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Block Enlargement Optimizations for Increasing the Instruction Fetch Rate
in Block-Structured Instruction Set Architectures

by
Eric Hao

Chair: Yale N. Patt

To exploit larger amounts of instruction level parallelism, processors are being built with
wider issue widths and larger numbers of functional units. Instruction fetch rate must also be
increased in order to effectively exploit the performance potential of such processors. Block-
structured ISAs are a new class of instruction set architectures that were designed to address
the performance obstacles faced by processors attempting to exploit high levels of instruc-
tion level parallelism. The major distinguishing feature of a block-structured ISA is that it
defines the architectural atomic unit (i.e. the instruction) to be a group of operations which
is called an atomic block. This dissertation defines an optimization, block enlargement, that
can be applied to a block-structured ISA to increase the instruction fetch rate of a proces-
sor that implements that ISA. A compiler that generates block-structured ISA code and a
simulator that models the execution of that code on a block-structured ISA processor were
constructed to evaluate the performance benefit of block-structured ISAs. This dissertation
shows that for the SPECint95 benchmarks, the block-structured ISA processor executing
enlarged atomic blocks and using simpler microarchitectural mechanisms to support wide-
issue and dynamic scheduling outperforms a conventional ISA processor that also supports
wide-issue and dynamic scheduling by 28% when assuming perfect branch prediction and by
15% when using real branch prediction.



Block Enlargement Optimizations for Increasing the
Instruction Fetch Rate in Block-Structured Instruction
Set Architectures

by

Eric Hao

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1997

Doctoral Committee:
Professor Yale N. Patt, Chair
Professor John T. Coffey
Professor Kevin J. Compton

Professor Edward S. Davidson

Pohua P. Chang, Senior Researcher, Intel Corporation



ACKNOWLEDGEMENTS

I give special thanks to my advisor, Professor Yale Patt, for all that he has taught me
in the past four years. In particular, I will continue to value the intellectual and personal
lessons I have learned from him long after the technical knowledge 1 have learned here has
grown obsolete.

I also thank the members of my dissertation committee, Professor Edward Davidson,
Professor Kevin Compton, Professor John Coffey, and Pohua Chang. I am deeply apprecia-
tive for the time and effort they devoted towards guiding the work of my dissertation. In
addition, I thank Pohua Chang for serving as my Intel mentor and providing valuable input
to the development of the compiler used in this dissertation.

[ am grateful for the opportunity to have worked with five generations of the HPS group:
Steve Melvin; Mike Butler, Tse-Yu Yeh, and Robert Hou; Bruce Worthington and Greg
Ganger; Po-Yung Chang, Carlos Fuentes, Jared Stark, Chris Eberly, Eric Sprangle and Lea-
Hwang Lee; and Sanjay Patel, Mark Evers, Dan Friendly, Paul Racunas, Peter Kim, and
Rob Chappell. Their help was invaluable and their company will be missed. Special thanks
go to Steve Melvin for conceiving the original ideas behind block-structured ISAs, Po-Yung
Chang for helping me write the compiler, Mark Evers for developing the simulator, and Jared
Stark for answering all my questions about hardware.

[ am indebted to our industrial partners: Intel, NCR, Hewlett-Packard, and Motorola,
for their technical and financial support. In particular, [ thank Intel for the gift of the Proton
compiler and the Intel Fellowship.

Finally, I thank the Hwangs for their company and support, without which my years here
at Michigan would not have been nearly as enjoyable.

1



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . .. . e 1

LIST OF TABLES . . . . . . . . e vi

LIST OF FIGURES . . . . . . . . e vii

LIST OF APPENDICES . . . . . . . . . e xi
CHAPTERS

1 Introduction . . . . . .. . 1

1.1  The Basic Block Fetch Bottleneck . . . . . .. .. ... ... ... . 1

1.2 The Block-Structured ISA Solution . . . . .. ... ... ... ... 3

1.3  Thesis Statement . . . . . .. ..o 3

1.4 Contributions . . . . . .. ... 3

1.5 Dissertation Organization . . . . . .. .. ... ... ... .. 4

2 Related Work . . . . . . . 5

2.1 Hardware-based Approaches . . . . . ... ... ... ........ 5

2.1.1  Predicting Multiple Branches Per Cycle . . . . . . .. .. .. 5

2.1.2  The Trace Cache . . . . . . .. .. ... ... .. .. ..... 6

2.2 Software-based Approaches . . . . . . .. ... L0 7

2.2.1 Trace and Superblock Scheduling. . . . .. .. .. ... ... 7

2.2.2  Predicated Execution . . . .. .. ... oL 8

2.2.3 Hyperblock Scheduling . . .. .. ... ... ... ...... 8

2.2.4  VLIW Multi-Way Jumps . . . ... ... ... ... 11

2.2.5  Multiscalar Processors . . . . . . . ... L. 12

3 Simulation Methodology . . . . . . . . . . .. .o 13

3.1 The Compiler . . . .. . . . . 13

3.2 The HPS Processor Model . . . . . . ... ... .. ... ..., 13

3.3 The Simulators. . . . . . . .. . 15

3.4 The SPEC95 Benchmarks . . . . ... ... ... ... ... ... 16

4 Block-Structured ISAs and the Block Enlargement Optimization . . . . . . 18

4.1 The Block Enlargement Optimization . . . .. ... ... ... ... 18

111



4.1.1 Overview . . . . . . e 18

4.1.2  Enlarging the Compiler’s Scope for Optimization . . . . . . . 22

4.1.3 Effect on ICache Performance . . ... ... ... ... ... 23

4.1.4  Simulation Concerns . . . . . . .. . ... L. 23

4.2 Specification of a Block-Structured ISA . . . . . . .. ... ... .. 24

421 The Base ISA . . . . . .. ... 24

4.2.2 Trap Operations . . . . . . .. .. ... 24

4.2.3  Fault Operations . . . . .. .. ... ... . 25

4.2.4 Subroutine Calls . . . . . . .. ... oo L 25

5 Block Enlargement — Measurements and Analysis . . . . ... ... .. .. 27
5.1 The Base Block Enlargement Optimization . . . . . ... ... ... 27

5.2 ICache Performance Issues . . . . . . ... .. .. .. ... ..... 31

5.3 Block Enlargement Obstacles . . . . . ... ... ... .. ... ... 41

5.4 Function Inlining . . . . . .. ..o oL oo 46

5.5 Handling the Max Successor Constraint . . . . ... ... ... ... 49

5.6 Summary . ... o. L e 52

6 Branch Prediction for Block-Structured ISAs . . . . . ... ... ... ... 53
6.1 Effect on Prediction Accuracy . . . . ... .. .. ... 53

6.2 Two-Level Adaptive Branch Prediction . . . . ... ... ... ... 54

6.2.1 Background . . .. ... oL 54

6.2.2 Extensions for Block-Structured ISAs . . . . . .. ... ... 55

6.3 Extensions to the Branch Target Buffer . . . . . ... .. ... ... 58

6.4 A Specific Implementation . . .. ... ... 0oL 58

7 Branch Prediction — Measurements and Analysis. . . . . .. .. ... ... 60
7.1 Base Comparison . . . . . . . . . .. 60

7.2 Branch Predictor Performance . . . . ... .. .. .. ... ..... 60

7.2.1 Branch Prediction Accuracy . . .. .. ... ... ... ... 62

7.2.2  Branch Resolution Time . . . ... .. .. ... ....... 64

7.3 BTB Performance . . . . . .. . ... ... ... 66

7.4 Increasing the Predictor Size . . . . . ... .. ... ... ... ... 67

7.5 Block Enlargement Effects . . . . ... ... 00000 72

7.6 Block-Structured ISA Extensions . . . . .. .. ... ... .. .... 74

7.6.1 Target Count . . . . .. ... .. 74

7.6.2 Target Mapping . . . . . . . . ... 74

7.7 Overall Performance . . . . . . . ... ... 0oL 75

T.8 SUMMATY . . . . . o o e 76

8 Block Enlargement for Scientific Code — Measurements and Analysis . . . 78
8.1 The Base Block Enlargement Optimization . . . . . ... ... ... 78

8.2 ICache Performance . . . . . . . ... ... ... L. 81

8.3 Branch Prediction Performance . . . . . . . .. ... o000 81

8.4 Future Directions . . . .. . . ... Lo 83

v



9 Conclusion

9.1 Contributions . . . . . . . . .
9.2 Future Directions . . . . . . . . . . .o

APPENDICES . .

