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ABSTRACT
Classification-Directed Branch Predictor Design

by
Po-Yung Chang

Chair: Yale N. Patt

Pipeline stalls due to branches represent one of the most significant impediments
to realizing the performance potential of deeply pipelined superscalar processors. Two
well-known mechanisms have been proposed to reduce the branch penalty, speculative
execution in conjunction with branch prediction and predicated execution.

This dissertation proposes branch classification, coupled with improvements in
conditional branch prediction, indirect branch prediction, and predicted execution,
to reduce the branch execution penalty.

Branch classification allows an individual branch instruction to be associated with
the branch predictor best suited to predict its direction. Using this approach, a hybrid
branch predictor is constructed which achieves a higher prediction accuracy than any
branch predictor previously reported in the literature.

This dissertation also proposes a new prediction mechanism for predicting indirect
jump targets. For the perl and gcc benchmarks, this mechanism reduces the indirect
jump misprediction rate by 93.4% and 63.3% and the overall execution time on an
8-wide issue out-of-order execution machine by 14% and 5%.

Finally, this dissertation proposes a new method for combining the performance
benefits of predicated execution and speculative execution. This approach signifi-
cantly reduces the branch execution penalty suffered by wide-issue processors.



CHAPTER 1
INTRODUCTION

1.1 The Branch Problem

Branches are instructions that change the flow of control and cause breaks in the
normal sequence of execution. Whenever a branch is encountered, the instruction
fetch has to stall until the target and the direction of the branch become ready.
Thus, branches can significantly reduce the performance of pipelined processors by
interrupting the steady supply of instructions to the instruction pipeline.

To illustrate the branch problem in pipelined processors, Figure 1.1 shows the
pipeline of a single-issue processor with four pipeline stages — fetch, decode, execute
and write back. If a branch is not resolved until the end of its execution stage,
two clock cycles are wasted for every branch encountered in the instruction stream.
Assuming that the processor only stalls due to branches and the average basic block
size 1s four instructions, the processor stalls for two cycles out of every six cycles.
Thus, one third of the execution bandwidth is wasted.

With improvements in process technology and increases in transistor budgets,
today’s processors are being built with wider issue rates and deeper pipelines in order

Cycle 1 2 3 4 5 6 7

Execute Write Back

Execute Write Back

Shaded blocks indicate pipeline bubbles caused by the branch.

Figure 1.1: Pipeline bubble: a single-issue processor with four pipeline
stages



to exploit larger amounts of instruction-level parallelism (as shown in Table 1.1). The
amount of bandwidth wasted due to a branch is significantly greater for a wide-issue

deeply-pipelined processor than for a single-issue processor, as shown in Figures 1.1
and 1.2. With a four wide-issue processor, an entire basic block can be fetched and
issued in one cycle. If a branch takes three cycles to be resolved after it is fetched, the

processor stalls for three out of every four cycles, wasting 75 percent of its execution

bandwidth. Therefore, branch execution is a critical issue in processor design.

‘ Processor ‘ issue-width ‘ integer pipeline depth ‘
Intel Pentium Pro | 3 (67) 12
HP/PA8000 4 7
PowerPC 620 4 5
Alpha 21164 4 7
IBM Power2 6 )
MIPS R10000 4 5

Table 1.1: Processor issue-width and pipeline depth

Cycle 1 2 3 4 5 6 7
IFetch Decode Addr Calc| Execute | Write Back
IFetch Decode Addr Calc| Execute | Write Back

IFetch Decode | Addr Calc Execute | Write Back

Figure 1.2: Pipeline bubble: a 4-wide issue processor with five pipeline

stages

TThe three x86 instructions can be translated into six Micro-ops; the micro-ops use a load/store

model.



Two well-known mechanisms have been proposed to reduce the branch penalty,
speculative execution in conjunction with branch prediction and predicated execution.

Speculative execution [27, 23] is a microarchitectural mechanism that solves the
branch problem by guessing the target of a branch. After making a prediction for a
branch in the dynamic instruction stream, the processor speculatively executes the
instructions from the predicted target. The branch prediction is confirmed when the
branch instruction is executed. If the prediction is correct, then the processor suffers
no performance penalty for this dynamic instance of the branch. If the prediction is
incorrect, the processor, after removing from its state the effects of the speculatively
executed instructions, must return to the point of the branch prediction and begin
executing instructions from the correct path. In this case, the full branch execution
penalty is suffered. Thus, an excellent branch predictor is vital to deliver the potential
performance of a wide-issue deeply-pipelined microarchitecture. This dissertation
proposes several mechanisms for increasing the accuracy of branch predictors.

Predicated execution [14, 29, 9, 19, 28, 36, 18, 12] is an architectural mechanism
that addresses the branch problem by providing the compiler with a set of predi-
cated instructions that can be used to eliminate static branches in the program. The
branches can be eliminated by replacing their control-dependent instructions with
flow-dependent predicated instructions [2]. A predicated instruction contains an ex-
tra source operand known as the predicate operand. The predicated instruction is
conditionally executed based on the value of this operand. If the predicate evalu-
ates to true, the predicated instruction is executed like a normal instruction. If the
predicate evaluates to false, the instruction is not executed. Given these semantics,
a compiler can replace the branch and the set of instructions that represent an if-
then-else statement by predicating the then clause with the branch condition as the
predicate and predicating the else clause with the complement of the branch condi-
tion as the predicate. By eliminating the branch, predicated execution ensures that
the processor never suffers any branch execution penalties due to that branch. While
both speculative and predicated execution have been shown to significantly reduce the
performance penalty due to branches, both mechanisms have disadvantages as well
as advantages. A processor using speculative execution suffers the full branch execu-
tion penalty whenever it makes a branch misprediction. A processor using predicated
execution may see a drop in performance because predicated execution changes con-
trol dependencies into flow dependencies, lengthening the dependency chains in the
program. In addition, using predicated execution wastes issue bandwidth because
the predicated instructions from both branch paths must always be issued. This
dissertation proposes a method for combining the performance benefits of specula-
tive and predicated execution to reduce the branch execution penalty for wide-issue,
dynamically scheduled machines.



1.2 Thesis Problem: Can branch classification re-
duce the branch execution penalty?

Thesis Statement: Branch classification, coupled with improvements in condi-
tional branch prediction, indirect branch prediction, and predicated execution, can
reduce the branch execution penalty.

Since branches have different dynamic behavior, the most suitable mechanism to
handle one branch can be very different from that for another branch. Performance of
processors can be improved if we can identify and invoke the most suitable mechanism
for each branch.

This dissertation proposes branch classification as a means for combining the
advantages of different branch handling mechanisms. Branch classification partitions
the branches of a program into sets or branch classes. A good classification scheme
partitions branches possessing similar dynamic behavior into the same branch class;
thus, once the dynamic behavior of a class of branches is understood, the most suitable
mechanism for this class can be identified. For example, the compiler can try to
eliminate the hard-to-predict branches, leaving only the easy-to-predict branches to
be handled by speculative execution.

In addition, this dissertation proposes branch classification as a means for improv-
ing the performance of each individual branch handling mechanism. Various branch
handling mechanisms are considered for improvement.

e Hybrid branch predictors have been proposed as a way to achieve higher pre-
diction accuracies [20, 7]. They combine multiple prediction schemes into a
single predictor. A selection mechanism is used to decide, for each branch,
which single-scheme predictor to use. For this attempt to result in significant
increases in prediction accuracy, the hybrid predictor must combine an appro-
priate set of single-scheme predictors and use an effective predictor selection
mechanism.

e Two-level branch predictors have been shown to achieve high prediction accu-
racy, yet they still suffer a significant number of mispredictions. Recent stud-
ies [34, 41] have shown that a number of these mispredictions are due to in-
terference in the pattern history tables. The performance of two-level branch
predictors can be improved if the amount of pattern history table interference
can be reduced.

e Many existing branch prediction schemes are capable of accurately predicting
the direction of conditional branches. However, these schemes are ineffective
in predicting the targets of indirect jumps, achieving on average, a prediction
accuracy rate of 52% for the SPECint95 benchmarks. Accurate predictions on
indirect jumps are essential for high performance processors.

e Speculative execution can completely eliminate the penalty associated with a
particular branch, but requires accurate branch prediction to be effective. Pred-
icated execution does not require accurate branch prediction to eliminate the

4



branch penalty, but is not applicable to all branches and usually increases the
latencies within the program. Speculative execution and predicated execution
must be carefully combined to minimize the effect of each approach’s disadvan-
tages.

1.3 Contributions

This dissertation makes five major contributions:

1. Branch Classification

This dissertation demonstrates the benefits of branch classification. For exam-
ple, branch classification allows an individual branch instruction to be associ-
ated with the branch predictor best suited to predict its direction. Using this
approach, a hybrid branch predictor has been built which achieves a higher pre-
diction accuracy than any branch predictor previously reported in the literature.
With a fixed implementation cost of 32K bytes, this hybrid branch predictor
achieves a prediction accuracy of 96.91% on gce, a branch intensive benchmark,
as compared to 96.47%for the best previously known predictor, reducing the
miss rate by 12.5%.

2. Hybrid Branch Predictors

This dissertation has evaluated the performance of various implementations of
the hybrid branch predictor. Different combinations of single-scheme predictors
and different selection mechanisms were considered. In addition, a new selection
mechanism, the 2-level branch predictor selector, is proposed. By using more
run-time information, it performs better than previously proposed selection
mechanisms. For example, for a 16KByte Gshare/PAs hybrid branch predictor,
we eliminated 5.5% of the mispredictions for the SPECint92 gcc benchmark.

3. PHT Interference

This dissertation introduces a method for reducing the amount of pattern his-
tory table interference in two-level branch predictors by dynamically identifying
some easily predictable branches and inhibiting the pattern history table up-
date for these branches. We show that inhibiting the update in this manner
reduces the amount of destructive interference in the global history variation of
the two-level branch predictor, resulting in significantly improved branch pre-
diction accuracy. For example, for a 2KByte gshare predictor, we eliminate 38%
of the mispredictions for the SPECint95 gce benchmark.

4. Target Predictions

This dissertation proposes a new prediction mechanism for predicting indirect
jump targets. This mechanism improves on the prediction accuracy achieved
by BTB-based schemes. For the perl and gcc benchmarks, this mechanism
reduces the indirect jump misprediction rate by 93.4% and 63.3% and the overall
execution time by 14% and 5%.



5. Predicated Execution

This dissertation proposes a new method for combining the performance bene-
fit of both speculative execution and predicated execution to reduce the branch
execution penalty for wide-issue, dynamically scheduled machines that use the
two-level branch predictor. This approach significantly reduces the branch ex-
ecution penalty suffered by wide-issue processors, reducing the execution times
of the compress and eqntott benchmarks by 23% and 20% respectively.

1.4 Organization of This Dissertation

This dissertation is organized in nine chapters. Chapter 2 presents related work.
Chapter 3 describes the simulation methodology, the benchmarks, and the machine
model used to evaluate the proposed designs. Chapter 4 presents the branch classifi-
cation concept. One method of branch classification is then proposed to demonstrate
the performance benefit of branch classification. Chapter 5 examines hybrid branch
predictors which combine the advantage of single-scheme predictors to achieve higher
prediction accuracy. Chapter 6 introduces a method for reducing the pattern history
table interference to improve the prediction accuracy of two-level branch predictors.
Chapter 7 proposes target caches for accurately predicting indirect branches. Chap-
ter 8 examines the performance benefit of using both speculative and predicated exe-
cution to reduce the branch execution penalty for wide-issue, dynamically scheduled
machines that use the two-level branch predictor. Chapter 9 presents the conclusions
for this study and suggests future directions for solving the branch problem.



CHAPTER 2
Related Work

2.1 Conditional Branch Predictors

Conditional branches conditionally redirect the instruction stream to their tar-
gets. A branch predictor must accurately predict the directions of these branches in
order for a high-performance microprocessor to approach its performance potential.
To improve prediction accuracy, various branch prediction strategies have been stud-
ied. These prediction schemes can be divided into two groups, static and dynamic
predictors.

Static branch prediction schemes use information gathered before program execu-
tion, such as branch opcodes or profiles, to predict branch direction. The simplest of
these predicts that all conditional branches are always taken as in Stanford MIPS-
X [8], or always not-taken as in Motorola MC88000 [22]. Predicting all branches to
be taken achieves about 66% accuracy whereas predicting not-taken achieves about
34% for the SPECY95 integer benchmarks. With additional hint bits in the branch
opcodes, PowerPC 604 [10] allows the compiler to pass prediction information to
the hardware. The program-based branch predictor [3] bases its prediction on the
program structure; this predictor classifies branches into loop branches and non-loop
branches using natural loop analysis [1] of the control flow graph. Loops are pre-
dicted to iterate rather than exit. Non-loop branches are predicted using a number
of heuristics — opcode, loop, call, return, guard, store, and pointer comparisons. The
opcode heuristic assumes that negative integers are used to denote error values; thus
the heuristic predicts that bltz (branch-less-than-zero) and blez (branch-less-than-or-
equal-to-zero) are not taken and that bgtz and bgez are taken. This heuristic also
predicts floating point comparisons that check if two floating point numbers are equal
to be false. The loop, call, return, guard, and store heuristics predict branches based
on the properties of the basic block successors of these branches. The loop heuristic
handles branches which choose between executing or avoiding a loop. This heuristic
predicts that loops are executed rather than avoided because while and for loops are
generated as an if-then branch around a do-until loop. The call heuristic handles
branches that decide between executing or avoiding function calls. This heuristic
predicts that function calls are avoided because many conditional calls are handling



exceptional situations. The return heuristic handles branches which choose between
executing or avoiding function returns. This heuristic predicts that function returns
are avoided because many returns from procedures handle cases which occur infre-
quently. The guard heuristic handles branches where a branch on a value guards a
later use of that value. For example, a null pointer test usually guards the use of
the same pointer; if the pointer is not null, then the pointer value can be used. This
heuristic predicts that the guarded code will be executed since the guards are usually
used to catch exceptional conditions, e.g. null pointers. The store heuristic avoids
successor blocks with store instructions. The pointer comparisons heuristic handles
branches which compare a pointer to null or compare two pointers. Both compari-
son to a null pointer and equality comparison between two pointers are predicted to
be false. The program-based branch predictor combines the aforementioned heuris-
tics for predicting branches. If none of the heuristics applies to a branch, then a
random prediction is used. Although the heuristics are simple and require little pro-
gram analysis, this program-based predictor is on average a factor of two worse than
the profile-guided predictor. The profile-guided branch predictor bases its prediction
on the direction the branch most frequently takes, which is determined by profiling
the program on a training input data set [11]. The profile-guided branch predic-
tor achieves the highest prediction accuracy among the static predictors, correctly
predicting about 87% of the branches.

Dynamic branch prediction algorithms use information gathered at run-time to
predict branch directions. Smith [32] proposed a branch prediction scheme which uses
a table of 2-bit saturating up-down counters to keep track of the direction a branch
is more likely to take. Each branch is mapped via its address to a counter. The
branch is predicted taken if the the most significant bit of the associated counter is
set; otherwise, it is predicted not-taken. These counters are updated based on the
branch outcomes. When a branch is taken, the 2-bit value of the associated counter
is incremented by one; otherwise, the value is decremented by one. An 8KByte 2-bit
counter scheme achieves a prediction accuracy of of 87%.

By keeping more history information, a higher level of branch prediction accuracy
can be attained [38]. Yeh and Patt proposed the two-level branch predictor which
uses two levels of history to make branch predictions (see Figure 2.1). The first
level records the outcomes of the most recently executed branches and the second
level keeps track of the more likely direction of a branch when a particular pattern
is encountered in the first level history. The two-level branch predictor uses one
or more k-bit shift registers, called branch history registers, to record the branch
outcomes of the most recent k branches. In the Per-address scheme, each branch
history register records the results of the last k occurrences of one static instance
of a branch instruction. In the Per-set scheme, each branch history register records
the last k£ outcomes of a particular set of branches. In the Global scheme, a global
branch history register records the outcomes of the last & branches encountered in
the dynamic instruction stream:.

The two-level branch predictor uses one or more arrays of 2-bit saturating up-down
counters, called Pattern History Tables, to keep track of the more-likely direction for
branches. The lower bits of the branch address is used to select the appropriate
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Figure 2.1: Structure of a two-level branch predictor

Pattern History Table(PHT) and the content of the branch history register (BHR)
selects the appropriate 2-bit counter to use within that PHT. The two-level Branch
Predictor can be further classified by the association of PHTs with branches. There
can be one global PHT for all branches, one PHT for each set of branches, or one
PHT for each static branch in the program. The two-level branch predictor using 13
global history bits achieves a prediction accuracy of approximately 91.8%. Using more
history bits, higher prediction accuracy can be achieved; however, the implementation
cost of the predictor also increases with more history bits. Using 15 global history
bits, the two-level branch predictor achieves a prediction accuracy of 93.3%.

Several variations of the two-level branch predictor have been proposed [39]. Mc-
Farling [20] introduced gshare, a variation of the global-history two-level branch pre-
dictor which XORs the global branch history with the branch address to index into
the PHT. Since the same global history patterns can occur for different branches
during program execution, the global history pattern can be less efficient at identi-
fying the current branch than the branch address itself. The gshare scheme tries to
better identify the machine execution states by using both the branch address and
the branch history. A gshare using 13 history bits achieves a predication accuracy of
approximately 92%. Lee and Smith [17] proposed a scheme where the value of each
Pattern History Table entry is determined statically, using profile information; this
scheme is referred to as the PSg scheme by Yeh and Patt [40]. Sechrest et al. [31]
introduced another method, PSg (algo), of statically determining the values in the
PHT. The PSg (algo) works on the premise that for branches with a recurring pattern,
the next outcome of the branch is likely an extension of this pattern. For example, if
the branch history of a branch is 10101010, a recurring pattern of 10 is detected and
the outcome of this branch is predicted to be 1 (taken). Thus, the 10101010 PHT



entry is set to 1. The PSg (algo) also considers that some history patterns represent a
transition between two cyclic patterns. To capture these patterns, the two oldest bits
in the history pattern are ignored and a prediction is made if a recurring pattern is
detected in the remaining pattern. For example, no recurring pattern is detected for
the 11101010 pattern. However, if we ignored the two oldest history bits, the recur-
ring pattern of 10 is detected for the 101010 pattern and the 11101010 PHT entry
is set to 1. This process is repeated, i.e. ignoring two oldest remaining bits during
each iteration. For the remaining PHT entries, the entry is set to 1 if 1’s outnumbers
the 0’s in the history pattern (the oldest bit is ignored if the number of bits in the
history pattern is even). Otherwise, the entry is set to 0. Since the contents of PHT
are determined statically, the PSg scheme trades the benefits of having the ability to
adapt for the benefits of having no PHT warm-up time. With a branch history length
of 4, the performance of PSg(algo) is comparable to that of PAs. However, with a
branch history length of 10, PAs outperforms PSg(algo). PAs using 13 history bits
achieves a prediction accuracy of 92.5%.

