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ABSTRACT

This paper reports on ORCHESTRA, a portable fault injection environment for testing implementations of
distributed protocols. The paper focuses on architectural features of ORCHESTRA that provide portability,
minimize intrusiveness on target protocols, and support testing of real-time systems.

ORCHESTRA is based on a simple yet powerful framework, called script-driven probing and fault injection,
for the evaluation and validation of the fault-tolerance and timing characteristics of distributed protocols.
ORCHESTRA was initially developed on the Real-Time Mach operating system and later ported to other plat-
forms including Solaris and SunOS, and has been used to conduct extensive experiments on several protocol
implementations. A novel feature of the Real-Time Mach implementation of ORCHESTRA is that it utilizes
certain features of the Real-Time Mach operating system to quantify and compensate for intrusiveness of the
fault injection mechanism. In addition to describing the overall ORCHESTRA architecture and implementation,
this paper also describes the experimental evaluation of two protocol implementations: a distributed group
membership service on the Sun Solaris operating system, and a real-time audio-conferencing application on
Real-Time Mach.
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1 Introduction

Ensuring that a distributed system meets its prescribed specification is a growing challenge
that confronts software developers and system engineers. Meeting this challenge is particularly
important for applications with strict dependability and timeliness constraints. This paper reports
on a software fault injection tool, called ORCHESTRA, for testing dependability and timing properties
of distributed protocols. ORCHESTRA is based on a simple yet powerful framework, called script-
driven probing and fault injection, first reported in [9,10]. The emphasis of this approach is on
experimental techniques intended to identify specific “problems” in a protocol or its implementation
rather than the evaluation of system dependability through statistical metrics such as fault coverage
(e.g. [1]). Hence, the focus is on developing fault injection techniques that can be employed
in studying three aspects of a target protocol: i) detecting design or implementation errors, ii)
identifying violations of protocol specifications, and iii) obtaining insights into the design decisions
made by the implementors.

The proposed approach is motivated by several observations. First, in testing a distributed
system, one may wish to coerce the system into certain states to ensure that specific execution
paths are taken. This requires the ability to orchestrate a distributed computation into “hard-to-
reach” states by ordering certain concurrent events. This is further complicated by asynchronous
message communication and inherent non-determinism of distributed computations. Second, when
testing the fault-tolerance capabilities of a distributed system, one often requires certain behavior
from a protocol participant that may be impossible to achieve under normal conditions. This may
require the emulation of “misbehaving” participants by injecting faults into the system. Third,
testing organizations often require a methodology that does not instrument the code being tested.
This is particularly important when testing existing systems or when the source code is unavailable.

In the model underlying script-driven probing and fault injection, a distributed protocol can be
viewed as an abstraction through which a collection of participants communicate by exchanging
a set of messages, in the same spirit as the z-kernel [20]. Hence, no distinction is made between
application-level protocols, communication protocols, or device layer protocols. In this approach,
a protocol fault injection (PFI) layer is inserted below a target protocol to filter and manipulate
the messages that are exchanged between participants. The fault injection layer supports the
execution of deterministic or probabilistic test scripts that may probe participants or inject faults
into the messages that are exchanged between participants. In particular, by intercepting messages
between two layers in a protocol stack, the fault injection layer can delay, drop, reorder, duplicate,
and modify messages. Furthermore, it can introduce spontaneous messages into the system to
probe the participants and to orchestrate the system execution onto a particular path.

This paper describes the design of the ORCHESTRA fault injection tool, focusing on architectural
features supporting portability and minimizing intrusiveness on target protocols, with explicit sup-
port for testing real-time systems. The current implementation of the ORCHESTRA fault injection
tool was initially developed on the Real-Time Mach operating system and later ported to other plat-
forms including Solaris and SunOS. This tool has been used to conduct extensive experiments on
several implementations of commercial and prototype systems. This paper describes the implemen-
tation of ORCHESTRA on Real-Time Mach and Solaris operating systems for testing socket-based
distributed applications. The paper also reports on the experimental evaluation of two protocol
implementations: a distributed group membership service on the Sun Solaris operating system, and
a real-time audio-conferencing application on Real-Time Mach.

Since ORCHESTRA is intended to be a tool for testing distributed applications and communication



protocols, portability to different platforms and the ability to insert the fault injection engine into
a protocol stack are key objectives. A mnovel aspect of the ORCHESTRA architecture is a clean
separation of the fault injection mechanism from target protocol and platform dependent code.
Because most of the actions of the fault injection layer are independent of the target protocol
implementation, we have been able to split our fault injection tool into two parts: a protocol
independent part and a protocol dependent part. The protocol independent part consists of the
actual fault injection engine and its associated data structures. It also includes the user interface for
generating fault injection scripts. The fault injection engine performs the same actions no matter
where it is placed in the protocol stack. The protocol dependent part consists of “glue” code to
hook the engine into the protocol stack. This is the code which exports the proper interfaces from
the fault injection engine to higher and lower layers, and also special routines which are invoked to
get messages into and out of the engine.

The ORCHESTRA fault injection tool is designed so that the application programmer is not re-
quired to instrument the target protocol implementation, although the protocol stack may be
altered. Fault injection is done at the message-level by intercepting and manipulating incom-
ing/outgoing messages of a target protocol, or by probing a participant by injecting spontaneous
messages into the system. Furthermore, the ORCHESTRA engine interprets the fault injection test
scripts written in the Tel language [30] or via a state-transition-based graphical user interface. Be-
cause Tcl is interpreted, one can develop relatively complex scripts to modify existing experiments
or to perform new tests without re-compiling the target protocol or the fault injection tool.

Another novel architectural feature of ORCHESTRA is that it is designed to address explicitly
the intrusiveness of fault injection on a target distributed system. While the intrusiveness issue is
significant for both the logical correctness as well as the timing correctness of an implementation,
it is particularly significant in hard real-time systems where timing predictability may be disturbed
by the additional overhead of a fault injection mechanism. For example, in the implementation of
ORCHESTRA on Real-Time Mach, we exploit operating system support, such as scheduler feedback
and capacity reservation [27], to quantify intrusiveness on a target protocol and to compensate for
it whenever possible.

The remainder of this paper is organized as follows. Section 2 presents the overall ORCHESTRA
framework, covering the script-driven probing and fault injection technique, the ORCHESTRA ar-
chitecture, and specification of fault injection scripts. In addition, this section discusses the issue
of intrusiveness on a target protocol, and general methods of minimizing or compensating for it.
Section 3 looks at the realization of the ORCHESTRA architecture on two different platforms: the
Solaris!' operating system from SUN Microsystems, and the Real-Time Mach operating system from
CMU. In particular, this section looks at the implementation of the ORCHESTRA fault injection tool
for testing socket-based distributed applications. Section 4 describes in detail the experimental
results from studying an asynchronous fault-tolerant protocol on Solaris and a real-time audio-
conferencing application on Real-Time Mach. Section 5 presents a graphical script editing tool
that can be used to generate test scripts via a graphical user interface. Section 6 discusses the
related work. Finally, Section 7 presents concluding remarks.

2 ORCHESTRA Framework

This section discusses the framework on which ORCHESTRA is based. The first subsection de-
scribes the overall approach for performing fault injection on messages that are exchanged between

1Solaris is a trademark of Sun Microsystems, Inc.



the participants in a distributed protocol. The second subsection presents the basic architecture
of ORCHESTRA and a portable fault injection core that can be used to build fault injection layers
on different platforms. The next subsection discusses how fault injection scripts are specified in
ORCHESTRA. Finally, intrusiveness of fault injection on target protocols is covered, and methods of
minimizing and compensating for intrusiveness are presented.

