cannot continue accepting reque:
if there are a number of misses that have yet to be satisfied (these misses are termed “outstandi
accesses”). Once the threshold of outstanding accesses is reached, subsequent accesses may be de
until the earlier accesses complete; until at least on of these outstanding accesses completes, the cact
said to beblocked If Program 1 were run on a processor whose cache could only sustain two

outstanding accesses at a time, its program execution would look like:

13) D C
14) D

Figure 10: Execution of Program 1 on a processor whose cache can
only sustain two outstanding accesses at atime with 1 read port to the cache

Since neither A nor B are complete when C tries to enter the Execute stage, C must wait because t
cache is blocked. C does not enter Execute until the first outstanding access, A, exits Execute in cyc
11. Since C was blocked in the Issue stage, D does not get to enter Issue until C exits that stage. |
more complex processor configurations, C and D would be blocked together in a processor buffe
somewhere outside of the Execute stage).

Once C enters Execute, it finds that the data it wants is already in the cache, thanks to the earli
miss to the block by A. Thus, C finishes one cycle after B (due to port conflicts) and D completes one
cycle after that. Since all the accesses were to the same block of the cache, the blocked cache does

adversely affect the execution time of Program 1, as its execution time remains 14 cycles.

Preliminary Exam Report 15

Early Design Cycle Timing Simulation of Caches
If we were to execute Program 3 on the same (two outstanding accesses sustainable) proces:

and cache with the memory layouts shown in Figures 2 and 8, the program execution would loo}

different:
1LDF A
2 LDF B
3 LDF |
4 LDF K
Figure 11: Program 3

QY [Xeoooen-- W

21) K
Figure 12: Execution of Program 3 on a processor whose cache can
only sustain two outstanding accesses at atime

In Program 3, the misses to A and | are to different blocks in the cache. | must wait until A complete:
before it enters execute, since A and B are outstanding when | enters the issue stage. But, once | en
execute, it finds that it, too, is a miss, and must wait 10 cycles before completion. K, being a trailing
edge access to the same block as I, must wait 10 cycles to complete as well. Thus, Program 3 requi
21 cycles to execute, as opposed to 14 cycles for Program 2 running on a similar machine.

The Latency Effects (LE) cache model accounts for the nominal hit and miss times, plus the

added delays due to each of the aforementioned effects of prior accesses on the timing of the next acc

Preliminary Exam Report 16

Early Design Cycle Timing Simulation of Caches
(trailing edge effects, bus width and port limitations, and the number of outstanding accesses allowable

By using the LE cache model instead of a currently available behavioral cache simulator like Dinerolll,

a more accurate simulation of the execution of memory accessing instructions can be obtained.

4.0 Implementing the L E cache model

In order to test the correctness of the LE cache model, a cache simulator incorporating this mod
was built. Instead of writing a basic cache simulator from scratch, Dinerolll was used as a basis, as it
a widely-used and highly paramaterizeable behavioral cache simulator. While there are many ways th
the delays associated with the LE cache model can be realized, an approach based on the Resot
Conflict Methodology was used. Dinerolll and the Resource Conflict Methodology are described in the

next two sections, followed by the implementation of the LE cache model.

41 Dinerol |

Dinerolll [Hill85] is a parameterizeable, trace-driven cache simulator developed by Mark Hill.
Dinerolll takes a trace of memory accesses as input and determines, for each access, whether the aci
hits or misses based on the state of the cache at the time of the access. The cache that is simulated
be modified based on associativity, cache block size, overall cache size, and update policy, among otf
parameters. Statistics reported at the end of the simulation include the number of read and write hits a

misses to the cache, the number of words transferred, and the total number of memory accesses.

4.2 Resource Conflict M ethodology

The Resource Conflict Methodology (RCM) [Wellman95] was proposed by J-D Wellman as a
technique for modeling and simulating computer systems early in the design cycle. Each element of tt
simulated processor is viewed as a resource that may be unavailable at a given time. For instance,

RCM model analyzes the effect of each instruction’s execution on a given machine’s resources. Eac

Preliminary Exam Report 17

Early Design Cycle Timing Simulation of Caches
instruction requires a certain set of resources to execute. As the instructions are executed, tl

availability of each resource that is used is updated, delaying the times at which those resources a
available to subsequent instructions. Given the resource constraints, the execution time of a progra
can thus be determined by keeping track of when instructions are allowed to execute and when the

complete.