2.2 Interference in Two-level Branch Predictors

The two-level branch predictors have been shown to achieve high prediction ac-
curacy, yet they still suffer a significant number of mispredictions. Recent stud-
ies [34, 41] have shown that a number of these mispredictions are due to interference
in the pattern history tables. Pattern history table interference occurs when a condi-
tional branch references a PHT entry that was last referenced by another conditional
branch. Talcott et al. [34] classified the interference as positive if the counter in the
PHT entry correctly predicts the branch outcome. Otherwise, they classified the
interference as negative. They showed that destructive interference causes branch
prediction schemes to operate much below their potential performance level. Young
et al. [41] classified interference by comparing the outcome of the PHT counter’s pre-
diction to the outcome of the prediction made by a predictor that have not PHT
interference. This predictor uses an infinite number of PHTs and has no PHT inter-
ference because each static branch in the program has its own PHT. They classify
interference as constructive if the counter correctly predicts the branch outcome and
a predictor with an infinite number of PHTs mispredicts the outcome. They classi-
fied interference as destructive if the counter mispredicts while the predictor with an
infinite number of PHT's predicts correctly. Otherwise, they classified the interference
as neutral. Young et al. also showed that although branch interference can have a
constructive, destructive, or neutral effect, destructive interference occurs much more
frequently than constructive interference. Using 13 branch history bits, the gshare
predictor achieves a 92% prediction accuracy whereas the gshare predictor with no
PHT interference achieves a 95% prediction accuracy, leaving significant room for
improvement.
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2.3 Hybrid Branch Predictors

To further improve prediction accuracy, hybrid branch predictors have been pro-
posed [20, 6]. A hybrid branch predictor is composed of two or more single-scheme
predictors and a mechanism to select among these predictors. A hybrid branch pre-
dictor can exploit the different strengths of its single-scheme component predictors,
enabling it to achieve a prediction accuracy greater than that achieved by any of its
components alone. McFarling [20] proposed a selection mechanism that combines two
branch predictors using an array of 2-bit up-down counters to keep track of which
predictor is currently more accurate for each branch; each branch is mapped to a
counter via its address (see Figure 2.2). The counter is incremented based on the
rule shown in Table 2.1. The most significant bit of the counter determines which
one of the two predictors to use. A hybrid branch predictor that combines PAs(13)
and gshare(13) using 1K-entry 2bit predictor selection counters achieves a prediction
accuracy of 93.9%

counters

-

P1 —*™

el ] P2

—————> Prediction

Figure 2.2: Structure of a McFarling’s hybrid branch predictor

‘ Predictor 1 ‘ Predictor 2 H Update to Counter ‘

Correct Prediction | Correct Prediction No Change
Correct Prediction | Incorrect Prediction || Increment
Incorrect Prediction | Correct Prediction Decrement
Incorrect Prediction | Incorrect Prediction || No Change

Table 2.1: Counter update rules

Chang and Banerjee[6] proposed the AVG predictor which can accurately predict
loop branches. The AVG predictor keeps track of the average number of iterations
executed for each loop. A branch is then predicted to exit the loop on the ith
occurrence of that branch, where ¢ is the average number of iterations associated
with this loop. With hybrid branch predictors, this predictor can be used to handle
loop branches.
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2.4 Indirect Branch Predictors

An indirect branch has a dynamically specified target which may point to any
number of locations in the program. In the past, branch prediction research has
focused on accurately predicting direct branches [32, 21, 40, 20, 7, 24]; a direct branch
has a statically specified target which points to a single location in the program. To
predict such branches, the prediction mechanism predicts the branch direction and
then generates the target associated with that direction. To keep track of the target
addresses, a branch target buffer (BTB) is used. The BTB stores the last target
seen for each of the two possible branch directions. However, BTB-based prediction
schemes perform poorly for indirect branches. Because the target of an indirect branch
can change with every dynamic instance of that branch, always using the target of
the previous instance as the predicted target leads to poor prediction accuracy.

To address the problem of target prediction for indirect jumps in C++ programs,
Calder and Grunwald proposed a new strategy, the 2-bit strategy, for updating BTB
target addresses [5]. The typical strategy is to update the BTB on every indirect
jump misprediction, Calder and Grunwald’s 2-bit strategy does not update a BTB
entry’s target address until two consecutive predictions with that target address are
incorrect. This strategy was shown to achieve a higher target prediction accuracy
than that achieved by the typical strategy.

Kaeli et al. proposed a hardware mechanism, the case block table (CBT), to speed
up the execution of SWITCH/CASE statements [16]. Figure 2.3 gives an example of a

High-Level
Construct Assembly Code
switch(v) { rl <- compare v, 1
case 1: beq ri1, L1
; beq == branch if equal
char = ’a’; rl <- compare v, 2
break; beq ri1, L2
case 2: rl <- compare v, 3
char = ’b’; beq ri1, L3
break; goto L4
case 3: L1: char <- ’a’
char = ’c¢c’; goto L5
break; L2: char <- ’b’
default: goto L5
char = ’d’; L3: char <- ’c¢’
} goto L5
L4: char <- ’d’
L5:

Figure 2.3: An Example of a SWITCH/CASE Construct
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SWITCH/CASE statement and the corresponding assembly code for that statement.
The assembly code consists of a series of conditional branches that determines which
case of the SWITCH/CASE statement is to be executed. Because a single variable,
the case block variable, specifies the case to be executed, this series of conditional
branches can be avoided if the instruction stream could be directly redirected to the
appropriate case. The CBT enables this redirection by recording, for each value of
the case block variable, the corresponding case address. This mapping of case block
variable values to case addresses is dynamically created. When a SWITCH/CASE
statement is encountered, the value of the case block variable is used to search the
CBT for the next fetch address. In effect, the CBT is dynamically generating a jump
table to replace the SWITCH/CASE statements.

The study done by Kaeli et al. showed that an oracle CBT, that is, a CBT
which always selects the correct case to execute, can reduce significantly the number
of conditional branches in the instruction stream. However, the CBT’s usefulness is
limited by two factors. First, modern day compilers are capable of directly generating
jump tables for SWITCH/CASE statements at compile-time, eliminating the need for
the CBT to generate the tables dynamically. Second, for processors with out-of-order
execution, the value of the case block variable is often not yet known when the
instruction corresponding to the SWITCH/CASE statement is fetched. As a result,
the CBT cannot redirect the instruction stream to the appropriate case until that
value is computed.

2.5 Predicated Execution

Predicated execution was first proposed in the form of vector masks for vector
machines such as the CRAY [30]. Many current commercial computer architectures
(e.g. the Intel Pentium Pro, the DEC Alpha, the SPARC V9, and the HP PA-RISC)
include some form of predicated execution.

Hsu and Davidson [14] studied the use of predicated instructions to better schedule
decision trees on scalar processors. Instructions on the critical path of a decision tree
are scheduled as early as possible to minimize the execution time through the decision
tree. They proposed the decision tree scheduling (DTS) technique, which is based
on an extension of list scheduling, to take advantage of guarded store and jump
instructions, which relax the scheduling constraints due to control-flow dependencies.
The DTS compilation technique with the guarded store and jump instructions are
shown to be effective for both vector code and scalar code. However, instead of
decision trees, directed acyclic graphs are commonly used to represent the control
structure of a program.

Speculative and predicated execution have advantages, as well as disadvantages.
Recent researchers have studied the effectiveness of combining speculative and pred-
icated execution. Pnevmatikatos and Sohi [28] studied the performance benefit of
using predicated execution in conjunction with the two-level branch predictor. They
eliminated as many branches as possible through predicated execution. They pro-
posed two models of predication, full guarding and restricted guarding. In the full
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guarding model, all instructions can be predicated. In the restricted guarding model,
only ALU operations can be predicated. The full guarding model increased the av-
erage effective block size (the number of useful instructions in a basic block) by 25%
and the average dynamic window size (the number of instructions issued between
branch mispredictions) by 52%. However, the full guarding model also increased the
total number of instructions that were executed; 33% of these instructions do not
represent useful computation, wasting a significant amount of issue bandwidth. Us-
ing the restricted guarding model, where fewer instructions are predicated, a smaller
percentage (8%) of all instructions executed do not represent useful work. However,
the restricted guarding model is less effective than the full guarding model in increas-
ing the effective block sizes and the dynamic window sizes. Instead of predicating
as many branches as possible, the compiler needs to carefully select the branches to
eliminate.

Tyson [36] studied the performance benefit of predicating all short forward branches.
This aggressive approach of predicating branches of distance less than or equal to 12
reduced the number of instruction slots lost due to branches by as much as 50%
for the SPEC92 benchmarks. However, not all short forward branches can be pred-
icated. For example, a loop exit branch can not be eliminated. The performance
benefit of predicating all short forward branches depends on the predictability of the
short forward branches that can be eliminated.

Mahlke et al. [19, 18] used predicated execution to eliminate the branches that
were difficult to predict for a static branch predictor and reported the effect on branch
mispredictions and the performance of a statically scheduled machine. However, an
aggressive branch predictor may be able to predict branches that were hard to predict
for a simple predictor, resulting in a different set of branches that should be eliminated
for the best processor performance.
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CHAPTER 3

Simulation Methodology

3.1 Simulation Environment

3.1.1 Branch Prediction
Trace-Driven

Trace-driven simulations are used for the studies on branch prediction. Figure 3.1
shows the trace-driven simulation methodology. A Motorola MC88110 instruction
level simulator (Archsim) reads in the object code and input data; it then simulates
execution and produces an instruction trace. The instruction traces are then pro-
cessed by either the restricted data flow (RDF) simulator [4] or the instruction fetch
mechanism (IFM) simulator [37].

The RDF simulator simulates the execution of instructions on a given machine
model, which is described in a configuration file read by the RDF simulator. The
IFM simulator only simulates the actions involved in predicting instruction fetch
address. Thus, the IFM simulator has a shorter simulation time than that of the
RDF simulator; however, it only collects statistics associated with instruction fetch
(e.g. the prediction accuracy of the branch predictor).

<—— M88100 Binary File
Archsim

'

Instruction Trace

)
' '

<— Input Data File

IFM Simulator Slmu.latlon. RDF Simulator - Slmu.latlon.
Configuration Configuration
Simulation Results Simulation Results

Figure 3.1: Simulation methodology
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In this study, the RDF simulator is used to determine the execution time of the
benchmarks on a given machine model. The IFM simulator is used to collect the hit
rate of branch target buffer accesses and the prediction accuracy of branch predictors.

Source Code Annotation

Branch prediction simulators are embedded in the instrumented programs. To
collect the dynamic branch behavior, the source code that calculates the branch con-
ditions are replaced with calls to the branch simulator. For each of these calls, the
branch predictor simulator generates the branch prediction and updates the state of
the simulated prediction hardware. Using this method, the performance of various
branch predictors can be compared on a per-branch basis. The behavior of the pro-
gram is not changed because these function calls return the actual branch conditions;
the program always executes down the correct path. This approach has a shorter
simulation time than that of a trace-driven simulator but is not accurate enough to
fine-tune a real design because we simulate the branches at the source code level. The
behavior of some of these branches at the machine code level may be different than
at the source code level due to compiler optimizations.

3.1.2 Predicated Execution

The predicated execution experiment takes two steps — generating the predicated
object file and simulating the object file with the trace-driven simulator.

Generating the Predicated Object Files

The code compilation process consists of the following steps. First, we profile
the benchmarks to identify the hard-to-predict branches. The assembly code for
the source programs are generated using the GCC V2.4.3 compiler. We then hand-
modify the assembly programs, predicating the hard-to-predict branches that can be
eliminated. Finally, predicated object files are generated using the GNU assembler.

Simulation Process

The simulation process consists of the following steps (see Figure 3.2). First,
we insert special instructions, SPEC_OPs, in the assembly program to indicate which

Assembly___ | SPEC_OP | ____,] Assembler +

- . —— Executable
Code Insertion Linker >

Trace —» Trace —»| RDF Sim

Filter

Archsim

Figure 3.2: Process flow for simulating predicated instructions
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branches are to be predicated. Figure 3.3 shows a code segment before and after a
branch has been marked for predication. This modification to the program does not
change its behavior because these special instructions are NOPs and do not affect
the machine state. A Motorola MC88100 instruction level simulator, ArchSim, then
reads in the object code and simulates execution, producing an instruction trace. To
replace the selected branches with predicated instructions, a trace-filter module reads
the trace generated by ArchSim and scans for occurrences of the SPEC_OP instruction.
If a SPEC_OP instruction is detected, the filter module does the following:

o [f the branch following the SPEC_OP instruction is not taken, we replace the in-
structions in the fall-through path with predicated instructions (see Figure 3.4).

o [f the branch is taken, the instructions in the fall-through path will not be in
the instruction trace. To determine what predicated instructions to insert into
the new instruction stream, the filter module reads in a table which contains
the predicated instructions associated with each branch (see Figure 3.5).

The new instruction trace is then processed by the trace-driven simulator, TraceSim,
to produce the execution statistics.

Before After
beq r0, 0, L1 SPEC_OP
opl beq r0, 0, L1
op2 opl
Li: --- op2
Li: ...

Figure 3.3: Marking branches in the assembly code for predication
with the special instruction SPEC_QP

Before After
SPEC_QP opl if 10
beq r0, 0, L1 op2 if r0
opl L1: ---
op2

Li: «--

Figure 3.4: Replacing a not taken branch in the instruction trace with
the appropriate set of predicated instructions
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Figure 3.5: Replacing a taken branch in the instruction trace with the

Before After
SPEC_OP opl if r0
beq r0, 0, L1 op2 if r0

L1: - L1: ..

appropriate set of predicated instructions

3.2 Benchmarks

3.2.1 Benchmarks

The results presented in this dissertation are for the six integer programs from the
SPECint92 suite and the 8 integer programs from the SPECint95 suite. Table 3.1

SPECint92

Benchmark | Abbr. | Description

008.espresso | esp A tool for generating and optimizing Programmable
Logic Arrays

022.11 li A LISP interpreter

023.eqntott eqn A translator for converting a logical representation of a
boolean equation to a truth table

026.compress | com | reduce size of an input file by using Lempel-Ziv coding

072.sc sc a spreadsheet calculator

085.gcc gee GNU C compiler version 1.3.5

SPECint95

Benchmark | Abbr. | Description

099.go go go-playing computer program which plays the game of go
against itself

124.m88ksim | m88k | Motorola 88100 microprocessor simulator

126.gcc gee GNU C compiler version 2.5.3

128.compress | com reduce size of an input file by using Lempel-Ziv coding

130.11 li A LISP interpreter

132.1)peg ijpeg | Image compression/decompression on in-memory images
based on the JPEG facilities.

134.perl perl A Perl language interpreter

147.vortex vortex | a single-user object-oriented database transaction
benchmark

Table 3.1: Description of benchmarks
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gives short descriptions of the benchmarks. Table 3.2 lists the input data set that
was used, the number of instructions executed, and the number of branches executed
for each benchmark.

\ SPECint92
#Static
#Dynamic | #Dynamic | #Dynamic Cond
Benchmark Input Instructions BR Cond BR BR
008.espresso | bca 288,728,123 | 68,130,561 | 64,273,636 1,245
022.1i nine queens | 100,000,000 | 23,004,735 | 14,777,111 501
023.eqntott int_pri_3.eqn | 100,000,000 | 21,658,145 | 19,343,202 395
026.compress | in 86,445,440 | 14,099,619 | 11,178,108 177
072.sc loadal 143,176,340 | 36,330,310 | 30,484,812 830
085.gcc stmt.i 107,163,102 | 22,131,439 | 17,252,756 7,396
SPECint95 \
#Static
#Dynamic | #Dynamic | #Dynamic Cond
Benchmark Input Instructions BR Cond BR BR
099.go 2stone9.in 161,696,039 | 23,378,150 | 18,462,968 5,219
124.m88ksim | dcrand.train.big | 131,732,141 | 23,840,021 | 17,529,089 1,033
126.gcc jump.i 172,329,018 | 35,979,748 | 27,410,921 16,185
128.compress | test.in 125,162,687 | 17,460,753 | 10,661,859 310
130.1 train.lsp 192,569,022 | 40,909,525 | 27,374,670 537
132.ijpeg specmun.ppm 231,543,794 | 23,449,572 | 20,507,891 1,178
134.perl scrabbl.pl 106,140,746 | 16,727,047 | 10,606,041 1,761
147.vortex vortex.in 236,081,621 | 44,635,060 | 34,211,423 6,436

Table 3.2: Branch counts of benchmarks

Branch Characteristics

Branches in the program can be categorized into four different types — conditional
branch, immediate branch, indirect branch, and return. Figure 3.6 shows the distri-
bution of the different types of branches in the dynamic instruction traces. Approx-
imately 73% of branches in SPECint95 are conditional branches. Since conditional
branches are executed frequently, processors must effectively handle these branches
in order to achieve their potential performance.

Figure 3.7 shows the distribution of the static conditional branches with different
dynamic execution frequencies. For the SPEC integer benchmarks, approximately 30
percent of the static branches execute more than 1000 times. Figure 3.8 shows the
weighted distribution the static branches with different dynamic execution frequen-
cies, where the branches are weighted by the number of their dynamic occurrences.
This figure shows that the 30% of the static branches accounts for approximately
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Figure 3.6: Distribution of dynamic branch instructions
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Figure 3.7: Distribution of the static branches with different dynamic

execution frequencies
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Figure 3.8: Weighted distribution of the static branches with different
dynamic execution frequencies

90% of the dynamic branches. Thus, branch handling mechanisms must effectively
handle these conditional branches in order for the processor to achieve its potential
performance.

3.3 Machine Model

The machine model simulated is the HPS microarchitecture [26] [27]. Figure 3.9
shows the block diagram of the HPS architecture. Execution in HPS flows as follows:
Each cycle, multiple instructions are issued, and using the information in the register
files, the instructions are merged into node tables, much like the Tomasulo algorithm
merges operations into the reservation stations of the IBM 360/91 [35]. Associated
with each instruction (node) are the source operands for that instruction (or identifiers
for obtaining the operands), and destination information. Each node is stored in
its proper node table independent of and decoupled from all other nodes currently
awaiting dependencies in the datapath until all its operands are available, at which
point the node is eligible for scheduling. Each cycle, the oldest firable node of each
node table is scheduled, i.e., it is shipped to a pipelined functional unit for execution.
Each cycle, functional units complete execution of nodes and distribute the results to
nodes waiting for these results, which then may become firable. Checkpointing [15]
is used to maintain precise exceptions. Checkpoints are established for each branch;
thus, once a branch misprediction is determined, instructions from the correct path
are fetched in the next cycle.