2.1 Approach: Script-Driven Probing and Fault Injection

In script-driven probing and fault injection, a distributed protocol can be viewed as an abstraction
through which a collection of participants communicate by exchanging a set of messages, as in the
z-kernel [20]. Each layer provides an abstract communication service to higher layers, and there is
no distinction made between particular layers of the protocol stack. In our approach, a protocol
fault injection layer (PFI layer) is inserted into a protocol stack below the target layer, which is
the layer to be tested. The PFI layer can intercept messages that pass through it, and is able to
manipulate these messages as the protocol participants communicate. For example, the PFI layer
can drop messages of certain types, delay a message for a pre-specified time interval, retransmit a
message, modify a message content, or introduce new messages into the protocol stack.
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Figure 1: Protocol Stack with PFI Layer

Figure 1 shows a PFI layer inserted into a protocol stack in order to test the target protocol
sitting above it. As messages are exchanged between protocol participants, they pass through the
PFI layer on their path to/from the network. Each time a message is sent, the PFI layer runs
a script called the send filter on the message. In the same manner, the receive filter is invoked
on each message that is received from the network destined for the target protocol. The scripts
perform three types of operations on messages:

1. Message filtering: for intercepting and examining a message.

2. Message manipulation: for dropping, delaying, reordering, duplicating, or modifying a
message.

3. Message injection: for probing a participant by introducing a new message into the system.

The send and receive filter scripts determine what action is to be taken on a message when it
is sent or received, with possible actions being taken from the above list. Scripts may base their



decisions on message attributes such as message type or contents, on message history, or on certain
data that the fault injection layer has collected (such as counters). For instance, the PFI layer may
delay a message of a particular type if a certain sequence of messages has been received several
times. An important feature of the scripts is that they may make calls to procedures that are
written in C or another programming language. These utility procedures are registered with the
engine that interprets the scripts. Some utility procedures are provided with the system; the user
may also extend the functionality of the scripting language by providing their own routines. The
various types of utility procedures that can be registered with the interpreter engine are shown in
Figure 1. These procedures fall into several classes:

e Recognition/generation procedures: are used to identify or create different types of packets.
They allow the script writer to perform certain actions based on message type (recognition),
and also to create new messages of certain type to be injected into the system (generation).
The stubs are written by anyone who understands the headers or packet format of the target
protocol. They could be written by the protocol developers or the testing organization, or
even be provided with the system in the case of a widely-used communication protocol such

as TCP.

o Common utilities: are procedures frequently used by script writers for testing a protocol.
Procedures that drop or log messages fall into this category. Also included are procedures
that can generate probability distributions and procedures that give a script access to the
system clock and timers.

o User defined procedures: are additional utility routines written by the user of the PFI tool
to test his/her protocol. These procedures, usually written in C, may perform arbitrary
manipulations on the messages that a protocol participant exchanges.

2.2 Portable Core Architecture

A novel aspect of the ORCHESTRA architecture is a clean separation of the fault injection mech-
anism from target protocol and platform dependent code. The main component of ORCHESTRA is
the PFICore [11,12], which is responsible for all fault injection actions. The PFICore is the heart of
the fault injection layer, and provides the mechanism for injecting faults into protocols, regardless
of where the protocol resides in the protocol stack. Using the PFICore, a fault injection layer is
built and then inserted into the protocol stack to test the target layer.

To achieve independence of the PFICore from the messages it operates on, details of message
formats are hidden from it. The PFICore views messages as abstract objects. The knowledge of
how to interpret messages is provided by the user who builds a fault injection layer around the
PFICore through the recognition/generation stubs described in the previous subsection. In many
cases, the fault injection layer may not even define these message formats, but may leave them up
to the user of the fault injection layer?.

Figure 2 shows the basic structure of a fault injection layer built using the PFICore. The layer
consists of two main parts. The first is the PFICore itself, shown in the center of the layer.

2This is in fact how the socket implementation of ORCHESTRA described in Section 3 works. The reason is that
the socket fault injector is intended for testing application level protocols. Because packet formats will differ from
one protocol to another, message formats cannot be fixed as they could if the fault injection layer were intended to
be used to test a specific protocol.
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Figure 2: The Orchestra Architecture

It consists of the script interpreter and any routines that have been registered with the script
interpreter.

The right side of the figure pictures event support. FEvent support is provided by the fault
injection layer builder, and consists of routines to post and track events. These routines are
registered with the PFICore so that it can post events such as delayed messages. When the PFICore
needs to post an event, it makes a call to the event posting routine that has been registered with
it. One of the parameters to the event posting is the routine that should be called when the event
is ready. The reason that event support is not provided with the PFICore is that the event support
implementation depends on the system that the PFICoreis being used in. The fault injection layer
designer must use existing support or provide their own support for events.

Also shown in the figure is an optional thread that a PFI layer builder may be required to
provide. In some cases, the fault injection layer may be placed into a protocol stack that does not
provide upcalls when messages arrive, such as in an implementation above the socket layer. In
these implementations, the PFI layer must poll for arriving messages. Furthermore, in these cases
it is usually also true that no event mechanism exists that the fault injection layer designer can use.
The separate thread in the PFI layer can then be used for polling and event support. A simple
form of event support in this case might consist of event queues that the thread maintains.

In order to build a fault injection layer using the PFICore, a designer must first address two
issues. The first is whether the target protocol stack has upcalls for message arrivals. The second
is the type of event support (if any) that is provided in the protocol stack. If a thread is required
either for message polling or for event support, it must be provided by the PFI layer designer. In
addition, if the protocol stack does not contain event support, the PFI layer designer must provide
their own. If event support exists, wrappers can be written around existing event support and
registered with the PFICore. Finally, the PFI layer builder must provide the interface code for
higher and lower layers in the protocol stack, so that as messages are sent and received they will
pass through the PFI layer. Once this is done, the fault injection layer can be inserted into the



protocol stack.

One example of building a fault injection layer using the portable PFICore is an z-kernel im-
plementation of the PFI layer. Because the z-kernel already provides support for events, all that
is necessary is to provide a routine for registering events that makes calls to the z-kernel event
registration routine. This routine is then registered with the PFICore so that it can post events
such as delayed messages. Because the z-kernel has upcalls when messages are received, and no
thread is needed for event support, it is not necessary for the az-kernel PFI layer builder to provide
an extra thread for events or message polling. All that is necessary is to write the code for the input
and output operations of the z-kernel PFI layer so that the layer can be inserted into an z-kernel
protocol stack. These operations simply call the PFICore with the message as an argument. If
the PFICore returns a handle to the message, then the message is sent on to the next layer in the
protocol stack. If not, the input or output routine simply returns, and the message becomes the
responsibility of the PFICore. If it is being delayed or otherwise detained, it will be sent up or
down the protocol stack later when its conditions have been met.

2.3 Specification of Fault Injection Scripts

A protocol participant is faulty if it deviates from its prescribed specification. A fault model
specifies in what way a protocol participant can deviate from its correct specification. The fault
injection approach presented in this section can test the fault-tolerance capabilities of protocol
implementations under various models commonly found in the distributed systems literature in-
cluding: process crash failures, link crash failures, send omission failures, receive omission failures,

timing/performance failures, and arbitrary/byzantine failures 3.

At the heart of our approach are scripts which are executed by the PFI layer in order to or-
chestrate the system computation into a particular state and to inject various types of faults into
a system. A system designer must be able to specify sufficiently powerful scripts for manipulating
the messages which are exchanged in the course of carrying out a distributed computation.

One can view a fault injection script as a state machine which operates on a message. The state
machine has access to the message type and contents, and the ability to track message histories
and keep counters or other state. When a new message enters the PFI layer, a handle to the
current message is set up in the interpreter, and the state machine (i.e., the script) is run through
the interpreter. Usually, this message starts off in the initial state of the state machine. In some
cases, however, the previous message may have left the state machine in another state, in order
to perform a more complex function. Regardless of which state the message begins in, it travels
through the state machine, making transitions from one state to another based on information
contained in the state machine, such as message type, number of messages seen in a sequence,
or recent message history. The message exits the state machine when the execution of the script
completes, usually resetting the state to the initial state before doing so. At this point, several
things may have happened to this message. For example, the message may have been delayed or
dropped which means the interpreter simply moves on to receive the next message. Alternatively,
the message may be passed to the next layer in the protocol stack which means the interpreter puts
puts the message in the receive queue of the next layer.