4.3 Implementing LE on top of Dinerolll

Dinerolll keeps the current state of the cache in memory during simulation. The cache is
“updated” when each new access is made: If the access is a hit, the data is already in the cache, bt
may be marked to reflect that it is the most recently accessed datum (for a replacement policy such
LRU). If the access is a miss, any block replacement that is required is performed and the desired data
placed in the cache immediately. Any subsequent accesses to that data block (until it is replaced) &
thus recorded as hits, since according to Dinerolll’'s cache state, the data for that block is in the cache.

However, due to leading and trailing edge effects, data does not return to the cache from the ne
level of memory immediately. These effects can easily be incorporated into Dinerolll by controlling
when Dinerolll's state is updated, i.e. when Dinerolll “sees” a memory access. Given the cycle in
which the access begins execution, we can determine the effects that it sees during execution and wk
it completes — and thus when Dinerolll’'s state should be updated.

Each memory access is evaluated in turn, since we assume only a single memory access
permitted per cyclé. First, the Dinerolll cache is checked to determine whether the access is a hit or a
miss. If Dinerolll says that the access is to data currently in the cache, the access is tentatively marke«
cache hit. This access must wafCHE_HI T_LATENCY cycles before the data is available for the
requesting functional unit. Usually, data is returned in same cycle that it is requested when a cache

occurs, so theACHE_HI T_LATENCY is normally equal to one. Thus, the cache hit completes in the same

2 The single memory access per cycle limitation is due to the target machine we chose to emulate in this study. Howeve

due to its implementation based on the RCM model, the LE cache model can inherently handle multiple accesses p
cycle.

Preliminary Exam Report 18

Early Design Cycle Timing Simulation of Caches
cycle in which it begins execution and the data is available for use in the processor in the very nex

cycle.

If an access is tentatively marked as a hit and a dependency of the second type is found (e.g. t
requested data will be replaced by a currently outstanding miss access), the access is then handled :
cache miss, as explained in Section 4.4.5. If no dependencies are found, the access is indeed a cache
and the Dinerolll cache state is updated to reflect that that block is the most recently accessed referenc

If an access is tentatively marked a cache miss, the access is not necessarily a miss that wot
incur the full read or write miss latency. The access may be a delayed hit, as an outstanding miss acc
may already have requested the desired block. Thus, a check is made to see if the new access
dependent on any currently outstanding accesses. If the access does depend on a currently outstant
access, the access is a delayed hit, which to Dinerolll seems like a miss, as the desired data is |
present in Dinerolll’'s cache due to the delayed update that we have imposed on the Dinerolll cacl
state. However, since the desired block is already in transit from the next level of memory (due to th
earlier dependent miss to that block), the new access should not automatically incur the full read or wri
miss latency. This is the beginning of the implementation of the LE cache model outside of Dinerolll.

Once the access has been completely evaluated by the LE cache model, the completion cycle {
that access is known. The effects of the access on the state of the Dinerolll cache are enacted (i.e. "
cache is updated) when the cycle of the simulation is greater than or equal to the completion cycle of tl
access. The update of the Dinerolll cache state is deferred for each access until the data is actua
resident in the cache. This way, if an access is determined to be resident in the Dinerolll cache state
any given time, the data will be available immediately (except in the case where a dependency of th
second type is discovered) as a cache hit; otherwise, the access is a delayed hit or cache miss.

updating of the Dinerolll cache state will be explained in greater detail in Section 4.4.5.

4.4 The LE cache model outside of Dineroll|

As discussed in Section 3.2, there are four main sources of additional delay for a memory acces:

Preliminary Exam Report 19

Early Design Cycle Timing Simulation of Caches
» Trailing edge effects

» Bus width considerations
* Number of allowable outstanding accesses

¢ Port limitations

Each one of these effects potentially affects the completion time of an access to the cache (and t
subsequent access to the next level of memory for cache misses). Each effect and its implementatior

now discussed in turn.