The HPS processor simulated in this dissertation supports 8 wide issue with a
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perfect instruction cache and a 16KB data cache. Latency for fetching data from
memory is 10 cycles. Table 3.3 shows the instruction classes and their simulated
execution latencies, along with a description of the instructions that belong to that
class. In the processor simulated, each functional unit can execute instructions from
any of the instruction classes. The maximum number of instructions that can exist
in the machine at one time is 128. An instruction is considered in the machine from
the time it is issued until it is retired.

Instruction Exec.

Class Lat. | Description

Integer 1 INT add, sub and logic OPs
FP Add 3 FP add, sub, and convert
FP/INT Mul 3 FP mul and INT mul
FP/INT Div 8 FP div and INT div

Load 2 Memory loads

Store - Memory stores

Bit Field 1 Shift, and bit testing
Branch 1 Control instructions

Table 3.3: Instruction classes and latencies

23



CHAPTER 4

Branch Classification

Branch classification partitions a program’s branches into sets or branch classes.
A good classification scheme partitions branches possessing similar dynamic behavior
into the same branch class; thus, once we understand the dynamic behavior of a class
of branches, we can optimize the handling of this class.

4.1 The Advantages of Branch Classification

To demonstrate the usefulness of branch classification, we propose one model
of branch classification and show how this model can be used to improve branch
predictors. This branch classification model partitions branches based on their taken
rates, which are collected during the profile run, as shown in Table 4.1. These branch
classes are referred to as static classes because the partitioning of branches is done
statically. We will refer to SC1, SC2, SC5, and SC6 branches as mostly-one-direction
branches and the SC3 and SC4 branches as mixed-direction branches.

‘ Classes ‘ Descriptions ‘

SC1 0% <= pr(br) <= 5%

SC2 5% < pr(br) <= 10%

SC3 10% < pr(br) <= 50%

SC4 50% < pr(br) <= 90%

SC5 90% < pr(br) <= 95%
(br)

SC6 95% < pr(br) <= 100%

Table 4.1: Static classes

4.1.1 Analysis of Branch Predictors

The importance of accurately predicting a class of branches depends on how fre-



quently these branches are executed in the dynamic instruction stream. Figure 4.1
shows the dynamic weight of each static class, where the dynamic weight of a branch
class is defined as

Number of dynamaic branches belonging to that branch class

Total number of dynamic branches

Approximately 50% of all dynamic branches are mostly-one-direction branches and
50% are mixed-direction branches. Thus, the performance of a predictor is dependent
on its prediction accuracy for both types of branches.
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Figure 4.1: Percentage of dynamic branches in each static class

Analysis of the Mostly One-direction Branches (SC1,SC2,SC5,SC6)

Figure 4.2, shows the misprediction rate of the SC1 branches using the GAs pre-
dictor. Each curve shows the misprediction rate for a constant cost of implementation.
The hardware costs of two-level branch predictors'are estimated using the following
equations [40]:

GAs(k,p) = k +(px2¥x2) (bits)
PAs(k,p) = (bx k)+ (px2Fx2) (bits)
gshare(k,p)= k +(px2Fx2) (bits)

where k is the history register length, p is the number of pattern history tables
(PHTSs), b is the number of entries in the branch history table.

IThe performance of the gshare and PAs predictors are also examined. Their results are similar

to those of GAs (see Appendix A.2 and A.3).
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Figure 4.2: Misprediction rate of GAs on SC1 branches

Since the two-level branch predictor uses the contents of the BHR to select the
appropriate PHT entry (as shown in Figure 2.1), the length of the branch history
register indicates the size of each PHT; for example, the k-bit BHR implies PHT's
of 2% entries. Thus, for a given hardware cost, an implementation of the two-level
branch predictor with a longer BHR contains larger, but fewer, PHTs. Likewise, a
shorter BHR means smaller, but more, PHTs. Therefore, for each curve in Figure 4.2,
as the branch history length decreases by one, the number of pattern history tables
doubles.

As shown in Figure 4.2, branch prediction schemes with short history registers
are most effective in predicting the mostly-not-taken branches (SC1). For implemen-
tations of a fixed cost, there is a trade-off between having a longer branch history
and having more PHTs. One advantage of having a shorter branch history is a faster
predictor warm-up time because fewer PHT entries are accessed with a shorter BHR.
A shorter history also reduces the amount of PHT interference because we have more
PHTs resulting in fewer branches being mapped to the same PHT. Since branches in
SC1 are mostly not-taken, prediction accuracy remains high even if the taken occur-
rences of the branch are mispredicted. Although a longer branch history register can
keep more history of correlated branches and possibly capture these odd occurrences,
the benefit of having a faster predictor warm-up time and less PHT interference out-
weighs the benefit of eliminating these mispredictions. Similar results are shown for
the SC2, SC5, and SC6 branches because these classes also have the same dynamic
characteristic of heavily favoring one direction over the other (see Appendix A.1).
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Analysis of the Mixed-direction Branches (SC3,SC4)

Figure 4.3 shows the misprediction rate of SC3 branches using the GAs predictor.
Unlike the mostly-one-direction branches, the mixed-direction branches are most ef-
fectively predicted by prediction schemes with long branch history registers. Because
these branches have dynamic taken rates between 10% and 50%, the predictor sees
more execution patterns due to the mixing of taken and non-taken directions in the
branch history. By having a longer branch history, we can distinguish more execution
states. With a longer branch history, the histories of correlated branches are more
likely to remain in the branch history register, making the branch prediction scheme
more effective in predicting the mixed-direction branches. Figure 4.3 also shows that
the performance of GAs decreases when its branch history register is too long. For ex-
ample, the performance of 2KByte GAs predictors starts to decrease when the branch
history length becomes greater than 11. As the branch history length increases, the
amount of PHT interference increases because we have fewer PHTs. When the branch
history register is too long, the performance lost due to PHT interference outweighs
the performance gain by using a longer branch history register. The SC4 branches
with taken rates between 50% and 90% have similar results to the SC3 branches (see
Appendix A.1).
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Figure 4.3: Misprediction rate of GAs on SC3 branches
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Performance of Branch Predictors

We have shown that the optimal predictor configuration of the two-level branch
predictor for the mostly-one-direction branches is different from that of the mixed-
direction branches. Thus, a single-scheme predictor cannot be configured optimally
for both types of branches. Figure 4.4 shows the average misprediction over all
branches using the GAs predictor with the branch history length ranging from 1
to 17. Each curve in the graphs indicates the performance of a branch predictor
at a fixed hardware cost. Our results show that the best predictor configurations
for predicting all branches have branch history lengths that are neither optimal for
the mostly-one-direction branches nor for the mixed-direction branches. For example,
Figure 4.4 shows that the best 32K-byte GAs configuration for predicting all branches
uses 13 bits of branch history while Figure 4.3 shows that for the mixed-direction
branches only, the best branch history length is 16 and Figure 4.2 shows that for
the mostly-one-direction branches only, the best branch history length is 1. Thus,
a branch predictor which uses two different branch history lengths will outperform
single-scheme predictors which use only one branch history.

Q 1 GAs2KB
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Figure 4.4: Performance of GAs with different branch history length

4.1.2 Improving Branch Predictor Performance

Prediction accuracy can be increased by associating each branch class with the
most suitable predictor for that class. To maximize the prediction accuracy obtained
from a given hardware budget, we could use a simple and low-cost predictor for
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predictable branches and dedicate more resources to handle branches that are more
difficult to predict.

Since static predictors can accurately predict the mostly-one-direction branches [7],
we use static predictors for these mostly-one-direction branches and dedicate our hard-
ware for predicting the mixed-direction branches. For the mixed-direction branches,
we use an aggressive hybrid branch predictor, PAs/gshare [20]. The resulting predic-
tor, PG4PAs/gshare, uses the profile-guided predictor for the mostly-one-direction
branches and the PAs/gshare scheme for the mixed-direction branches®. Figure 4.5
shows the structure of the PG4PAs/gshare predictor.

Figure 4.6 shows the performance of PG+PAs/gshare on the SPECint92 bench-
marks. For predictors larger than 4K bytes, PG4+PAs/gshare outperforms all other

Zwe use the “4” to indicate static predictor selection and “/” for dynamic predictor selection.
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Figure 4.5: Structure of the PG+PAs/gshare Hybrid Branch Predictor
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Figure 4.6: Performance of the PG+PAs/gshare Hybrid Branch Pre-
dictor
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predictors. For example, with a fixed implementation cost of 32K bytes,
PG+PAs/gshare is able to achieve prediction accuracy of 96.4% on the SPEC in-
teger benchmarks, as compared to 95.7% for gshare and 95.2% for GAs. Using
PAs/gshare for predicting only the mixed-direction branches, we remove the pattern
history table interference between the mostly-one-direction branches and the mixed-
direction branches. This reduction in the pattern history table interference improves
the PAs/gshare’s accuracy in predicting the mixed-direction branches (Chapter 6 will
examine the effect of pattern history table interference on two-level branch predictors
in greater detail). For the SPEC92 benchmark gce, which contains many branches,
PG+PAs/gshare achieves prediction accuracy of 96.91%, as compared to 96.47% for
the best previously known predictor (PAs/gshare) [20]. PG+4PAs/gshare outperform-
ing PAs/gshare indicates that branch classification can be helpful in designing more
accurate branch predictors.

4.2 Summary

Branches in a program can be categorized into different classes. Since branches
in the different classes can have different behaviors, the most suitable mechanism to
handle each branch can be different. We introduced branch classification as a means
for identifying and applying the most suitable mechanism for each branch.

To demonstrate the benefits of branch classification, a branch classification model
that groups branches into classes based on their dynamic taken rates was introduced.
With this model, we showed that the mostly-one-direction branches are most accu-
rately predicted by simple predictors and that the mixed-direction branches are most
accurately predicted by complex predictors. Thus, single-scheme predictors can not
be configured optimally for both types of branches. Using branch classification, a new
hybrid branch predictor is built which achieves a higher prediction accuracy than any
branch predictor previously reported in the literature. With a fixed implementation
cost of 32K bytes, the new hybrid branch predictor achieved a prediction accuracy
of 96.91% on gcc, a branch intensive benchmark, as compared to 96.47% for the best
previously known predictor, reducing the miss rate by 12.5%.
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CHAPTER 5
Hybrid Branch Predictors

To improve prediction accuracy, several hybrid branch predictors have recently
been proposed [20, 7, 6]. They combine multiple prediction schemes into a single
predictor and use a selection mechanism to decide for each branch, which single-
scheme predictor to use (see Figure 5.1). An effective hybrid branch predictor can
exploit the different strengths of its single-scheme predictor components, enabling it
to achieve a prediction accuracy greater than that which could be achieved by any of
its components alone.

The performance of a hybrid branch predictor depends on its component predic-
tors and its selection mechanism. In this chapter, we evaluate the performance of
various hybrid branch predictors. In addition, we propose the 2-level branch pre-
dictor selection mechanism, which uses more run-time information to improve the
performance of the predictor selection mechanism.

Selection
Mechanism

|

Predictor

\ J

Predictor 1

Predictor N

— > Prediction

!

Figure 5.1: Structure of a hybrid branch predictor



5.1 Component Predictors

An effective hybrid branch predictor combines the different strengths of its single-
scheme predictor components to achieve a greater prediction accuracy. Combining
two predictors that both achieve high prediction accuracies on the same subset of
a program’s branches will not yield a hybrid predictor with a significant increase
in performance. In this section, the performance of various combinations of single-
scheme predictors are compared in order to identify the most effective combinations.

Only hybrid branch predictor configurations consisting of two single-scheme pre-
dictors were considered. To identify the best configuration among them, every con-
figuration in the design space must be considered. Because this would have been
completely unmanageable, we opted for a process that assumed an idealized selec-
tion mechanism. This reduced the number of simulations that we had to consider to
the number of single-scheme predictors. Our idealized selection mechanism operated
as follows: Using foreknowledge of each single-scheme predictor’s performance, we
mapped each static branch to the single-scheme predictor (of the pair being consid-
ered) that would achieve the higher prediction accuracy for that branch over the entire
run of the benchmark. With this assumption, the performance of a given configura-
tion can be quickly calculated by examining the simulation results of its single-scheme
predictor components as follow:

Each single-scheme predictor component of the hybrid predictor was first sim-
ulated by itself, using the instruction fetch mechanism simulator described in Sec-
tion 3.1.1. The simulation recorded the number of correct and incorrect predictions
for each static branch in the benchmark. To measure the performance of the hybrid
predictor, the simulation results for the two single-scheme components were analyzed.
For each static branch, the prediction results for the single-scheme component that
achieved the higher prediction accuracy were used to represent the hybrid predic-
tor’s performance for that branch, duplicating the behavior of the idealized selection
mechanism.

Note that while this selection mechanism achieves optimal performance for a static
selector, it may not achieve optimal performance for a dynamic selector. A dynamic
selector can choose a different predictor during different periods of a program’s ex-
ecution based on the particular dynamic information available at that time. This
allows it to potentially achieve higher prediction accuracies for branches that under
different circumstances are more accurately predicted by different predictors. How-
ever, the consistent ordering of predictor class combinations shown in our results (see
Section 5.1.2) supports the possibility that the best predictor class combination for
the ideal static selector is also best for dynamic selectors.

5.1.1 Single-Scheme Predictors

For a given hardware cost, the hybrid predictor configuration specifies the classes
of the single-scheme predictors used and the amount of hardware devoted to each
scheme. The single-scheme predictors examined were divided into four classes:
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1. static - the profile-guided branch predictor [11].

2. 2bC(n) - the two bit counter predictor [32]. It consists of an array of n two bit
counters.

3. PAs(k,s) - the per-address variation of the Two-Level Adaptive Branch Predic-
tor [39] consisting of 1K k-bit branch history registers and s pattern history
tables.

4. gshare(k) - a modified version of the the two-level branch predictor [20] consist-
ing of a single k-bit global branch history and a single pattern history table.

The static predictor was considered because it is a compile-time predictor which has
no hardware cost. The 2bC predictor was considered because it is still used by many of
the current generation of commercial microprocessors. The PAs and gshare predictors
were considered because they are variations of the highest performing single-scheme
predictor, the two-level branch predictor [38, 25, 39, 40, 20].

For each predictor type, a range of predictor sizes was considered allowing us
to vary the amount of hardware devoted to each scheme. The 2bC array size was
varied from 2'° to 22° entries. The branch history registers for the gshare and PAs
schemes were varied from 10 to 20 bits. The number of pattern history tables for the
PAs scheme was varied from 1 to 4. The hardware cost for each predictor type was
estimated by the equations in Table 5.1. Because different sizes were considered for
each predictor class, it is possible for a given combination of predictor classes to have
multiple representatives at a given level of hardware cost.

Predictor | Cost (Bits)
static 0
2bC(n) 2n
PAs(k,s) | 2% + Qk+1 g
gshare(k) k + 2kt1

Table 5.1: Hardware costs for the four classes of single-scheme predic-
tors.

5.1.2 Experimental Results

Every possible combination of single-scheme predictors from the set considered was
simulated. Figure 5.2 lists for six levels of hardware cost (8KB-256KB) the mispredic-
tion rates of the best representative for each combination of single-scheme predictor
classes. The best single-scheme predictor is included as well. The misprediction rates
are the average of the rates achieved for the six SPECint92 benchmarks. The corre-
sponding hardware cost level for each combination was determined by rounding its
exact cost up to the next closest level.

At every level of hardware cost (with a minor exception at the 8KB level), the
ordering of the predictor class combinations was the same with the gshare/PAs com-
bination always achieving the lowest misprediction rate. This misprediction rate was

33



[
g oot
c
=)
5
$ 0041
7
= 0.03 +
Gshare
0.02 —-—+ PAs/2bC
- - -  PAgsatic
—-—  gshare/2bC
0011 - - - gshare/static
—— + gshare/PAs
0.00 | | | | | |
8K 16K 32K 64K 128K 256K
Predictor Size (bytes)

Figure 5.2: Misprediction rates of the best representative for each pos-
sible combination of single-scheme predictor classes.

on average 13% lower than that of its closest competitor, gshare/static. The best
single scheme predictor at all levels of cost was gshare. Although it outperformed
the PAs/static and PAs/2bC hybrid combinations at cost levels above 8KB, it was
outperformed by all the gshare hybrid combinations. The gshare/PAs combination
was able to achieve the best performance because it was the only combination that
effectively exploited both inter-branch and intra-branch correlation. The gshare com-
ponent was able to accurately predict branches whose outcomes are dependent on the
outcomes of other static branches. The PAs component was able to accurately pre-
dict branches whose outcomes are dependent on previous outcomes of the same static
branch. Working together, they enabled the hybrid predictor to accurately predict a
larger set of branches than what could be accurately predicted by a predictor that
contained only one of the components.

When comparing the predictor combinations on a per-benchmark basis, the
gshare/PAs combination was still always the best with the exception of the gce bench-
mark. For gce, the gshare/static and gshare/2bC achieved lower misprediction rates
than gshare/PAs. Gec’s results differed from the other benchmarks because it con-
tains a large number of static branches in its working set. This large set can cause
interference in the pattern history tables of the gshare and PAs predictors, reducing
their ability to make accurate predictions [41, 34]. In addition, the large number of
branches can incur a significant training cost. Both the gshare and PAs predictors
must train themselves on the first few instances of the branch before they can begin
to accurately predict it. Because both the static and 2bC schemes suffer little or
no performance penalties due to interference or training, pairing either one with the
gshare predictor produces a more effective hybrid predictor than gshare/PAs. Despite
its weaknesses, gshare is still used as one of the components because there are still a
significant number of branches in gcc for which gshare is the most effective predictor.
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Table 5.2 lists the exact configurations for the best hybrid predictor (i.e.
gshare/PAs combination) at each cost level. For every one of these combinations,
half of the hardware was devoted to the gshare component and half was devoted to
the PAs component. This result is due to the gshare component’s cost and the hard-
ware cost levels considered both always being a power of two. Thus, the configuration
which maximizes the amount of hardware devoted to the gshare component while still
leaving space for a PAs component is one that divides the hardware evenly. Table 5.2
also lists the exact configurations for the best hybrid predictors when each predictor’s
cost is rounded to the closest level instead of always upwards. In this case, the best
combinations are the same as before except that the size of the gshare component is
doubled so that the gshare component occupies two-thirds of the hardware budget.
As in the upward rounding case, these configurations are the ones that maximize the
gshare component size while still affording space for a PAs component. Table 5.3 lists
the best hybrid predictors for the gcc benchmark at each cost level.