We believe that inventing a new language for specifying fault injection scripts is not the best
solution. Instead, modifying and supporting a popular interpreted language with a collection of
predefined libraries gives the user a very effective tool which allows him /her to write most scripts. It

?A formal treatment of these failure models is beyond the scope of this presentation [17].



also eases the burden of learning a new language for users already familiar with whatever interpreted
language is chosen. As mentioned previously, we use Tcl [30] as the scripting language in the
implementation of our tool. Tcl allows users to define their own extensions, usually written in
C, to the scripting language. Since a script written in the 7Tecllanguage can invoke user-defined
procedures which can modify the internal state of the protocol, the system designer has the ability
to write scripts which can perform complex actions. This is a powerful tool because changing the
scripts to perform new or different tests does not require re-compiling the PFI layer. The only
time a re-compilation is required is when the library routines are changed.

In the ORCHESTRA fault injection environment, a typical Tcl script which encodes a state machine
might look like this:

if { [catch {set state}] == 1} {
set state O

while { 1 } {
if { $state == 0 } {
msg_delay 5.0 1
return
} elseif { $state == 1 } {
set state O
return

The first three lines of the script set the state to the initial state the first time the script is
interpreted (that is, the first time a message is received or sent through the filter). The operation
msg_delay delays the message by 5 seconds, and instructs the filter to resume the script in state
1. In this manner, a message can be delayed, and made to resume in its next logical state. It is
also possible to name a message and store the name in a list (without sending the message). The
script may accumulate a certain number of messages before sending them out to the network or
putting them on the application’s receive queue. In addition to grouping and delaying messages, the
script can also manipulate groups of messages by dropping or reordering messages within the group.
Because the script can condition state transitions on message type information, it may also perform
actions such as reordering sets of acknowledgment messages. This would be done by transitioning
on the message type, and queuing acknowledgment messages, while allowing non-acknowledgment
messages to pass normally. The acknowledgment messages can be subsequently reordered and sent
on to the next layer in the protocol stack.

In order to make script generation and specification more straightforward, we have also developed
a state-transition-based graphical script editor which generates test scripts. In the editor, states are
represented by various icons, while state transitions are denoted by arrows. Each state may have
a specific action, such as delaying or dropping a message, or updating a state variable. Transitions
between states may have conditions attached to them, meaning that the transition is taken only if
the condition is true. A state may maintain a counter, for example, and the transition to the next
state may be based on the value of the counter. We have found that this editor makes specifying
common tests fairly easy, and that tests can be generated in a short time using the tool. The
user may also specify Tcl code which can be invoked within each state. This allows the user more
flexibility in generating test scripts with the editor by allowing the user to add additional code to
tailor activities which occur within a state. Figure 3 shows a simple script specified in the editor.
Section 5 provides more detailed information on the ORCHESTRA graphical script editor.
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2.4 Intrusiveness on a Target Protocol

An important issue in the experimental evaluation and validation of the fault-tolerance capabili-
ties of distributed and real-time protocols is the intrusiveness of the approach on the target system.
The inherent necessity of an instrumentation may introduce a “Heisenberg effect” on the execution
of the target system. This is particularly important in real-time systems where timing predictabil-
ity may be disturbed by the additional overhead of a fault injection mechanism. Two key features
of the script-driven probing and fault injection approach attempt to minimize the intrusiveness on
a target protocol:

o Message-level fault injection and probing- Because the fault injection layer is inserted between
two levels in the protocol stack, the code of the target layer is not modified.

e Probing and monitoring from a non-target platform- Just as passive monitors are used to
observe network traffic, our approach can be used to instrument one node in the system. This
node can be used to collect data about target participants by probing.

While the intrusiveness issue is significant for both the logical correctness as well as the timing
correctness of an implementation, it is particularly significant in hard real-time systems where
timing predictability may be disturbed by the additional overhead of a fault injection mechanism.
One must ensure that unintended errors (including timing faults) are not introduced into the system
by the fault injection mechanism during an experiment. Furthermore, the timing predictability of
the target system must be preserved.

In a nutshell, in applying the proposed framework to fault injection of real-time protocols, we
exploit operating system support to quantify precisely the intrusiveness of a fault injection experi-
ment on the timing behavior of the target system and to compensate for it whenever possible. For
example, the implementation of ORCHESTRA on the Real-Time Mach operating system depends on
specific kernel support to deal with the intrusiveness issue. More detail on the Real-Time Mach
implementation and the exploitation of operating system support to handle timing intrusiveness is
provided in Section 3.3.



3 Implementation of ORCHESTRA for Socket-Based Applications

This section describes an implementation of a fault injection tool based on the ORCHESTRA
architecture. This tool allows the user to test applications and application level protocols that use
UNIX* sockets for inter-process communication. The socket-based implementation of ORCHESTRA
was developed on both the Solaris and Real-Time Mach operating systems, and was built using the
PFICore described in Section 2.2. Subsection 3.1 provides an overview of sockets and how they
are used for communication on both Solaris and Real-Time Mach. Subsection 3.2 describes the
implementation of the ORCHESTRA socket tool, built using the PFICore. Subsection 3.3 discusses
how specific features of Real-Time Mach are exploited in the ORCHESTRA implementation to deal
with timing intrusiveness of fault injection on that platform.

3.1 Socket Structure

Many applications and application level protocols use UNIX sockets to communicate with each
other. Sockets provide an interface in which one application may send data to another by specifying
an address/port combination. For network sockets, when reliable transmission is not critical, UDP
(unreliable datagram protocol) is used. For connection-oriented (reliable) sockets, TCP (transmis-
sion control protocol) is used. Applications using sockets invoke several library routines which set
up and send/receive data on the socket. These library routines call the kernel or protocol manager
through a system call interface. Routines available to applications using sockets include socket (),
bind(), connect(), send(), recv(), etc.

In Real-Time Mach®, protocol stack operations are provided by the UNIX server process, called
the UX server. The UX server keeps track of state such as which address/port combinations are
being used by TCP and UDP connections in the system. Socket calls are exported to the user
through the system C library, 1ibc.a. In addition to having this “kernel” support for sockets,
Real-Time Mach also provides a user level socket library, called libsockets.a. The purpose of
the user level socket library is mainly to increase the speed of send and receive operations. It does
this by creating an extra thread in the user task to handle socket operations, and by keeping the
protocol stack code within the user application space. For complex operations such as connection
setup and teardown, the UX server is still contacted, so that system wide state such as address/port
combinations that are in use can be kept track of, but send and receive operations are faster because
the UX server is not part of the message path.

For applications which are simply sending and receiving data, significant speedup (over the
UX server implementation) has been achieved by using libsockets.a. In Real-Time Mach, user
level sockets have been used in conjunction with processor reserves to achieve predictable protocol
processing [27]. Protocol processing is made predictable by binding the protocol processing thread
to a processor reserve so that sufficient time is set aside for communication. In addition, because
the send/receive path is contained within the application, protocol operations take place at the
priority of the process, alleviating problems with priority inversion due to FIFO scheduling within
the UX server.

In Solaris, the protocol stack resides in the kernel. The socket interface is provided by a library,
called 1ibsocket.a® which uses system calls to get data into and out of the kernel.

Figures 4(a) and 4(b) show the structure of the Solaris and Real-Time Mach socket implemen-

*UNIX is a registered trademark of UNIX System Laboratories, Inc.
5Mach 3.0 socket structure is identical to Real-Time Mach.
6Not to be confused with the Real-Time Mach libsockets.a.

10



Applications

Applications
’ Libc.a Socket Interface ‘ Libsockets.a Socket I nterface
@ Socket Library
Libsocket.a Socket Interface
UX Server / /
SolarisKernel Real-Time Mach 3.0
(a) Solaris (b) Real-TimeMach

Figure 4: Socket Structure

tations. As the figure shows, on Solaris, applications use the 1ibsocket.a interface to access the
protocol stack in the Solaris kernel. On Real-Time Mach, applications may use socket routines
provided by either the standard C library or by the socket library, 1ibsockets.a. On Real-Time
Mach, both the socket library and the UX server access the network through the Real-Time Mach
microkernel.