4.4.1 Trailing edge effects

In order to quantify the trailing edge effects experienced by a cache access, the status of eac
outstanding access to the cache must be retained. Cache hits, on the other hand, can be evaluated as
occur, as they can only be affected by previous instructions. A cache hit can only be affected by pric
delayed hits or misses because of its port requirements (discussed in Section 4.4.4). For instance, i
cache hit is issued in cycle X, it will complete in two cycles (using the example latencies from Sectior
3.2), i.e. in cycle X+2. For our model machine, the earliest time that a new memory accessing
instruction can be issued is in the very next cycle, cycle X+1. If the new access is also a cache hit,
will complete in cycle X+3, and will not depend in any way on the earlier cache hit. If the new access is
a delayed hit or a miss, the access will complete in cycle X+N, wherd . NHowever, the first cache
hit will complete in cycle X+2, which is earlier than any subsequent access (be it a hit, miss, or delaye!
hit) can complete. As a result, the cache hit will not be affected by any accesses that issue after tl
cache hit is issued, regardless of the outcome of the subsequent accesses. However, we will see
Section 4.4.4 that cache hits can be affected by prior delayed hits or misses whose latencies are gree
than the latency of a cache hit.

Misses can affect the completion times of many subsequent accesses. The number of futu
accesses affected increases in proportion to the duration of the full miss latency. To determine the:

effects, the status of a cache miss is kept until the access is satisfied, i.e. until the requested data

Preliminary Exam Report 20

Early Design Cycle Timing Simulation of Caches

finally resident in the cache. All outstanding accesses are ordered chronologically in a linked list callet
the updat e_buf f er. When an instruction accesses data not currently in the cachpdthe_buf f er
is checked to see whether the desired data is currently in transit from the next level of memory to th
cache. Adependencys found if one of two situations occur: 1) the desired data coincides with a cache
block that is currently being brought into the cache from the next level of memory or 2) the desired dat:
is currently being replaced by an outstanding access. For dependencies of the first type, instead
incurring the full miss latency of the cache, the new access will be satisfied in some shorter period ¢
time related to the remaining time to satisfy the earlier outstanding access to the same cache bloc
Dependencies of the second type will require the nominal miss latency for that access type to complet
as the desired data will need to be fetched from the next level of memory to satisfy the access. As v
will see in subsequent sections, this is only the first part of determining the completion time of a delaye
hit or miss; once the earliest time to completion is determined (when the earlier conflicting miss
completes), bus width considerations, the number of allowable outstanding accesses, and port conflic
must be taken into account. These will be discussed in detail in Sections 4.4.2, 4.4.3, and 4.4..
respectively.

The updat e_buf f er corresponding to the execution of Program 1 at cycle 4 is shown in Figure
13. At this point in time, the access to C is beginning execution. We see that the first entry in the
updat e_buf f er linked list is the load from address A. The next entry in the linked list, which

corresponds to the next outstanding access to complete, is the load from address B.

updat e_buffer:

address: A address: B

accesstype: load | —P»| accesstype: load —»= NULL
completes: 11 completes: 11

new access:

address: C

accesstype: load

completes: ”

Figure 13: State of update_buffer when the accessto address C
isbeing evaluated

Preliminary Exam Report 21

Early Design Cycle Timing Simulation of Caches
The load from address C will check tinedat e_buf f er and find that its desired data will be present in

the cache at cycle 11, thanks to the earlier request to that cache block by the access to A. Since itis o
cycle 4, this access will also be placed indheat e_buf f er, as it will complete in a later cycle and

may affect the access time of a future memory accessing instruction. Assuming there are enough po
to satisfy three read requests from the cache in one cycle and the bus between the cache and the r
level of memory is wide enough to return all three access to the cache in the same cycle, the load frc

address C will also complete in cycle 11. The updagedt e_buf f er is shown in Figure 14.

updat e_buffer:

address: A address: B address: C
accesstype: load | —P»| accesstype: load [—» accesstype: load —»| NULL
completes: 11 completes: 11 completes: 11

Figure 14: State of update buffer after accessto addressC
has been evaluated

Every delayed hit and miss goes through this process and eventually ends up in the
updat e_buf fer. If the access is a miss, i.e. the desired cache block is not present in the Dinerolll cach
state, no dependencies will be found with the entries currently uptlaee_buf f er. Dependencies of
the second type cause hits or delayed hits to become misses, as the desired data will be replaced by
outstanding access. These accesses will incur the full miss latency for its type (read or write), plus ar
additional cycles due to port conflicts (see Section 4.4.4). An entry is made for the new access and it
placed in thaipdat e_buf f er so that future accesses can check against this new outstanding access a
well.