Cost Rounding Model
(KB) Upwards Nearest
S | gsh(14)/PAs(10,4) gsh(15)/PAs(10,4)
16 | gsh(15)/PAs(12,4) gsh(16)/PAs(12,4)
32 | gsh(16)/PAs(13,4) gsh(17)/PAs(13,4)
64 | gsh(17)/PAs(16,1) gsh(18)/PAs(16,1)
128 | gsh(18)/PAs(15,4) gsh(19)/PAs(15,4)
956 | gsh(19)/PAs(16,4) gsh(20)/PAs(16,4)

Table 5.2: Configurations for the best hybrid combination where up-
wards rounds cost to the next highest level and nearest
rounds cost to the closest level.

Cost Rounding Model
(KB) Upwards Nearest
8 gsh(14)/static gsh(15)/static
16 gsh(15)/static gsh(16)/static
32 gsh(16)/static gsh(17)/static
64 gsh(17)/static gsh(18)/static
128 gsh(18)/static gsh(19)/static
256 | gsh(19)/2bC(18)  gsh(20)/2bC(18)

Table 5.3: Configurations for the best hybrid combination for gcc.
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5.2 Selection Mechanisms

The performance of a hybrid branch predictor also depends on its predictor se-
lection mechanism. In the previous section, we have determined the optimal con-
figurations of hybrid branch predictors with an idealized static selection mechanism.
In this section, we will use these same configurations for evaluating the performance
of our real selection mechanisms. We propose a new technique, the 2-level branch
predictor selection mechanism, which uses more run-time information to improve the
performance of the predictor selection mechanism.

5.2.1 2-level Branch Predictor Selection Algorithm

It is now well-known that the two-level branch predictor improves prediction ac-
curacy over previously known single-level branch predictors [38]. The concepts em-
bodied in the two-level branch predictor can also be applied to the hybrid branch
predictor selection mechanism. Figure 5.3 shows the structure of the 2-level branch
predictor selection mechanism. A Branch History Register (BHR) holds the branch
outcomes of the last m branches encountered, where m is the length of the BHR. This
first level of branch history represents the state of branch execution when a branch
is encountered. No extra hardware is required to maintain the first level of history
if one of the component predictors already contains this information. That is, if the
component predictor maintains a BHR, then the 2-level BPS mechanism does not
need to maintain another copy of the BHR; instead, it just uses the component pre-
dictor’s BHR. The Branch Predictor Selection Table (BPST) records which predictor
was most frequently correct for the times this branch occurred with the associated
branch history. This second level of history keeps track of the more accurate predictor
for branches at different branch execution states.

When a branch is fetched, its instruction address and the current branch history
is used to hash into the BPST. The associated counter is then used to select the
appropriate prediction. By using the branch history to distinguish more execution
states, a 2-level predictor selection scheme can more accurately select the appropriate
predictions.

Since the BPST and the PHT can be accessed in parallel, the time required for
a hybrid predictor to make a prediction is maz(BPST _time, PHT time) + muz_time

Branch Predictor P1 P2
Selection Table
Branch Address (BPST) l J

:\ ;
—, =
/'
]

Branch History Reigster(s)

Prediction

Figure 5.3: Structure of 2-level Predictor Selection Mechanism
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where BPST time, PHT time, and muz_time are the access time of BPST, PHT, and
mux respectively. Since the PHT is often much larger than the BPST, PHT time is
usually greater than BPST _time. Thus, the time for making a prediction is PHT_time
+ mux_time, which is almost equivalent to the access time of single-scheme predictors.

Several variations of the 2-level predictor selection mechanism can be imple-
mented. They are different in the manner in which the first level of branch history
is kept and in the hashing function used to index into the BPST. For example, the
first-level branch history can be Global, Per-set, or Per-address. In the Global history
scheme, the first-level branch history is composed of the last m branches encountered
in the dynamic execution stream. In the Per-address scheme, the first-level branch
history is composed of the last m occurrences of the same branch instruction. In the
Per-set scheme, the first-level branch history is composed of the last m occurrences
of branches in the same set. For the hashing function, we can, for example, XOR or
concatenate the branch history with the instruction address.

5.2.2 Performance of the 2-level Branch Predictor Selection
Mechanism

Four variations of the 2-level predictor selection mechanism were studied. Two
types of first-level branch history were examined: (1) Global and (2) Per-address. Two
hashing functions were studied: (1) the branch history is XORed with the instruction
address and (2) the branch history is concatenated with the instruction address.
Table 5.4 summarizes these different configurations.

For each one of these schemes, various branch history lengths can be used for
indexing into the BPST. Rather than showing all these possibilities, Figure 5.4 only

History
Hash ) Type
Function Global Per-address
XOR gXOR pXOR
Concatenate gCONC pCONC

Table 5.4: Summary of 2-level predictor selection
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Figure 5.4: Performance of Various 2-level BPS Mechanisms
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shows the performance of the predictors with the highest accuracy across the bench-
marks. The pCONC selection mechanism uses three bits of branch history, while all
other methods use ten bits. The configuration of the hybrid branch predictor con-
sidered is gshare(16)/PAs(12,4), the best hybrid combination at implementation cost
of 16Kbytes when predictors’ costs are rounded to the closest level. The BPST is a
1K-entry table of two bit counters. The misprediction rate in the graph indicates the
rate at which the chosen predictor makes incorrect prediction.

With the exception of gcc, all four hashing schemes have similar performance.
Young et al. [41] and Talcott et al. [34] have shown how branch prediction table in-
terference can affect the performance of branch prediction schemes. Similarly, inter-
ference in the BPS table can affect the performance of the branch predictor selection
mechanism. One advantage of using the branch history is that it reduces BPST in-
terference. This can be accomplished by utilizing more of the BPST, reducing the
number of branch instances that hash to a given BPST entry. For example, the
espresso benchmark, with the 2-bit counter selection mechanism, utilizes 21.7% of
the BPST. With 2-level selection mechanism such as gXOR, 89.2% of the BPST is
utilized. This reduction in BPST interference results in gXOR’s higher prediction
accuracy. For benchmarks where BPST interference is low, all four selection schemes
have similar performance.

However, when there is already too much contention for the counters between
different branches, as in gcc, the pCONC scheme outperforms the other three schemes.
Conceptually, the pCONC scheme partitions the BPST into several sections. The
branch address bits are used to select the appropriate section and the branch history
bits are used to choose the appropriate counter within each section. The pCONC
scheme with a small number of branch history bits results in lower misprediction
rates; a shorter BHR partitions the BPST into a larger number of sections. With
more sections, fewer branches are mapped to the same section, reducing the amount
of BPST interference.

Figure 5.5 compares the performance of the gXOR selection mechanism with that
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Figure 5.5: gXOR vs 2-bit counter BPS
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of the 2-bit counter branch predictor selection mechanism at various implementa-
tion costs. For illustration purposes, this figure also shows the performance of hybrid
branch predictors with an ideal dynamic predictor selector and that of the best single-
scheme predictor, gshare. The ideal dynamic predictor selection mechanism differs
from the ideal static selection mechanism described in Section 5.1. The ideal dynamic
selector will at runtime always choose the component predictor that yields the correct
prediction, if one exists, whereas the ideal static selector chooses the more suitable
predictor for each branch at compile time. Although the gXOR mechanism outper-
forms the 2-bit counter predictor selection mechanism, it still operates far below its
potential performance.

5.3 Summary

By combining multiple single-scheme branch predictors, hybrid branch predictors
attempt to exploit the different strengths of different predictors. For this attempt
to result in significant increases in prediction accuracy, the hybrid predictor must
combine an appropriate set of single-scheme predictors and use an effective predictor
selection mechanism. This dissertation compared various hybrid predictor implemen-
tations to determine which single-scheme predictor combinations and branch selection
mechanisms were most effective.

The hybrid predictor configurations considered in the study consisted of two single-
scheme predictor components. Each component came from one of four classes: static,
2bC, PAs, and gshare. For an idealized static selection mechanism, the single-scheme
predictor combination that achieved the lowest average misprediction rate for the
SPECint92 benchmarks was the gshare/PAs combination. Its average misprediction
rate was 13% lower than that of the next most effective combination. It was able
to achieve this low misprediction rate because it was able to effectively exploit inter-
branch correlation with the gshare component and intra-branch correlation with the
PAs component. When pattern history table contention is a factor as in bench-
marks with large numbers of static branches (e.g. gcc), the best combination was
gshare/static, because the static component has no tables and does not suffer from
this problem. For a fixed level of hardware cost, the gshare/PAs configurations that
devoted the majority of the hardware to the gshare component achieved the lowest
misprediction rates.

To further improve the prediction accuracy of hybrid predictors, we introduced a
new branch selection mechanism, the 2-level Branch Predictor Selector. It has four
variations: gXOR, pXOR, gCONC, and pCONC. These variations use both branch
history and the branch address to improve the accuracy of predictor selection. Our
experiments showed that 2-level BPS outperforms 2-bit counter BPS and pCONC 1is
more effective than pXOR, gCONC, and gXOR when significant BPST interference
exists and the BPST is fully utilized. For the SPECint92 benchmarks, using the
gXOR selection mechanism instead of the 2-bit counter BPS mechanism reduces the
misprediction rate from 4.06% to 3.76%. For the gcc benchmark where the BPST is
fully utilized, the pCONC BPS mechanism consistently outperforms the 2-bit counter
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BPS mechanism because it reduces BPST interference, decreasing the misprediction

rate by 5.45%.
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CHAPTER 6

Interference

Chapter 4 showed that a significant number of branches in the dynamic execu-
tion stream tend to be mostly taken or mostly not-taken. Using static prediction
on the strongly biased branches and dynamic prediction on the remaining branches
resulted in lower contention in the pattern history table and thus more accurate
predictions. In this chapter, we propose a new branch predictor that dynamically
classifies branches based on their history patterns. In order to reduce contention, this
predictor does not update the pattern history table for easily predictable branches. A
simple predictor is used to handle these branches. To determine an effective classifica-
tion of branches, we first examine the frequency of regular recurring history patterns
in branches because these branches are more likely to be easily predictable by simple
predictors. Based on this information, we propose an implementation of the new
predictor which dynamically detects easily predictable branches. It then predicts the
easily predictable branches with a simple predictor while using a two-level predictor
for the other branches.

6.1 Interference Characteristics

Researchers have shown that interference in the pattern history tables can signif-
icantly degrade the performance of two-level branch predictors. The amount of PHT
interference in different two-level branch predictors varies because of their different
hashing schemes. Tables 6.1 and 6.2 show the amount of interference for the PAs
predictor and the gshare predictor. The tables also list the amount of constructive
and destructive interference for each of the two schemes.

Tables 6.1 and 6.2 show that the total amount of interference for the PAs is signifi-
cantly greater than that for gshare. However, the amount of constructive interference
is approximately equal to that of destructive interference for PAs, while the amount
of destructive interference is significantly greater than that of constructive interfer-
ence for gshare. This is because the PAs scheme indexes into the PHT using the past
branch history of the same static branch. Thus, two static branches that hash into the
same PHT have had the same past branch behavior and they are likely to have similar
future behavior. Furthermore, most of the interference under PAs is due to strongly
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Amount of PHT interference

predictor size | benchmark total  constr. destr.
com 2911,783 57,0711 74,018

gcc 16,636,241 594,399 869,330

20 12,239,623 712,916 1,741,964

~4KB fipeg 3,693,315 122,780 _ 306,263
i 13,826,569 163,305 445,815

perl 6,807,469 36,936 170,029

com 2,834,676 48,847 82,963

acc 16,531,875 633,864 837,829

20 12,041,878 715,970 1,647,649

~6KB iipeg 3,645,601 114,422 276,325
i 13,547,008 133,017 393,282

perl 6,718,881 31,064 142,706

com 2,737,118 25,566 73,916

gcc 16,439,145 674,925 816,309

20 11,835,232 722,125 1,559,105

~10KB iipee 3,577,811 106,014 242,672
i 13,278,814 110,923 347,900

perl 6,565,341 27,753 123,358

Table 6.1: PHT interference for PAs

Amount of PHT interference

predictor size | benchmark total const. destr.
com 120,570 2,663 32,010

gcc 4,284,082 129,042 1,532,657

20 8,267,089 355,738 2,330,338

~2KB iipeg 979,009 36,173 264,807
i 510,333 9,213 70,661

perl 717,860 4,447 227,771

com 102,521 2,137 26,947

gcc 3,326,864 119,743 1,211,608

20 7,088,468 316,082 2,318,796

~4KB iipee 813,960 29,785 214,714
I 367,563 7.641 47,125

perl 461,174 2,364 143,655

com 70,316 1,820 9,822

gcc 2,658,880 112,123 960,044

20 5,709,259 279,467 1,770,366

~8KB iipee 625,951 21,815 155,043
I 302,362 6,890 35,688

perl 191,099 636 63,697

Table 6.2: PHT interference for gshare
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biased branches (e.g. always taken branches) because a large number of branches in
the instruction stream are strongly biased. These branches tend to access the same
PHT entries under the PAs scheme; thus, a significant amount of interference occurs
at only a few PHT entries (as shown in Figure 6.1). Since the interference is due to
strongly biased branches, most of the interference under PAs is neutral.

This figure shows the amount of interference in each entry of a 8192 entry PHT for
the PAs scheme when running gce. The black squares represent counters with 606
cases of interference or more (606 is the average amount of interference per entry).
The white squares represent counters with 60 cases of interference or fewer.

Figure 6.1: Interference in PAs’ PHTs

On the other hand, there is a significantly greater amount of destructive inter-
ference than constructive interference for the gshare scheme. Branches whose past
behavior are either all 0’s or all 1’s may use various entries in the PHT because the
gshare scheme selects the PHT entry by XORing the global branch history with the
branch address. Due to this hashing scheme, branches that share the same PHT en-
tries may not have similar past behavior, resulting in significant amount of destructive
interference. Unlike the PAs scheme, the interference for gshare is distributed across
all PHT entries as shown in Figure 6.2.

the gshare scheme when running gee. The black squares represent counters with 325
cases of interference or more (325 is the average amount of interference per entry).
The white squares represent counters with 32 cases of interference or fewer.

Figure 6.2: Interference in gshare’s PHTs
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6.2 History Pattern Characteristics

Dynamic predictors use past branch history to identify recurring execution pat-
terns in order to make accurate predictions.

In order to capture the behavior of branches with complex recurring patterns, a
large amount of branch history information may have to be examined. For this reason,
a sophisticated predictor, such as the two-level branch predictor, which examines more
branch history information, is able to detect more branch execution patterns and thus
outperforms simpler predictors.

On the other hand, even a less sophisticated predictor should be able to capture
the dynamic behavior of branches with simple recurring patterns. Thus, we propose
to reduce the amount of PHT interference by using a simple predictor for predicting
these easily predictable branches and inhibiting the pattern history table update
for these branches. This technique eliminates the interference between predictable
branches and harder-to-predict branches.

In this section, we will try to determine a set of branches that can be easily identi-
fied and accurately predicted by simple predictors and whose removal can significantly
reduce the negative impact of PHT interference.

6.2.1 Frequency of Recurring Patterns

A branch may be easily predictable if it follows a regular repeating pattern of
execution. A branch is said to have a repeating pattern of length & if the branch’s
outcome on the ith time, d;, is identical to the outcome on the (i + k)th time, d;1.
Furthermore, < d;,d;41,...,d;y > must be the shortest repeating pattern; i.e. there
can not be any repeating pattern within < d;,...d;;1 >. For example, a branch that is
always taken or always not-taken will have a repeating pattern of length 1. A branch
that is taken every other time has a repeating pattern of length 2.

To measure how often repeating execution patterns occur, we record the history
of each branch in the branch target buffer(BTB). In this experiment, we use a 16-bit
branch history register to hold the outcomes of the 16 most recent occurrences of the
branch. A pattern is detected only if it repeats for the entire length of the history
register. In addition, the pattern must repeat at least once in the history register;
i.e., a repeating pattern in the 16-bit branch history register can be of at most length
8.

Figure 6.3 shows what fraction of the time patterns of different lengths were
detected when using a 1024 and a 8192 entry BTB respectively. The 8192 entry
BTB was used to approximate an infinite size BTB!. With the 8192 entry BTB,
a repeating pattern of length one was detected for approximately 55 percent of the
branches in the instruction stream, indicating that over half of the PHT accesses can
be avoided if we inhibit updates to the PHT for these branches. With a smaller 1024
entry BTB, fewer repeating patterns were detected because of more BTB misses.

'For the SPEC95 integer benchmarks with the exception of gee, only an insignificant number of
BTB misses occurred when the 8192 entry BTB was used.
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Figure 6.3: Frequency of pattern

That is, when an entry is displaced from the BTB, the associated branch history is
lost. This branch must occur 16 more times before its history register is filled with
enough information for detecting repeating patterns. However, even with the smaller
1K entry BTB, which we will use for the remaining experiments in the dissertation,
a repeating pattern length of one was still detected over 50 percent of the time.

6.2.2 Accuracy of Static PHT

Inhibiting PHT updates for certain branches can improve performance by reducing
the negative effects of PHT interference. However, predicting these branches using
simpler predictors may result in lower accuracy. Thus, to achieve higher performance,
the disadvantage of having less accurate predictions for these branches must not
outweigh the benefits of reducing the PHT interference.

For branches that have a recurring pattern, the next outcome of the branch is an
extension of this pattern. Since the PSg(algo) [31] works on this premise, we expect it
to perform well for branches with repeating patterns and apply it to these branches.
Figure 6.4 compares the performance of PSg(algo) to that of gshare. Branches with

o 0 PSg
% 02 - m gshare (2KB)
o @ gshare (32K B)
IS
B
g o1
z
=
0.0

1 2 3 4 5 6 7 8
Pattern Length

Figure 6.4: Performance of PSg and gshare on branches with repeating
patterns
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short repeating patterns were accurately predicted with PSg(algo), indicating it could
be advantageous to predict them with a simple predictor and inhibit the PHT update.

6.2.3 Characteristics of PHT Interference

PHT interference can have positive, negative, or no effect on the performance of
two-level branch predictors. The performance of two-level branch predictors can be
improved if inhibiting the PHT updates for easily-predictable branches reduces the
negative impact of interference.

Tables 6.3 and 6.4 show the amount of PHT interference for the PAs predictor
and the gshare predictor due to branches with repeating history patterns. That is,
interference is included in this table when the current branch and/or the branch
that last referenced the same PHT entry have a repeating history pattern. These
tables also list the amount of constructive and destructive interference. Inhibiting
PHT updates can improve predictor performance if the reduction in the amount of
destructive interference is greater than that of constructive interference.