3.2 Solaris and Real-Time Mach Implementations of ORCHESTRA

This subsection describes the implementation of the ORCHESTRA fault injection tool on Solaris
and Real-Time Mach for testing distributed applications and protocols that use sockets for com-
munication. The tool provides a fault injection layer that sits between the socket interface and the
system, allowing fault injection into packets that are sent and received on sockets. The fault injec-
tion engine used by the tool is the PFICore, which is provided as a library, called 1ibpficore.a.
The socket portion of the tool is provided as a library called 1ibpfisock.a, and provides the same
interface as the system socket layer, e.g. socket(),bind(), connect(), send(), recv(). For send-
ing and receiving of messages, ORCHESTRA uses the system provided sockets. Because ORCHESTRA
presents a socket interface of its own and sits on top of the system socket interface, there was no
need for access to source code of the socket libraries. Furthermore, no kernel modification was
necessary for the implementation of this tool.

Building the ORCHESTRA socket layer consisted of writing the routines which comprise the socket
interface (e.g. socket(), bind(), connect(), send(), recv()), and providing support for polling
lower layers with a thread. In addition, event queues were provided so that actions such as delaying
messages can be performed.

An important feature of the ORCHESTRA socket tool is that the user is not required to modify
any of their source code in order to use the tool. Since the tool is provided as two libraries
(libpficore.a and libpfisock.a), all that is necessary is that the user re-link their application
with the new libraries. In order for the user not to get the system socket routines instead of the
ORCHESTRA socket routines, the names of the routines exported by the system must be modified.
We provide a library modification tool for this purpose. On Real-Time Mach, it modifies the
standard C library and the user level socket library to export routines named pfisend() and
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pfirecv() instead of send() and recv()”. The ORCHESTRA socket library, 1ibpfisock.a, exports
socket (), bind (), connect (), send(), recv(), etc. For building an application with ORCHESTRA
sockets, the user simply re-links with libpfisock.a, libpficore.a, and the modified system
library (either 1ibc.a or libsockets.a).

Solaris has several libraries that use the socket interface, and using the library modification
tool to modify all libraries was difficult and cumbersome. For this reason, we do not require
modification of the user’s source code on Solaris, but do require that the user modify their object
(.0) files before re-linking their application. 1ibpfisock.a exports a modified socket interface, such
as pfisocket (), pfibind(), etc. A tool is provided for modification of the user’s object files (in
fact is is the same tool as the library modification tool). The tool changes all instances of system
socket calls in the object file to ORCHESTRA socket calls (i.e. send() is changed to pfisend()).
After modifying their object files, the user simply re-links the application with 1ibpficore.a and
libpfisock.a. It should be noted that object file modification can be incorporated into the user’s
build procedure quite easily by defining a new default rule for compiling source files into object
files in the Makefile.

3.3 Exploitation of Real-Time Mach Features

To deal with the timing perturbations of a fault injection mechanism on a target real-time pro-
tocol, one has to quantify the intrusiveness precisely and use certain operating system features to
compensate for them. This is clearly a system-dependent solution which must rely on appropriate
support from a real-time operating system. The Real-Time Mach microkernel supports an abstrac-
tion called processor capacity reserve [27] which allows application threads to specify their CPU
requirements in terms of their timing requirements. If the request is admitted by the kernel, the
task is guaranteed to receive the requested CPU allocation. The kernel allows multiple threads to
be bound to the same reserve. However, it ensures that application threads bound to a reserve
specification cannot disturb the timing of other time-critical applications. When an application
exhausts its prescribed CPU allocation, the kernel suspends it or executes it at a lower priority.
Since the kernel monitors the execution of threads to enforce reserves, system calls are available
to provide feedback to an application about its CPU usage. Furthermore, reserve parameters can
be dynamically adjusted subject to the admission policy of the kernel. Hence, timing behavior of
application reserves can be monitored and changed dynamically.

In the implementation of ORCHESTRA on Real-Time Mach, the processor capacity reserve and
scheduler feedback facilities in the operating system are utilized by the PFICore to quantify and
to compensate for the intrusiveness of the fault injection experiments on the target real-time pro-
tocol. First, user level sockets have been used along with processor reserves to achieve predictable
protocol processing. Since most of the intrusiveness of the proposed fault injection and probing
technique will manifest itself as additional communication overhead, the capacity reservation facil-
ity in Real-Time Mach is an effective mechanism for compensating for this overhead by allocating
extra CPU resources to schedule communication activities. In particular, protocol processing is
made predictable by binding the protocol thread to a processor reserve so that sufficient time is
set aside for communication. Second, the microkernel structure of Real-Time Mach allows the
addition of the PFICore outside the microkernel either as a separate process or as part of a library
that intercepts messages to/from the target protocol. In the case of the ORCHESTRA socket-based
implementation, the PFICore is part of a library. The overhead associated with the fault injection

TOf course, all other socket calls such as socket (), bind(), connect(), etc. are also renamed. In addition, these
libraries are not installed over the system libraries, but instead are installed wherever the ORCHESTRA libraries are
installed.
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layer can be measured more precisely since it is outside the microkernel. Furthermore, the capac-
ity reservation facility in Real-Time Mach can be used to provide feedback on the computational
resources consumed by the fault injection layer.

Finally, having the send/receive path linked as libraries inside the application (in the case of the
user level socket library) means that protocol operations take place at the priority of the process
at the user-level, alleviating problems with priority inversion due to FIFO scheduling within the
UX server. Similarly, by running the PFICore as a user-level thread with the same priority as
the target application, we ensure that the fault injection protocol processing routines do not cause
priority inversion for the target application threads.

4 Experimental Results

Using the socket based ORCHESTRA tool described in previous sections, an experimental evalua-
tion of several protocol implementations was performed. These experiments were conducted in order
to demonstrate the range of capabilities of the ORCHESTRA fault injection both for asynchronous
and synchronous protocols. This section reports on fault injection experiments on an asynchronous
group membership service developed on the Solaris operating system, and on RT-Phone, a real-time
audio-conferencing application on Real-Time Mach.

4.1 Fault Injection of an Asynchronous Group Membership Protocol

The objective of the experiments described in this subsection was to test the fault-tolerance
capabilities of a prototype implementation of the strong group membership protocol ([19,22,23,33])
using the ORCHESTRA fault injection tool. In a distributed environment, a collection of processes
(or processors) can be grouped together to provide a service. A server group may be formed to
provide high-availability by replicating a function on several nodes or to provide load balancing by
distributing a resource on multiple nodes. A group membership protocol (GMP) is an agreement
protocol for achieving a consistent system-wide view of the operational processors in the presence
of failures, i.e., determining who is up and who is down. The membership of a group may change
when a member joins, departs, or is perceived to depart due to random communication delays. A
member may depart from a group due to a normal shutdown, such as a scheduled maintenance, or
due to a failure. The group membership problem has been studied extensively in the past both for
synchronous and asynchronous systems, (e.g. [7,28,31]). A detailed exposition of this problem is
beyond the scope of this presentation.

Informally, the strong group membership protocol, as described in ([22]), ensures that member-
ship changes are seen in the same order by all non-faulty members. In this protocol, a group of
processors have a unique leader based on the processor id of each member. When a membership
change is detected by the leader of the group, it executes a 2-phase protocol to ensure that all
members agree on the membership®. The leader sends a MEMBERSHIP_CHANGE message when a new
group is being formed. A processor, upon receiving this message removes itself from its old group
(if the message is from a valid leader). At this point, the group of this processor is said to be in a
IN_TRANSITION state, i.e. it is a member in transition from one group to another. This processor
then sends an ACK message to the leader. The leader, after collecting either ACKs or NAKs from all
the members, or when it has timed out waiting, determines what the membership of the new group
will be. It then sends out a COMMIT message containing the group membership to all the members.

8The protocol is deceptively simple, but it has a number of subtle properties which are beyond the scope of this
presentation.
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The important aspects of this protocol are that the group changes are acknowledged, and that for
some period of time, all the members that will be in a new group are in transition.