BIBLIOGRAPHY



Table
3.1
3.2
3.3
5.1
7.1
D.1
D.2
D.3
D.4
D.5
D.6
D.7

LIST OF TABLES

Instruction classes and latencies. . . . . . . . . . ... oL 15
The SPECint95 benchmarks. . . . . . . . ... ... 0oL 16
The SPECtp95 benchmarks. . . . . . . . ... ... 0L 17
Call sites that were selected for function inlining. . . . .. . ... ... ... 47
BTB miss counts. . . . . . . . . . 67
Inlined call sites for the compress benchmark. . . . . . ... ... ... ... 107
Inlined call sites for the go benchmark. . . . . .. ... .. ... ... ... 107
Inlined call sites for the ijpeg benchmark. . . . . . . .. .. .. ... ... .. 108
Inlined call sites for the xlisp benchmark. . . . . .. .. ... ... ... ... 108
Inlined call sites for the m88ksim benchmark. . . . . . ... ... ... ... 109
Inlined call sites for the perl benchmark. . . . ... ... ... ... ... .. 109
Inlined call sites for the vortex benchmark. . . . . . .. .. .. ... ... .. 110

vi



LIST OF FIGURES

Figure
1.1 The performance of a sixteen wide issue processor executing the gcc bench-
mark as the number of blocks fetched per cycle is increased from one to four. 2
1.2 The average number of instructions fetched by a sixteen wide issue processor
executing the gcc benchmark as the number of blocks fetched per cycle is

increased from one to four. . . . . . ..o oL 2
2.1 Using superblock scheduling to combine basic blocks. . . . .. .. ... ... 7
2.2 Using predicated execution to combine basic blocks. . . . . .. .. ... ... 9
2.3  Comparing superblock and hyperblock scheduling. . . . . . . ... ... ... 10
2.4 Building a VLIW tree instruction. . . . . . .. ... ... o L. 11
3.1 Experimental setup for comparing block-structured ISA performance to con-

ventional [SA performance. . . . . . . .. .o 000 14
4.1 Combining atomic blocks into an enlarged atomic block. . . . . ... .. .. 19
4.2 Converting traps into faults for the block enlargement optimization. . . . . . 20
4.3 Comparing the block enlargement optimization to superblock scheduling. . . 21
4.4 Using block enlargement to increase the compiler’s scope for local optimization. 22
4.5 The fall through trap target problem for block-structured ISAs. . . . . . .. 25
4.6 The fall through return address problem for block-structured ISAs. . . . . . 26
5.1 Performance comparison of block-structured ISA executables to conventional

[SA executables. . . . . . .. 28
5.2 Average block sizes for block-structured and conventional ISA executables. . 29

5.3 The number of cycles that instruction fetch was stalled due to a full-window. 30
5.4 The number of cycles that instruction fetch was stalled due to an icache miss. 31
5.5 Execution times for a perfect and a 128 KB icache. . . . . . . ... ... ... 32
5.6 The number of icache miss and total execution cycles for the gcc benchmark. 33
5.7 The number of icache miss and total execution cycles for the go benchmark. 33
5.8 The number of icache miss and total execution cycles for the perl benchmark. 34
5.9 The number of icache miss and total execution cycles for the vortex benchmark. 34
5.10 The number of icache miss and total execution cycles for the compress bench-
mark. ... 35
5.11 The number of icache miss and total execution cycles for the ijpeg benchmark. 35
5.12 The number of icache miss and total execution cycles for the xlisp benchmark. 36

vii



5.13

5.14
5.15

5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
3.30
5.31
5.32
3.33
5.34
6.1

6.2

7.1

7.2

7.3

The number of icache miss and total execution cycles for the m88ksim bench-
mark. ...

Forming overlapped enlarged blocks with the block enlargement optimization.

Restraining the block enlargement optimization to prevent the formation of
overlapped enlarged blocks. . . . . . ... 00000000
Comparing the base, one fault, and no overlap variations of the block enlarge-
ment optimization for the gcc benchmark. . . . . ... ... .00 00,
Comparing the base, one fault, and no overlap variations of the block enlarge-
ment optimization for the go benchmark. . . . . . . .. .. ... ... ...
Comparing the base, one fault, and no overlap variations of the block enlarge-
ment optimization for the perl benchmark. . . . . . .. .. ... ... ....
Comparing the base, one fault, and no overlap variations of the block enlarge-
ment optimization for the vortex benchmark. . . . . . . .. . ... ... ...
The average block sizes for the base, one fault, and no overlap variations of
the block enlargement optimization. . . . . . . . . .. ... . L.
Block termination reasons for the gcc benchmark. . . . . . .. .. ... ...
Block termination reasons for the compress benchmark. . . . . . . ... ...
Block termination reasons for the go benchmark.. . . . . . . ... ... ...
Block termination reasons for the ijpeg benchmark. . . . . . . .. ... ...
Block termination reasons for the Ii benchmark. . . . . . . . ... ... ...
Block termination reasons for the m88ksim benchmark. . . . . . . ... . ..
Block termination reasons for the perl benchmark. . . . . . . ... ... ...
Block termination reasons for the vortex benchmark. . . . . . .. ... ...
Execution times of block-structured ISA executables compiled with and with-
out function inlining. . . . . .. ... oL
Average block sizes of block-structured ISA executables compiled with and
without function inlining. . . . . . . ... . o oo o
Comparing the performance of inlined conventional ISA executables to inlined
block-structured ISA executables. . . . . . .. ... ... 0oL
Enforcing the max successor constraint. . . . . . .. .. ...
Performance of the profile-based block enlargement. . . . . . . .. ... ...
Average block size for profile-based block enlargement. . . . . . . ... ...

Structure of the global variation of the Two-Level Adaptive Branch Predictor.

Generating the predicted target index from a PHT entry in a block-structured
ISA branch predictor that supports eight targets per block. . . . . . .. . ..
Execution times for block-structured ISA executables and conventional ISA
executables when using a 32KB branch predictor. . . . ... ... ... ...
Execution times for block-structured ISA executables and conventional ISA
executables when using a 32KB branch predictor. . . . .. .. .. ... ...
Misprediction rates for a 32KB block-structured ISA predictor and a 32KB
conventional ISA predictor. . . . . . ... oL

Vil

36
37

38
39
39
40
40
41
42
42
43
43
44
44
45
45
48
48
49
50
51
52
54
56
61

61



7.4

7.5
7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

8.1

8.2

8.3

8.4

8.5
8.6

Al

Misprediction rates for block-structured and conventional ISA predictors with
16 bit history registers. . . . . . . . ..o
The effect of BTB size on misprediction rates for the go benchmark. . . . . .
Mispredicted branch resolution times for the block-structured and conven-
tional ISA predictors. . . . . . . . ..
BTB miss rates for the block-structured ISA and the conventional ISA branch
predictors. . . . . . . e
Misprediction rates for the gcec benchmark for block-structured ISA and con-
ventional [SA branch predictors of size 32KB to 256KB. . . . .. .. .. ..
Misprediction rates for the compress benchmark for block-structured ISA and
conventional ISA branch predictors of size 32KB to 256 KB. . . . . . .. ...
Misprediction rates for the go benchmark for block-structured ISA and con-
ventional [SA branch predictors of size 32KB to 256KB. . . . .. .. .. ..
Misprediction rates for the ijpeg benchmark for block-structured ISA and
conventional ISA branch predictors of size 32KB to 256 KB. . . . . . .. ...
Misprediction rates for the xlisp benchmark for block-structured ISA and
conventional ISA branch predictors of size 32KB to 256 KB. . . . . . .. ...
Misprediction rates for the m88ksim benchmark for block-structured ISA and
conventional ISA branch predictors of size 32KB to 256 KB. . . . . . ... ..
Misprediction rates for the perl benchmark for block-structured ISA and con-
ventional [SA branch predictors of size 32KB to 256KB. . . . .. .. .. ..
Misprediction rates for the vortex benchmark for block-structured ISA and
conventional ISA branch predictors of size 32KB to 256KB. . . . . . ... ..
Branch misprediction rates for the three variations of the block enlargement
optimization. . . . . . . . . L
Misprediction rates for branch predictors with and without the target count
extension. . . . . ...
Misprediction rates for branch predictors with and without compiler specified
target mappings. . . . ... Lo Lo
Execution times for block-structured and and conventional ISA executables
when using a 32KB predictor. . . . . ... ..o oo oo
Performance comparison of block-structured ISA executables to conventional
ISA executables for a 16 wide machine with perfect branch prediction. . . . .
Average block sizes for block-structured and conventional ISA executables for
a 16 wide machine. . . . . . .. ...
Performance comparison of block-structured ISA executables to conventional
ISA executables for a 32 wide machine with perfect branch prediction. . . . .
Average block sizes for block-structured and conventional ISA executables for
a 32 wide machine. . . . . . .. .. L
Misprediction rates for block-structured and conventional ISA executables.

Execution times for block-structured ISA executables running on a 32 wide
machine with and without perfect branch prediction. . . . .. .. ... ...
Execution times for the gcc benchmark. . . . . . .. .. .. ..o 000

X

76

79



A.2 Average packet sizes for the gcc benchmark. . . . . ... ... ... .. 90

A.3 Execution times for the compress95 benchmark. . . . . . . . ... ... ... 91
A4 Average packet sizes for the compress95 benchmark. . . . . . ... ... ... 91
A.5 Execution times for the go benchmark. . . . . . ... ... ..o 0000 92
A.6 Average packet sizes for the go benchmark. . . . . . ... ... ... ... 92
A.7 Execution times for the ijpeg benchmark. . . . . .. .. .. ... ... 93
A.8 Average packet sizes for the ijjpeg benchmark. . . . . . ... ... ... ... 93
A.9 Execution times for the xlisp benchmark. . . . . .. ... ... ... ... 94
A.10 Average packet sizes for the xlisp benchmark. . . . .. ... ... ... ... 94
A.11 Execution times for the m88ksim benchmark. . . . . . ... ... ... ... 95
A.12 Average packet sizes for the m88ksim benchmark. . . . . . .. .. ... ... 95
A.13 Execution times for the perl benchmark. . . . . .. .. ... ... ... ... 96
A.14 Average packet sizes for the perl benchmark. . . . . .. ... ... ... 96
A.15 Execution times for the vortex benchmark. . . . . . .. ... ... ... ... 97
A.16 Average packet sizes for the vortex benchmark. . . . . . ... .. ... ... 97



LIST OF APPENDICES

The Basic Block Fetch Bottleneck . . . . . .. ... .. .. ... .......
The SPECint95 Experimental Data Sets . . . . .. .. .. ... ... ....

The SPECtp95 Experimental Data Sets . . . . . .. .. ... ... ... ...