As shown in Section 6.1, the amount of PHT interference in different two-level
branch predictors varies because of their different hashing schemes. Thus the amount
of interference due to easily predictable branches also varies among different two-

Amount of PHT interference

predictor size | benchmark total constr.  destr.
com 92,587,226 31,690 24,778

acc 8,400,808 56,219 63,506

20 92,116,261 47,004 82,675

~4KB iipeg 2,163,734 10,636 47,464
i 11,511,671 23,695 39,371

perl 5,879,042 15,518 42,836

com 2,526,494 26,499 36,493

acc 8,202,007 56,397 58,241

20 2,004,582 44,309 71,173

~6KB iipeg 9,083,745 8,572 34,940
i 11,373,134 21,320 35,328

perl 5,182,630 11,566 31,109

com 9,445,425 4,021 31,190

gcc 8,005,498 55,084 61,485

20 1,900,640 42,399 64,008

~10KB lipee 2,022,661 7,003 30,600
i 11,246,232 19,978 30,566

perl 5,702,299 8,813 20,396

Table 6.3: PHT interference due to branches with repeating history
patterns for PAs
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Amount of PHT interference

predictor size | benchmark total const. destr.
com 110,076 1,831 27,701

acc 2,626,637 69,008 920,628

20 2,070,520 73,492 724,863

~2KB lipeg 727,585 21,068 199,668
i 474,728 8,243 64,362

perl 636,471 2,442 207,310

com 94,649 1,601 23,3%5

acc 1,990,704 64,344 720,700

20 1,806,605 67,153 600,030

~4KB lipee 600,631 17,929 160,500
i 348,563 7,026 43,522

perl 412,114 1,890 133,905

com 68,845 1,643 9,351

gcc 1,577,203 61,458 573,345

20 1,491,355 61,412 469,789

~8KB fipeg 451,869 12,710 112,633
i 985,047 6,299 31,583

perl 179,498 426 66,054

Table 6.4: PHT interference due to branches with repeating history
patterns for gshare

level branch predictors. Similar to the distribution of the overall interference, the
total amount of interference due to easily predictable branches for the PAs is signif-
icantly greater than that for gshare, and the amount of constructive interference is
approximately equal to that of destructive interference for PAs, while the amount of
destructive interference is significantly greater than that of constructive interference
for gshare. Since over 50% of branches have repeating history patterns of length 1,
these branches tend to access the same PHT entries under the PAs scheme; thus,
a significant amount of interference occurs due to these branches. And since these
branches have similar dynamic behaviors, most of the interference under PAs is neu-
tral. Thus, removing this sort of interference has little effect on the performance of
the PAs predictor.

For the gshare scheme, there is a significantly greater amount of destructive inter-
ference than constructive interference due to easily predictable branches. Having sig-
nificantly more destructive interference than constructive interference indicates that
inhibiting the PHT updates for easily-predictable branches can reduce the negative
effects of PHT interference for the gshare variation of the two-level branch predic-
tor. In the following studies, we will examine the performance impact of the filtering
mechanism on the gshare scheme.
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6.3 Predictor Model

As shown in Section 6.2, branches with a repeating history pattern of length one
occur frequently in the dynamic instruction stream and these branches can be accu-
rately predicted by a PSg predictor. In addition, Section 6.2 showed that a significant
amount of destructive interference may be removed if the PHTs are not updated for
these branches. Therefore, to improve predictor performance, we add a filtering mech-
anism which records the dynamic history of each branch and dynamically separates
always taken and always not-taken branches from the other branches; the appropriate
operations can then be applied to each branch based on its classification.

To be able to dynamically identify branches with repeating patterns of length
one, we add a direction bit and a counter to each BTB entry. Figure 6.5 shows the
structure of the gshare scheme with the filtering mechanism; the concept extends
easily to other global variations of the two-level predictor. Figure 6.6 shows the flow
chart of the workings of the filtering algorithm. Essentially, a branch’s counter records
the number of consecutive occurrences in which the branch goes in the same direction.
The direction bit records that direction. If the counter is not at its maximum value,
the prediction for the branch is made by the default predictor. When the counter
reaches its maximum, the direction bit supplies the prediction for the branch and the
pattern history table is not updated.

The filtering mechanism is implemented in slightly different ways for per-address
and global predictors. For the per-address predictor, we already maintain the branch
history of each branch for selection of the PHT entry, so the counters mentioned above
are not needed. The branch history can be used to determine whether the outcomes
of a branch are either always taken or always not-taken (as shown in Figure 6.7).

Global History (gshare)
Pattern History Table

Branch Target Buffer

Count Direction Branch

History

Register
L ]
Program Counter @

l

Prediction

Although this figure only shows the gshare implementation, a similar structure can be
implemented for all global history variations of the two-level branch predictor.

Figure 6.5: Structure of the filtering mechanism with gshare
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When a branch is fetched

¢

Yes Yes
BTB hit? Counter at
max value?
i No \L No
Predict using the default predictor Predict using the default predictor Predict using the
direction bit
Allocate a new BTB entry

Initialize Counter*
Set direction bit to taken

* Different counter initialization schemes are studied
Counters can be initialized to any value between 0 and max

When a branch is resolved

¢

new No Brn outcome No
BTB entry? == direction bit?

iYes iYes

Set direction bit to the branch increment counter if not already Toggle direction bit
outcome at its max value

Set counter to 0

Figure 6.6: Flow chart of the filtering algorithm

Per-Address History
Pattern History Tables

Branch History Register

Dﬁ Program Counter

Prediction

Figure 6.7: Structure of the filtering mechanism with PAs
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6.4 Experimental Results

6.4.1 Filtering Mechanism Configurations

The performance of the filtering mechanism depends on the size of counters used
to detect recurring patterns and on the initial value assigned to these counters.

Performance vs Counter Initialization Value
When a new BTB entry is allocated for a branch, the counter for detecting re-
peating history patterns needs to be initialized. The performance of the filtering

mechanism depends on the initial value assigned to these counters.

Figure 6.8 shows the performance of several configurations of the filtering mecha-
nism when the counters are initialized to their minimum value or to their maximum
value. The branch target buffer used in our experiments has 1K entries and is 4-way
set associative. The maximum counter value in this experiment is 15. As shown
in Figure 6.8, the filtering mechanism can significantly reduce a greater number of
mispredictions of gshare when its counters are initialized to 15 instead of 0. Table 6.5
shows the performance of these different configurations on the individual benchmarks.
Each value in this table indicates the prediction accuracy achieved by the gshare pre-
dictor with the filtering mechanism. For the gcc and go benchmarks, the performance
of the filtering mechanism improves when the counters are initialized to a larger value.
For example, for the gcc benchmark, by initializing the counters to 15 instead of 0,
the filtering mechanism reduces the misprediction rate of a 2KByte gshare by 38.0%
instead of 24.5%. For the go benchmark, by initializing the counters to 15 instead of
0, the filtering mechanism reduces the misprediction rate by 23.2% instead of 8.1%.

Since the filtering mechanism is trying to detect branches whose recent outcomes
are always taken or always not-taken, assigning a larger initial value to a counter
has the advantage that the counter will reach its maximum value in a shorter period

o 010
ol
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o
5 0081
.
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S 0061+

0.04 1+

0.02 4+ 0 —— 0 initvalue==0

_ init value == 15
0.00 | | | |
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Branch Predictor Size (bytes)

Figure 6.8: Performance vs. counter initialization value
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init Predictor Size

benchmark | value 2KB 4KB SKB 16KB 32KB
0 [91.68% 91.84% 92.02% 92.24% 92.32%
13 | 91.68% 91.84% 92.02% 92.24% 92.32%
com 14 | 91.68% 91.84% 92.02% 92.24% 92.32%
15 |91.68% 91.85% 92.02% 92.25% 92.32%
0 [91.27% 92.10% 92.94% 93.77% 94.56%
13 192.34% 93.04% 93.75% 94.42% 95.04%
gce 14 ] 92.55% 93.21% 93.88% 94.52% 95.09%
15 |92.83% 93.42% 94.02% 94.58% 95.08%
0 |76.59% 79.78% 82.77% 85.25% 87.20%
13 | 79.08% 81.72% 84.17% 86.17% 87.75%
go 14 | 79.68% 82.14% 84.42% 86.27% 87.73%
15 | 80.45% 82.64% 84.63% 86.26% 87.54%
0 ]92.12% 92.47% 92.65% 92.80% 92.95%
- 13 192.17% 92.50% 92.68% 92.82% 92.96%
uypeg 14 ]92.19% 92.51% 92.68% 92.82% 92.96%
15 192.21% 92.52% 92.69% 92.82% 92.96%
0 [94.93% 95.08% 95.19% 95.36% 95.48%
_ 13 | 94.93% 95.08% 95.20% 95.36% 95.49%
i 14 | 94.94% 95.08% 95.20% 95.36% 95.49%
15 | 94.94% 95.08% 95.20% 95.36% 95.49%
0 |97.47% 97.82% 97.96% 98.08% 98.14%
13 | 97.48% 97.82% 97.96% 98.09% 98.15%
perl 14 | 97.49% 97.83% 97.97% 98.09% 98.15%
15 | 97.49% 97.84% 97.96% 98.08% 98.13%

Table 6.5: Performance vs. counter initialization value

of time; the shorter warm-up time results in fewer PHT updates and thus less PHT
interference. Table 6.6 shows the percentage of predictions made by the BTB direction
bit for different classes of branches. Branches in a program are partitioned into several
classes based on their dynamic taken rates as shown in Table 6.7. Since strongly
biased branches can be accurately predicted by a simple predictor, the performance
of the filtering mechanism can be improved if more of these branches are predicted
with the BTB direction bit to reduce PHT interference. For gcc and go, when the
counters are initialized to 0, the filtering mechanism fails to detect repeating patterns
for a significant number of strongly biased branches; e.g. only 71.61% and 21.22% of
the always not-taken branches in gcc and go were filtered. Initializing the counters
to their maximum allows the filtering mechanism to filter significantly more of the
strongly biased branches; e.g. 93.06% and 79.22% of the always not-taken branches
in gcc and go are now filtered.

For the other benchmarks, the performance of the filtering mechanism is not
significantly affected by the counter initial value because there are few static branches
exercised in these programs. With a 1K-entry 4-way set-associative BTB, BTB misses
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nit Branch Class
bench. | value BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8
0 99.91% 99.67% 42.89% 0.74% 1.08% 0.00% 98.78% 99.93%
13 99.97% 99.68% 42.90% 0.74% 1.08% 0.01% 98.80% 99.98%
com 14 99.98% 99.68% 42.90% 0.74% 1.09% 0.01% 98.80% 99.98%
15 99.99% 99.68% 42.90% 0.74% 1.09% 0.01% 98.80% 99.99%
0 71.61% T71.21% 39.11% 10.60% 16.63% 32.26% 77.75% 71.26%
13 86.38% 80.48% 47.89% 14.14% 21.31% 40.70% 83.29% 86.84%
gee 14 89.12% 81.90% 49.57% 15.40% 22.62% 42.51% 84.07%  89.58%
15 93.06% 83.82% 52.11% 17.84% 24.91% 45.00% 85.11% 93.51%
0 21.22% 37.81% 19.42% 7.10% 8.41% 37.06% 59.00% 41.52%
13 58.26% 68.47% 43.04% 14.46% 13.19% 50.71% 74.43% 70.76%
g0 14 67.08% T4.26% 49.09% 17.50% 15.42% 52.89% 77.06% 77.17%
15 79.22% 81.66% 57.55% 23.23% 19.01% 55.54% 80.27% 85.75%
0 96.27% 93.10% 20.50% 45.67% 23.51% 29.55% 82.49% 94.08%
B 13 98.60% 93.50% 33.14% 45.77% 23.60% 37.14% 82.63% 97.81%
upeg 14 98.94% 93.54% 35.02% 45.80% 23.65% 37.79% 82.64% 98.33%
15 99.36% 93.57% 37.24% 45.88% 23.71% 38.50% 82.66% 98.96%
0 99.96% 91.15% 61.73% 12.49% 19.65% 27.83% 88.07% 99.96%
. 13 99.99% 91.16% 61.73% 12.50% 19.66% 27.88% 88.08% 99.99%
I 14 99.99% 91.16% 61.73% 12.50% 19.66% 27.89% 88.08% 99.99%
15 100.00% 91.16% 61.73% 12.50% 19.66% 27.91% 88.08% 100.00%
0 96.95% 85.61% 37.39% 11.51% 2.05% 33.20% 84.99% 96.67%
13 98.94% 85.66% 37.46% 11.73% 2.24% 33.24% 85.08% 99.16%
perl 14 99.21% 85.67% 37.47% 11.88%  2.34% 33.24% 85.09%  99.41%
15 99.59% 85.82% 37.49% 12.11% 2.71% 33.25% 85.11% 99.67%

Table 6.6: Initialization value vs. fraction of direction bit usage for

each branch class

Classes ‘ Descriptions

BC1 pr(br) = 0%

BC2 0% < pr(br) <= 5%
BC3 5% < pr(br) <= 10%
BC4 10% < pr(br) <= 50%
BC5 50% < pr(br) <= 90%
BC6 90% < pr(br) <= 95%
BC7 | 95% < pr(br) < 100%
BC8 pr(br) = 100%

Table 6.7: Branch classes

occur infrequently; thus, the counters rarely need to be reinitialized.
In the following sections, we will examine filtering mechanisms where their coun-

ters are initialized to their maximum value.

Performance vs Counter Size

The performance of the filtering mechanism also depends on the size of the coun-

ters used for identifying repeating patterns.
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Table 6.8 shows the performance of several configurations of the filtering mech-
anism where the size of the counters is varied. Table 6.8 shows that for the gcc
and go benchmarks, the performance of the filtering mechanism continues to improve
slightly as the size of the counters becomes smaller. This is because there is a sig-
nificant amount of destructive PHT interference in gcc and go. Basing its decision

Predictor Size

benchmark | max count 2KB 4KB SKB 16KB 32KB
4 90.55% 90.68% 90.82% 90.97% 91.02%

8 91.01% 91.17% 91.34% 91.57% 91.64%

12 91.23% 91.40% 91.57% 91.80% 91.87%

com 16 91.68% 91.85% 92.02% 92.25% 92.32%
20 91.68% 91.85% 92.02% 92.25% 92.32%

24 91.68% 91.85% 92.03% 92.25% 92.32%

4 92.66% 93.14% 93.63% 94.07% 94.43%

8 92.92% 93.47% 94.02% 94.54% 94.99%

12 92.87% 93.44% 94.03% 94.57% 95.05%

gee 16 92.83% 93.42% 94.02% 94.58% 95.08%
20 92.78% 93.39% 94.00% 94.57% 95.08%

24 92.75% 93.36% 93.98% 94.56% 95.08%

4 81.54% 83.27T% 84.80% 86.02% 86.96%

8 80.96% 83.02% 84.88% 86.39% 87.56%

12 80.65% 82.80% 84.75% 86.34% 87.59%

go 16 80.45% 82.64% 84.63% 86.26% 87.54%
20 80.31% 82.53% 84.54% 86.20% 87.50%

24 80.22% 82.45% 84.48% 86.15% 87.47%

4 91.91% 92.05% 92.15% 92.24% 92.33%

8 92.11% 92.41% 92.56% 92.67% 92.80%

- 12 92.22% 92.53% 92.69% 92.82% 92.96%
upeg 16 92.21% 92.52% 92.69% 92.82% 92.96%
20 92.20% 92.52% 92.68% 92.82% 92.96%

24 92.21% 92.53% 92.70% 92.84% 92.98%

4 94.18% 94.28% 94.34% 94.45% 94.48%

8 94.81% 94.96% 95.06% 95.20% 95.31%

_ 12 94.92% 95.07% 95.19% 95.33% 95.45%
i 16 94.94% 95.08% 95.20% 95.36% 95.49%
20 94.97% 95.12% 95.23% 95.39%  95.52%

24 94.99% 95.14% 95.25% 95.42%  95.55%

4 96.20% 96.38% 96.49% 96.62% 96.67%

8 97.14% 97.40% 97.57% 97.69% 97.72%

12 97.34% 97.67% 97.80% 97.92% 97.97%

perl 16 97.49% 97.84% 97.96% 98.08% 98.13%
20 97.58% 97.93% 98.05% 98.17% 98.22%

24 97.59% 97.94% 98.07% 98.19% 98.23%

Table 6.8: Performance vs. counter size
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on smaller maximum counts, the filtering mechanism will detect regularly repeating
patterns for more branches. For example, with a loop that always executes for 10
iterations, the history pattern of the loop-ending branch would be a repeating pattern
of 1111111110. Detecting patterns using the maximum count of 4, the filtering mech-
anism will use the BTB direction bit to predict this branch 6 out of 10 occurrences.
Detecting patterns using the maximum count of 8, the filtering mechanism will use
the BTB direction bit only 20% of the time. As shown in Table 6.9, changing the

max Branch Class

bench. | count BC1 BC2 BC3 BC4 BC5H BC6 BC7 BCR
4 99.99% 99.92% 75.85% 1817% 15.83% 68.56% 99.67%  99.99%
8 99.99% 99.84% 61.26%  2.48%  2.53% 37.13% 99.38%  99.99%
12 99.99% 99.76% 51.03%  1.24% 1.52%  7.64% 99.09% = 99.99%
com 16 99.99% 99.68% 42.90%  0.74% 1.09%  0.01% 98.80%  99.99%
20 99.99% 99.60% 36.43%  0.49%  0.84%  0.00% 98.52% = 99.99%
24 99.99% 99.52% 31.37%  0.34%  0.69%  0.00% 98.24%  99.99%
4 93.06% 92.40% 77.03% 37.54% 48.08% 75.46% 94.32%  93.51%
8 93.06% 88.95% 65.59% 24.99% 34.05% 61.63% 90.92%  93.51%
12 93.06% 86.17% 57.86% 20.35% 28.25% 52.12% 87.90%  93.51%
gee 16 93.06% 83.82% 52.11% 17.84% 24.91% 45.00% 85.11%  93.51%
20 93.06% 81.75% 47.75% 16.33% 22.92% 40.26% 82.52%  93.51%
24 93.06% 79.91% 44.38% 15.34% 21.50% 36.61% 80.06%  93.51%
4 79.22% 85.09% T71.25% 40.81% 39.90% 77.63% 89.41%  85.75%
8 79.22% 83.55% 64.23% 28.98% 26.70% 66.97% 85.34%  85.75%
12 79.22% 82.50% 60.31% 25.19% 21.63% 60.21% 82.51%  85.75%
g0 16 79.22% 81.66% 57.56% 23.23% 19.01% 55.54% 80.27%  85.75%
20 79.22% 80.93% 55.74% 22.11% 17.45% 52.08% 78.44%  85.75%
24 79.22% 80.28% 54.44% 21.41% 16.47% 49.46% 76.92%  85.75%
4 99.36% 98.24% 73.22% 67.03% 49.76% 82.87T% 95.38%  98.96%
8 99.36% 96.60% 53.79% 56.02% 32.16% 66.97% 91.06%  98.96%
- 12 99.36% 95.02% 43.80% 50.51% 26.94% 52.16% 86.82%  98.96%
upeg 16 99.36% 93.57% 37.24% 45.88% 23.71% 38.50% 82.66% = 98.96%
20 99.36% 92.14% 30.70% 41.66% 21.11% 36.47% 78.70%  98.96%
24 99.36% 90.94% 24.65% 37.60% 18.85% 34.75% T74.75% = 98.96%
4 100.00% 97.48% 82.77% 30.94% 37.64% 78.26% 95.26% 100.00%
8 100.00% 95.23% 72.47% 18.94% 26.68% 58.72% 92.28%  100.00%
, 12 | 100.00% 93.11% 66.35% 14.88% 22.27% 41.14% 90.05% 100.00%
li 16 | 100.00% 91.16% 61.73% 12.50% 19.66% 27.91% 88.08% 100.00%
20 | 100.00% 89.29% 57.99% 10.74% 17.86% 21.43% 86.27% 100.00%
24 | 100.00% 87.64% 55.17%  9.41% 16.42% 16.37% 84.55% 100.00%
4 99.59% 95.59% 78.72% 40.44% 37.65% 73.89% 96.06%  99.67%
8 99.59% 91.93% 61.34% 23.94% 10.26% 57.81% 92.33%  99.67%
12 99.59% 88.58% 48.32% 16.86%  4.59% 43.50% 88.70% = 99.67%
perl 16 99.59% 85.82% 37.49% 12.11% 2.71% 33.25% 85.11%  99.67%
20 99.59% 83.54% 27.91%  947% 1.79% 26.28% 81.54%  99.67%
24 99.59% 81.70% 21.84% 7.77% 1.40% 20.27% 78.42%  99.67%

Table 6.9: Counter size vs. fraction of direction bit usage for each
branch class
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counter size causes the filtering mechanism to filter a different number of unbiased
branches. With the counters initialized to their maximum, the filtering mechanism
already detects repeating patterns for most of the strongly biased branches. Since
the behavior of unbiased branches is harder to predict, the dynamic predictor outper-
forms the BTB direction bits for these branches. Thus, the performance of the filtering
mechanism improves with smaller counters because there is a significant amount of
PHT interference. The benefits of reducing the PHT interference is greater than the
disadvantages of using a less accurate branch predictor.

