

An Instruction Stream Compression Technique

1 of 21 27 November 1996
CSE-TR-319-96

An Instruction Stream Compression
Technique

1

Peter L. Bird
Trevor N. Mudge

EECS Department
University of Michigan

{pbird,tnm}@eecs.umich.edu

Abstract

The performance of instruction memory is a critical factor for both large, high perfor-
mance applications and for embedded systems. With high performance systems, the
bandwidth to the instruction cache can be the limiting factor for execution speed. Code
density is often the critical factor for embedded systems.

In this report we demonstrate a straightforward technique for compressing the instruc-
tion stream for programs. After code generation, the instruction stream is analysed for
often reused sequences of instructions from within the program’s basic blocks. These
patterns of multiple instructions are then mapped into single byte opcodes. This con-
stitutes a compression of multiple, multi-byte operations onto a single byte. When
compressed opcodes are detected during the instruction fetch cycle of program execu-
tion, they are expanded within the CPU into the original (multi-cycle) set of instruc-
tions. Because we only operate within a program’s basic block, branch instructions and
their targets are unaffected by this technique.

We provide statistics gathered from code generated for the Intel Pentium and the Power
PC processors. We have found that incorporating a 1K decode ROM in the CPU we can
reduce a program’s code size between 45% and 60%.

1. Material discussed in this technical report is undergoing patent review at the University of Michigan’s Tech-
nolog Management Office.

An Instruction Stream Compression Technique

2 of 21 27 November 1996
CSE-TR-319-96

1. Introduction

Although it is usually true that a particular algorithm can be most efficiently implemented
using hand-tuned assembly code, both the overhead in development, and the software life-
cycle has made the use of high level languages essential for large-scale, evolving applications.

Compilers cannot truly

optimize

 the generated code for any given program. This “sub-optimal-
ity” is manifest through larger code size and slower execution times than would be the case for
hand crafted assembly code. The impact of slower execution times is readily apparent, and
years of research have evolved better and more sophisticated optimization techniques for com-
pilers. However, the

size

 of the executing program also can have a severe impact upon program
performance.

Embedded systems often use processors which have small addresses spaces for programs.
Within this programming domain, the size of the program is often a limiting factor. Developers
currently use assembly code to ensure applications fit within the program space constraints.

In high performance environments, program size is also a limiting factor. Most processors have
an

instruction cache

 for holding recently used program segments. The larger the program, the
less likely it is that significant portions of its code will co-reside in the I-cache. An I-cache

miss

interrupts program execution while the missing code fragment is loaded from main memory,
thereby reducing overall performance.

Compressing a program’s instruction stream would benefit a range of application domains both
in the

size

 of the program in memory, and in the

bandwidth

 requirements for instruction fetch.
In this report, we present a technique which addresses this issue.

For the remainder of this section, we will discuss patterns found in compiled programs.
Section 2. gives a description of the hardware mechanism which implement the expansion of
compressed programs. Section 3. presents the results of several experiments we performed on
instruction pattern collection in a range of programs on different architectures. In Section 4. we
provide our conclusions and discuss some future work. Raw data for our experiments can be
found in the Appendix.

1.1 Instruction Patterns in Compiled Software

Compilers generate code using a

Syntax Directed Translation Scheme

(SDTS). [Aho-86].

Syn-
tactic source code patterns are mapped onto templates of instructions which implement the
appropriate semantics. Consider, for example, a schema to translate a subset of integer arith-
metic:

An Instruction Stream Compression Technique

3 of 21 27 November 1996
CSE-TR-319-96

expr -> expr ‘+’ expr
{ emit(add, $1, $1, $3);

$$ = $1;
}

expr -> expr ‘*’ expr
{ emit(mult, $1, $1, $3);

$$ = $1;
}

In both of these patterns, the expression subtrees on the RHS of the productions return registers
which is used by the arithmetic operation. The register number holding the result of the opera-
tion ($1) is passed up the parse tree for use in the parent operation.

Compilers reuse instruction templates throughout all generated programs. The only difference
in instruction sequences are the register numbers in arithmetic instructions and operand offsets
for

load

 and

store

 instructions. As a consequence, object modules are generated with many
common sub-sequences of instructions. There is a high degree of redundancy in the encoding
of a program.

The emergence of RISC architectures exacerbates this problem. A RISC instruction set gener-
ally trades efficient encodings for efficient decoding. That is, instructions have fixed width (i.e.
always 4 bytes). Those fields which are not required for certain operations are wasted.

Newer programming languages encourage the increase of redundancy in programs. One exam-
ple of this trend can be seen in applications developed using Object Oriented programming
techniques.

Information hiding

is one organizational strategy (among many) used for OOP. The
implementation of an object is hidden within the private namespace of the class, with member
functions used as the interface to the object. Often, these member functions are simple access
routines which reference private data structures. These short code sequences are also pattern
templates, similar to the SDTS of a compiler.

2. Description of Code Compression Technique

After code generation and register allocation, we analyse the generated code stream to search
for patterns. This pattern search is made over all instruction sequences of all basic blocks of the
program

1

. All patterns of all lengths are compared. The pattern checker finds all distinct pat-
terns, and counts their frequency of occurrence throughout the code stream. Those patterns
with the highest frequency of usage are assigned an opcode, and the sequence of instructions
for that opcode is saved in a ROM in the CPU. This decode table could be included as a part of
the process state, much like a page table.