The implementation of the group membership protocol which we tested was developed by a group
of three graduate students as part of a project in a course on distributed systems in the Fall Term,
1993. The students were already familiar with Unix and socket-level programming on TCP/IP.
Furthermore, as part of the course project, they performed several extensive tests by instrumenting
the code. The implementation of the GMP was written as a user-level server which ran on SUN
machines on top of UDP. A reliable communication layer was implemented using retransmission
timers and sequence numbers.

In order to test the group membership daemon (GMD) using the ORCHESTRA tool, we simply
ran a library modification tool on the object files of the GMD and linked with the ORCHESTRA
libraries. The library modification tool is used to change all the socket related calls in an object
file to match the interface exported by the PFI libraries. The change is shown in Figure 5 and can
be easily automated by having the default make rule run the library modification tool on object
files. The experiments and results follow. Five Sun workstations running Solaris were used in these
experiments. They will be referred to as Sun1-5 in the remainder of this subsection.

GMD Process
GMD Process 3 GMP 3
GMP |
| ‘ ORCHESTRA !

Socket Interface

ORCHESTRA

Socket Interface

|
' | Solaris Socket Library
i

Socket Interface

Solaris Socket Library

(a) Original GMD (b) Relinked GMD

Figure 5: Protocol Layers in Group Membership Daemon: (a) GMD linked with the socket library
in Solaris, (b) GMD linked with the ORCHESTRA libraries.

Experiment: Packet interruption

The first set of tests involved three machines and various types of packet interruption. The GMDs
were tested for resiliency to delayed or dropped heartbeats, dropped ACKs of MEMBERSHIP_CHANGE mes-
sages, and dropped COMMIT messages. The results are presented below.

Group membership daemons normally send heartbeats to each other in order to keep track of
who is up and running. If a GMD does not receive heartbeats from another GMD for a period
of time, it will declare to the group leader that the other machine is down. As a simple test of
this behavior, the send filter script on one of the machines was configured to oscillate between two
states. In the first state, heartbeats which the GMD sends were actually sent. In the second state,
all outgoing heartbeats were dropped.

14



An error occurred when heartbeats to the local machine were dropped. What happened was
that when the local machine did not receive heartbeats from itself, it sent out a message to the
other members of the group saying that it had died! However, it did not update its own local state
correctly and instead of forming a singleton group (a group containing only itself), it stayed in the
old group but simply marked itself as down. After this, if someone sent it a PROCLAIM message, it
would forward it to the group leader, but there was a bug in the code which forwarded the message.
A routine was being called with the wrong type of parameter, which resulted in the packet not being
forwarded at all. Even though they had instrumented the code, the implementors of the GMD did
not find this error. The reason was that had never dropped heartbeats to the local machine. Even
when this bug was fixed, because the local GMD did not correctly update its state when it believed
itself “dead”, it would continue to send bad information to the other GMDs. The other machines
were not resilient to this type of failure, which was a serious implementation problem. Timing
failures on the local machine could actually cause the machine to have a detrimental effect on the
global state of the entire system. The implementors should have coded for the case in which the
machine that has “died” is the local machine. Identical behavior was observed when a GMD was
suspended for 30 seconds?. When it was un-suspended, it’s timers had expired and the same bugs
were observed.

Because the group membership daemons could not handle dropped heartbeats to themselves,
another test was performed. The test was the same as the previous test, but instead of dropping all
heartbeats in the second state, only heartbeats to other members of the group were dropped. The
result was that the machine which was dropping heartbeats kept getting kicked out of the group
even though it was still active. The machine would then form a singleton group, and then would
try to join the others again. It would be admitted to a new group containing all machines. The
machine would remain in the group until it began dropping heartbeats again, at which point the
cycle would repeat, and the “faulty” machine would be kicked out of the group again.

A similar experiment was performed in which heartbeats were delayed by a few seconds. The
result was exactly the same as in the dropped heartbeat experiment, because delayed heartbeats are
like dropped ones. This is because the heartbeat expect timer expires before the delayed heartbeats
arrive, having the same effect as if the heartbeats were dropped.

When a new group is formed, there is a two phase commit process. First, the group leader
sends a MEMBERSHIP CHANGE message to all prospective members of the new group. It waits for
ACK messages from the members, and then sends a COMMIT message to all machines that it received
ACKs from. If a machine does not send an ACK message in reply to the MEMBERSHIP CHANGE message
from the leader, it should never receive a COMMIT message and will not be part of the new group.
In this test, the receive filter script of the group leader was configured to drop ACK messages from
one of the machines (Sunl). Expected behavior was that Sunl never would never get committed
into any group.

In the experiment, GMDs were started on two machines and allowed to form a group. Then,
the GMD on Sunl was started. It sent PROCLAIM messages to the other two machines and received
a PROCLATIM from the group leader. It replied with a JOIN message, and the group leader initiated
the change to a new group by sending MEMBERSHIP CHANGE messages to everybody. The ACK from
Sunl was dropped by the fault injector on the group leader, and the group leader did not send a
COMMIT to Sunl. The two original machines formed a group with only themselves in it, and Sunl
stayed in a transitional state. Some time later, Sun1’s MEMBERSHIP CHANGE timer expired and it

°This was done by sending a SIGTSTP to the running program by typing a <Ctrl>-Z in the shell where the
program was running. It was put back into the foreground 30 seconds later by typing fg into the shell.
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sent out PROCLAIM messages to the others and the whole process repeated. Sunl was never admitted
to a group, which was the expected behavior.

In a variation on the previous test, the receive filter script of Sunl was configured to drop
incoming COMMIT packets. The expectation was that a group would be formed containing all
machines, but Sunl would not accept the view of the group (because it would not see the COMMIT).
Since Sunl would not view itself as in the group, it would not send heartbeats to the other members
and would be kicked out of the group.

In the experiment, GMDs were started on two machines and allowed to form a group. When Sunl
started running, it sent PROCLAIM messages and received a PROCLAIM from the group leader in re-
sponse. Sunl then sent a JOIN message to the leader. The leader sent out MEMBERSHIP_CHANGE mes-
sages to all machines and all responded with ACKs. The leader then sent COMMITs to everybody.
Sunl dropped its COMMIT message and stayed in the IN_TRANSITION state. The other two machines
adopted the new group view which contained everybody. After not receiving any heartbeats from
Sunl, the leader declared Sunl dead and formed a new group which did not contain Sunl. Again,
some time later, Sunl’s MEMBERSHIP CHANGE timer expired and it sent out PROCLAIM messages to
the others and the process repeated.

Experiment: Network partitions

The group membership protocol is designed to handle network partitions. If a partition occurs,
the result should be that separate but non-overlapping groups are formed. In order to test whether
this was the case, several tests were run in which messages between group members were dropped.

In the first test, the send filter scripts were configured to oscillate between two states. In the
first state, all outgoing messages that the GMD sends were actually sent. In the second state,
the messages were dropped based on destination address. Five machines were involved; they were
Sun{1-5}. In the second state, Sun{1-3} could only send messages to each other, and Sun{4,5}
were similarly isolated.

When the machines began dropping messages, two active but disjoint groups were formed. One
consisted of Sun{1-3}, and the other contained Sun{4,5}. After a while, the machines entered the
original state again and started transmitting to each other. At this time, a group was formed which
contained all machines. A short time later, the machines entered the second state again and the
process repeated.

In another test, the group leader and crown prince were configured to stop sending messages to
each other. The crown prince is the machine which is next in line to be the group leader in case of
leader failure. There were two courses of action, but the result was the same for both. In the end,
the crown prince had formed a singleton group by itself, and everyone else formed a group with the
leader. The two possible courses of action were dependent on the ordering of concurrent events.

If the leader sent out the MEMBERSHIP _CHANGE for the new group before the crown prince, every-
body except the crown prince became part of a new group. The crown prince was never admitted
to the new group because it was not able to send a JOIN message to the leader.

If the crown prince sent out the MEMBERSHIP CHANGE for the new group first, everybody except
the leader joined a group with the crown prince as the new leader. Soon after, however, the original
leader sent a PROCLAIM to everybody which was received by all machines except for the new leader
(the former crown prince). Since the original leader had a lower IP address than the new leader,
each machine responded to the original leader with a JOIN message. A group was formed which
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consisted of all machines except for the crown prince. The crown prince was never admitted to this
group because it was not able to send a JOIN or PROCLAIM message to the leader.