For counters with a maximum count of 4 (i.e. maximum value of 3), too many
unbiased branches are prematurely predicted using the simple predictor instead of
the more accurate dynamic predictor. The benefits of reducing the PHT interference
no longer outweigh the disadvantages of having less accurate predictions for these
branches. Similarly with a large predictor of 64Kbyte where a smaller amount of
PHT interference occurs, larger counters achieve higher prediction accuracy.

For the other benchmarks, the performance of the predictor improves as the size
of the counters increases. Since there is only a small amount of PHT interference for
these benchmarks, the benefit of choosing the more accurate predictor outweighs the
benefit of reducing PHT interference.

For the following experiments, we will use counters with a maximum count of 16
for the filtering mechanism. This configuration resulted in the best average predictor
performance for the benchmarks.

6.4.2 Predictor Performance

Branches with a repeating pattern length of one occur frequently as shown in
Section 6.2.1, so filtering away these branches from the PHT can significantly reduce
the amount of interference. Table 6.10 shows the amount of PHT interference after
filtering out these branches. The reduction in the amount of PHT interference after
filtering depends on the particular benchmark, from a maximum of 93.1% for the li
benchmark to a minimum of 39.0% for the go benchmark (cf. Table 6.2).

Figure 6.9 shows the performance of gshare with and without the filtering mecha-
nism. Figure 6.10 shows that for the gcc benchmark, where we saw a large amount of
destructive interference, the filtering mechanism is able to significantly improve the
performance of gshare. As shown in section 6.4.1, the performance of gshare on gcc
can still be improved by using smaller counters for the filtering mechanism.

At lower implementation costs, where a larger amount of PHT interference occurs,
our scheme is able to remove more interference and thus achieve higher performance.
For larger predictors where the effect of PHT interference is less significant, the results
of the two predictors are closer.

Figure 6.11 shows the performance of the 2 KByte gshare schemes on the indi-
vidual benchmarks. The filtering mechanism is able to improve the performance of
these benchmarks. For benchmarks that have a large number of static branches in the
dynamic instruction stream, such as gcc, a large amount of PHT interference occurs.
The filtering mechanism was able to remove a significant amount of the destructive
interference (see Table 6.2), reducing the number of mispredictions by 30% to 38%
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Amount of PHT interference
predictor size | benchmarks total  constr. destr.
com 15,816 1,106 6,225
gee 1,683,558 73,978 627,319
go 5,043,994 256,506 1,661,338
~2KB iipeg 389,086 20,072 95,720
i 46,126 1,132 9,273
perl 115,785 4,258 33,305
com 12,260 616 5,255
gee 1,400,030 67,328 515,074
go 4,200,579 220,357 1,317,971
~4KB iipee 311,146 15,335 74,807
i 25,515 676 5,965
perl 48,185 1,435 13,838
com 2,133 333 576
gce 1,135,745 59,605 404,875
go 3,326,209 188,097 998,730
~8KB lipee 248,734 12,196 57,267
i 22,124 688 5,844
perl 9,001 141 1,622

Table 6.10: PHT interference for gshare when PHT is not updated
for branches whose per-address branch histories are either
always taken or always not-taken

Misprediction Rate
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Figure 6.11: Performance impact of the filtering mechanism on a 2
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for the gce benchmark when using gshare.

Figure 6.12 shows the performance of the gshare/pshare hybrid branch predictor
with and without the filtering mechanism. This hybrid branch predictor combines
the gshare and pshare predictors; pshare is a variation of the two-level branch pre-
dictor where the per-address branch history is XORed with the branch address for
selecting the appropriate PHT entry. Since gshare/pshare uses gshare for one of its
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component predictors, the filtering mechanism is also able to significantly improve
the performance of this hybrid branch predictor.

Figure 6.13 shows that for the gcc benchmark, where a large amount of destruc-
tive interference exists, the filtering mechanism is able to significantly improve the
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Figure 6.13: Performance impact of the filtering mechanism on
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58



performance of gshare/pshare, reducing the number of mispredictions by 23% to 29%.

6.5 Summary

In this chapter, we have introduced a method of reducing pattern history table in-
terference by dynamically classifying branches as strongly biased or mixed-directional.
Our experiments showed that about half of the branches in the dynamic instruction
stream are strongly biased, and can therefore be handled with a simple predictor.

Inhibiting the update to the pattern history table for the strongly biased branches,
we were able to get a considerable decrease in the amount of destructive PHT inter-
ference with a resulting improvement in the accuracy of the gshare two-level branch
predictor. For six of the SPECint95 benchmarks, we achieved an average 21.6% reduc-
tion of mispredictions for a 2 KByte gshare predictor. The filtering mechanism also
significantly improved the performance of the gshare/pshare hybrid branch predictor
which uses gshare for one of its component predictor. For a 6KByte gshare/pshare,
the number of mispredictions was reduced by 14.7%. However, for larger predictors
where the effect of PHT interference is less significant, the benefit of the filtering
mechanism is also less significant. For a 32 KByte gshare predictor, the number of
mispredictions was reduced by 7%.

For the gcc benchmark which executes a large number of static branches, the
filtering mechanism was able to remove a significant amount of the destructive inter-
ference. We therefore reduce the number of mispredictions by 30% to 38% for the
gshare predictor. For gshare/pshare, the number of mispredictions was reduced by

23% to 29%.
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CHAPTER 7

Indirect Branches

7.1 Characteristics

In the past, branch prediction research has focused on accurately predicting con-
ditional and unconditional direct branches [32, 21, 40, 20, 7, 24]. To predict such
branches, the prediction mechanism predicts the branch direction (for unconditional
branches, this part is trivial) and then generates the target associated with that direc-
tion. To generate target addresses, a branch target buffer (BTB) is used. The BTB
stores the last target seen for each of the two possible branch directions. However,
BTB-based prediction schemes perform poorly for indirect branches. Because the
target of an indirect branch can change with every dynamic instance of that branch,
always using the target of the previous instance as the predicted target will lead
to poor prediction accuracy. Figures 7.1 through 7.5 show the number of different
dynamic targets seen for each indirect branch in the SPECint95 benchmarks.
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Figure 7.1: Number of Targets per Indirect Jump (compress)
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Figure 7.8: Number of Targets per Indirect Jump (vortex)

Table 7.1 lists the Indirect branch target misprediction rate achieved by a 1K-
entry 4-way set-associative BTB for the SPECint95 benchmarks. For gcc and perl,
the two benchmarks with significant numbers of indirect branches, the misprediction
rates were 66.0% and 76.4%. Table 7.1 also shows that the indirect branch target
misprediction rates for the SPECint95 benchmarks are significantly higher than the
conditional branch misprediction rates achieved by a 2KByte gshare predictor.

Cond. Br Ind. Jump

Mispred.  #Indirect Mispred.

Benchmark Input #Instr’'s.  #Branches Rate Jumps Rate
compress test.in 125,162,687 17,460,753 8.58% 590 61.7%
gee jump.i 172,328,834 35,979,748 11.56% 939,417 66.0%
go 2stone9.in 125,637,006 23,378,150 25.61% 173,719 37.6%
ijpeg specmun.ppm 206,802,135 23,449,572 8.61% 103,876 14.3%

li train.lsp 192,569,022 40,909,525 5.21% 114,789 80.7%
m88ksim | dcrand.train.big 131,732,141 23,840,021 2.01% 186,285 37.3%
perl scrabbl.pl 106,140,733 16,727,047 4.711% 588,136 76.4%
vortex vortex.in 236,081,621 44,635,060 2.63% 243,706 11.3%

Table 7.1: Misprediction counts for indirect jumps in the SPECint95
benchmarks

7.2 Target Cache

The target cache improves on the prediction accuracy achieved by BTB-based
schemes for indirect jumps by choosing its prediction from (usually) all the targets of
the indirect jump that have already been encountered rather than just the target that
was most recently encountered. When fetching an indirect jump, the target cache is
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accessed with the fetch address and other pieces of the machine state to produce
the predicted target address. As the program executes, the target cache records the
target for each indirect jump target encountered.

7.2.1 Accessing the Target Cache

In our study, we consider using branch history along with the branch address to
index into the target cache. Two types of branch history information are used to
decide which target of the indirect jump will be predicted — pattern history and path
history.

e Branch History

It is now well known that the two-level branch predictor improves prediction ac-
curacy over previous single-level branch predictors [38]. The two-level predictors
attain high prediction accuracies by using pattern history to distinguish differ-
ent dynamic occurrences of a conditional branch. To predict indirect jumps,
the target cache is indexed using branch address and global pattern history. No
extra hardware is required to maintain the branch history for the target cache if
the branch prediction mechanism already contains this information. The target
cache can use the branch predictor’s BHR.

e Path History

Previous research [42, 24] has shown that path history can also provide useful
correlation information to improve branch prediction accuracy. Path history
consists of the target addresses of branches that lead to the current branch.
This information is also useful in predicting indirect branch targets.

In this study, two different types of path history can be associated with each
indirect jump — global or per-address. In the per-address scheme, one path
history register is associated with each distinct static indirect branch. Each
n-bit path history register records the last k target addresses for the associated
indirect jump. That is, when an indirect branch is resolved, n/k bits from its
target address are shifted into the path history register.

In the global scheme, one path history register is used for all indirect branches.
Because the history register has a fixed length, it can record a limited num-
ber of branches in the past history. Thus, the history register may be better
utilized by only recording a particular type of branch instruction. For exam-
ple, if a sequence of conditional branches is sufficient to distinguish the differ-
ent paths of each indirect jump, then there is no need to include other types
of branches in the path history. Four variations of the global scheme were
considered — control, branch, call/ret, ind jmp. The control scheme
records the target address of all instructions that can redirect the instruction
stream. The branch scheme only records the targets of conditional branches.
The call/ret scheme records only the targets of procedure calls and returns.
The ind jmp scheme records only the targets of indirect jumps.
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7.2.2 Target Cache Structure

In addition to varying the type of information used to access the target cache, we
also studied tagged and tagless target caches.

e Tagless Target Cache

Figure 7.9 shows the structure of a tagless cache. The target cache is similar
to the PHT of the two-level branch predictor; the only difference is that a
target cache’s storage structure records branch targets while a two-level branch
predictor’s pattern history table records branch directions.

The target cache works as follows: during instruction fetch, the BTB and the
target cache are examined concurrently. If the BTB detects an indirect branch,
then the target address found in the target cache is used to redirect the instruc-
tion stream. When the indirect branch is resolved, the target cache entry is
updated with its target address.

Several variations of the tagless target cache can be implemented. They differ
in the ways that branch address and history information are hashed into the
target cache. For example, the branch address can be XORed with the history
information for selecting the appropriate entry. Section 7.3 will describe the
different hashing schemes considered.

Target Cache

History Information i—» Target Address

Branch Address /Lash Function

Figure 7.9: Structure of a Tagless Target Cache

e Tagged Target Cache

Like the PHTs, interference occurs in the target cache when a branch uses an
entry that was last accessed by another branch. Interference is particularly
detrimental to the target cache because each entry in the target cache stores
the branch target address. Since the targets of two different indirect branches
are usually different, interference will most likely cause a misprediction.

To avoid predicting targets of indirect jumps based on the outcomes of other
branches, we propose the tagged target cache where a tag is added to each target
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cache entry (see Figure 7.10). The branch address and/or the branch history
are used for tag matching. When an indirect branch is fetched, its instruction
address and the associated branch history are used to select the appropriate
target cache entry. If an entry is found, the instruction stream is redirected to
the associated target address.

Target Cache

Branch Address

Set #

Index

History Information ~_~\Function/ Tag

Branch Target

Figure 7.10: Structure of a Tagged Target Cache

7.3 Performance

7.3.1 Tagless Target Cache

This section examines the performance of tagless target caches. The size of every
target cache considered in this section is 512 entries. Since the BTB has 256 sets and
is 4-way set-associative, the target cache increases the predictor hardware budget by
10 percent. The cost of the predictor is estimated using the following equations:

BTB* = 77 x 2048 bits
target cache(n) = 32 xn bits
predictor budget = BTB + target cache(n) bits

where n is the number of target cache entries.

Hashing Function

With the tagless schemes, branch history information and address bits are hashed
together to select the appropriate target cache entry. An effective hashing scheme
must distribute the cache indexes as widely as possible to avoid interference between
different branches.

*each BTB entry consists of 1 valid bit, 2 least-recently-used bits, 23 tag bits, 32 target address
bits, 2 branch type bits, 4 fall-thru address bits, and 13 branch history bits.
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Table 7.2 shows the performance benefit of tagless target caches using different
history information for indexing into the storage structure. The GAg(9) scheme uses
9 bits of branch pattern history to select the appropriate target cache entry. In the
GAs schemes, the target cache is conceptually partitioned into several tables. The
address bits are used to select the appropriate table and the history bits are used
to select the entry within the table. The GAs(8,1) scheme uses 8 history bits and 1
address bits while the GAs(7,2) scheme uses 7 history bits and 2 address bit. For the
perl benchmark, GAg(9) slightly outperforms GAs(8,1), showing that branch pattern
history provides marginally more useful information than branch address. This is
because the perl benchmark executes only 22 static indirect jumps. On the other
hand, GAs(8,1) is competitive with GAg(9) for the gcc benchmark, a benchmark
which executes a large number of static indirect jumps. In the gshare scheme, the
branch address is XORed with the branch history to form the target cache index.
Like the previous two-level branch predictors, the gshare scheme outperforms the
G As scheme because it effectively utilizes more of the entries in the target cache. In
the following sections, we will use the gshare scheme for tagless target caches.

‘ Perl ‘

Misprediction | Reduction in

config Rate Exec. Time
gshare(9) 30.9% 8.92%
GAg(9) 31.2% 8.87%
GAs(8,1) 33.4% 8.36%
GAs(7,2) 48.1% 5.17%

Gece

Misprediction | Reduction in

config Rate Exec. Time
gshare(9) 30.4% 4.27%
GAg(9) 35.8% 3.61%
GAs(8,1) 35.7% 3.62%
GAs(7,2) 36.7% 3.48%

Table 7.2: Performance of Pattern History Tagless Target Caches

Branch Path History: Tradeoffs

Path history consists of the target addresses of branches that lead to the current
branch. Ideally, each path leading to a branch should have a unique representation in
the path history register. However, since only a few bits from each target are recorded
in the path history register, different targets may have the same representation in the
path history. When this occurs, the path history may not be able to distinguish
between different paths leading to a branch. Thus, the performance of a path-based
target cache depends on the address bits from each target used to form the path

68



history. Table 7.3 shows the performance of target caches using different address
bits from each target in the path history. The lower significant bits provide more
information than the higher significant bits. In the following experiments, the lower
significant bits from each target are recorded in the path history register; the 2 least
significant bits from each address are ignored because instructions are aligned on word

boundaries.

‘ Perl ‘
addr Reduction in Execution Time
bit || Per-addr Global
no. branch | control | ind jmp | call/ret

2 7.64% | 741% | 4.70% | 12.36% | 8.45%
3 10.09% | 6.85% | 3.41% | 11.00% | 9.75%
4 5.52% | 5.97% | 4.88% | 10.50% | 9.97%
) 7.34% | 9.13% | 4.31% 9.24% | 10.82%
7 6.17% | 6.89% | 4.22% | 11.34% | 11.16%

10 6.19% | 6.60% | 3.94% | 12.82% | 10.42%
15 1.87% | 2.98% | 2.30% | 10.97% | 9.92%
20 0.00% | 0.00% | 0.00% 0.00% | 0.00%

Gece

addr Reduction in Execution Time

bit || Per-addr Global

no. branch | control | ind jmp | call/ret
2 2.57T% | 3.82% | 3.75% 2.68% | 2.52%
3 2.46% | 3.711% | 3.81% 2.63% | 2.24%
4 2.67% | 3.88% | 3.63% 2.69% | 2.80%
5 2.02% | 3.75% | 3.82% 2.37% | 2.63%
7 2.60% | 3.57% | 3.76% 2.72% | 2.98%
10 1.34% | 3.24% | 3.14% 1.83% | 2.60%
15 0.01% | 1.05% | 0.78% 1.06% 1.56%
20 -0.02% | 0.26% | 0.14% 0.24% | 0.78%

Table 7.3: Path History: Address Bit Selection

Because the length of the history register is fixed, there is also a tradeoff between
identifying more branches in the past history and better identifying each branch
in the past history. Increasing the number of bits recorded per address results in
fewer branch targets being recorded in the history register. Table 7.4 shows the
performance of target caches using different numbers of bits from each target in the
path history. For example, the first row in the table shows the performance of target
caches which record one bit from each target address in the path history register.
The second row shows the performance of target caches which record two bits from
each target address in the path history register. Nine bits of path history are then
used to select the appropriate target cache entry. In general, with nine history bits,
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‘ Perl ‘

bits Reduction in Execution Time

per | Per-addr Global

addr branch | control | ind jmp | call/ret
1 7.64% | T.41% | 4.70% | 12.36% | 8.45%
2 9.17% | 3.12% | 0.88% | 11.81% | 8.40%
3 7.19% | 0.30% | 0.74% | 10.99% | 6.24%

Gece

bits Reduction in Execution Time

per | Per-addr Global

addr branch | control | ind jmp | call/ret
1 2.57% | 3.82% | 3.75% 2.68% | 2.52%
2 2.96% | 2.60% | 2.21% 3.35% | 2.66%
3 3.57% | 2.02% | 1.66% 3.83% | 2.63%

Table 7.4: Path History: Address Bits per Branch

the performance benefit of the target cache decreases as the number of address bits
recorded per target increases. This is especially true for the Control and Branch
schemes. With the Control scheme, we record the target of all instructions that can
redirect the instruction stream, which may include branches that provide little or no
useful information, e.g. unconditional branches. Each of these uncorrelated branches
takes up history bits, possibly displacing useful history. As a result, the performance
benefit of the Control scheme drops even more significantly when the number of
bits to be recorded for each target increases from 1 to 2; for perl, the reduction in
execution time dropped from 4.7% to 0.9%.