1. A basic block starts at a label (or after a branch operation) and ends with a branch operation (or another label).

An Instruction Stream Compression Technique

4 of 21 27 November 1996
CSE-TR-319-96

During instruction fetch, the decoder checks the opcode of the incoming instruction. If the
opcode indicates an uncompressed instruction, then instruction decode and execution proceeds
in a conventional fashion. When the decoder encounters a compressed instruction, the entire
sequence of instructions is retrieved from the ROM and dispatched through the execution pipe-
line one instruction per cycle. Instruction fetch from the program memory stream is stalled
until the sequence completes.

2.1 Discussion

Perhaps the biggest limitation of the implementation described above is that it appears to
require a

pre-decode

 phase of the instruction pipeline of a processor (to determine if the
instruction is compressed or not). This limitation might be ameliorated if the processor main-
tains a short instruction queue whose members were checked for compression. This check
could be performed during the

µ

-op expansion phase of the Pentium-Pro instruction pipeline
[Micro-95].

This does not help the case where the compressed instruction is the target of a branch instruc-
tion. In this case, if the target instruction were held in the ROM table (following the branch
instruction),

pre-decode

 could be accomplished without incurring a delay in the instruction
pipeline.

Although the ISA form of instructions can be held in the ROM table (resulting in a smaller
table), a post-decoded form of the instruction could be used to speed instruction processing.

In our model the ROM table is specific to an application. When this is feasible, it results in the
best compression behavior. The disadvantage, of course, is that the processor is thereafter con-
figured to that application. For embedded processors this is not a limitation, since a single
application is usually ‘burned’ into a ROM and run for the lifetime of the system. This is obvi-
ously unsatisfactory for more general systems. There are alternative models for implementa-
tion.

As mentioned above, the decode table could be made a part of the state of a process (much like
the page tables capture the virtual memory structure of a process). This would allow the ROM
to readily change for different applications.

A library of sequences could become a part of the ISA for a given implementation of an archi-
tecture machine. This could permit a manufacturer to maintain a common ISA for all
machines, yet ‘tune’ a specific processor implementation for a given application domain (such
as multi-media). Compilers (or post-compilation processors) could translate instruction
sequences into the opcodes of the library for the implementation.

The ROM table itself represents a significant cost in silicon area in the CPU. There are several
ways one could implement the ROM:

An Instruction Stream Compression Technique

5 of 21 27 November 1996
CSE-TR-319-96

• Use a fixed width table (i.e. all instruction sequences are the length of the longest
sequence).

Clearly, this is wasteful of ROM space, since short sequences will have unused slots.

• Partition the ROM table into sets of sequences. The first N slots would be 2
instruction lengths, the next M slots would be 3 instruction lengths, etc.

Although this is less wasteful than the first scheme, it would still be wasteful, since it is
unlikely that any given set of patterns would fit neatly into the assigned partitions.

• Use an

index

 table to indicate starting ROM position and sequence length.

This would more efficiently use space than the first two schemes, but would require two ROM
accesses before the first instruction would be available for execution. This is likely to be an
unacceptable overhead (especially in high performance applications).

We need to both minimize its size, and minimize the cost of looking up instructions. We can
use a form of the preceding model, where the 1st instruction of the sequence is a part of the
index lookup. A compressed opcode is used to index into the

Lookup Table

. The first instruc-

tion of the sequence is drawn from the

lookup table

 and sent to the instruction execution pipe-
line. The

count

 of the remainder of the sequence is drawn from the table and using the index of
the

next

 instruction, the remaining instructions of the sequence are retrieved from a secondary
ROM table.

In the simplest case, even single instruction encodings are effective. Consider the following
program fragment:

0
1
2

127
...

Cnt Next1st Instruction

3
4

2
1
4
2
0

Remaining
Instructions

Lookup Table of Sequence

An Instruction Stream Compression Technique

6 of 21 27 November 1996
CSE-TR-319-96

for (i = c

1

; i < n; i++)
stmt

1

...
for (j = c

2

; j < n; i++)
stmt

2

Each loop would contain the instruction sequence.

Load R

n

,offset

{i,j}

(R

base

)
Addi R

n

,=1
Store R

n

,offset

{i,j}

(R

base

)

which loads the appropriate iteration variable, increments it and stores it back onto the pro-
gram’s stack frame. Since the add immediate operation is common to the two sequences, it’s a
candidate for compression. If our target architecture uses 16 bit encodings of instructions, we
will save 2 bytes (16 bits) out of 12 bytes (~17%) by compressing only the single instruction.

When we permit compression of sequences of instructions the results are more dramatic. If
both loops use the same iteration variable (whether on the stack or held in a register), then the
two increment sequences would be equivalent, and could be reduced to a single byte. The two
6 byte sequences would be reduced to 2 bytes (~83% savings).

We have intentionally ignored the issue of optimizations in this example. For example, in both
loop instances the iteration variable could be assigned to a register and never written back to
the stack frame. However, even with optimizations the compression technique discussed here
are applicable.