By assigning differing latencies for each access depending upon its time of execution, we cal
more accurately predict the time to execute a series of memory access instructions. Using its first cyc
of execution as the starting point for each access, the completion time for that memory access can
determined by looking at the outstanding accesses to the cache, combined with the knowledge of tt
read and write miss latencies for the given cache. Using varying latencies is the first step toward a mo

realistic cache performance estimate.

Preliminary Exam Report 22

Early Design Cycle Timing Simulation of Caches

4.4.2 Buswidth issues

Another parameter that affects when an access completes is the bus width between the cache &
the next level of memory. The data bus of a port between the CPU and the cache is normally at least 1
width of one access (typically a 32-bit word or a 64-bit doubleword), so requests will complete without
being affected by this bus width. However, the bus width between the cache and the next level ¢
memory is normally smaller than the block size of the cache. For instance, in the RS/6000 Model 320l
[Hardell90], the block size is 64 bytes, but the cache-to-memory bus is only 8 bytes wide, causing
block of data to return to the cache in multiple cycles.

Typically, machines are designed to return the requested word within the cache block first, with
subsequent subblocks (a subblock being the width of the cache-to-memory bus) arriving in subseque
cycles to the cache. The other alternative is to always return the first subblock of the block first, forcing
all but the first subblock in the block to wait additional cycles for a miss access to them to be satisfiec
Since most of today’s machines use the former technique, the following discussion will concentrate ol
that method; the analysis can easily be modified to use the second cache fill policy.

Given the requested-word-first cache fill policy, the first miss to a cache block will take the
required full read or write latency to complete. A subsequent miss to the same cache block that occu
while the earlier miss is in flight may or may not be satisfied in the same cycle as the earlier miss. If th
subsequent miss is to the same subblock as the earlier miss, both accesses will complete in the sa
cycle (ignoring port conflicts for now). If the subsequent miss is to a different subblock, that access will
have to wait additional cycles to be satisfied. Since the cache block is filled in a wrap-around fashior
the later access will have to wait at most an additional [(block size in bytes)/(cache-to-memory bus
width in bytes) - 1] cycles to complete. If the later access is in the subblock to return immediately afte
the first requested subblock, the later access will complete one cycle later than the earlier acces
pending port conflicts. If the later access returns in the third subblock, it will wait two additional cycles,
etc. An example of bus width issues affecting memory access latencies was shown in Figure 9 with tt

execution of Program 2.

Preliminary Exam Report 23

Early Design Cycle Timing Simulation of Caches
Given a cache’s block size and cache-to-memory bus width, we can easily determine thes

additional delays given when the accesses occur relative to one another. The additional cycles a
simply added on to the completion cycle that was determined for this access in the initial trailing edg
analysis. These additional cycles will not and should not affect any earlier access’ completion times, bt
will affect the completion times of the current and future accesses. The completion cycle of the acces
is stored in the accessipdat e_buffer entry so that future accesses can determine when this

outstanding access completes.

4.4.3 Number of outstanding accesses

The number of outstanding accesses that a cache can sustain affects the completion time of a
memory access. Caches that do not support hit-under-miss will stall whenever there is a miss in tf
cache. This means that any subsequent memory accesses, even if they were to access data that
present in the cache at that time, would be stalled until the outstanding access completed. Obviousl|
future misses to currently absent data would also be stalled, though the delay due to the blocked cac
would likely remove some of the trailing edge effects. (For an example of this situation, see Figure 1C
which shows delayed hits turning into cache hits due to the blocked cache). When the cache becom
unblocked, the first waiting access begins execution. Since there are no outstanding accesses when 1
new access executes, it will not experience any latency adjustments due to trailing edge effects. Whi
this case is handled by the LE model, the case where hit-under-miss is allowed is much more interestin
The case where a miss occurs while the cache is blocked was shown earlier in Figure 12 with tr
execution of Program 3.