Pattern History vs. Path History

Table 7.2 and Table 7.4 show that using pattern history results in better perfor-
mance for gcc and using global path history results in better performance for perl.
Using the Indirect Jmp scheme, the execution time for perl was reduced by 12.34%,
as compared to 8.92% for the best pattern history scheme. The branch path history
was able to perform extremely well for the perl benchmark because it is an inter-
preter. The main loop of the interpreter parses the the perl script to be executed.
This parser consists of a set of indirect jumps whose targets are decided by the to-
kens (i.e. components) which make up the current line of the perl script. The perl
script used for our simulations contains a loop that executes for many iterations. As
a result, when the interpreter executes this loop, the interpreter will process the same
sequence of tokens for many iterations. By capturing the path history in this situa-
tion, the target cache is able to accurately predict the targets of the indirect jumps
which process these tokens.
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7.3.2 Tagged Target Caches

This section examines the performance of tagged target caches. While the degree
of associativity was varied, the total size of each target cache simulated was kept
constant at 256 entries. The tagged target caches have half the number of entries as
that of tagless target caches to compensate for the hardware used to store tags.

Indexing Function

Since there can be several targets for each indirect branch and each target may be
reached with a different history, a large number of target cache entries may be needed
to store all the possible combinations. Thus, the indexing scheme into a target cache
must be carefully selected to avoid unnecessary trashing of useful information.

Three different indexing schemes were studied — Address, History Concatenate,
and History Xor. The Address scheme uses the lower address bits for set selection.
The higher address bits and the global branch pattern history are XORED to form the
tag. The History Concatenate scheme uses the lower bits of the history register for
set selection. The higher bits of the history register are concatenated with the address
bits to form the tag. The History Xor scheme XORs the branch address with the
branch history; it uses the lower bits from the result of the XOR for set selection and
the higher bits for tag comparison. Table 7.5 shows the performance of the different
indexing schemes. Global pattern history is used in these experiments. The Address
selection scheme results in a significant number of conflict misses in target caches with
a low degree of set-associativity because all targets of an indirect jump are mapped
to the same set. Since there are several targets for each indirect jump for gee and
perl as shown in Section 7.1, a high degree of set-associativity is required to avoid
trashing of useful information due to conflict misses. The History Concatenate and
History Xor schemes suffer a much smaller number of conflict misses because they

‘ Perl H Gce ‘
Reduction in Exec Time Reduction in Exec Time
Addr History Addr History
set-assoc. Conc Xor set-assoc. Conc Xor
1 0.00% | 8.31% | 7.42% 1 0.00% | 3.51% | 3.56%
2 0.21% | 8.30% | 7.24% 2 0.30% | 3.85% | 3.92%
4 2.76% | 8.71% | 7.76% 4 1.27% | 4.01% | 4.13%
8 6.82% | 9.11% | 7.73% 8 2.54% | 4.19% | 4.24%
16 8.67% | 9.14% | 8.17% 16 3.48% | 4.30% | 4.28%
32 8.67% | 9.14% | 8.20% 32 4.22% | 4.32% | 4.30%
64 9.10% | 9.14% | 8.10% 64 4.16% | 4.38% | 4.31%
128 9.06% | 9.14% | 8.10% 128 4.26% | 4.52% | 4.31%
256 8.10% | 9.14% | 8.10% 256 4.31% | 4.59% | 4.31%

Table 7.5: Performance of Tagged Target Cache using 9 pattern his-
tory bits
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can map the targets of an indirect jump into any set in the target cache, removing the
need for a high degree of associativity in the target cache. In the following sections,
we will use the History Xor scheme for tagged target caches.

Pattern History vs. Path History

Table 7.6 shows the performance of tagged target caches that use branch path
histories. The path history schemes reported in this section record one bit from each
target address into the 9-bit path history register. This design choice resulted in the
best performance for most of the path history schemes. As in the tagless schemes,
using pattern history results in better performance for gcc and using global path
history results in better performance for perl.

‘ Perl ‘
Reduction in Execution Time
set Per-addr Global
assoc branch | control | ind jmp | call/ret

1 7.13% 6.20% | 2.98% | 10.711% | 7.59%
2 8.20% 6.34% | 4.15% | 11.62% | 7.91%
4 9.15% 7.21% | 4.30% | 12.29% | 7.91%
8 9.46% 7.21% | 4.70% | 13.38% | 8.79%
16 9.69% 7.21% | 4.70% | 13.78% | 8.69%
32 9.77% 7.21% | 4.70% | 13.97% | 8.83%
64 9.77% 7.21% | 4.70% | 14.14% | 8.78%
128 9.77% 7.21% | 4.70% | 14.15% | 8.98%
256 9.77% 7.21% | 4.70% | 14.15% | 8.66%

‘ Gece ‘
Reduction in Execution Time
set Per-Addr Global

assoc branch | control | ind jmp | call/ret
1 2.45% 3.28% | 2.88% | 2.15% 2.07%
2 2.712% 3.35% | 3.28% | 2.46% 2.25%
4 2.90% 3.59% | 3.58% | 2.65% 2.42%
8 3.01% 3.73% | 3.55% | 2.76% 2.56%

16 3.05% 3.76% | 3.58% | 2.86% | 2.58%
32 3.11% 3.76% | 3.59% | 2.90% | 2.63%
64 3.12% 3.77% | 3.59% | 2.92% | 2.64%
128 3.14% 3.79% | 3.57% | 2.92% | 2.65%
256 3.14% 3.79% | 3.57% | 2.94% | 2.65%

Table 7.6: Performance of Tagged Target Caches using 9 path history
bits
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Branch History Length

For tagged target caches, the number of branch history bits used is not limited to
the size of the target cache because additional history bits can be stored in the tag
fields. Using more history bits may enable the target cache to better identify each
occurrence of an indirect jump in the instruction stream.

Table 7.7 compares the performance of 256-entry tagged target caches using dif-
ferent numbers of global pattern history bits. For caches with a high degree of set-
associativity, using more history bits results in a significant performance improve-
ment. For example, when using 16 history bits, an 8-way tagged target cache reduces
the execution time of perl and gcc by 10.27% and 4.31% respectively, as compared to
7.73% and 4.28% when using 9 history bits. Greater improvements are seen for caches
with higher set associativity. For a 16-way tagged target cache, using 16 history bits
results in 12.66% and 4.74% reduction in execution time for perl and gee, while using
9 history bits results in 8.17% and 4.28% reduction in execution time.

For target caches with a small degree of set-associativity, using more history bits
degrades performance. Using more history bits enables the target cache to better
identify each occurrence of an indirect jump in the instruction stream; however, more
entries are required to record the different occurrences of each indirect jump. The
additional pressure on the target cache results in a significant number of conflict
misses. The performance loss due to conflict misses outweighs the performance gain
due to better identification of each indirect jump.

| Perl | Gee |
Reduction in Exec Time Reduction in Exec Time

set-assoc. 9 bits 16 bits set-assoc. 9 bits 16 bits
1 7.42% 7.07% 1 3.56% 2.35%

2 7.24% 8.39% 2 3.92% 2.99%

4 7.76% 10.02% 4 4.13% 3.62%

8 7.73% 10.27% 8 4.24% 4.31%

16 8.17% 12.66% 16 4.28% 4.74%

32 8.20% 12.711% 32 4.30% 4.87%

64 8.10% 12.83% 64 4.31% 5.11%
128 8.10% 12.84% 128 4.31% 5.19%
256 8.10% 12.85% 256 4.31% 5.24%

Table 7.7: Tagged Target Cache: 9 vs 16 pattern history bits

7.3.3 Tagless Target Cache vs Tagged Target Cache

A tagged target cache requires tags in its storage structure for tag comparisons

while a tagless target cache does not. Thus, for a given implementation cost, a tagless
target cache can have more entries than a tagged target cache. On the other hand,
interference in the storage structure can degrade the performance of a tagless target
cache.
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Figures 7.11 and 7.12 compare the performance of a 512-entry tagless target cache
to that of several 256-entry target caches, with various degrees of set-associativity.
The tagless target cache outperforms tagged target caches with a small degree of
set-associativity. On the other hand, a tagged target cache with 8 or more entries per
set outperforms the tagless target cache.

15%

Time

)
]

|

|
|

®
]
|
\
]
®
]
I
:
I
®
]
|
I
]
¢

: s

10% S S ¢

—— w/o tags (512-entry)
- - W/ tags (256-entry)

% Reduction in Exec
a
X

0%

1 2 4 8 16 32 64 128 256
Set-associativity
Figure 7.11: Tagged vs. tagless target cache (perl)

10%

&)

£

|_

3

X

L

£ 50 R Lt

5 e

§ ./’/.,,

5

x —— w/o tags (512-entry)

§’ - - W/ tags (256-entry)
0%

1 2 4 8 16 32 64 128 256
Set-associativity
Figure 7.12: Tagged vs. tagless target cache (gcc)

74



7.4 Summary

Current BTB-based branch prediction schemes are not effective in predicting the
targets of indirect jumps. These schemes have a 48% misprediction rate for the indi-
rect jumps in the SPEC95 integer benchmarks. To address this problem, this disser-
tation proposes the target cache, a prediction mechanism that significantly improves
the accuracy of predicting indirect jump targets. The target cache uses concepts
embodied in the two-level branch predictor.

By using branch history to distinguish different dynamic occurrences of indirect
branches, the target cache was able to reduce the total execution time of perl and gcc
by 8.92% and 4.27% respectively.

Like the PHTs of the two-level branch predictors, interference can significantly
degrade the performance of a target cache. To avoid predicting targets of indirect
jumps based on the outcomes of uncorrelated branches, tags are added to the target
cache. However, with the tagged target cache, useful information can be displaced if
different branches are mapped to the same set. Thus, set-associative caches may be
required to avoid mispredictions due to conflict misses.

Our experiments showed that a tagless target cache outperforms a tagged target
cache with a small degree of set-associativity. On the other hand, a tagged target
cache with 8 or more entries per set outperforms a tagless target cache. For example, a
512-entry tagless target cache can reduce the execution time of perl and gce by 8.92%
and 4.27% respectively, as compared to 7.42% and 3.56% for a direct mapped 256-
entry tagged target cache. A 16-way set-associative tagged target cache can reduce
the execution of gce and perl by 12.66% and 4.74% respectively.
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CHAPTER 8

Predicated Execution

This chapter examines the performance benefit of using both speculative and pred-
icated execution. To minimize the effect of each approach’s disadvantages, speculative
execution is used to handle the branches that are accurately predicted by the branch
predictor and predicated execution is used to eliminate the remaining hard-to-predict
branches. Profiling is used to determine which branches are inaccurately predicted by
the branch predictor. We show that for most of the SPECint92 benchmarks, profiling
is an effective means for determining which branches are difficult to predict for the
two-level branch predictor. Furthermore, we show that the addition of predicated
execution can provide a significant performance increase.

8.1 Identifying Hard-to-Predict Branches

Since predicated execution is a big win when handling conditional branches that
are poorly predictable, we examine the performance benefits of using predicated exe-
cution to eliminate the hard-to-predict branches while using speculative execution to
handle the branches that are accurately predicted by the branch predictor.

Previous researchers have used branch taken rates to determine which branches
to eliminate. Although branch taken-rate can effectively identify the hard-to-predict
branches for static branch predictors, branch taken-rate alone are probably not suf-
ficient to identify the hard-to-predict branches for dynamic branch predictors. That
is, dynamic predictors may be able to accurately predict those branches whose taken-
rates are not mostly-taken or mostly-not-taken. Using taken-rate alone, we may
mistakenly classify these branches as hard-to-predict. Figure 8.1 shows a branch with
a dynamic taken-rate of 60%. This branch is taken for the first 6 times and then
not-taken for the next 4 times. Using taken-rate as the metric, this branch will be
classified as hard-to-predict. However, as shown in the lower part of the table, a sim-
ple dynamic predictor like the last time taken predictor can capture the change in this
branch’s behavior and predict this branch with 90% accuracy. Therefore, profiling the
performance of the dynamic branch predictor may better identify the hard-to-predict
branches.

To determine which branches to consider for elimination, each benchmark was pro-
filed with a training data set. The profiler modeled the processor’s branch predictor
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e Static predictors: record branch direction
Branch: [T[T|[T|[T|T|T|N|N[N][N]
Profile: T: 6, N: 4

e Dynamic predictors: record correct branch predictions

Branch: T|T|T|T|T|T|N|N|N|N

Predictions:| T | T|T|T|T|T|T|N|N|N
Profile: C:9,I: 1

C = correct prediction, I = incorrect prediction

Figure 8.1: Taken rate vs. predictor accuracy

and recorded the number of mispredictions for each static branch. Branches whose
misprediction counts exceeded a given threshold were considered hard to predict and
marked for elimination.

The branch predictor simulated by the profiler in our experiments was the
Gshare/PAg predictor [20, 7]. This hybrid branch predictor combines the gshare(13)
and PAs(11,2) predictors.

Compiled simulations as described in Section 3.1.1 are used to report the perfor-
mance of the branch predictor for each static branch in each of the six SPECint92
benchmarks. Table 8.1 lists the input data sets used to profile each of the benchmarks.

Profiling Inputs
Benchmark Input 1 ‘ Input 2 ‘ Input 3
008.espresso || cps bca ti
022.1 9 queens | hanoi® roots’
023.eqntott intl.eqn® | int2.eqn? | fx2fp.eqn®
026.compress || in gee sre! | trace?
072.sc loadal loada2 loada3
085.gcc rttv.i’ stmt.i gee.d

*Tower of Hanoi

’Newton’s method for approximating square roots

¢Abbreviated version of the SPECint reference input set int_pri_3.eqn. It consists of 15 boolean
equations with 39 different variables.

dAbbreviated version of the SPECint reference input set int_pri_3.eqn. It consists of 27 boolean
equations with 49 different variables. The majority of the equations differ from those used in int1.eqn.

°Fixed point to floating point encoder.

fConcatenated gee source files (~1MB).

IMotorola MC88110 instruction trace of compress (~1MB).

hrttv.i is the concatenation regclass.i, toplev.i, tree.i, and varasm.i.

Table 8.1: Input data sets used to profile the SPECint92 benchmarks
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The SPECint92 reference input sets were used whenever possible, but because only
one input set was provided for eqntott, compress, and li, their profiles were based on
inputs that were not from the SPECint92 suite.

For each profile, the branches were listed from worst to best where the branch with
the largest number of mispredictions was considered the worst one. Branches that
appeared in the list before the cumulative number reached 75% of the total number
of mispredictions were considered to be the hard-to-predict branches for that profile.
The profiles show that for all the benchmarks, with the exception of gcc, there were
very few hard-to-predict branches. Tables 8.2 through 8.4 list for each benchmark
the percentage of total mispredictions that were covered by the set of branches that
are profiled as hard-to-predict. Fach table uses a different input file to generate
the profile. With the exception of sc, an average of 73% of the total mispredictions
for each of the benchmarks were covered by the set of branches that were profiled
as hard-to-predict. This result shows that the set of hard-to-predict branches for a
given benchmark is consistent over all the input data sets profiled, indicating that

‘ Benchmark H Input 1 ‘ Input 2 ‘ Input 3 ‘

008.espresso 75.25 70.55 67.28
022.11 75.03 68.32 50.36
023.eqntott 83.26 78.36 85.12
026.compress 76.57 83.29 86.38
072.sc 89.66 55.25 6.43
085.gcc 75.01 76.68 74.54

Table 8.2: Percentage of mispredictions covered by branches specified
as hard-to-predict by the Input 1 data set

‘ Benchmark H Input 1 ‘ Input 2 ‘ Input 3 ‘

008.espresso 35.77 75.05 30.57
022.11 79.52 75.62 59.54
023.eqntott 83.26 78.36 85.12
026.compress 76.57 83.29 86.38
072.sc 53.34 76.34 5.59
085.gcc 71.74 75.02 71.21

Table 8.3: Percentage of mispredictions covered by branches specified
as hard-to-predict by the Input 2 data set
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‘ Benchmark H Input 1 ‘ Input 2 ‘ Input 3

008.espresso 70.46 67.02 75.18
022.11 71.19 74.01 75.20
023.eqntott 83.26 78.36 85.12
026.compress 76.57 83.29 86.38
072.sc 32.94 36.70 76.56
085.gcc 73.89 75.38 75.01

Table 8.4: Percentage of mispredictions covered by branches specified
as hard-to-predict by the Input 3 data set

the majority of the hard-to-predict branches can be detected by profiling. Sc, the
spreadsheet program, did not fare as well because each of the input data sets focused
on a different subset of the spreadsheet commands. Our experiment also yielded an
anomalous result for espresso. The profiles generated from the Input 1 and Input 3
data sets covered the majority of the hard-to-predict branches for the other two data
sets, but the Input 2 profile did not. This is because Input I and Input 3’s profiles had
to include a large number of static branches to reach the 75% misprediction threshold
while Input 2’s profile required a smaller number of static branches. In addition, this
smaller set was subsumed by the larger sets. As a result, Input 2’s profile was unable
to provide good coverage of the other input data sets even though their profiles were
able to provide good coverage of its hard-to-predict branches.