Further compression would be possible were the compiler aware that the optimization was
available, and generated a program’s code sequences accordingly.

Large register sets are disadvantageous to this technique. Sequence patterns are formed by
looking only at the distinct bit patterns of instructions (and not the operations being per-
formed). Using different registers for the same sequence of operations would result in distinct
patterns. However, this issue didn’t seem to have the impact we expected as our experimental
results show for the Power PC (Section 3.).

All of the discussion thus far has focussed upon the

static

 characteristics of programs.
Although we have not investigated

dynamic

 behavior in detail for this paper, it should be clear
that dynamic usage counts of instruction traces (collected by a profiler) could be used for pat-
tern construction in conjunction with

static

 pattern construction.

As mentioned above, instruction cache pressure is a major constraint for high performance pro-
gram execution [Uhlig-95]. An I-cache miss will stall the processor, while the instruction
memory access bandwidth limits the rate at which new instructions can be delivered to the pro-
cessor. Because this scheme reduces the size of programs, it effectively increases the effective
size of an I-cache for the same program fragment (a code stream is dynamically expanded

An Instruction Stream Compression Technique

7 of 21 27 November 1996
CSE-TR-319-96

within the CPU rather than redundantly occupying precious cache lines). Moreover, since
fewer bytes are transferred from program memory to the I-cache, the instruction memory band-
width requirements of the program are reduced.

We should note that while this technique is orthogonal to instruction level parallelism tech-
niques, they could be combined (see Section 4. below).

3. Experiments

We analysed 3 programs on two types of processors to determine the impact of

static

 instruc-
tion sequence compression upon program size. The three programs were:

• The GO program from the SPEC benchmarks [SPEC-95].

• A compiler for B# (a C-like programming language used in our compiler class).

• A large module from an image processing workbench [C&G 96].

The GO program was compiled with the GCC compiler for a Power PC. The other two pro-
grams were compiled using Microsoft’s Visual C++, version 4.1, for the Intel Pentium. The
compiler is written using only C language features (within the framework of LEX and YACC),
while the image processing module draws very heavily from the object oriented components of
C++, such as overloading, member access functions, virtual functions, etc.

Although all programs displayed long instruction sequence patterns (up to 20 instructions in
the image processing module), we restricted our pattern search to sequences from 1 to 8
instructions. The data for the three programs is summarized in the following table. The sizes of
the ROM tables include only the raw instruction sequences and do not incorporate all fields
described in Section 2.1 above. Code sizes include the size of the ROM table along with the
compressed program.

An Instruction Stream Compression Technique

8 of 21 27 November 1996
CSE-TR-319-96

:

3.1 Discussion

The results of our analysis are encouraging. Compressing only 16 patterns and using a very
modest ROM size, we were able to reduce programs by 24% to 38% of their original size.
Using a 1K ROM tables, programs were compressed to between 45% and 60% of the original
size. These represent very modest investments in silicon area.

4. Conclusion and Directions for Future Work

We have outlined a technique for generating dense program encodings. Our technique exploits
exactly those instruction sequence patterns which are repeated within a particular program.

We have discussed (in Section 2.1) ways this technique could be enhanced by adding a pre-
decode phase of instruction execution. A more detailed study of the problem is required.

We have shown that there is a high degree of regularity of patterns for different applications
compiled on different architectures. It would be interesting to see whether patterns exist which
are

• idiomatic to specific applications (integer vs. floating point, data base vs. multi-
media, etc.)

• specific to compilers

• idiomatic to machines.

If the latter case is true, then this technique could be useful for any general purpose machine in
reducing its instruction fetch bottleneck.

GO Compiler Image

Processor Power PC Pentium Pentium

Basic Blocks 10213 2044 4686

Uncompressed Bytes 219236 32423 60273

Total Instructions 54809 8919 18815

Distinct Instructions 13737 1914 3978

Distinct Patterns (length 1 to 8) 130952 15823 23937

Code size after compressing 1st 16 Patterns 69.8% 76.1% 62.5%

ROM size (in bytes) for 1st 16 Patterns 464 147 124

Code Size using 1K of ROM 55% 52.6% 40.3%

Code size after compressing 1st 128 patterns43.3% 49.3% 40.1%

ROM size (in bytes) for 1st 128 patterns 1920 1613 1039

An Instruction Stream Compression Technique

9 of 21 27 November 1996
CSE-TR-319-96

We believe it would be very interesting to examine the

dynamic

 behavior of a program when
analysing patterns. By incorporating a profiler, this process is no more difficult than collecting

static

 patterns. Our ROM table (containing a compressed tag following a branch instruction),
could augment or even replace a branch target buffer. Essentially, our compressed instruction
would become a

highly-likely

 program trace path.

It is interesting to note the relationship of our work with

Trace Scheduling

[Ellis-85], a tech-
nique for enhancing program parallelism which was derived from microcode compaction. The
focus of trace scheduling is to expose all machine operations to the compiler, thereby increas-
ing the set of operations which can be re-combined for parallel execution. One disadvantage of
compiler control of micro-operations is the added cost of program memory required to specify
the control of all operations every cycle. Although it is fruitful to “open the box” to expose the
possible parallel operations, we believe that a final set of common parallel operations can be
distilled to a small number of fixed actions. It would make sense to collapse these operations
onto a small set of opcodes thereby reducing the instruction memory requirements of the pro-
gram.