APPENDIX
A
B
C
D Inlined Call Sites

xi



CHAPTER 1

Introduction

To achieve higher levels of performance, processors are being built with wider issue widths
and larger numbers of functional units. In the past ten years, instruction issue width has
grown from one (MIPS R2000, Sun MicroSparc, Motorola 68020), to two (Intel Pentium,
Alpha 21064) to four (MIPS R10000, Sun UltraSparc, Alpha 21164, PowerPC 604). This
increase in issue width will continue as processors attempt to exploit even higher levels
of instruction level parallelism. To effectively exploit the performance potential of such
processors, instruction fetch rate must also increase. Because the average basic block size
for integer programs is approximately five instructions, processors that aim to exploit higher
levels of instruction level parallelism must be able to fetch multiple basic blocks each cycle.

1.1 The Basic Block Fetch Bottleneck

Figure 1.1 illustrates the importance of fetching multiple basic blocks per cycle for a wide
issue machine. It plots the performance of the gcc benchmark from the SPECint95 bench-
mark suite for a sixteen wide issue, dynamically scheduled processor with perfect branch
prediction. The number of blocks that the processor could fetch each cycle was varied from
one to four. Increasing the number of blocks that could be fetched each cycle from one to
two reduced the execution time by 35%. Increasing the number of fetched blocks from one
to three reduced execution time by 45%. The reduction in execution time begins to tail
off at three blocks per cycle because the processor was constrained to fetch at most sixteen
instructions per cycle. Figure 1.2 shows the average number of instructions fetched per cycle
(packet size) as the number of blocks that could be fetched was increased from one to four.
Appendix A contains the corresponding figures for the seven other SPECint95 benchmarks.

Various approaches have been proposed for increasing instruction fetch rate from that of
a single basic block per cycle. Some approaches [54, 10, 11, 45] extend the branch predictor
and icache so that multiple branch predictions can be made each cycle and multiple, non-
consecutive cache lines can be fetched each cycle. However, this extra hardware requires
extra stages in the pipeline which will increase the branch misprediction penalty, decreasing
performance. Other approaches [14, 22| statically predict the direction to be taken by a
program’s branches and then based on those predictions, use the compiler to arrange the
blocks so that the multiple blocks to be fetched are always placed in consecutive memory
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locations. Although they eliminate the need for extra hardware, these approaches must rely
on the branch predictions made by a static branch predictor which is usually significantly
less accurate than those made by a dynamic branch predictor.

1.2 The Block-Structured ISA Solution

To overcome the basic block fetch bottleneck, this dissertation presents a solution that
uses block-structured [SAs. Block-structured ISAs exploit the advantages of both compiler-
based and hardware-based solutions by merging basic blocks together at compile-time and
providing support for dynamic branch prediction. Block-structured ISAs [31, 33, 32, 48, 19]
are a new class of instruction set architectures that were designed to address the performance
obstacles faced by processors attempting to exploit high levels of instruction level parallelism.
The major distinguishing feature of a block-structured ISA is that it defines the architectural
atomic unit (i.e. the instruction) to be a group of operations. These groups of operations
are called atomic blocks. Each operation within the atomic block corresponds roughly to
an instruction in a conventional ISA. This definition of the atomic block enables the block-
structured ISA to simplify many implementation issues for wide-issue processors.

1.3 Thesis Statement

Block-structured ISAs increase the instruction fetch rate of a processor (and as a result,
its performance) by enabling the compiler to combine separate basic blocks into a single,
enlarged atomic block. By increasing the sizes of the blocks, the instruction fetch rate of the
processor is increased without having to fetch multiple blocks each cycle. Furthermore, the
semantics of the block-structured ISA enable the processor to use a dynamic branch predictor
to predict the successor for each atomic block fetched. As a result, block-structured ISAs
increase the instruction fetch rate without relying on extra hardware to fetch non-consecutive
blocks out of the icache or foregoing the use of dynamic branch prediction.

1.4 Contributions

This dissertation makes two key contributions:

1. It demonstrates that a processor implementing a block-structured ISA can achieve a
significantly higher instruction fetch rate than that achieved by a processor imple-
menting a conventional [SA. This increase in instruction fetch rate translates to a
28% performance improvement when perfect branch prediction is assumed and a 15%
performance improvement when real branch prediction is used.

2. It presents the design of a dynamic branch predictor for block-structured ISAs. It
demonstrates how this predictor is able to achieve a prediction accuracy that is com-
parable to that of an aggressive dynamic branch predictor for a conventional ISA.



1.5 Dissertation Organization

This dissertation is organized into eight chapters. Chapter 2 discusses other approaches
to increasing the instruction fetch rate. Chapter 3 describes the simulation methodology
used throughout this dissertation. Chapter 4 gives an overview of block-structured ISAs, ex-
plaining how the block enlargement optimization works and how it increases the instruction
fetch rate. Chapter 4 also defines the specific block-structured ISA studied in this disserta-
tion. Chapter 5 evaluates the performance benefit of the block enlargement optimization,
focusing on its ability to increase the average block size. It presents experimental results
comparing the performance of the block-structured ISA to that of a conventional ISA. Chap-
ter 6 describes the implementation of a dynamic branch predictor for block-structured ISAs.
Chapter 7 evaluates the performance of this branch predictor as compared to an aggressive
branch predictor for a conventional ISA. Chapter 7 also examines the block enlargement
optimization’s impact on branch prediction accuracy. Chapter 8 evaluates the performance
benefit of the block enlargement optimization for scientific code. Chapter 9 presents con-
cluding remarks and directions for future work.



CHAPTER 2
Related Work

The majority of the approaches previously proposed for increasing the instruction fetch
rate can be divided into two categories, hardware-based and compiler-based. The hardware-
based schemes extend the branch predictor and icache so that multiple branch predictions
can be made each cycle and multiple non-consecutive cache lines can be fetched each cycle.
They include the branch address cache [54], the collapsing buffer [10], the subgraph-level
predictor [11], the multiple-block ahead branch predictor [45], and the trace cache [35, 44, 39].
The compiler-based schemes reorganize the program to increase the amount of work that
can be fetched with a single icache access, eliminating the need for extra hardware. These
schemes include trace and superblock scheduling [14, 4, 22], predicated execution [20, 42],
hyperblock scheduling [29], the VLIW multi-way jump mechanism [13, 26, 12, 36], and
multiscalar processors [15, 47].

2.1 Hardware-based Approaches

2.1.1 Predicting Multiple Branches Per Cycle

The branch address cache [54], the collapsing buffer [10], the subgraph-level predictor [11],
and the multiple-block ahead branch predictor [45] are hardware schemes that propose dif-
ferent ways to extend the dynamic branch predictor so that it can make multiple branch
predictions each cycle. Because some of the branches may be predicted to be taken, these
schemes all require the ability to fetch multiple non-consecutive lines from the icache each
cycle. They all propose to meet this requirement by interleaving the icache. This general
approach has three disadvantages. First, bank conflicts will arise in the icache when fetching
multiple lines from the same bank. To handle this conflict, the fetch for all but one of the
conflicting lines must be delayed. This first disadvantage can be minimized if the icache is
interleaved with a large enough number of banks. Second, because it is fetching multiple
non-consecutive blocks from the icache, the processor must determine which instructions
from the fetched cache lines correspond to the desired basic blocks and reorder the instruc-
tions so that they correspond to the order of those basic blocks. The processor will require at
least one additional stage in the pipeline in order to accomplish these tasks. This additional
stage will increase the branch misprediction penalty, decreasing overall performance. Third,



these approaches do not provide solutions to the problem of increased hardware complex-
ity required to support wide issue widths. In particular, the hardware required to perform
dependency checking, register file access, and architectural state maintenance increases as
the issue width increases. If this problem is not addressed, then this increase in hardware
complexity will result in increased cycle times or additional pipeline stages for an aggressive
wide-issue machine, which in turn, will decrease performance.

2.1.2 The Trace Cache

The trace cache [35, 44, 39] is a hardware-based scheme that does not require fetching
non-consecutive blocks from the icache. Its fetch unit consists of three parts: a core fetch
unit, a fill unit, and a trace cache. The core fetch unit fetches one basic block per cycle from
the icache. The fill unit records sequences of basic blocks fetched by the core fetch unit,
combining each sequence into a trace. These traces are then stored in the trace cache. If the
branch predictor indicates that the sequence of basic blocks to be fetched matches a trace
stored in the trace cache, then the processor is able to fetch multiple blocks that cycle by
fetching the specified trace from the trace cache. Because the blocks have been combined
into a contiguous trace, the processor need only fetch a single trace cache line to get all the
blocks. In addition, because the blocks’ instructions are stored in decoded form with their
dependencies specified, the instructions fetched from the trace cache can bypass the pipeline
stages that generate this information for instructions fetched from the icache. If no matching
trace is found, the processor is able to fetch only one basic block that cycle via the core fetch
unit. As long as the processor is fetching its instructions from the trace cache, the trace
cache is an effective means for fetching multiple basic blocks each cycle without incurring
the costs associated with the other hardware-based approaches.