Experiment: Proclaim forwarding

In the group membership protocol, machines which desire to be in a group send PROCLAIM
messages to potential members of the group. These messages are either responded to if received
by the leader, or forwarded to the leader if received by another group member. When the leader
receives a PROCLAIM, it should respond to the originator of the PROCLAIM with either a PROCLAIM
of its own or a JOIN message (depending on which machine has a lower IP address). In this test,
a machine sent a PROCLAIM to a machine which was not the group leader. In order to do this, the
send filter script of the machine Sunl was configured to drop PROCLAIMs to the group leader so
that only the PROCLAIM to non-leader machines were actually sent. The expectation was that the
PROCLAIM would be forwarded to the leader, who would then respond to the PROCLAIM originator
(Sunl).

The GMDs on the two machines were started and allowed to form a group. Sunl was then
started, and sent PROCLAIMs to the other two machines, but the one to the leader was dropped
by the send filter script. The crown prince received the PROCLAIM and forwarded it to the leader,
who responded to the crown prince instead of the original sender with a PROCLAIM of its own. Of
course, the crown prince simply forwarded the PROCLAIM right back to the leader, who responded
with a PROCLAIM. This created a vicious cycle of PROCLAIM sending between the forwarder (in this
case the crown prince), and the leader. The original sender of the PROCLAIM (Sunl) never received
a PROCLAIM in response to its PROCLAIM, which was a serious problem. The code was fixed so that
the group leader always responds to PROCLAIM originator instead of the PROCLAIM sender, because
the sender may only be forwarding the message.

Experiment: Timer test

The group membership protocol uses timers extensively. There are timers set for sending and
receiving heartbeats, sending PROCLAIM messages, joining groups, and preparing to commit new
groups, among others. It is important that during some phases of the protocol, all timers be
unset. For example, it doesn’t make sense to time out waiting for a heartbeat message when you
are waiting for the COMMIT message for a new group. This test exercised the code which unsets
the timers when a machine receives a MEMBERSHIP_CHANGE. In the test, the receive filter for Sunl
was configured such that it was allowed to join one group. After that, when it received a second
MEMBERSHIP_CHANGE (when another group was formed) it started dropping all incoming COMMIT and
heartbeat messages.

To begin the test, Sunl and the group leader were started and formed an initial group. When
a third machine was started later, Sunl received a second MEMBERSHIP CHANGE and went into a
state in which incoming heartbeat and COMMIT messages were dropped. Soon after, Sunl was still
in a transitional state, when no timers (except for the MEMBERSHIP_CHANGE timer) were supposed
to be set. However, Sunl timed out waiting for a heartbeat message from the leader. This means
that the heartbeat expect timer for the leader was not unset when the IN_.TRANSITION state of the
protocol was entered.

It turned out that there was an error in the code which unregisters timeouts. In the procedure, if
an argument is NULL, all timeouts of the same type are unregistered. If the argument is non-null,
only the first is unregistered. It worked the opposite of how it should have because of a logic error,
and was fixed.
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4.2 Fault Injection Experiments on RT-Phone

The objective of the experiments in this subsection was to demonstrate the capabilities of the
ORCHESTRA fault injection environment by testing the functional and timing characteristics of RT-
Phone, a real-time teleconferencing application on the Real-Time Mach operating system. A closely
related objective was to illustrate that by measuring the intrusiveness of the fault injection layer,
one can compensate for timing perturbation with significant accuracy.

spk mic
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|

Figure 6: RT-Phone Application Window

RT-Phone is a distributed teleconferencing application with a telephone-pad-like Motif-based
graphical interface [24]. A caller and a callee can establish a 2-way audio connection across the
network using the graphical user interface shown in Figure 6. Various control buttons are also
available to set the volume level of the speaker and the microphone, to block incoming calls se-
lectively, and to modify the quality of the audio streams that are transmitted across the network.
After a connection is established, the sound card samples the microphone input and fills the DMA
buffer; an audio server thread periodically copies the sampled audio data into a buffer shared by
the communication thread which in turn transmits the packet to the other end of the connection.
The receiver goes through a similar set of steps (in the reverse order) to play back the audio on
the speakers. In order for the phone to be full duplex (i.e. both parties can talk and listen at
the same time), there are two audio servers and two sound cards on each machine. There are also
two communication threads in the RT-Phone application. The basic architecture of each audio
endpoint is shown in Figure 7. The RT-Phone servers use scheduling support on Real-Time Mach
to ensure an end-to-end delay guarantee of less than 100 ms under various loads. The end-to-end
delay in this application is a function of the reservation period for the RT-Phone threads, i.e., the
frequency of the invocation of the audio server and communication threads. When the reservation
period decreases (more frequent sampling and transmission of audio data), the end-to-end delay
decreases proportionally and the CPU load increases non-linearly.

Figure 8 shows the various stages in the processing of audio data as it is sent from one host to
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another. First, in Stage 1, the audio input from the microphone is sampled by the audio driver in
the kernel. In Stage 2, the audio data is processed by the audio server, sent to the phone application,
and is sent to the network. The data is transmitted from one host to another in Stage 3. In Stage 4,
the data is received and sent through the audio server to the kernel sound driver. Stage 5 is the
audio output stage, in which the data is played out through the speaker. The end-to-end delay of
the audio stream is 3T + Network_delay. (Note that the delay is not 47 + Network_delay.') A
typical value for T is 16 ms for a connection with 16KHz sampling and 1 byte/sample [24].

The list of experiments conducted on RT-Phone follows:

Performance measurement of network delay component of end-to-end delay: In this experiment,
ORCHESTRA was used to measure the network delay component of the end-to-end delay shown in
Figure 8. The quality of the audio stream depends on an end-to-end delay constraint of 100 ms
being met. Therefore, it is important that the fault injection layer does not impose a delay that
will cause audio stream degradation. As mentioned above, a typical delay for each pipeline stage
is 16 ms. This means that the network delay must not exceed 52 ms (of course, it should be much,
much lower). We found that by using the processor capacity reserve facility, it was possible to
obtain network latencies (including fault injection layer processing) under 10 ms. The maximum
delays depend on the reserve period of the fault injection thread, but can generally be held below
25-30 ms, with most transmissions taking 1-2 ms.

Protocol functional testing: This set of experiments tested the protocols for connection establish-
ment and modification of the audio stream quality. The messages that are sent from one host to
another for connection establishment and modification of audio stream quality are sent via UDP. No
attempt was made to reliably transmit these messages; if any messages are dropped by ORCHESTRA,
problems occur. However, the problem can usually be remedied by simply clicking on the correct
interface button, causing a retransmission of the message. The reason that these protocols were
not made reliable is that the RT-Phone project was targeted to demonstrate end-to-end guarantees
on audio quality, not reliable connection setup/teardown or stream parameter modification.

Measuring intrusiveness: In this set of experiments, several components of the overhead and
cost associated with the socket based ORCHESTRA tool were measured. Measurements were taken
in three areas: a) overhead of the thread management in the ORCHESTRA layer, b) cost of each
Tcl script invocation, and c) overhead of different Tcl fault injection scripts. Details of these
measurements are described below.

We have performed several experiments to calculate the overhead associated with the socket
ORCHESTRA tool. In the first experiment, 10000 messages were sent from one machine to another.
The thread associated with the ORCHESTRA tool on the client was bound to a processor capacity
reserve so that the time accumulated against the reserve could be measured. The accumulated
time was used to obtain a per message overhead. This was done first with fault injection disabled,
and then with several different scripts in place when fault injection was enabled. The overhead per
message with fault injection disabled averaged 390 us, with a standard deviation of 30 us. This
overhead is primarily due to context switching between the fault injection layer thread and Mach
when messages are sent, and is also due to work that the fault injection layer must perform to keep
track of all of the user’s sockets. With fault injection enabled, the overhead for a NULL script
was 508 us, with a standard deviation of 28 ps. This means that the overhead for calling the Tcl
interpreter but not doing anything is approximately 118 us. With two longer scripts, the time per

19The reason is that the data begins playing on the speaker in Stage 5, so Stage 5 is not part of the end-to-end
delay.
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Overhead measured using | Overhead measured via
RT-Mach capacity reserve | code instrumentation
Thread overhead 390 us N/A
Tecl interpreter w/ NULL Script 508 (118%) us 115 ps
Tel interpreter w/ Script 1 616 (226) s 225 ps
Tel interpreter w/ Script 2 711 (321) ps 325 ps

*The higher number shows the total overhead of thread and Tcl interpreter. The numbers in paren-
theses show the overhead of the Tcl interpreter alone.