Bibliography

Aho-86 A. Aho, R. Sethi and J. Ullman,

Compiler: Principles, Techniques
and Tools,

Addison-Wesley, 1986.

C&G 96 Image Processing Workbench, C&G Software Engineering, Ann
Arbor, MI. 1996.

Ellis-85 J. Ellis,

Bulldog: A Compiler for VLIW Architectures

, ACM Distin-
guished Dissertation, MIT Press, 1985.

Micro-95 “Intel’s P6 Uses Decoupled Superscalar Design,” Microprocessor
Report

9(2)

, 16 February 1995.

SPEC-95 Spec Benchmarks, 1995.

Uhlig-95 R. Uhlig,

Trap-Driven Memory Simulation

, Ph.D dissertation,
EECS Department, University of Michigan, Ann Arbor, MI, 1995.

An Instruction Stream Compression Technique

10 of 21 27 November 1996
CSE-TR-319-96

Appendix

To give the reader an idea of the impact of pattern sequences on program compression, we here
present the raw data of our analyser for the 3 programs we studied.

GO Program

54809 Instructions

219236 bytes in program

13737 distinct instructions

4203 labels

10213 basic blocks

130952 distinct patterns of length 1 to 8

#
Bytes in
Pattern

Instructions
in Pattern

Use
Count

Cumulative
Bytes
Saved

ROM
Table
Size

Program Size
(vs. Original)