The trace cache idea was originally proposed by Melvin, Shebanow, and Patt [35]. They
proposed using the trace cache (or decoded instruction cache) to ease the instruction decoding
bottleneck for HPS implementations of complex instruction sets such as the VAX. The
core fetch unit fetched one instruction per cycle. The fill unit recorded the sequences of
microoperations that were generated for each instruction. Each decoded instruction cache
entry held the microoperations that corresponded to the set of instructions within a given
basic block. Thus, a hit in the decoded instruction cache would result in the fetch and issue
of an entire basic block’s worth of instructions. Later, Melvin and Patt [34] suggested using
the fill unit to combine instructions from different basic blocks. Rotenberg et al. [44] and
Patel et al. [39] independently proposed implementations of the trace cache that combined
basic blocks as suggested by Melvin and Patt. These two trace cache implementations
showed significant performance improvements over previously proposed fetch mechanisms
including the branch address cache and the collapsing buffer. The implementation proposed
by Rotenberg et al. used the trace cache as the secondary fetch mechanism. The majority of
the hardware was devoted to the icache. The implementation proposed by Patel et al. [39]
used the trace cache as the primary fetch mechanism. By devoting more hardware to the
trace cache, they showed that further performance improvements could be achieved. In
addition, they showed that the trace cache works well even when compared to a single block
fetch mechanism that uses an aggressive branch predictor.



2.2 Software-based Approaches

2.2.1 Trace and Superblock Scheduling

Trace scheduling [14] and superblock scheduling [22, 4, 9] are compiler optimizations that
enlarge the scope in which the compiler can schedule instructions. They use static branch
prediction to determine the frequently executed program paths and place the basic blocks
along these paths into consecutive locations, forming a superblock. The instructions within
the superblock can then by optimized as if they were in a single basic block. Although the
focus of superblock scheduling is to enlarge the scope in which the compiler can schedule
instructions, it can also be used to increase the instruction fetch rate. Each superblock can be
fetched in a single cycle because the basic blocks which form the superblock are contiguous.

Figure 2.1 shows an application of the superblock optimization. The control flow graph
on the left consists of basic blocks A-E. The control flow graph on the right is the result of
applying superblock scheduling. The static branch predictor has predicted that block C is
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Figure 2.1: Using superblock scheduling to combine basic blocks.

the most likely successor to block B so blocks B and C are combined to form a superblock.
As a result, blocks B and C can be fetched in the same cycle. The disadvantage of this
approach is that by optimizing blocks B and C as a single unit, block B cannot be fetched
with any other block in a single cycle. Even if the processor knew that block D was the
correct control flow successor to block B, the processor will still need two cycles to fetch
blocks B and D. In effect, to fetch multiple basic blocks in a cycle, the processor must
follow the static branch predictions used to form the superblocks. Because dynamic branch
prediction is significantly more accurate than static branch prediction [53], using superblock
scheduling to increase the instruction fetch rate will not be as effective as an approach that
uses dynamic branch prediction to select the set of blocks to be fetched each cycle.



2.2.2 Predicated Execution

A processor that supports predicated execution [2, 20, 43, 42] associates a predicate
register with each instruction issued. The execution of an instruction proceeds normally if the
predicate register resolves to a true value. The execution is suppressed if that predicate value
resolves to a false value. Using predicated instructions, a compiler can eliminate branches
in a program by converting the program control dependencies into data dependencies. By
eliminating branches, predicated execution can improve performance because the processor
will not have to suffer the branch execution penalty associated with those branches. In
addition, predicated execution can increase the instruction fetch rate. Once a basic block’s
branch has been eliminated, it can be combined with its control flow successors to form one
larger block. As a result, the processor can now fetch the original basic block along with
its control flow successors in a single cycle. Figure 2.2 gives an example of this process.
The branch at the end of block A is eliminated via predicated execution, resulting in the
combination of blocks A, B, C, and D into a single block.

In contrast to its benefits, predicated execution has two disadvantages. First, it wastes
fetch and issue bandwidth fetching and issuing instructions that are suppressed because
their predicates evaluate to false. Second, by converting an instruction’s control dependency
into a data dependency, the program’s critical paths may be lengthened. The processor
must now wait for the new data dependency to be resolved instead of speculatively resolving
the control dependency at fetch time. While predicated execution by itself may not be an
effective mechanism for increasing fetch rate, it can provide a significant performance benefit
when used in conjunction with speculative execution [28, 7] and other schemes for increasing
fetch rate.

2.2.3 Hyperblock Scheduling

Hyperblock scheduling [29, 28] is an extension of superblock scheduling that incorporates
predicated execution. As discussed earlier, the processor must always follow the static branch
predictions used to form the superblock. If the branches inside a superblock are not highly
biased, then using a static branch prediction will result in a low prediction accuracy for that
branch. To avoid these mispredictions, hyperblock scheduling will use predicated execution
to eliminate such branches. The highly biased branches are not eliminated because they
can be accurately predicted by a static branch predictor. Figure 2.3 illustrates the difference
between hyperblock and superblock scheduling. The control flow graph at the top shows basic
blocks A—G where the branch in block B is slightly biased in the b1 direction and the branch
in block D is highly biased in the d1 direction. The control flow graph on the bottom left is
the result of applying superblock scheduling to the original control flow graph. Because the
branch in block B is not highly biased, it will be frequently mispredicted by the static branch
predictor. As a result, the processor will frequently fetch and issue blocks BCE and DE.
The control flow graph on the bottom right is the result of applying hyperblock scheduling
to the original control flow graph. Because the two frequently executed paths, BCE and
BDE, are both included in the hyperblock BCDE, the processor will frequently fetch and
issue only block BCDE. Block F will rarely have to be fetched after block BCDE because
the branch in block D is highly biased in the d1 direction. By using predicated execution,
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Figure 2.2: Using predicated execution to combine basic blocks.
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hyperblock scheduling is able to avoid many of the mispredictions incurred by superblock
scheduling. However, because hyperblock scheduling uses predicated execution, it suffers
the disadvantages of wasted fetch and issue bandwidth and increased critical path lengths
that are associated with predicated execution. Hyperblock scheduling must be carefully
controlled to ensure that this tradeoff results in a performance improvement.

2.2.4 VLIW Multi-Way Jumps

The VLIW multi-way jump mechanism [13, 26, 12, 36] combines multiple branches from
multiple paths in the control flow graph into a single branch. Using this mechanism along
with predicated execution, basic blocks which form a rooted subgraph in the control flow
graph can be combined into a single VLIW instruction, which is called a tree instruction.
The branches for these basic blocks are combined into a single multi-way branch operation.
The processor’s condition code registers will specify which path through the rooted subgraph
is to be executed (predicated execution is used to suppress the execution of operations from
basic blocks not on this path) and which target of the multi-way branch operation is to
be the next instruction. Figure 2.4 gives an example of how a tree instruction is formed.
Blocks B, C, and D are combined into a single tree instruction. The figure assumes that
all the instructions within B, C, and D are independent. When block BCD is issued into
the processor, the direction taken by the branches in the original blocks B, C, and D will
already be known. If block B’s branch has taken the bl direction and block C’s branch has
taken the cl direction, then the execution of block D in BCD will be suppressed and the
successor block that corresponds to block C’s ¢l direction will be the next block fetched. In
this example, the direction taken by block D’s branch is irrelevant because block D is not
on the path of execution.

Because a single tree instruction can include operations from many basic blocks, this
approach gives VLIW processors the means to fetch the equivalent work of multiple basic
blocks each cycle. However, because the operations within a VLIW instruction must be
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independent, it is critical that the compiler be able to find enough independent instructions
to fill each VLIW instruction and be able to schedule the operations which evaluate the
condition codes for the multi-way jump early enough so that the condition codes are available
when the multi-way jump is issued. The compiler may have to delay the scheduling of certain
operations in order to meet these requirements, lowering the instruction fetch rate of the
Processor.

2.2.5 Multiscalar Processors

The multiscalar processing paradigm [15, 47] applies multiprocessor concepts to the de-
sign of microprocessors. A multiscalar processor consists of a set of processing elements
connected in a ring. The multiscalar processor’s compiler is responsible for dividing the
program up into units of work, called tasks. These tasks are dynamically assigned to the
processing elements for execution. The connecting logic among the processing elements de-
tects and enforces the data dependencies among the tasks. This logic is the multiscalar
counterpart for the cache coherency logic for shared memory multiprocessors except that it
enforces not only dependencies among memory references from different processing elements,
but dependencies among register references from different processing elements as well. Values
are communicated among the processing elements via the ring network.

Multiscalar processors eliminate the problem of fetching multiple cache lines from the
icache each cycle by associating a separate level one icache with each processing element.
Each cycle, each processing element accesses its own level one icache for a single basic block.
Aslong as each icache achieves a sufficient hit rate, the multiscalar processor as a whole is able
to fetch the equivalent work of multiple basic blocks each cycle. However, the multiscalar
model raises new performance issues not found in traditional wide-issue processors. To
achieve high performance, it is important that the multiscalar compiler create tasks so that
the workload is evenly balanced among the processing elements and that the communication
among the tasks does not exceed the ring bandwidth
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CHAPTER 3

Simulation Methodology

To evaluate the performance advantages of block-structured ISAs, the performance of
an HPS implementation of a block-structured ISA is compared to an identically configured
HPS implementation of a conventional (or base) ISA. The conventional ISA considered is
the same load/store ISA that formed the basis of the block-structured ISA (see chapter 4.2).
This ensures that the block-structured ISA has no architectural advantages over the conven-
tional ISA with the exception of those due to block-structuring. Figure 3.1 gives an overview
of how this comparison is performed. A compiler generates the block-structured and con-
ventional [SA executables. These executables are passed to the simulators which model the
corresponding HPS implementations and generate the performance statistics. This chapter
details each component of the experimental setup.