There can be a varying “number of outstanding accesses” (NOA) when hit-under-miss is
allowed. If hits are allowed when only one miss is outstanding, the NOA is equal to one. This mean:
that we can have one miss access to the cache outstanding at a time, but we can still service hits to
cache. If another miss occurs while an earlier miss access is outstanding, the processor stalls
memory accesses until the earlier miss is satisfied. After the first miss is completed, there is once aga

only one miss access outstanding, and hits can once again be handled if they occur. Increasing the N(

Preliminary Exam Report 24

Early Design Cycle Timing Simulation of Caches
increases the number of memory accesses that can be in flight at one time, giving a correspondir

increase in the number of accesses that could potentially be affected by trailing edge effects. Still, on
the threshold is crossed, all accesses, be they hits or misses, must wait until at least one earlier miss¢
satisfied before they can execute.

To account for NOA, we simply need to check to see how many misses are outstanding when w
evaluate a new memory access miss. If the number of outstanding misses is less than the NO
threshold, the current access’ completion time is wholly dependent upon trailing edge effects, bus widt
effects, and port limitations. If the number of outstanding accesses is greater than the NOA threshol
this access must wait until enough misses are satisfied to reduce the number of outstanding accesse
less than the NOA threshold. If the new access depends on an outstanding access, the new access
completeCACHE_HI T_LATENCY cycles after it is allowed to execute, as the data would be in the cache by
the time the request is actually made to the cache. If the new access does not depend on any outstanc
access and is simply delayed due to the blocked cache, the normal trailing edge and bus width effec
analysis will be applied, once the cache is no longer blocked and the access is allowed to begi
execution.

If the new access is a miss, the new access would have to incur the full miss latency before
would complete. This latency would be added on to the cycle that the access was finally determined 1
execute to determine its completion time. As above, the new access would execute when enough miss

are satisfied to reduce the number of outstanding accesses to less than the NOA threshold.

444 Portlimitations

The final element to consider when determining an access’ completion time is the availability of
an appropriate port to the cache. After the completion cycle of an access is determined by considerir
trailing edge and bus width effects, and the number of outstanding accesses, we must check to see if 1
desired port for the transaction (read or write) is available in the desired completion cycle. If an
appropriate port is available, the completion cycle remains unchanged and we have found the actu

completion time of the access. If an appropriate port is not available, we must check subsequent cycl

Preliminary Exam Report 25

Early Design Cycle Timing Simulation of Caches
to see when an appropriate port does become available. This is done by scanning through subsequ

cycle times, starting at the access’ completion cycle + 1. The search is continued until an appropria
port is found and that cycle count is returned as the actual completion time. Thus, the access complet
as soon as it possibly can, considering the trailing edge and bus width effects, the location of the word
memory, the number of outstanding accesses sustainable, and the port limitations.

Port conflicts affect hits to the cache as well. If there are earlier misses to the cache tha
complete in the same cycle as the new hit and there are not enough ports available to satisfy the hit
the cache, the hit must wait for one or more additional cycles. The same method described above f
misses is used to find the hit’'s completion time.

Obviously, increasing the number of ports will reduce the likelihood that port conflicts occur.
With a greater number of ports available, more requests to the cache can be returned to the proces
each cycle. On a related note, if the number of outstanding accesses allowed is less than the numbel
ports to the cache, port limitations will only affect hits to the cache. This occurs because we woulc
never have more misses outstanding than there are available cache ports, so the only time there will
contention for cache ports is when there are hits to the cache that complete in the same cycle tha
pending miss completes. Memory accesses are evaluated sequentially in time, so older accesses resi
their use of a port before newer accesses do. Thus, even though an access may be a cache hit, if all
ports for the cycle in which the hit should complete are reserved for prior accesses, the hit must wait i

least one additional cycle to obtain an available port and complete its memory access.

445 Flow chart diagramming the operation of the L E cache model

All memory accessing instructions go through the same steps of evaluation in the LE model.
Once a completion cycle has been determined, that cycle, minus the cycle that execution of th
instruction started, is returned as the latency of the instruction. The flow chart of the operation of LE i
shown in Figure 15. At each of the "endpoints” of the flow chart, the completion time for the current

access is finalized and that value is returned to the calling program.

Preliminary Exam Report 26

Early Design Cycle Timing Simulation of Caches

Check for accesses that Check to see if address of n Return completion cycle o
complete this cycle and upd access matches that of an older access; new access will
cache's state. ongoing access. return same cycle.
A
Y

> Check against the nex
pending access.

Available
ports?

g Address match? Y

N
\ 4

Check against next
Y outstanding access.

Search for next cycle
with available port and
return that cycle.