8.2 Predication Model

Our predication model assumes that each predicated instruction has three or four
source operands: one or two source operands used for calculating the value generated
by the instruction, one predicate operand, and one implicit source operand specified
by the destination register [4, 28]. The predicate operand is an ordinary register.
The predicated instruction can interpret its value by its least significant bit or by
the complement of its least significant bit. Although predicate registers are usually
set by compare instructions, they can be set by any instruction. If the predicate
evaluates to true, the predicated instruction executes like a regular instruction, the
destination register is set to the value calculated from the source operands. If the
predicate evaluates to false, the predicated instruction writes the old value of the
destination register (the implicit operand) back into the destination register. This
is done instead of suppressing the execution of the instruction because the machine
simulated uses dynamic register renaming [35, 26]. For register renaming to function
correctly, every issued instruction must eventually produce a value. This requirement
has the drawback that it forces every predicated instruction to be part of a dependency
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chain regardless of the value of its predicate. Figure 8.2 illustrates this drawback
with a modified code fragment from the eqntott benchmark. Although there is no
true dependence between the two predicated move instructions in Figure 8.2, the
second move instruction has a data dependence on the first move instruction due to
the implicit destination operand (r5) '.

/* C code */

if (aa < bb)
res = -1;
else
res = 1;

;; Assembly code with predicated instructions
cmp_lt r4, r2, r3

movi r5, -1, if r4

movi r5, 1, ifnot r4

Figure 8.2: Elimination of an if-then-else branch with predicated in-
structions.

8.3 Experimental Results

Experiments were run to measure the performance benefit of adding speculative
execution for the four SPECint92 benchmarks, eqntott, compress, sc, and gcc. Three
different variations for each benchmark were simulated:

e np — baseline version of the benchmark in which none of the branches were
eliminated.

e sp - software-based predication version in which branches were eliminated by the
GCC compiler through the use of logical and bit-manipulation operations [13].
Table 8.5 shows an example of software-based predication.

e hp — [SA-based predication version in which branches were eliminated by pred-
icated instructions.

Before After
if (a ==2)|cc=(a = 2);
a=0; cc = sign-extend the least significant bit of cc;
a=aé& cc;

Table 8.5: Example of software-based predication

!Sprangle and Patt [33] have proposed a static register tagging scheme that avoids this drawback
by eliminating the need to execute predicated instructions when their predicates are false. Our
simulations, however, do not take advantage of this scheme.
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The branches that were considered for elimination by predicated execution were
chosen based on the profiles of the Input I data set for each benchmark (see Sec-
tion 8.1). Tables 8.6 through 8.9 list up to the ten worst branches in descending
order for each benchmark simulated. The branch which accounts for the largest num-
ber of branch mispredictions is considered to be the worst. A check in the Ap or the
sp column indicates that the branch is removed in the hp or sp version of the program

Line % misprediction
File No. | inputl | input2 | input3 | hp | sp
compress.c | 790 29.06 | 35.50 | 41.37 | /
compress.c | 799 27.31 | 19.16 | 20.07 | /' |
compress.c | 802 20.20 | 28.63 | 24.94 | \/

| total : | 76.57 | 83.29 | 86.38 | |

Table 8.6: Hard-to-predict branches (compress)

Line % misprediction

File No. | inputl | input2 | input3 | hp
pterm_ops.c | 45 58.52 | 52.40 | 59.71 | /
pterm _ops.c | 47 24.74 | 25.96 | 2541 | /

| total : | 83.26 | 78.36 | 85.12 | |

<2

Table 8.7: Hard-to-predict branches (eqntott)

Line % misprediction

File No. | inputl | input2 | input3 | hp | sp
tree.c 408 2.31 2.13 1.84 | /
c-parse.tab.c | 1016 2.02 2.15 1.56
c-parse.tab.c | 3185 1.57 1.62 111 | /
reload.c 1190 1.52 1.25 1.72
c-parse.tab.c | 3185 1.45 1.54 0.99 | /
c-parse.tab.c | 1056 1.41 1.53 113 | /
c-parse.tab.c | 2272 1.29 1.25 1.09 | /
tree.c 522 1.23 1.40 0.82 | /
c-parse.tab.c | 1056 1.15 1.16 0.92 | /
reload.c 1190 1.14 1.02 1.27

| total : | 15.09 | 15.05 | 12.45 | |

Table 8.8: Hard-to-predict branches (gcc)
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Line % misprediction

File No. | inputl | input2 | input3 | hp
interp.c | 264 36.32 0.00 0.85 | v/
interp.c | 1002 | 32.11 | 27.55 518 | /
interp.c | 1001 | 21.22 | 27.70 0.40

| total : | 89.66 | 55.25 | 6.03 | |

sp

Table 8.9: Hard-to-predict branches (sc)

respectively. Since not all branches can be predicated (e.g. loop branches can not be
predicated), one of the hard-to-predict branches in the s¢ benchmark was not elimi-
nated. In addition, because gcc had a large number of hard-to-predict branches and
the branch elimination for each benchmark was done by hand, only a small fraction
of the hard-to-predict branches was eliminated for the gec benchmark. For the sc and
gce benchmarks, the compiler did not eliminate any branches through software pred-
ication. The sp and np versions were identical for those benchmarks. Experimental
runs were done using the Input 1, Input 2, and Input 3 data sets for each benchmark.
Although the Input 1 results were unrealistically optimistic because they were based
on the use of the same data set for both profiling and execution, they were included
to provide a baseline to which the Input 2 and Input 3 results could be compared.
Figures 8.3 through 8.6 show the misprediction rate for each benchmark. The ISA-
predicated versions of the compress and eqntott benchmarks showed large reductions
in misprediction rates across all three input data sets. The relative drops in the
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(compress)
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Figure 8.6: Predicated execution’s effect on the misprediction rate (sc)

misprediction rates for the second and third data sets were consistent with the first
data set, indicating that profiling was locating a significant number of the hard-to-
predict branches. In addition, the misprediction rate for compress’s hp version was
significantly lower than the misprediction rate for its sp version because [SA-based
predication was able to eliminate more of the hard-to-predict branches than software-
based predication. The eqntott benchmark showed little difference between its Ap and
sp versions because software-based predication was able to eliminate all the hard-to-
predict branches eliminated by [SA-based predication.

The ISA-predicated versions of the gcc benchmark showed small reductions in
mispredictions across all three input data sets. Because gcc had a large number of
hard-to-predict branches and the branch elimination for each benchmark was done
by hand, only a small fraction of the hard-to-predict branches were eliminated for the
gce executable used in this study. Only the top ten hard-to-predict branches were
considered for elimination. These branches accounted for 7.8% of the total mispre-
dictions in the profile run. By considering only these branches, an average of 3.5%
of the total mispredictions for the three input sets were eliminated. Assuming these
numbers are representative for the rest of gcc’s hard-to-predict branches, predicated
execution can be projected to eliminate 40% of gcc’s mispredictions.

The ISA-predicated versions of the sc benchmark showed a large reduction in the
misprediction rate for the first input data set, but little reduction in the misprediction
rate for the second and third input sets. Given that the first input data set was used
to profile the benchmark, this result indicates that while predicated execution can be
effective in eliminating the hard-to-predict branches in the sc benchmark, profiling
was not effective in locating them.

We have shown that predicated execution can be effective in removing hard-to-
predict branches. Although removing the hard-to-predict branches eliminates the
branch penalties due to these branches, predicated execution may still degrade the
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performance of a processor by increasing the dependency chains in the program and
wasting issue bandwidth. Thus, we show the performance impact of predicated exe-
cution on the HPS microarchitecture. Figures 8.7 through 8.10 show the total number
of cycles needed to execute each of the benchmarks. This number was broken down
into two components, the total number of cycles spent on the correct path of the
program (i.e. doing the real work) and the total number of cycles that were spent on
incorrect paths of the program, waiting for mispredicted branches to be resolved.

The execution times of the hp version of the compress benchmark was 23% faster
than that of the np version. This speedup was solely due to the reduction in cycles
wasted due to branch misprediction. The Ap version was actually spending additional
time executing along the correct path. This effect was due to the predicated instruc-
tions increasing the latency of the program because of their extra flow dependencies.
Despite its smaller number of mispredictions, the sp version was slower than the np
version by an average of 9.7%. The slowdown was caused by the software predica-
tion. Elimination of an inner-loop branch in the sp version required a large number
of logical operations that greatly increased the critical path within the loop. This
resulted in an increase in execution time that could not be offset by the number of
cycles saved due to the elimination of the branch.

The hp version of the eqntott benchmark outperformed the np version by 20%. For
the hp version, this increase in performance was almost entirely due to the difference
in branch execution penalty. Unlike compress’ sp version, eqntott’s sp version showed
a significant performance increase over the np version (24%) because the sequences of
logical operations required to eliminate the hard-to-predict branches were extremely
short.

[ ] CyclesLost Due to Branch Mispredictions
Il Cyclesfor Work on Correct Path

[ ]+l Tota Execution Time

40M ]

30M ~

Cycles

np sp hp np sp hp np sp hp
Input 1 Input 2 Input 3

Figure 8.7: Predicated execution’s effect on execution time (compress)
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Figure 8.8: Predicated execution’s effect on execution time (eqntott)
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Figure 8.9: Predicated execution’s effect on execution time (gcc)
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Figure 8.10: Predicated execution’s effect on execution time (sc)

The hp predicated version of the gcc benchmark outperformed the np version by
a very small margin, 2.5%. As mentioned above, the difference in performance was
small because this study attempted to eliminate only a small fraction of the hard-to-
predict branches.

The hp predicated versions of the sc benchmark showed small performance in-
creases over the np version for the second and third input sets. The sc benchmark
did not achieve the same level of improvement as the other benchmarks because the
profile generated by its first input set did not locate many of the hard-to-predict
branches for its second and third input sets.

8.4 Summary

This study examined the performance benefit of combining speculative and predi-
cated execution to reduce branch execution penalty. Speculative execution eliminates
the branch execution penalty for branches that are predicted correctly. Predicated
execution can eliminate a branch’s execution penalty regardless of the processor’s
ability to predict it correctly. However, it incurs a small performance overhead and
is not applicable to all branches. To achieve a better combination of these two mech-
anisms, this study used predicated execution to handle the hard-to-predict branches
and speculative execution to handle the remaining branches. Profiling was used to
determine the hard-to-predict branches for each benchmark. The performance benefit
of this approach was measured for a wide-issue dynamically scheduled processor.

The results show that profiling is an effective mechanism for detecting hard-to-
predict branches. For a given benchmark, one input data set was chosen to generate
the profile. The effectiveness of the profile was then measured for all the input data

87



sets for the benchmark. With the exception of sc, the set of branches denoted by
profiling as hard-to-predict accounted for an average of 73% of the total mispredictions
for each of the SPECint92 benchmarks.

By using ISA-based predication to eliminate only the branches from the profile-
generated set of hard-to-predict branches, significant performance improvements were
achieved for compress and eqntott (23% and 20%). Profiling was effective in locating
the hard-to-predict branches for both these benchmarks and predicated execution was
effective in eliminating those branches. Predicated execution provided only a small
performance benefit for gee (2.5%). However this result was considered promising
because the limitations of this study forced us to only consider a very small subset of
gece’s hard-to-predict branches for elimination. Based on this result, we project that
predicated execution can eliminate up to 40% of gee’s mispredictions. The predicated
version for sc showed little improvement in performance. Because profiling was not
effective in finding the hard-to-predict branches for sc, predicated execution was not
able provide much performance benefit.

Software-based predication can also significantly improve performance. The eqn-
tott benchmark showed little difference between its hAp and sp versions because
software-based predication was able to efficiently eliminate all the hard-to-predict
branches eliminated by ISA-based predication. However, software-based prediction
can also degrade performance when not carefully applied. The sp-version of the
compress benchmark was slower than the baseline model because software-based
predication greatly increased the critical path of a program after eliminating a hard-
to-predict branch with a large number of logical operations. This increase in execution
time was not offset by the number of cycles saved due to the elimination of the branch.
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CHAPTER 9

Concluding Remarks and Future Directions

9.1 Conclusions

This dissertation proposes branch classification as a means for improving branch
predictors. The benefit of branch classification was then demonstrated by improving
the accuracy of branch predictions:

e Branch classification allows an individual branch instruction to be associated
with the branch predictor best suited to predict its direction. Using this ap-
proach, a hybrid branch predictor was constructed which exploits both compile-
time and run-time information in choosing a component predictor for each
branch; profile-guided prediction is used for biased branches and the PAs/gshare
hybrid branch predictor for mixed-direction branches. With a fixed implemen-
tation cost of 32K bytes, the new hybrid branch predictor achieved a prediction
accuracy of 96.91% on gcc as compared to 96.47% for the best previously known
predictor, reducing the miss rate by 12.5%.

e Two-level branch predictors have been shown to achieve high prediction accu-
racy. This dissertation introduced a new method for improving the performance
of two-level branch predictors. The performance of two-level branch predictors is
degraded due to a high degree of pattern history table interference. For reducing
the pattern history table interference of two-level branch predictors, branches
are dynamically classified as strongly biased or mixed-directional. Experiments
showed that about half of the branches in the dynamic instruction stream are
strongly biased, and can therefore be handled with a simple predictor.

Inhibiting the update to the pattern history table for the strongly biased
branches can eliminate a considerable amount of destructive PHT interference
with a resulting improvement in the accuracy of the gshare two-level branch
predictor. For six of the SPECint95 benchmarks, we achieved an average 21.6%
reduction of mispredictions for a 2 KByte gshare predictor. The filtering mech-
anism also significantly improved the performance of the gshare/pshare hybrid
branch predictor which uses gshare for one of its component predictors. For a
6KByte gshare/pshare, the number of mispredictions was reduced by 14.7%.
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For the gcec benchmark which executes a large number of static branches, the
filtering mechanism was able to remove a significant amount of the destructive
interference, reducing the number of mispredictions by 30% to 38% for the
gshare predictor. For the gshare/pshare hybrid branch predictor, the number
of mispredictions was reduced by 23% to 29%.

This dissertation showed that the current BTB-based branch prediction schemes
are not effective in predicting the targets of indirect jumps. These schemes
have a 48% misprediction rate for the indirect jumps in the SPEC95 integer
benchmarks. To address this problem, this dissertation proposes the target
cache. The target cache uses the concepts embodied in the two-level branch
predictor. By using branch history to distinguish different dynamic occurrences
of indirect branches, the target cache was able to reduce the total execution
time of perl and gcc by 14% and 5%.

This dissertation also proposed a method for combining speculative and predi-
cated execution to improve performance. Speculative execution eliminates the
branch execution penalty for branches that are predicted correctly. Predicated
execution can eliminate a branch’s execution penalty regardless of the proces-
sor’s ability to predict it correctly. However, it incurs a small performance
overhead and is not applicable to all branches. To achieve a better combina-
tion of these two mechanisms, this study used predicated execution to handle
the hard-to-predict branches and speculative execution to handle the remain-
ing branches. Profiling was used to determine the hard-to-predict branches for
each benchmark. The performance benefit of this approach was measured for
a wide-issue dynamically scheduled processor. By using [SA-based predication
to eliminate only the branches from the profile-generated set of hard-to-predict
branches, additional performance improvements of 23% and 20% were obtained
for compress and eqntott. Profiling was effective in locating the hard-to-predict
branches for both these benchmarks and predicated execution was effective in
eliminating those branches. Predicated execution provided only a small per-
formance benefit for gee (2.5%). However this result was considered promising
because the limitations of this study forced us to consider only a very small
subset of gee’s hard-to-predict branches for elimination. The predicated version
for sc showed little improvement in performance. Because profiling was not ef-
fective in finding the hard-to-predict branches for sc, predicated execution was
not able provide much performance benefit.

9.2 Future Directions

This thesis examined one model of branch classification. Further improvements

in branch handling mechanisms may be achieved by considering other branch classi-
fication models, e.g. partitioning branches based on the original boolean expressions

in the source programs.

By combining multiple single-scheme branch predictors, hybrid branch predictors
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attempt to exploit the different strengths of different predictors. For this attempt
to result in significant increases in prediction accuracy, the hybrid predictor must
combine an appropriate set of single-scheme predictors and use an effective predictor
selection mechanism. In determining the best single-scheme predictor combinations,
this study assumed a static model of branch selection. Because of this assumption,
this study did not fully exploit the capabilities of the hybrid predictor. Further work
needs to be done to determine if these configurations are optimal for dynamic selection
mechanisms as well.

For a given hardware cost, the hybrid predictor configuration specifies the classes
of the single-scheme predictors used and the amount of hardware devoted to each
scheme. This study considered only four types of single-scheme predictors — profile-
guided predictor, 2bC, PAs, and gshare. In addition, for each predictor type, a limited
range of predictor sizes was considered. Considering additional types and sizes of
single-scheme predictors may result in better hybrid branch predictor designs.

Although the 2-level BPS mechanism introduced in this dissertation provides a
performance increase over the 2-bit counter BPS mechanism, more effective BPS
mechanisms are still required for the hybrid branch predictor to achieve its full po-
tential performance. For one 16KB hybrid predictor, for example, the 2-level BPS
achieves a 4.1% misprediction rate whereas an ideal selector would achieve a 2.1% mis-
prediction rate, leaving significant room for improvement. In addition, this study con-
sidered hybrid branch predictors which dynamically combine only two single-scheme
predictors. Hybrid branch predictors that combine more than two component predic-
tors may achieve higher prediction accuracy.

For the target cache study, the input data for the experiments were the SPEC95
integer benchmarks where only a small fraction of instructions are indirect branches;
e.g. 0.5% in gee and 0.6% in perl. It will be interesting to study the benefits of
target caches for object oriented programs where more indirect branches may be
executed. For example, more indirect branches can lead to more interference in the
target cache. The optimal configuration and/or design may be different when more
indirect branches are executed.

We have shown that adding predicated execution to a machine whose ISA supports
speculative execution can lead to significant increases in performance. However, more
research can still be done to further increase the performance benefit provided by
predicated execution. In particular, predicated execution’s performance benefit would
be significantly increased by compiler optimizations that transform the code so that
more of the hard-to-predict branches could be eliminated. A compiler can also be built
to automate branch elimination through predication and to evaluate the performance
benefits of these optimizations as well.
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Figure A.13: Misprediction rate of gshare on SC6 branches
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Figure A.14: Performance of gshare with different branch history length
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Figure A.15: Misprediction rate of PAs on SC1 branches
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Figure A.16: Misprediction rate of PAs on SC2 branches
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Figure A.17: Misprediction rate of PAs on SC3 branches
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Figure A.18: Misprediction rate of PAs on SC4 branches
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Figure A.19: Misprediction rate of PAs on SC5 branches
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Figure A.20: Misprediction rate of PAs on SC6 branches
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Figure A.21: Performance of PAs with different branch history length
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