3.1 The Compiler

[ implemented a compiler that was targeted for both the block-structured and the con-
ventional [SAs. This compiler is based on the Intel Reference C Compiler [24] with the back
end appropriately retargeted. The Intel Reference C Compiler generates an intermediate
representation of the program being compiled and applies the standard set of optimizations
to that representation. The compiler back end takes this representation and applies a set
of target-specific optimizations and allocates registers. By using the same core compiler
for both ISAs, any unfair compiler advantages one ISA may have had over the other was
eliminated.

3.2 The HPS Processor Model

The HPS paradigm [40, 41] is used to model the processor implementation in this study
because it encompasses a set of microarchitectural techniques that are designed to achieve
high performance for single instruction stream execution. These techniques include aggres-
sive branch prediction, wide instruction issue, out-of-order execution, and precise exception
handling and have been adopted by all currently introduced microprocessors [16, 17, 18].

The HPS implementations modeled issue sixteen instructions per cycle. This issue width
was chosen for two reasons. First, because the current generation of microprocessors are
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Figure 3.1: Experimental setup for comparing block-structured ISA perfor-
mance to conventional ISA performance.

already issuing four instructions per cycle, sixteen wide issue is the minimum issue width
that is aggressive enough to represent a design point far enough in the future to be considered
research. Second, the block enlargement optimizations are designed to improve performance
for wide-issue machines. They have little benefit for narrow issue widths. Using a generalized
version of the Tomasulo algorithm [51], the instructions’ registers are dynamically renamed
in parallel and sent to an appropriate node table entry to await execution. An instruction
is executed as soon as its source operands are ready and a functional unit is free. The
HPS implementations modeled have 16 functional units with each functional unit capable of
executing instructions from any instruction class. Table 3.1 lists the simulated latencies for
each instruction class. After execution, an instruction’s result is forwarded to the register
file and to the other instructions awaiting execution in the node tables. An instruction is
retired when its associated checkpoint [23] is retired. This occurs after all the instructions
in the checkpoint have successfully executed and all previously issued checkpoints have been
retired. The HPS implementations modeled can hold up to 32 checkpoints for a total of 256
instructions. The processor will stop fetching and issuing instructions if all 32 checkpoints are
in use. This break in instruction fetch and issue is called a full-window stall. A full-window
stall will continue until a checkpoint is retired (i.e. freed up for use). Unless otherwise noted,
the level one icache size modeled was 128KB !. For the SPECint95 experiments, the level
one dcache modeled was 16 KB. The data requirements for the SPECint95 benchmarks are
low enough so that using a small dcache has little effect on performance. For the SPEC{p95
experiments, the level one dcache modeled was 128 KB to handle the larger data requirements
for the SPECfp benchmarks. The level two caches had six cycle access times and were
modeled as perfect caches.

The same, aggressive HPS configuration was used for both the block-structured and con-
ventional [SA processors. While, this guaranteed that neither ISA had a microarchitectural

1A 128KB icache with a single cycle access time may appear aggressive compared to currently available
microprocessor designs. However, advances in process technology will make such icaches possible in the
future. Digital has already announced the 21264 Alpha processor which has a 64KB, two-way set associative
icache with a single cycle access time [18].
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Class Latency | Description

Integer 1 INT add, sub and logic OPs

FP Add 3 FP add, sub, and convert

FP/INT Mul 3 FP mul and INT mul

FP/INT Div 8 FP div and INT div

Load 2 Memory loads

Store - Memory stores

Bit Field 1 Shift and bit testing

Branch 1 Trap, fault, and other control instructions

Table 3.1: Instruction classes and latencies.

advantage over the other, this constraint ignored the hardware advantages of block-structured
[SAs. As mentioned in chapter 4, block-structured ISAs simplify the hardware required to
implement wide-issue processors. If this advantage were to be exploited, then for a fixed
hardware cost, the block-structured ISA processor would have either a faster cycle time or
a wider issue width than that of the conventional ISA processor.

3.3 The Simulators

Two trace-driven simulators were implemented to measure the performance of the con-
ventional and block-structured ISAs, BaseSim and BlockSim. Both simulators were divided
into two parts, a front end and a back end. The front ends were responsible for actually
executing the specified executable and generating an instruction trace that corresponded
to the correct execution of that executable. The back ends were responsible for modeling
the microarchitectural components of the processor in order to determine the performance
achieved by the specified HPS implementation while executing the instruction trace. The
microarchitectural components modeled included the branch predictor, the node tables, the
functional units, the distribution buses, the register files and renaming logic, and the caches.

The instruction trace generated by BaseSim’s front end included only instructions that
were on the correct path of execution. By excluding instructions from incorrect speculative
(or wrong) paths, BaseSim was unable to model the effects of issuing such instructions
into the machine [3, 25]. However, the execution penalty associated with the mispredicted
branch that created the incorrect speculative path is still correctly modeled. When a branch
misprediction occurs in a real machine, the processor continues to fetch instructions from
the wrong path until the mispredicted branch is resolved. At that time, the architectural
state of the processor is restored to its state at the point of the mispredicted branch, the
instructions issued from the wrong path are removed from the node tables, and the processor
begins fetching instructions from the correct path. When a branch misprediction occurs in
the simulator, the simulator simply stalls the instruction fetch mechanism until the branch is
resolved. By stalling, the simulator mimics the effect of not fetching and issuing useful work
during this time without having to actually fetch and issue instructions from the incorrect
path. After the mispredicted branch is resolved, the simulator restarts instruction fetch from
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the correct path, which is the next instruction in the instruction trace.

To accurately model branch misprediction penalties for a processor implementing a block-
structured ISA, the simulator must take into account the effect of wrong path instructions for
certain branch mispredictions (see chapter 4.1.4 for more details). As a result, the instruction
trace generated by BlockSim’s front end must include the wrong path instructions that
occur after these specific branch mispredictions. To accomplish this, BlockSim’s back end
communicates its branch predictions to the front end so that the front end knows when a
branch misprediction will occur and includes the appropriate instructions in the instruction
trace.

3.4 The SPEC95 Benchmarks

The SPEC benchmarks [49] were used to evaluate the performance of the block-structured
and conventional ISAs. Tables 3.2 lists the eight SPECint95 used along with their test and
training data sets. The test data sets were used to generate the performance numbers re-
ported. The training sets were used to generate the benchmark profiles for the experiments
that required profiling. The test and training data sets were all either the reference data
sets provided with the SPEC benchmarks or modified versions of those data sets. Table 3.3
lists the ten SPEC{p95 benchmarks used along with their test data sets. The table does not
include a listing of training data sets because profiling was not used for the SPEC{p bench-
marks. Modified data sets were used for both the SPECint95 and SPEC{p95 benchmarks
whenever the running time for the reference data set was too long. Appendices B and C give
descriptions of the modified data sets used.

Benchmark | Description Test Set Training Set
gee GNU C compiler jump.i stmt.i
compress Data compression program 30KB.in* 300B.in*

go Go-playing program 2stone9.in null.in

ijpeg Image compression program specmun.ppm  vigo.ppm

li Xlisp interpreter boyer.lsp queens.lsp
m88ksim Simulator for 88100 processor dcrand dhry

perl Perl interpreter scrabbl.pl primes.pl
vortex Object-oriented database test.in* profile.in*

Table 3.2: The SPECint95 benchmarks and their test and training data
sets. * indicates the input set is an abbreviated version of the
SPECint95 reference input set.
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Benchmark | Description Test Set

tomcatv Mesh generation tomcatv.in
swim Shallow water equation solver swim.in
suZ2cor Monte Carlo method for particle  su2cor.in
mass computation
hydro2d Navier Stokes equation solver hydro2d.in
mgrid 3D multigrid solver mgrid.in
applu Partial differential equation solver applu.in
turb3d Turbulence modeling turb3d.in
apsi Weather modeling apsi.in
fpppp Quantum chemistry problem fpppp.in
waved Maxwell’s equations solver waved.in

Table 3.3: The SPECfp95 benchmarks and their test data sets. All the test
data sets used were abbreviated versions of the SPECfp95 refer-
ence input sets.
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CHAPTER 4

Block-Structured ISAs and the Block Enlargement
Optimization

Block-structured ISAs [31, 33, 32, 48] were designed to help solve performance obstacles
faced by wide issue processors. Their major distinguishing feature is that the architectural
atomic unit is defined to be a group of operations, where an operation typically corresponds
to an instruction in a load/store architecture. These groups, known as atomic blocks, are
specified by the compiler. When an atomic block is issued into the machine, either every
operation in the block is executed or none of the operations in the block are executed. The
semantics of the atomic block enable the block-structured ISA to explicitly represent the
dependencies among the operations within a block and to list the operations within the
block in any order without affecting the semantics of the block. These features simplify
the implementation of a wide issue processor by simplifying the logic required for recording
architectural state, checking dependencies, accessing the register file, and routing operations
to the appropriate reservation stations. By reducing hardware complexity, wide issue im-
plementations of a block-structured ISA will require fewer hardware resources than that of
a wide issue implementation of a conventional ISA, resulting in a faster cycle time or a
shallower pipeline. While these benefits are critical to building wide issue processors, this
dissertation focuses on the ability of block-structured ISAs to increase the instruction fetch
rate. This chapter will describe the block enlargement optimization, a compiler optimization
used by block-structured ISAs to increase the instruction fetch rate and the details of the
specific block-structured ISA that will be studied throughout this dissertation.