Tag and set
match?

€N

More pending
accesses?

N.
A 4

New access fits in
same cache block?

N—Jp» Unaligned access.

No conflicting acceses,

for this access.

set up new timing model

SO Access can return in the

same cycle as the
N conflicting access if port

Memory bus narrower
than cache block width?2

v

Access will incur full
miss latency for that
type. Calculate and
return completion
cycle.

First requested word |
block will return first;
requested word must
wait at least one
additional cycle if it is
not the first requested
word. Calculate and
return completion
cycle.

Figure 15:

are available.

Y
A 4

Cache block will be filled
in more than one cycle

First word in block
will return first;
requested word must
wait at least one
additional cycle if it is
not in first subblock.
Calculate and return
completion cycle.

Requested
word first?

Flow chart showing the operation of the L E cache model

Preliminary Exam Report

Early Design Cycle Timing Simulation of Caches
The state of the Dinerolll cache is not updated until the cycle count of the currently evaluated

memory accessing instruction is greater than or equal to the completion cycle of an outstanding access
the updat e_buf fer. Delaying the update of the cache state until a new access occurs presents n
problems, as the state of the cache is “corrected” to reflect the recently completed transactions before
new access is evaluated in LE. If the new access begins execution after an older, outstanding acc:
completes, the new access should not depend upon that older access, and indeed it does not, since
outstanding accesses in tin@lat e_buf f er are removed frompdat e_buf f er when they are completed
and the cache’s state is updated before each new access is evaluated. Since only memory acces:
instructions can affect the state of the cache, delaying these updates reduces simulation time, especie
during long stretches of compute-only code, as no checks need to be made on the cache unless a r
instruction accesses memory. If the new access begins execution before some currently outstandi
access completes, the new access may experience latency-adding effects caused by the outstanc
access(es). Since the outstanding access is still upttage_buf f er, a dependency may be found with
the new access, causing the LE cache model to adjust the new access’ completion time accordingly.
Currently, unaligned accesses are simply flagged in LE; special mechanisms by which tc
evaluate unaligned accesses have not been implemented. This case was not considered for two reas
First, unaligned accesses are rare, undesirable, and avoidable, so not incorporating them into our mo
should not have a great impact on the model's performance. Secondly, there are many different methc
used to handle unaligned accesses, so many so that incorporating a specific handling method wou
sacrifice the general purpose nature of the LE cache model. If a relatively simple, parameterizeabl

method for handling unaligned accesses can be derived, it will be incorporated into LE in the future.

45 Usingthe RCM modéd toimplement LE

With regard to instruction execution, the LE cache is modeled as single resource. Memory
accessing instructions check the cache (LE) resource to determine when execution can begin and wh
execution completes. The start and end times of each instruction’s execution are determined [

checking the various effects that an access can encounter, as detailed in Section 4.4. Given wher

Preliminary Exam Report 28

Early Design Cycle Timing Simulation of Caches
memory accessing instruction completes, dependent instructions are delayed accordingly in th

corresponding portions of the RCM simulator (e.g. dependent memory accessing instructions delay the
issue times with respect to the cache and dependent execute instructions delay their issue time to f
functional units). Since LE is modeled as a single resource, it can easily be joined to an RCM-base
processor model to simulate the execution of code on a processor with cache.

Within the LE cache model itself, the cache blocks, busses to and from the cache, the ports, ar
the cache itself are viewed as resources. If a desired cache block is not available, the requestil
instruction must wait a at least a nominal number of cycles until the data is returned to the cache. If tF
bus to the cache from the next level of memory is currently used to return an earlier requested word, tl
newer requested word from same cache block must wait additional cycles. Transfers between the cac
and the processor are taken care of by the port resources; if a machine has a certain number of port:
the cache, there will be a corresponding number of simultaneously available busses between the cac
and the processor. If a port of the desired transaction type is not available, the instruction must aga
wait additional cycles before it can complete execution. Also, if the cache itself is blocked, all further
accesses must wait until some earlier miss completes before execution can continue. Thus, the LE cac
model is implemented using the RCM methodology by modeling each effect accounted for in the LE

cache model as determined by the availability of some resource.