Program
Size with

ROM Table

1 4 1 1900 5700 4 97.4% 97.4%

2 32 8 177 11187 36 94.9% 94.9%

3 32 8 174 16581 68 92.4% 92.5%

4 32 8 169 21820 100 90.0% 90.1%

5 32 8 169 27059 132 87.7% 87.7%

6 32 8 154 31833 164 85.5% 85.6%

7 32 8 154 36607 196 83.3% 83.4%

8 32 8 129 40606 228 81.5% 81.6%

9 32 8 129 44605 260 79.7% 79.8%

10 32 8 107 47922 292 78.1% 78.3%

11 32 8 107 51239 324 76.6% 76.8%

12 32 8 97 54246 356 75.3% 75.4%

13 32 8 97 57253 388 73.9% 74.1%

14 4 1 928 60037 392 72.6% 72.8%

15 32 8 76 62393 424 71.5% 71.7%

16 32 8 76 64749 456 70.5% 70.7%

17 8 2 288 66765 464 69.5% 69.8%

18 32 8 62 68687 496 68.7% 68.9%

19 32 8 62 70609 528 67.8% 68.0%

20 4 1 595 72394 532 67.0% 67.2%

21 4 1 563 74083 536 66.2% 66.5%

An Instruction Stream Compression Technique

11 of 21 27 November 1996
CSE-TR-319-96

22 12 3 150 75733 548 65.5% 65.7%

23 32 8 46 77159 580 64.8% 65.1%

24 32 8 46 78585 612 64.2% 64.4%

25 16 4 85 79860 628 63.6% 63.9%

26 16 4 82 81090 644 63.0% 63.3%

27 32 8 37 82237 676 62.5% 62.8%

28 32 8 37 83384 708 62.0% 62.3%

29 16 4 75 84509 724 61.5% 61.8%

30 20 5 59 85630 744 60.9% 61.3%

31 4 1 372 86746 748 60.4% 60.8%

32 4 1 352 87802 752 60.0% 60.3%

33 20 5 55 88847 772 59.5% 59.8%

34 24 6 40 89767 796 59.1% 59.4%

35 4 1 294 90649 800 58.7% 59.0%

36 32 8 27 91486 832 58.3% 58.7%

37 32 8 27 92323 864 57.9% 58.3%

38 4 1 278 93157 868 57.5% 57.9%

39 24 6 36 93985 892 57.1% 57.5%

40 4 1 270 94795 896 56.8% 57.2%

41 4 1 267 95596 900 56.4% 56.8%

42 16 4 53 96391 916 56.0% 56.5%

43 4 1 231 97084 920 55.7% 56.1%

44 4 1 219 97741 924 55.4% 55.8%

45 4 1 214 98383 928 55.1% 55.5%

46 32 8 20 99003 960 54.8% 55.3%

47 32 8 20 99623 992 54.6% 55.0%

48 32 8 20 100243 1024 54.3% 54.7%

49 32 8 20 100863 1056 54.0% 54.5%

50 32 8 19 101452 1088 53.7% 54.2%

51 8 2 82 102026 1096 53.5% 54.0%

52 4 1 187 102587 1100 53.2% 53.7%

53 4 1 186 103145 1104 53.0% 53.5%

54 32 8 18 103703 1136 52.7% 53.2%

55 32 8 17 104230 1168 52.5% 53.0%

56 32 8 17 104757 1200 52.2% 52.8%

57 4 1 165 105252 1204 52.0% 52.5%

58 4 1 161 105735 1208 51.8% 52.3%

An Instruction Stream Compression Technique

12 of 21 27 November 1996
CSE-TR-319-96

59 4 1 155 106200 1212 51.6% 52.1%

60 28 7 17 106659 1240 51.3% 51.9%

61 4 1 152 107115 1244 51.1% 51.7%

62 4 1 145 107550 1248 50.9% 51.5%

63 4 1 140 107970 1252 50.8% 51.3%

64 12 3 38 108388 1264 50.6% 51.1%

65 4 1 139 108805 1268 50.4% 50.9%

66 4 1 137 109216 1272 50.2% 50.8%

67 4 1 135 109621 1276 50.0% 50.6%

68 32 8 13 110024 1308 49.8% 50.4%

69 32 8 13 110427 1340 49.6% 50.2%