4.1 The Block Enlargement Optimization

4.1.1 Overview

The block enlargement optimization increases the size of an atomic block by combining
the block with its control flow successors. Figure 4.1 illustrates how block enlargement works.
The control flow graph on the left consists of the atomic blocks A-E, each one ending with
a branch that specifies its two successor blocks. These branches are called trap operations
to differentiate them from fault operations which will be described below. These blocks are
analogous to the basic blocks in a control flow graph for a conventional ISA. The control
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Figure 4.1: Combining atomic blocks into an enlarged atomic block.

flow graph on the right shows the result of combining atomic block B with its control flow
successors C and D to form the enlarged atomic blocks BC and BD. Both blocks BC and
BD are now control flow successors to block A.

To support the block enlargement optimization, a new class of branch operations, the fault
operation, is included in block-structured ISAs. The fault operation takes a condition and a
target. If the condition evaluates to false, the fault operation has no effect. If the condition
evaluates to true, the instructions from the atomic block to which it belongs are discarded
and the instruction stream is redirected to its target. When two blocks are combined, the
trap operation at the end of the first block is converted into a fault operation. If a block is
combined with its fall-through successor, then the condition of the resulting fault operation
is the same as the original trap operation’s condition. If a block is combined with the target
of its trap operation, then the condition of the resulting fault operation is the complement
of the original trap operation’s condition. The target of the fault operation is the enlarged
block that results from combining the first block with its other control flow successor. In
figure 4.1, when blocks B and C are combined, the trap at the end of B is converted into
a fault in block BC. The fault’s condition is true whenever block D is suppose to follow
block B in the dynamic instruction stream and the fault’s target is BD. Block BD contains a
corresponding fault operation with a complementary condition and a target that points back
to BC. Figure 4.2 shows this transformation using sample code sequences for blocks A—D.

Enlarging atomic blocks changes the way a processor sequences through a control flow
graph because the control flow edges traversed are no longer solely determined by the oper-
ations that precede it. Enlarging an atomic block causes multiple branches to be placed in
a single block. Referring back to figure 4.2, enlarged blocks BC and BD both contain two
branches, the fault operation which corresponds to the original trap at the end of B and
the trap operation at the end of C or D. This results in block A having three control flow
successors, blocks BC, BD, and E. Block A’s correct control flow successor is specified by
not only the direction taken by block A’s trap operation, but by the direction taken by block
B’s branch (i.e. the fault operations in BC and BD). Because the operations that evaluate
block B’s condition may be in B itself, the correct successor to A cannot be determined until
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Figure 4.2: Converting traps into faults for the block enlargement optimiza-
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Figure 4.3: Comparing the block enlargement optimization to superblock
scheduling.

after BC or BD has been issued. To arrive at the correct successor, a successor candidate
must be chosen that is a possible successor given the current trap condition. If block A’s
trap indicates that control flow edge al is to be taken, blocks BC or BD can be chosen as
the successor candidate. In effect, block A’s trap serves only to partition the control flow
successors into two subsets, the taken subset and the not taken subset. It does not specify
exactly which control flow successor is the correct one. The processor must then depend on
the faults within the chosen successor block to redirect control to the correct successor block
as previously described.

Figure 4.3 contrasts the difference between the block enlargement optimization and su-
perblock scheduling. Starting with the original control flow graph found on the left sides of
figures 2.1 and 4.1, the control flow graph on the left side of figure 4.3 is the result of apply-
ing the block enlargement optimization. The control flow graph on the right is the result of
applying superblock scheduling. There are two key differences. First, the block enlargement
optimization gives the processor the opportunity to fetch either blocks B and C together in
a single cycle or blocks B and D together in a single cycle. Superblock scheduling allows
only blocks B and C to be fetched together. For the block enlargement case, the dynamic
branch predictor can be used to predict every branch in the program. For the superblock
case, the dynamic branch predictor can be used to predict only the branches that end su-
perblocks. Predictions for branches that reside inside a superblock are constrained to be
the static branch predictions used to form the superblocks. Because dynamic branch predic-
tors usually achieve significantly higher prediction accuracies than static branch predictors,
this extra degree of freedom provides a performance advantage for the block enlargement
optimization over superblock scheduling. Second, mispredicting a branch inside an enlarged
block (i.e. a fault operation) incurs an extra penalty not associated with ordinary branch
mispredictions, because it causes all the work in that block to be discarded. Some of this
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Figure 4.4: Using block enlargement to increase the compiler’s scope for
local optimization.

work may have to be issued and executed again after the correct block is fetched. For ex-
ample, in figure 4.3, if block BC is fetched and issued and its fault operation fires, then the
entire block will be discarded and block B will have to be fetched and issued again in the
form of block BD. For a misprediction of a branch inside a superblock, the entire superblock
is not discarded, just the work that follows the mispredicted branch. Referring again to
figure 4.3, if block BC is fetched and issued and the branch inside the block redirects the
control flow to block D, block C is suppressed but block B remains in the machine.

Using the block enlargement optimization, block-structured ISAs are able to increase
the instruction fetch rate without suffering the disadvantages associated with traditional
approaches — the need to fetch multiple non-consecutive cache lines each cycle and the
constraint of having to use static branch prediction instead of dynamic branch prediction for
certain select branches in the program.

4.1.2 Enlarging the Compiler’s Scope for Optimization

In addition to increasing the instruction rate, the block enlargement optimization also
increases the compiler’s scope for local optimization in the same manner as is done in trace
scheduling [14] and superblock scheduling [22]. Compiler optimizations can be divided into
two classes: local and global [1]. Local optimizations are optimizations that are performed
upon instructions that reside within a single block. They are narrow in focus. Global opti-
mizations are optimizations that are performed across multiple basic blocks. By considering
a wider scope, global optimizations can find opportunities for improving the code beyond
what is done by local optimizations. However, when applying a global optimization across a
set of basic blocks, the compiler must ensure that the optimization does not cause incorrect
results or increase the execution time for any path the program may take through those
basic blocks. Consider the control flow graph on the left side of figure 4.4. If the program’s
path of execution is assumed to proceed from block A to block C, then the instruction
mul r4, r1, r5 in block C can be optimized to mov r4, 0. However, if the program’s path
of execution was to proceed from block B to block C, this optimization would cause incorrect
results.

When a set of basic blocks are combined together into a single enlarged block via the
block enlargement optimization, that set of basic blocks becomes an atomic unit and can
be treated as a single basic block. Thus the compiler can apply optimizations to that set
of blocks as if the optimizations were local optimizations. The compiler no longer has to
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worry about the optimizations’ effects on the different program paths through the set of basic
blocks. Consider the control flow graph on the right side of figure 4.4, the result of applying
the block enlargement optimization to the control flow graph on the left. The mul r4, r1, r5
from block C has been optimized to mov r4, 0 for block AC while remaining in its original
form in block BC. If the program’s path of execution were to proceed from block A to block
C, enlarged block AC would be issued into the machine. If the path of execution were to
proceed from block B to block C, enlarged block BC would be issued into the machine. In
either case, the best possible version of block C is issued into the machine.

4.1.3 Effect on ICache Performance

In addition to the average block size, the icache hit rate is another important factor that
determines the instruction fetch rate. For the block enlargement optimization to be effective,
it must increase the average block size without significantly reducing icache performance.
Because it increases the size of the executable, the block enlargement optimization may have
a negative effect on icache hit rate. Each time a block is combined with its successors, a
separate copy of that block is created for each successor. In figure 4.1, combining block B
with it’s successors C and D resulted in the creation of an extra copy of B. This duplication
may increase the number of icache capacity misses during program execution and lower
performance. This will be the case if all the enlarged blocks formed from combining the
block with its successors are accessed with sufficient frequency. On the other hand, if an
enlarged block is never accessed, then it is never brought into the icache. The duplication
incurred by such a block has no effect on the icache miss rate or the memory bandwidth
used by the icache. The block enlargement optimization must be controlled so that the
degree of block enlargement is balanced against the increase in the program’s icache space
requirements.

4.1.4 Simulation Concerns

As mentioned in chapter 3.3, for a simulator to accurately model branch misprediction
penalties for a processor implementing a block-structured ISA, the simulator must take into
account the effect of wrong path instructions. The instructions that compute a fault opera-
tion’s condition may be in the same block as the fault itself. If such a fault is mispredicted,
the only way to determine the amount of time required to resolve the fault is to issue the
atomic block within which it resides and this block, by definition, is on the wrong path.
Consider the enlarged block control flow graph in figure 4.2 on page 4.2. Suppose the correct
successor to block A is block BD, but the simulated branch predictor has mispredicted the
successor block to be block BC, that is, the fault operation in block BC has been mispre-
dicted. This misprediction will be resolved when block BC’s fault operation is executed and
thus block BC must be issued into the simulated machine. To correctly model the machine’s
behavior in this situation, the instruction trace generated by BlockSim’s front end will in-
clude the instructions in block BC that originally came from block B. The simulator will then
stall instruction fetch until the mispredicted fault operation is resolved. Because BlockSim'’s
front end does not proceed any further down the wrong path than the first block, the effect
of executing instructions from the wrong path is only partially modeled by BlockSim.
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4.2 Specification of a Block-Structured ISA

4.2.1 The Base ISA

To explore the performance advantages of block-structured ISAs, I have defined a specific
block-structured ISA that incorporates a subset of the features described above. This ISA’s
architectural unit is the atomic block. The operations that can be found in an atomic block
were taken from a subset of the MC88000 ISA [37]. All the non-control flow operations
and indirect branches were taken directly from the MC88000 ISA. Added to this core set
of operations were the trap, fault, and subroutine call operations. Each atomic block can
contain up to sixteen operations, the issue width of the machine !. In addition, each atomic
block must contain exactly one trap, subroutine call, or indirect branch operation to specify
the control flow successor for that block.