50 Experimental results

In order to test the validity of the new cache model, a tool was built to simulate the memory
access performance of a given program. The tool was written in the spirit of J-D Wellman’s Resourc
Conflict Methodology, where instructions take differing amounts of time to execute depending upon
resource availability. With regard to memory accesses, resources within the LE model include the port
the cache (available unless blocked), and data (which becomes available when each access to
completes and remains available until the next access to it begins execution in the cache).

The processor and cache simulator combines J-D Wellman’s RCM_brisc tool, which simulates

an RS/6000-like [Bakoglu90] machine, with the LE cache model. Based on the REAP tool, RCM_brisc

Preliminary Exam Report 29

Early Design Cycle Timing Simulation of Caches
simulates the execution of instructions fed to it in the form of a trace of the program’s execution on ar

actual machine, which in this study is an RS/6000. The RCM_brisc tool by itself simulates the
execution of all instructions, but assumes a perfect cache model, where all data from memory i
available in a fixed, predetermined amount of time. However, the perfect cache model is an unrealisti
estimate of program performance in today's processor/cache designs; cache and memory effects must
included in any processor simulation if it is to realistically evaluate a program's performance on a syster
under consideration.

The LE cache model, in its current implementation, could easily have been combined with any
other currently available instruction-level simulators such as Talisman [Bedichek95], SimICS
[Magnusson95], and others. This is possible because this implementation of the LE cache mods
maintains the state of the caches itself and does not take into account virtual memory or TLB effects.
models the first level of data cache and assumes a perfect memory thereafter, regardless of the num
of level of caches beyond that. This simplification still provides accurate pictures of program execution
as we will see later in this section. The RCM_brisc tool was chosen since the LE cache model we
implemented in the same spirit using the RCM model, and, more importantly, the creator of the
RCM_brisc tool was readily accessible (his desk is next to mine).

The combination of the LE cache model implementation with the RCM_brisc processor
simulator involved several pre-existing simulators, namely RCM_brisc for core processor simulation
and Dinerolll for behavioral cache simulation. The LE cache model implementation was built on top of,
and thus includes, Dinerolll in this realization. LE was then fused to RCM_brisc to “service” memory
accesses and determine their execution times. A high level picture of the overall processor/cact
simulator is shown in Figure 16; the white portions detail currently existing simulators while the gray,

highlighted portion indicates the new work discussed in this paper.

Preliminary Exam Report 30

Early Design Cycle Timing Simulation of Caches

The
LE cacht
model

RCM_brisc

Dinerolll

Figure 16: A high-level picture of the overall processor/cache smulator,
RCM _brisc+LE.

The LE cache model implementation handles a wide variety of cache configurations, as
determined by the inputs to the simulator. A list of the inputs handled by the LE cache simulator art

shown below in Table 1.

cache size number of read ports

block size number of write ports
associativity NOA

replacement policy = CPU-to-cache bus width
read miss latency cache-to-memory bus width
write miss latency word size

return policy (requested word first/first subblock firg

Table 1: Inputsused to configurethe L E cache model simulator

A more detailed picture of the interaction between LE and RCM_brisc is shown in Figure 17:

Preliminary Exam Report 31

Early Design Cycle Timing Simulation of Caches

Read instruction
» from the trace <

Process instruction &

N—pp needed in RCM_bris
processor executior

simulator

Does instruction
access memory?

Check for
blocked cache,
port conflicts,
and return
completion
time.

Dependency o
an access in the
update_buffer?

Initialize cache configuratiol
(Dinerolll), timing, and
statistics. (Done before

simulation begins)

Y
\ 4

Update processor
Go to LE cache state within

> timing model. > RCM_brisc for future
instructions

Figure 17: Interaction between the processor ssmulator, RCM _brisc, and LE

There is a potential situation in which desired data is located in the Dinerolll cache state when .

memory access commences, but an outstanding accessipuidlne _buf f er will modify or replace that
block. If the new access does not know about the pending update to that data, it will proceed as if
were a cache hit and receive old data and/or be assigned an incorrect latency! To address this proble
even if an access has been determined to hit in the cacheydttee_buf f er is checked for conflicts.
If a conflict is found, an earlier, outstanding access must first update the referenced cache block, and tf
new access must wait until these changes are made. Thus, if the outstanding access is a miss |
replaces this block, this access must then be evaluated as a cache miss, since the desired data will nc
present in the cache after the earlier access completes. If, on the other hand, the outstanding a