Table 1: Intrusiveness Results

message rose to 616 and 711 us respectively, meaning that the script overheads were 226 and 321
us. Standard deviations on these measurements were 35 and 36 us respectively. The fact that
different scripts have differences in execution times on the order of hundreds of microseconds is due
mainly to the fact that Tcl is interpreted. Work presented in [32] addresses this by providing a
version of Tcl that accepts compiled scripts as input. Speedups of 8-12 times over the interpreted
case were presented in this paper, which would bring our measurement differences down onto the
order of tens of microseconds.

The overhead of fault injection scripts measured using processor capacity reserve was validated
by performing another experiment. In this experiment, the Mach real-time clock was sampled both
before and after calling the Tcl interpreter on different send filter scripts. The real-time clock has a
resolution of 1 us. The two times were then subtracted to obtain a per script invocation overhead.
For the NULL script and the other two scripts, the time per script invocation matched the average
script overhead per message that was obtained by averaging over 10000 messages. That is to say,
the NULL script time was 115 us, and the other scripts were 225 and 325 us respectively. Again,
the standard deviation was about 35 pus. These performance results are summarized in Table 1.

5 Graphical User Interface for Script Generation

As mentioned in section 2.3, scripts are executed by the PFI layer to orchestrate the system
into particular states and to inject various types of faults into the system. In order to make script
specification as quick and easy as possible, we developed a graphical script editor to generate test
scripts. A fault injection script can be viewed as a state machine which operates on a message.
When a new message enters the fault injection layer, a handle to the current message is set up in the
interpreter, and the state machine (Tcl script) is run through the interpreter. The message starts
in an initial state and moves through the state machine state by state. In each state some type of
action is performed. The next state the message moves to is based on information contained in the
state machine, such as message type, number of messages seen in a sequence, or recent message
history. The message exits the state machine when the script executes a return instruction. At
this point, the fault injection layer checks to see if the handle to the current message still exists. If
it does exist, the message is passed to the next layer. If the handle no longer exists, the message
was dropped or delayed and the fault injection layer simply moves on. The user generates test
scripts by “drawing” the state machine representing the test in the graphical script editor. The
editor then automatically generates the Tcl code for the test script. For the majority of tests, it is
simpler to generate the fault injection scripts using the editor than it is writing the scripts directly
in Tcl. In addition, the user does not need a complete knowledge of Tcl to create fault injection
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scripts using the editor.

In the next sections we will walk through the generation of a test script, describe the features of
the editor, and then briefly discuss its design.

5.1 An Example

In order to show the advantages and usage of the graphical script editor, we will discuss the test
that was used to check the response of the group membership daemon (GMD) to dropped heartbeat
messages, as described in the first experiment of Section 4.1. Recall that Group membership
daemons periodically exchange heartbeats to keep track of who is up. In this test we want a node
to oscillate between two states. In one state we would like the node to behave correctly. In the
other state, however, we would like all outgoing heartbeat messages to be dropped.

We start by examining the actual Tcl code generated by the graphical script editor. (The line
numbers were added for the purpose of this discussion.)

# Created by the Orchestra GUI on Thu Oct 3 14:50:13 EDT 1996

1
2
3 # handle initializations

4 if {[catch {set state}] == 1} {
5 global state initial_state
6 set state "Initial"

7 set initial_state "Initial"
8
9

global counter
10 set counter O
11}
12
13
14 # loop through the states until an exit is reached
156 while {1} {

16 if {$state=="Initial"} {

17 # code segment for Blank action Initial
18

19

20 # user script

21

22

23 # transitions to next state

24 if {[msg_type cur_msg] '= "heartbeat"} {
25 set state "exit"

26 } elseif {[msg_type cur_msg] == "heartbeat"} {
27 set state '"counter"

28 by

29 by

30 if {$state=="counter"} {

31 # code segment for Counter action counter
32 incr counter 1

33
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34

35 # user script

36

37

38

39 # transitions to next state

40 if {![expr int($counter/10)%2]1} {
41 set state "exit"

42 } elseif {[expr int($counter/10)%2]1} {
43 set state "drop"

44 h

45 b

46 if {$state=="drop"} {

47 # code segment for Drop action drop
48 msg_drop cur_msg

49

50

51 # user script

52

53

54 # transitions to next state

55 if {1} {

56 set state "exit"

57 X

58 b

59 if {$state=="exit"} {

60 # code segment for Exit action exit
61

62 # transitions to next state

63 set state $initial_state

64 return

65 b

66 }

The script is run for each message that enters the fault injection layer. If the message is not a
heartbeat, the message is simply passed to the next layer. If the message is a heartbeat, a counter
is incremented. Depending on the value of the counter, the message is either dropped or passed to
the next layer.

Lines 4-11 initialize the state machine. The condition for the if statement is only true the first
time the script is run. This code sets the initial state and initializes the counter to 0.

The rest of the code is a while loop. Inside the while loop different actions are taken depending
on the current state. Lines 16-29 is the code for the initial state which does not perform any actions.
The transition to the next state is based on the type of the current message. If the message is a
heartbeat the next state is the counter state else the next state is the exit state. Lines 30-45 is the
counter state. In this state the counter is incremented and the message will transition to either the
exit state or the drop state depending on the value of the counter. Lines 46-58 is the drop state
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Figure 9: Example Script in Graphical Script Editor
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where the current message is dropped. Lines 59-65 is the exit state. The exit state sets the state
back to the initial state and exits the while loop.

Although the Tcl code for this test is relatively straightforward, it is tedious to write by hand and
is especially unwieldy for the user who is not familiar with Tcl. On the other hand, the graphical
representation of the script is relatively simple to specify. Furthermore, only a passing knowledge
of Tcl is required to use the graphical editor. Anyone who has ever used an interactive drawing
or paint program such as Xfig will be instantly familiar with the use of the graphical editor. The
graphical representation of the script is shown in Figure 9.

5.2 Features of the Graphical ScriptEditor

The editor generates Tcl scripts from the graphical representation of the test’s state machine
that can be directly used by the PFI layer. The state machines are specified using the familiar
point and click interface found in most interactive drawing programs. Users select tools from a
floating toolbar and draw objects on a canvas by clicking and dragging the mouse. State machines
are made up of two types of objects, actions and transitions. Actions are the “states” of the state
machine and are connected together by transitions. Properties of an object, such as the condition
for a transition, are set through dialog boxes invoked by clicking on the object with the edit tool.
The editor knows about connections between actions and transitions. When objects or groups of
objects are moved, these connections are maintained.

Figure 10 shows the set of predefined actions available in the current implementation of the
editor. These include actions to count, delay, drop, and inject messages. In addition to the default
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activities performed by each type of action, users can add their own Tcl commands by embedding
a Tcl script in the dialog box for the action. Figure 11 shows a typical dialog box for the counter
action.

5.3 Implementation of the Graphical Script Editor

The graphical script editor was developed using [incr Tcl] [26] which is an object oriented version
of Tcl. Because [incr Tel] is based on Tk, it was relatively easy to create the application compared to
using Motif. It is also much more portable, allowing the editor to run on platforms including UNIX,
Windows 95/NT, and Macintosh. This application lends itself well to object oriented programming
techniques. For example, it is trivial to generate the Tcl code from the graphical representation.
Each type of action contains a method for generating its corresponding Tcl code. A test script is
generated by invoking this method for each action in a state machine graph.