4.2.2 Trap Operations

The trap operation has five fields: the trap opcode, the condition code register, the first
target, the second second target, and the target count. As discussed above, the set of possible
control flow successors for an atomic block can be partitioned into two subsets (the taken and
not taken subsets) such that the trap condition specifies the subset that contains the correct
control flow successor. The trap condition is the bit in the condition code register that is
specified by the trap opcode. The first target of the trap operation is one of the targets from
the taken subset. The second trap target is one of the targets from the not taken subset. The
target count field of the trap operation specifies the log of the total number of control flow
successors for the trap operation’s atomic block. This information is used by the dynamic
branch predictor as will be explained in chapter 6.

Because the trap operation only specifies two targets, atomic blocks that have more than
two control flow successors and end in a trap operation cannot have all their control flow
successors explicitly specified. The targets in the taken and not taken subsets that are not
specified by the trap operation are implicitly specified by the fault operations within the
control flow successors. Referring back to figure 4.2 on page 4.2, block A has three control
flow successors, blocks BC, BD, and E. Only blocks BC and E are explicitly specified by the
trap operation at the end of block A. Block BD is implicitly specified as a successor to block
A by the fault operation within block BC. As a result, when a processor first encounters
an atomic block, the processor cannot determine all the possible control flow successors to
that block. The processor incrementally learns about the implicitly specified control flow
successors when a fault operation is mispredicted which results in the mispredicted fault
operation redirecting the control flow to its target.

A key difference between trap operations and conventional ISA branch instructions is as
follows: trap operations explicitly specify two targets while branch instructions explicitly
specify only one target. The second target of a branch instruction is implicitly specified as
the instruction that follows the branch. The trap operation was defined to have two explicit

IThe maximum atomic block size does not necessarily have to be restricted to the issue width of the
machine if the machine has the microarchitectural support to issue atomic blocks that require more than one
cycle to issue (e.g. the scratch pad alias table [52]). This dissertation does not investigate such machines.
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Figure 4.5: The fall through trap target problem for block-structured ISAs.

trap

targets instead of one explicit target and one implicit fall-through target because the block
enlargement optimization could create control flow graphs for which it was impossible to
place one of an atomic block’s targets after that atomic block to serve as the fall-through
target. Figure 4.5 gives an example. Enlarged blocks AD, BD, and CD all have blocks E
and F as their successors. Regardless of how the blocks are ordered, at least one of those
three enlarged blocks will have neither blocks E or F as its fall-through target. This problem
could be solved by creating a new block G that is either a duplicate of block E (or F)
or an unconditional jump to block E (or F). Block G could then serve as the fall-through
target for the third enlarged block. However, these solutions may reduce the instruction
fetch rate by either reducing the icache hit rate because of the extra code duplication or
reducing the average block size because of the extra unconditional jump inserted into the
dynamic instruction stream. By explicitly specifying two targets for each trap operation,
the block-structured ISA is able to eliminate the problem.

4.2.3 Fault Operations

The fault operation has four fields: the fault opcode, the condition code register, the
target, and the target index. Based on its opcode, the fault operation checks a specific bit
in its condition code register. If that bit is set, it will remove its associated atomic block
from the machine and redirect the control flow to its target. As shown in figure 4.2, in the
event that the branch predictor has incorrectly predicted block BC to be the successor to
block A when block BD is the correct target, the fault operation in block BC will remove
block BC’s instructions from the machine and redirect the control flow to block BD. The
fault operation also specifies an index that is associated with its target. This information is
used by the dynamic branch predictor as will be explained in chapter 6.

4.2.4 Subroutine Calls

The subroutine call operation has three fields: the opcode, the call address, and the return
address. The subroutine call directs the instruction stream to the specified call address
and saves the specified return address in the return address register. The key difference
between this subroutine call and that of a conventional ISA is that this subroutine call
explicitly specifies the return address to be used after the called function completes. In a
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Figure 4.6: The fall through return address problem for block-structured ISAs.

conventional ISA, the return address is implicitly specified as the address that follows the
call. The reason why the return address is explicitly specified in the block-structured ISA
subroutine call operation is the same reason why the trap operation specifies two targets:
the block enlargement optimization can create control flow graphs for which it is impossible
to place a subroutine call’s return address block after the call’s block. Figure 4.6 gives an
example. Block C ends with a subroutine call and as a result, blocks AC and BC also
end in a subroutine call. Clearly, block D, the return address for the call, cannot be the
fall-through block for both blocks AC and BC. By specifying an explicit return address, the
block-structured ISA is able to eliminate this problem as well.
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CHAPTER 5

Block Enlargement — Measurements and Analysis

This chapter examines how to most effectively apply the block enlargement optimization
to increase block size and performance. Branch prediction effects are ignored. They will
be examined in the chapters 6 and 7. Perfect branch prediction is assumed for all the
experiments presented in this chapter.

5.1 The Base Block Enlargement Optimization

The block enlargement optimization implemented in the block-structured ISA compiler
attempts to combine as many different combinations of blocks as possible. The compiler
begins with the first block of each function and traverses the control flow graph in a breadth-
first order combining blocks until one of the termination conditions listed below is met. The
process is recursively repeated with the successor blocks of the newly formed enlarged block.
The five termination conditions for the enlargement process are:

1. Blocks can continue to be enlarged until further enlargement would cause the size of
the enlarged block to exceed processor issue width. As discussed in chapter 4.2, the
maximum block size is restricted to the issue width so as to avoid the complexity of
supporting atomic blocks that require more than one cycle to issue. For our experiments
the maximum block size will always be sixteen.

2. Each block can contain at most two fault operations, which restricts the number of
successor blocks for each block to at most eight. This restriction is due to branch
prediction considerations (see chapter 6).

3. Blocks that end in a call cannot be combined with their successors. The interprocedural
analysis required to combine such blocks has not been implemented.

4. Blocks that end in a return or an indirect jump cannot be combined with their succes-
sors. Because blocks that end in indirect branches may have an extremely large number
of successors, combining such blocks with their successors would lead to unacceptable
levels of code duplication®

!The block enlargement optimization could be extended in the future to relax this constraint by allowing
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Figure 5.1: Performance comparison of block-structured ISA executables to
conventional ISA executables.

5. Blocks that are the targets of a return or an indirect jump cannot be combined with
any other blocks. This restriction is also due to branch prediction considerations (see
chapter 6).

In addition, some of the C library routines called by the benchmarks were not recompiled
with the block enlargement optimization. This was due to unavailability of the source code
for the library routines. However, all the library routines that have a significant impact on
the overall execution time were compiled.

After the block enlargement pass, the compiler executes another local optimization pass
over the enlarged blocks to further improve the quality of code. This second local opti-
mization pass will exploit the new opportunities for optimization that were created by block
enlargement (see chapter 4.1.2).

Using the block enlargement optimization described above, the compiler generated block-
structured ISA executables for the eight SPECint95 benchmarks. The performance of these
executables running on the sixteen wide issue HPS processor described in chapter 3.2 is
compared to the performance of the corresponding conventional ISA executables running
on an identically configured HPS processor. Figure 5.1 shows the total number of cycles
required to execute each benchmark from the two sets of executables. The block-structured
ISA executables achieved an average reduction in execution time of 25%.

blocks that end in indirect branches to be combined with a small subset of their successors that occur
frequently in the dynamic instruction stream.
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Figure 5.2: Average block sizes for block-structured and conventional ISA
executables.

Figure 5.2 compares the average block size for the block-structured ISA executables to
that of the conventional ISA executables. Using the block enlargement optimization, the
block-structured ISAs increased the average block size by 62% from 5.8 to 9.3 operations.

By increasing the average block size and thereby increasing the instruction fetch rate, the
block enlargement optimization is able to improve overall performance. However, the 62%
increase in block size does not directly translate into a 62% increase in performance. Two
other factors, full-window stalls and icache misses, reduced the performance gains provided
by the increased block size.

Figure 5.3 shows the number of full-window stall cycles that occurred during the exe-
cution of each benchmark. As discussed in chapter 3.2, the processor stalls the instruction
fetch mechanism whenever all the checkpoints within in the machine are taken. This stall
continues until one of the checkpoints is freed up. For many of the benchmarks, the number
of cycles stalled doubles. For vortex, it increases by an order of magnitude from one to
ten million cycles. The block enlargement optimization increases the number of full-window
stalls because it enables the processor to issue instructions at a faster rate. This increase in
instruction issue rate increases the number of instructions associated with each checkpoint
which in turn increases the amount of time needed to retire the checkpoint. Furthermore,
the increase in instruction issue rate increases the average length of time an instruction
must wait for its dependencies to resolve. Because the block enlargement optimization com-
bines separate blocks into a single block, two instructions that belong to different blocks
(and would have been issued in different cycles for a processor implementing a conventional
ISA) may now be issued in the same cycle. If the two instructions have a data dependency
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Figure 5.3: The number of cycles that instruction fetch was stalled due to a
full-window.

between them, then any difference in their issue times would mask some of the latency of
resolving that dependency. By eliminating the difference in their issue times, the block en-
largement optimization increases the amount of time an instruction must wait for its data
dependencies to resolve. This effect, in turn, further increases the time required to retire
checkpoints. Although the increase in full-window stall cycles is a direct consequence of the
block enlargement optimization, this increase should not be considered a drawback of the
block enlargement optimization. By removing the instruction fetch bottleneck, the block
enlargement optimization has given the processor the opportunity to exploit a higher level
of instruction level parallelism which resulted in the uncovering of another bottleneck: the
finite size of the processor’s instruction window.