70 4 1 134 110829 1344 49.4% 50.1%

71 4 1 133 111228 1348 49.3% 49.9%

72 12 3 36 111624 1360 49.1% 49.7%

73 4 1 130 112014 1364 48.9% 49.5%

74 4 1 128 112398 1368 48.7% 49.4%

75 4 1 125 112773 1372 48.6% 49.2%

76 4 1 123 113142 1376 48.4% 49.0%

77 4 1 110 113472 1380 48.2% 48.9%

78 4 1 108 113796 1384 48.1% 48.7%

79 4 1 105 114111 1388 48.0% 48.6%

80 4 1 105 114426 1392 47.8% 48.4%

81 4 1 105 114741 1396 47.7% 48.3%

82 8 2 45 115056 1404 47.5% 48.2%

83 32 8 10 115366 1436 47.4% 48.0%

84 32 8 10 115676 1468 47.2% 47.9%

85 16 4 20 115976 1484 47.1% 47.8%

86 16 4 20 116276 1500 47.0% 47.6%

87 4 1 97 116567 1504 46.8% 47.5%

88 16 4 19 116852 1520 46.7% 47.4%

89 4 1 94 117134 1524 46.6% 47.3%

90 4 1 94 117416 1528 46.4% 47.1%

91 4 1 93 117695 1532 46.3% 47.0%

92 32 8 9 117974 1564 46.2% 46.9%

93 32 8 9 118253 1596 46.1% 46.8%

94 32 8 9 118532 1628 45.9% 46.7%

95 32 8 9 118811 1660 45.8% 46.6%

An Instruction Stream Compression Technique

13 of 21 27 November 1996
CSE-TR-319-96

96 8 2 39 119084 1668 45.7% 46.4%

97 4 1 90 119354 1672 45.6% 46.3%

98 4 1 90 119624 1676 45.4% 46.2%

99 4 1 88 119888 1680 45.3% 46.1%

100 4 1 84 120140 1684 45.2% 46.0%

101 4 1 83 120389 1688 45.1% 45.9%

102 20 5 13 120636 1708 45.0% 45.8%

103 8 2 35 120881 1716 44.9% 45.6%

104 16 4 16 121121 1732 44.8% 45.5%

105 4 1 78 121355 1736 44.6% 45.4%

106 4 1 78 121589 1740 44.5% 45.3%

107 4 1 78 121823 1744 44.4% 45.2%

108 8 2 33 122054 1752 44.3% 45.1%

109 12 3 21 122285 1764 44.2% 45.0%

110 20 5 12 122513 1784 44.1% 44.9%

111 4 1 74 122735 1788 44.0% 44.8%

112 4 1 74 122957 1792 43.9% 44.7%

113 4 1 73 123176 1796 43.8% 44.6%

114 32 8 7 123393 1828 43.7% 44.6%

115 4 1 72 123609 1832 43.6% 44.5%

116 4 1 72 123825 1836 43.5% 44.4%

117 4 1 71 124038 1840 43.4% 44.3%

118 4 1 71 124251 1844 43.3% 44.2%

119 4 1 70 124461 1848 43.2% 44.1%

120 8 2 30 124671 1856 43.1% 44.0%

121 12 3 19 124880 1868 43.0% 43.9%

122 12 3 19 125089 1880 42.9% 43.8%

123 4 1 69 125296 1884 42.8% 43.7%

124 4 1 68 125500 1888 42.8% 43.6%

125 8 2 29 125703 1896 42.7% 43.5%

126 4 1 65 125898 1900 42.6% 43.4%

127 16 4 13 126093 1916 42.5% 43.4%

128 4 1 64 126285 1920 42.4% 43.3%

An Instruction Stream Compression Technique

14 of 21 27 November 1996
CSE-TR-319-96

B# Compiler

8919 Instructions

32423 bytes in program

1914 distinct instructions

867 labels

2044 basic blocks

15823 distinct patterns of length 1 to 8

#
Bytes in
Pattern

Instructions
in Pattern

Use
Count

Cumulative
Bytes
Saved

ROM
Table
Size

Program Size
(vs. Original)