An important benefit of the object oriented design is that it is extensible. New types of actions
can easily be added by providing implementations for a few methods. FEverything else can be
inherited from the Action class. This allows designers to add their own special actions. The
designers of the target layer being tested can provide the test personnel with a basic set of actions
that can manipulate the distributed computation. The testers can then develop state machines
from these actions and have the editor generate the scripts to test the system.

6 Related Work

Past research closely related to this work can be classified into three areas: (a) packet monitoring
and filter-based approaches; (b) fault injection techniques; and (c) formal verification methods.

(a) Packet Monitoring and filtering:

To support network diagnostics and analysis tools, most Unix systems have some kernel support
for giving user-level programs access to raw and unprocessed network traffic. Most of today’s
workstation operating systems contain such a facility including NIT in SunOS and Ultrix Packet
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Filter in DEC’s Ultrix. To minimize data copying across kernel /user-space protection boundaries,
a kernel agent, called a packet filter, is often used to discard unwanted packets as early as possible.
Past work on packet filters, including the pioneering work on the CMU/Stanford Packet Filter [29],
a more recent work on BSD Packet Filter (BPF) which uses a register-based filter evaluator [25],
and the Mach Packet Filter (MPF) [37] which is an extension of the BPF, are related to the work
presented in this paper. In the same spirit as packet filtration methods for network monitoring, our
approach inserts a filter to intercept messages that arrive from the network. While packet filters
are used primarily to gather trace data by passively monitoring the network, our approach uses
filters to intercept and manipulate packets exchanged between protocol participants. Furthermore,
our approach requires that a filter be inserted at various levels in a protocol stack, unlike packet
filters that are inserted on top of link-level device drivers and below the listening applications.

Another closely related work is the active probing approach proposed by Comer and Lin [6]
to study five TCP implementations. In addition to repeating TCP experiments similar to those
reported in [6], our approach allows manipulation of messages as well as simulation of more complex
failure models which are not possible with techniques that are based primarily on monitoring and
gathering trace data. A detailed comparison on fault injection of the TCP protocol appears in [10].

(b) Fault injection techniques:

Various techniques based on fault-injection have been proposed to test fault-tolerance capabilities
of systems. A recent survey paper [5] presents several fault injection studies, and also discusses
several different tools that facilitate the application of fault injection in various environments.
Hardware fault-injection (e.g. [2,35]) and simulation approaches for injecting hardware failures
(e.g. [8,16]) have received much attention in the past. Recent efforts have focused on software
fault-injection by inserting faults into system memory to emulate errors [4,34]. Fault-injection and
testing dependability of distributed systems has received more attention in recent years by several
research projects [3,13,14,18]. Most of the recent work in this area have focused on evaluating
dependability of distributed protocol implementations through statistical metrics. For example,
the work reported in [1] calculates fault coverages of a communication network server by injecting
physical faults, and it tests certain properties of an atomic multicast protocol [36] in the presence
of faults. Other work can be characterized as deterministic approaches to test generation [3,13].
In [13], the evaluation of design fault coverage is based on a stochastic model. The authors of [3]
propose a framework to conduct test sequences for identifying design and implementation faults
in complex fault-tolerant protocols. The work reported in [18] focuses on CPU and memory fault
injection into a distributed real-time system; this approach also allows inducing communication
faults with a given statistical distribution that is specified by the system implementor.

Rather than estimating fault coverages for evaluating dependability of distributed systems, the
work presented in this paper focuses on techniques for identifying violations of protocol specifica-
tions and for detecting design or implementation errors. This approach complements the previous
work by focusing on deterministic manipulation of messages via scripts that can be specified by
the protocol developer. The approach is based on the premise that injecting faults into a protocol
implementation requires orchestrating a computation into hard-to-reach states. Hence, determin-
istic control on ordering of certain concurrent messages is a key to this approach. Finally, one
significant distinguishing characteristic of our approach is the focus on real-time as well as fault
tolerance characteristics of distributed systems.

The Delayline [21] tool and the EFA fault injection environment reported in [14] are closest
to the approach described in this paper. The Delayline tool allows the user to introduce delays
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into user-level protocols. The tool is used mainly for emulating a wide-area network in a local
network development environment and allows the user to specify delays on certain paths which
the application is using. However, it is not intended for manipulating packets and injecting new
messages. The EFA fault injector proposes inserting a fault injection layer below the fault tolerant-
target protocol layer. Their work differs from ours on several key points. The first is that their
fault injection layer is driven by a program which is compiled into the fault injection layer, while
ours is driven by scripts which are interpreted at run time, allowing faster turn around time for
new tests. The second is that their fault injection layer is fixed at the data link layer. Although
our implementation of ORCHESTRA described in this paper is fixed at the socket layer, the protocol
independent nature of the PFICore allows the PFI layer to be moved around the protocol stack
fairly easily. In a previous paper [10] we describe an z-kernel layer implementation which can be
placed anywhere in an z-kernel protocol stack.

We should note that the work on the EFA project has recently concentrated on automatic
generation of fault cases to be injected. An attributed Petri net model is used to derive the fault
cases by a reachability analysis. This is a very promising research avenue which has been reported
in [15]. This approach differs from the work reported in this paper in that fault injection scripts
in ORCHESTRA are hand-crafted by the user and this process is facilitated by a state-transition-
based graphical user interface. Last, the implementation of ORCHESTRA on Real-Time Mach takes
advantage of some Real-Time Mach features to attempt to compensate for intrusiveness of the
fault injection layer for real-time applications. The Petri net model used in [15] does allow for
specification of real-time protocols. However, to our knowledge, the EFA work does not attempt
to quantify or compensate for intrusiveness of the fault injector.

(c) Formal verification methods:

While a detailed discussion of the past work on formal verification methods is beyond the scope
of this document, their relationship to script-driven probing and fault injection requires further
elaboration. Formal verification methods are used to prove that a system specification satisfies a
given property or to demonstrate that a system specification is consistent with an implementation
or a refinement. The work described in this paper attempts to check the correctness of certain
execution paths for a given implementation (or an executable specification). The goal is not to
demonstrate correctness for every computation of a distributed protocol, instead to focus selec-
tively on specific system computations. Hence, this work is much closer to recent research efforts
on execution simulation of real-time systems, given a formal system specification. Our primary
focus, however, is on studying the actual implementations of distributed real-time protocols and on
injecting faults into an execution trace from an implementation, not from a simulation. Another
distinguishing characteristic of this work is the emphasis on testing the fault-tolerance capabilities
of distributed real-time systems. In summary, we believe that the proposed technique for prob-
ing and fault injection of real-time protocols is complementary to the ongoing research on formal
methods.

7 Concluding Remarks

This paper presented the software architecture of ORCHESTRA, a fault injection environment for
testing distributed dependable systems. The paper focused on architectural features supporting
portability and minimizing intrusiveness on target protocols, with explicit support for testing real-
time protocols and easy specification of fault injection scripts. The paper also described in detail
the implementation of the ORCHESTRA architecture on two different platforms: the Solaris and
Real-Time Mach operating systems. The ORCHESTRA tool (and an earlier prototype implementa-
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tion) have been used to conduct extensive experiments on several commercial and research systems
including six implementations of the TCP communication protocol [10], a primary-backup repli-
cation protocol [11], a distributed group membership service, and a real-time audio-conferencing
application, as reported in this paper. These experiments revealed major design/implementation
errors as well as subtle violations of the protocol specifications. We were surprised by the power of
a few relatively simple primitives offered to a protocol developer who uses the proposed approach.
We were also surprised by the discovery of very intricate timing bugs which seem almost impossi-
ble to detect without a fine deterministic control on the relative ordering and timing of messages
delivery in a distributed computation.

Our insight into the applicability of this approach and its limitations has grown with each
experiment. An objective of our future work is to conduct further experiments on implementations
of commercial fault-tolerant and real-time protocols using the ORCHESTRA environment. Other
challenges include automatic generation of ORCHESTRA scripts from a high-level specification of the
protocol, and development of a methodology and a formal framework for orchestrating a distributed
computation. Furthermore, until now, this work has focused mainly on data collection in order to
check for correct protocol behavior. Another goal of future work in this area is to further develop
data collection and post analysis facilities.
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