Program
Size with

ROM Table

1 5 1 311 1244 5 96.2% 96.2%

2 5 1 197 2032 10 93.7% 93.8%

3 11 3 70 2732 21 91.6% 91.6%

4 8 2 86 3334 29 89.7% 89.8%

5 8 2 68 3810 37 88.2% 88.4%

6 3 1 211 4232 40 86.9% 87.1%

7 22 8 20 4652 62 85.7% 85.8%

8 8 2 52 5016 70 84.5% 84.7%

9 5 1 86 5360 75 83.5% 83.7%

10 5 1 84 5696 80 82.4% 82.7%

11 13 3 28 6032 93 81.4% 81.7%

12 11 3 33 6362 104 80.4% 80.7%

13 3 1 163 6688 107 79.4% 79.7%

14 6 2 65 7013 113 78.4% 78.7%

15 19 4 18 7337 132 77.4% 77.8%

16 7 4 51 7643 139 76.4% 76.9%

17 8 2 38 7909 147 75.6% 76.1%

18 5 5 65 8169 152 74.8% 75.3%

19 10 2 27 8412 162 74.1% 74.6%

20 3 1 116 8644 165 73.3% 73.8%

21 24 8 10 8874 189 72.6% 73.2%

22 5 1 55 9094 194 72.0% 72.6%

23 9 3 26 9302 203 71.3% 71.9%

24 15 6 13 9484 218 70.7% 71.4%

25 35 8 5 9654 253 70.2% 71.0%

26 5 1 42 9822 258 69.7% 70.5%

An Instruction Stream Compression Technique

15 of 21 27 November 1996
CSE-TR-319-96

27 5 1 41 9986 263 69.2% 70.0%

28 14 3 12 10142 277 68.7% 69.6%

29 8 2 22 10296 285 68.2% 69.1%

30 5 1 38 10448 290 67.8% 68.7%

31 9 6 19 10600 299 67.3% 68.2%

32 6 2 29 10745 305 66.9% 67.8%

33 5 1 35 10885 310 66.4% 67.4%

34 8 2 20 11025 318 66.0% 67.0%

35 24 8 6 11163 342 65.6% 66.6%

36 18 5 8 11299 360 65.2% 66.3%

37 6 2 27 11434 366 64.7% 65.9%

38 6 2 27 11569 372 64.3% 65.5%

39 7 3 22 11701 379 63.9% 65.1%

40 13 3 11 11833 392 63.5% 64.7%

41 11 2 13 11963 403 63.1% 64.3%

42 33 7 4 12091 436 62.7% 64.1%

43 7 2 21 12217 443 62.3% 63.7%

44 6 1 24 12337 449 61.9% 63.3%

45 16 5 8 12457 465 61.6% 63.0%

46 5 1 28 12569 470 61.2% 62.7%

47 5 1 28 12681 475 60.9% 62.4%

48 3 1 55 12791 478 60.5% 62.0%

49 12 2 10 12901 490 60.2% 61.7%

50 12 4 10 13011 502 59.9% 61.4%

51 7 1 18 13119 509 59.5% 61.1%

52 3 1 54 13227 512 59.2% 60.8%

53 16 4 7 13332 528 58.9% 60.5%

54 14 4 8 13436 542 58.6% 60.2%

55 6 2 20 13536 548 58.3% 59.9%

56 26 6 4 13636 574 57.9% 59.7%

57 3 2 47 13730 577 57.7% 59.4%

58 3 3 47 13824 580 57.4% 59.2%

59 24 7 4 13916 604 57.1% 58.9%

60 11 2 9 14006 615 56.8% 58.7%

61 16 5 6 14096 631 56.5% 58.5%

62 3 1 43 14182 634 56.3% 58.2%

63 7 2 14 14266 641 56.0% 58.0%

An Instruction Stream Compression Technique

16 of 21 27 November 1996
CSE-TR-319-96

64 15 3 6 14350 656 55.7% 57.8%

65 5 1 20 14430 661 55.5% 57.5%

66 5 1 20 14510 666 55.2% 57.3%

67 2 1 78 14588 668 55.0% 57.1%

68 2 1 78 14666 670 54.8% 56.8%

69 3 2 39 14744 673 54.5% 56.6%

70 27 8 3 14822 700 54.3% 56.4%

71 8 3 11 14899 708 54.0% 56.2%

72 3 1 38 14975 711 53.8% 56.0%

73 4 3 25 15050 715 53.6% 55.8%

74 7 1 12 15122 722 53.4% 55.6%

75 5 1 18 15194 727 53.1% 55.4%

76 7 2 12 15266 734 52.9% 55.2%

77 13 3 6 15338 747 52.7% 55.0%

78 10 5 8 15410 757 52.5% 54.8%

79 8 2 10 15480 765 52.3% 54.6%

80 7 2 11 15546 772 52.1% 54.4%

81 6 2 13 15611 778 51.9% 54.3%

82 3 1 30 15671 781 51.7% 54.1%

83 3 1 30 15731 784 51.5% 53.9%

84 6 1 12 15791 790 51.3% 53.7%

85 13 4 5 15851 803 51.1% 53.6%

86 31 8 2 15911 834 50.9% 53.5%

87 31 8 2 15971 865 50.7% 53.4%

88 30 8 2 16029 895 50.6% 53.3%

89 30 8 2 16087 925 50.4% 53.2%

90 5 1 14 16143 930 50.2% 53.1%

91 3 1 28 16199 933 50.0% 52.9%

92 15 3 4 16255 948 49.9% 52.8%

93 15 5 4 16311 963 49.7% 52.7%

94 29 8 2 16367 992 49.5% 52.6%

95 29 8 2 16423 1021 49.3% 52.5%

96 7 1 9 16477 1028 49.2% 52.4%

97 10 4 6 16531 1038 49.0% 52.2%

98 10 5 6 16585 1048 48.8% 52.1%

99 19 5 3 16639 1067 48.7% 52.0%

100 19 5 3 16693 1086 48.5% 51.9%

An Instruction Stream Compression Technique

17 of 21 27 November 1996
CSE-TR-319-96

101 19 5 3 16747 1105 48.3% 51.8%

102 28 7 2 16801 1133 48.2% 51.7%

103 28 7 2 16855 1161 48.0% 51.6%

104 14 5 4 16907 1175 47.9% 51.5%

105 27 8 2 16959 1202 47.7% 51.4%

106 27 8 2 17011 1229 47.5% 51.3%

107 18 3 3 17062 1247 47.4% 51.2%

108 6 2 10 17112 1253 47.2% 51.1%

109 26 8 2 17162 1279 47.1% 51.0%

110 5 1 12 17210 1284 46.9% 50.9%

111 5 1 12 17258 1289 46.8% 50.7%

112 5 1 12 17306 1294 46.6% 50.6%

113 13 2 4 17354 1307 46.5% 50.5%

114 13 3 4 17402 1320 46.3% 50.4%

115 25 5 2 17450 1345 46.2% 50.3%

116 25 5 2 17498 1370 46.0% 50.3%

117 17 6 3 17546 1387 45.9% 50.2%

118 13 7 4 17594 1400 45.7% 50.1%

119 25 8 2 17642 1425 45.6% 50.0%

120 25 8 2 17690 1450 45.4% 49.9%

121 24 8 2 17736 1474 45.3% 49.8%

122 24 8 2 17782 1498 45.2% 49.8%

123 24 8 2 17828 1522 45.0% 49.7%

124 47 8 1 17874 1569 44.9% 49.7%

125 6 2 9 17919 1575 44.7% 49.6%

126 16 3 3 17964 1591 44.6% 49.5%

127 16 3 3 18009 1607 44.5% 49.4%

128 6 4 9 18054 1613 44.3% 49.3%

An Instruction Stream Compression Technique

18 of 21 27 November 1996
CSE-TR-319-96

Image Processing Module

18815 Instructions

60273 bytes in program

3978 distinct instructions

2028 labels

4686 basic blocks

23937 distinct patterns of length 1 to 8

#
Bytes in
Pattern

Instructions
in Pattern

Use
Count

Cumulative
Bytes
Saved

ROM
Table
Size

Program Size
(vs. Original)

Program
Size with

ROM Table

1 14 3 267 3471 14 94.2% 94.3%

2 14 6 232 6487 28 89.2% 89.3%

3 6 4 411 8542 34 85.8% 85.9%

4 9 5 216 10270 43 83.0% 83.0%

5 7 1 268 11878 50 80.3% 80.4%

6 3 1 736 13350 53 77.9% 77.9%

7 12 7 118 14648 65 75.7% 75.8%

8 7 1 208 15896 72 73.6% 73.7%

9 5 1 267 16964 77 71.9% 72.0%

10 5 3 267 18032 82 70.1% 70.2%

11 3 1 486 19004 85 68.5% 68.6%

12 4 4 257 19775 89 67.2% 67.3%

13 4 2 245 20510 93 66.0% 66.1%

14 5 1 156 21134 98 64.9% 65.1%

15 12 5 50 21684 110 64.0% 64.2%

16 9 5 67 22220 119 63.1% 63.3%

17 5 1 129 22736 124 62.3% 62.5%

18 5 1 129 23252 129 61.4% 61.6%

19 3 1 238 23728 132 60.6% 60.9%

20 6 2 85 24153 138 59.9% 60.2%

21 16 4 28 24573 154 59.2% 59.5%

22 13 6 35 24993 167 58.5% 58.8%

23 3 1 183 25359 170 57.9% 58.2%

24 6 5 73 25724 176 57.3% 57.6%

25 8 2 49 26067 184 56.8% 57.1%

26 5 1 84 26403 189 56.2% 56.5%

An Instruction Stream Compression Technique

19 of 21 27 November 1996
CSE-TR-319-96

27 5 1 84 26739 194 55.6% 56.0%

28 9 5 42 27075 203 55.1% 55.4%

29 9 5 41 27403 212 54.5% 54.9%

30 12 4 24 27667 224 54.1% 54.5%

31 19 4 14 27919 243 53.7% 54.1%

32 19 8 14 28171 262 53.3% 53.7%

33 5 1 62 28419 267 52.8% 53.3%

34 8 2 35 28664 275 52.4% 52.9%

35 5 1 60 28904 280 52.0% 52.5%

36 3 1 113 29130 283 51.7% 52.1%

37 16 6 14 29340 299 51.3% 51.8%

38 7 1 33 29538 306 51.0% 51.5%

39 8 2 28 29734 314 50.7% 51.2%

40 8 2 28 29930 322 50.3% 50.9%

41 7 3 30 30110 329 50.0% 50.6%

42 8 2 25 30285 337 49.8% 50.3%

43 7 2 28 30453 344 49.5% 50.0%

44 7 3 28 30621 351 49.2% 49.8%

45 4 1 54 30783 355 48.9% 49.5%

46 12 4 14 30937 367 48.7% 49.3%

47 10 2 16 31081 377 48.4% 49.1%

48 7 2 24 31225 384 48.2% 48.8%

49 19 6 8 31369 403 48.0% 48.6%

50 12 7 13 31512 415 47.7% 48.4%

51 11 3 14 31652 426 47.5% 48.2%

52 11 3 14 31792 437 47.3% 48.0%

53 12 6 12 31924 449 47.0% 47.8%

54 10 2 14 32050 459 46.8% 47.6%

55 22 7 6 32176 481 46.6% 47.4%

56 5 1 30 32296 486 46.4% 47.2%

57 10 2 13 32413 496 46.2% 47.0%

58 9 3 14 32525 505 46.0% 46.9%

59 7 2 18 32633 512 45.9% 46.7%

60 3 1 50 32733 515 45.7% 46.5%

61 4 2 33 32832 519 45.5% 46.4%

62 6 1 18 32922 525 45.4% 46.2%

63 7 3 15 33012 532 45.2% 46.1%

An Instruction Stream Compression Technique

20 of 21 27 November 1996
CSE-TR-319-96

64 19 6 5 33102 551 45.1% 46.0%

65 3 1 44 33190 554 44.9% 45.9%

66 3 1 44 33278 557 44.8% 45.7%

67 12 7 8 33366 569 44.6% 45.6%

68 4 1 29 33453 573 44.5% 45.4%

69 7 2 14 33537 580 44.4% 45.3%

70 7 3 14 33621 587 44.2% 45.2%

71 15 7 6 33705 602 44.1% 45.1%

72 3 1 41 33787 605 43.9% 44.9%

73 5 2 20 33867 610 43.8% 44.8%

74 17 7 5 33947 627 43.7% 44.7%

75 12 3 7 34024 639 43.6% 44.6%

76 12 3 7 34101 651 43.4% 44.5%

77 5 1 19 34177 656 43.3% 44.4%

78 5 1 19 34253 661 43.2% 44.3%

79 16 8 5 34328 677 43.0% 44.2%

80 5 1 18 34400 682 42.9% 44.1%

81 5 1 18 34472 687 42.8% 43.9%

82 5 1 18 34544 692 42.7% 43.8%

83 13 5 6 34616 705 42.6% 43.7%

84 4 1 23 34685 709 42.5% 43.6%

85 5 1 17 34753 714 42.3% 43.5%

86 5 1 17 34821 719 42.2% 43.4%

87 5 1 17 34889 724 42.1% 43.3%

88 5 1 17 34957 729 42.0% 43.2%

89 12 3 6 35023 741 41.9% 43.1%

90 7 3 11 35089 748 41.8% 43.0%

91 5 1 16 35153 753 41.7% 42.9%

92 9 3 8 35217 762 41.6% 42.8%

93 3 1 31 35279 765 41.5% 42.7%

94 3 1 30 35339 768 41.4% 42.6%

95 11 2 6 35399 779 41.3% 42.6%

96 6 2 12 35459 785 41.2% 42.5%

97 21 7 3 35519 806 41.1% 42.4%

98 5 1 14 35575 811 41.0% 42.3%

99 5 1 14 35631 816 40.9% 42.2%

100 5 1 14 35687 821 40.8% 42.2%

An Instruction Stream Compression Technique

21 of 21 27 November 1996
CSE-TR-319-96

101 5 1 14 35743 826 40.7% 42.1%

102 5 1 14 35799 831 40.6% 42.0%

103 5 1 14 35855 836 40.5% 41.9%

104 5 1 14 35911 841 40.4% 41.8%

105 5 1 14 35967 846 40.3% 41.7%

106 9 3 7 36023 855 40.2% 41.7%

107 12 3 5 36078 867 40.1% 41.6%

108 12 3 5 36133 879 40.1% 41.5%

109 12 3 5 36188 891 40.0% 41.4%

110 12 3 5 36243 903 39.9% 41.4%

111 12 3 5 36298 915 39.8% 41.3%

112 12 5 5 36353 927 39.7% 41.2%

113 3 1 27 36407 930 39.6% 41.1%

114 3 1 27 36461 933 39.5% 41.1%

115 3 1 26 36513 936 39.4% 41.0%

116 5 1 13 36565 941 39.3% 40.9%

117 5 1 13 36617 946 39.2% 40.8%

118 6 2 10 36667 952 39.2% 40.7%

119 8 4 7 36716 960 39.1% 40.7%

120 5 1 12 36764 965 39.0% 40.6%

121 7 1 8 36812 972 38.9% 40.5%

122 13 5 4 36860 985 38.8% 40.5%

123 3 1 23 36906 988 38.8% 40.4%

124 6 2 9 36951 994 38.7% 40.3%

125 16 6 3 36996 1010 38.6% 40.3%

126 5 2 11 37040 1015 38.5% 40.2%

127 12 3 4 37084 1027 38.5% 40.2%

128 12 4 4 37128 1039 38.4% 40.1%