As discussed in chapter 4.1.3, the code duplication caused by block enlargement may
increase the icache miss rate. Figure 5.4 shows the number of cycles that the processor stalled
the instruction fetch mechanism due to an icache miss. The icache used in this experiment
was 128KB, four-way set associative. With the exception of the gcc and go benchmarks, the
block-structured ISA executables show little increase in icache miss cycles as compared to
the conventional ISA. The gcc and go benchmarks showed significant increases in icache miss
cycles for two reasons. First, both benchmarks are large to begin with. For the conventional
[SA executables, only the gcc, go, and vortex benchmarks show a significant number of icache
misses, indicating that the benchmarks are a little bit too large for the 128KB icache. The
code duplication incurred by the block enlargement optimization for these benchmarks will
translate directly to increased icache misses. Second, the gcc and go benchmarks contain
many unbiased branches. As a result, a larger number of the successor blocks for each
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Figure 5.4: The number of cycles that instruction fetch was stalled due to
an icache miss.

enlarged block in these two benchmarks will be accessed with significant frequency which in
turn increases the number of duplicated blocks that must be held in the icache. The vortex
benchmark, on the other hand, contains many highly-biased branches, reducing the number
of duplicated blocks that must be held in the icache. As a result, the block enlargement
optimization does not incur as severe a penalty for vortex despite the fact that vortex is a
large benchmark.

To quantify the performance impact of the icache misses, figure 5.5 shows the execution
times of the three block-structured ISA executables, gce, go, and vortex, for a processor with
a perfect icache. These three benchmarks were the only ones that had a non-trivial number
of icache misses for the 128KB icache size. Only the go benchmark showed a significant
slowdown due to the icache misses which was due to code bloat as discussed above. In
addition, for all three benchmarks, the difference between the total execution time with
the 128KB icache and the number of icache miss cycles was slightly smaller than the total
execution time with the perfect icache. This small difference was due to the HPS model’s
ability to accomplish real work and make forward progress even in the face of icache misses.

5.2 ICache Performance Issues

As shown in figure 5.4, a 128KB icache is large enough to handle the code duplication in-
curred by the block enlargement optimization for the majority of the SPECint95 benchmarks.
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Figure 5.5: Execution times for a perfect and a 128 KB icache.

This section quantifies the effect block enlargement optimization has on icache performance
when the program executed just fits into the icache or is too large for the icache. This
section also considers ways to control the block enlargement optimization so as too reduce
the degree of code duplication without reducing overall performance.

To model icache performance when the executed program is too large for the icache,
the SPECint95 benchmarks were simulated on processors with smaller icache sizes. These
simulations measured the total execution time as well as the number of icache miss cycles.
Figures 5.6-5.13 show these numbers for the block-structured and conventional ISA
executables executing on their corresponding HPS implementations. Only the gcc, go, perl,
and vortex benchmarks show significant a significant number of icache misses at the smaller
icache sizes.

The block enlargement optimization’s negative impact on icache performance can be re-
duced by reducing the amount of code duplication performed by the optimization. However,
any reduction in code duplication will also reduce the average size of the enlarged blocks
formed. Thus, any variation of the block enlargement optimization that attempts to reduce
code duplication must balance the resulting icache performance gains against the perfor-
mance lost due to decreasing the block size. This section considers two approaches that
attempt to effectively exploit this tradeoff.

The first approach reduces code duplication by simply reducing the number of blocks that
can be combined into a single enlarged block. This can be done by reducing the maximum
number of fault operations allowed in each enlarged block from two to one. In effect, this
restriction reduces the number of basic blocks that can be combined together from three to
two.
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Figure 5.6: The number of icache miss and total execution cycles for the gec
benchmark.
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Figure 5.7: The number of icache miss and total execution cycles for the go

benchmark.
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Figure 5.8: The number of icache miss and total execution cycles for the perl
benchmark.
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Figure 5.9: The number of icache miss and total execution cycles for the
vortex benchmark.
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Figure 5.10: The number of icache miss and total execution cycles for the
compress benchmark.
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Figure 5.11: The number of icache miss and total execution cycles for the
ijpeg benchmark.
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Figure 5.12: The number of icache miss and total execution cycles for the
xlisp benchmark.
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Figure 5.13: The number of icache miss and total execution cycles for the
m88ksim benchmark.
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Figure 5.14: Forming overlapped enlarged blocks with the block enlargement
optimization.

The second approach restricts the block enlargement optimization from making overlap-
ping enlarged blocks. Two enlarged blocks are defined to be overlapping if the basic blocks
that occur at the end of one enlarged block occur at the beginning of the other enlarged
block. Figure 5.14 gives an example of overlapped enlarged blocks. The control flow graph
on the right of figure shows the result of applying the base block enlargement optimization
to the control flow graph on the left. Because block M could be combined with block A and
block N could not be combined with block A, two overlapping enlarged blocks, MA and AB,
were formed. Continuing the block enlargement optimization from block MA caused the for-
mation of blocks BC and BD which overlap with block AB. As can be seen from the figure,
once the block enlargement optimization’s progress through the control flow graph gets out
of phase as it does here, the formation of overlapped enlarged blocks will continue until some
other block enlargement termination condition (i.e. a procedure call) is encountered.

By preventing the formation of overlapping enlarged blocks, the code duplication that
occurs due to such blocks is eliminated. This restriction is implemented by adding two more
termination conditions to the block enlargement process:
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Figure 5.15: Restraining the block enlargement optimization to prevent the
formation of overlapped enlarged blocks.

1. An enlarged block cannot be combined with its successor if its successor is the first
block of some other enlarged block.

2. An enlarged block cannot be enlarged any further if its last basic block is the final
basic block in some other enlarged block.

Figure 5.15 shows the application of the no overlap restriction to the control flow graph
in figure 5.14. In this example, block A is prevented from combining with block B which
prevents the formation of the overlapped blocks that occurred in figure 5.14.

By adding additional constraints to block enlargement, the no overlap restriction de-
creases the size of the enlarged blocks formed. To reduce the impact on block size, profile
information is used to guide the application of the optimization. A profile is taken of the
program to determine its most frequently executed paths. During the block enlargement op-
timization, this information is used to decide which blocks to enlarge. Rather than traversing
the control flow graph in a breadth-first order, the block enlargement optimization enlarges
the blocks along the most frequently executed program paths first. Because these blocks are
enlarged first, the no overlap restriction does not apply to them. As a result, the reduction
in block size due to the no overlap restriction will occur only for the less frequently executed
enlarged blocks.

Figures 5.16-5.19 compares the performance of the three variations of the block enlarge-
ment optimization, base, one fault max, and no overlap, for the four SPECint95 benchmarks
that showed significant numbers of icache misses. The no overlap variation was more effective
than the one fault variation in reducing the number of icache miss cycles (an average of 27%
versus 9% for the 16KB icache). Furthermore, for the 16KB icache, the no overlap variation
reduced execution time by 7% while the one fault variation increased execution time by 3%.

38



=a +=a Base BS ISA total time

80- == Base BS ISA icmiss time
=m +=m ] Fault BS ISA total time
70 =m ] Fault BS ISA icmiss time

== +=== NO overlap BS ISA total time
== No overlap BS ISA icmiss time

Execution Time
(Millions of cycles)
N
?

L

.
Z
7
4 .
Z S
Z X
Z N
Z N
Z X
1

N
64KB
| Cache Size

Figure 5.16: Comparing the base, one fault, and no overlap variations of the
block enlargement optimization for the gcc benchmark.
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Figure 5.17: Comparing the base, one fault, and no overlap variations of the
block enlargement optimization for the go benchmark.
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Figure 5.18: Comparing the base, one fault, and no overlap variations of the
block enlargement optimization for the perl benchmark.
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Figure 5.19: Comparing the base, one fault, and no overlap variations of the
block enlargement optimization for the vortex benchmark.
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Figure 5.20: The average block sizes for the base, one fault, and no overlap
variations of the block enlargement optimization.

Figure 5.20 shows the average block sizes for each of the variations. The no overlap variation
decreased block size by 12% as compared to the base variation while the one fault variation
decreased block size by 15%. Not only was the no overlap variation more effective than the
one fault variation in reducing the icache miss penalty, but it was also able to form larger
blocks. For the gcc and vortex benchmarks, as the icache size was increased and the impact
of icache misses to the total execution time was reduced, this decrease in block size resulted
in a performance slow down for the no overlap variation as compared to the base variation.

5.3 Block Enlargement Obstacles

Despite increasing the block size by 62% to 9.3 operations, the base block enlargement
optimization still has almost half the processor fetch bandwidth left unused. This section
examines why the block enlargement optimization was unable to create larger blocks.

Figures 5.21-5.28 show for each block size the dynamic frequency with which it
occurred. The histogram bar for each block size is partitioned into the reasons why the
blocks of that size could not be enlarged any further. There were five reasons for terminating
block enlargement:

1. max size — the block could not be combined with any of its successors without exceeding
the max size constraint.
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Figure 5.21: Block termination reasons for the gcc benchmark.
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Figure 5.22: Block termination reasons for the compress benchmark.

42



0.25+

.20
> 0.20
o) == | ibrary
% 0.15- o= [ndirect jump
— Max successor
'-('3 == Call/Return
% 0.10 == Max size
c
>
O 505
N
~§~ >
0.00- ~ Z ’ ~ ‘
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Block Size

Figure 5.23: Block termination reasons for the go benchmark.
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Figure 5.24: Block termination reasons for the ijpeg benchmark.
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Figure 5.25: Block termination reasons for the li benchmark.
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Figure 5.26: Block termination reasons for the m88ksim benchmark.
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Figure 5.27: Block termination reasons for the perl benchmark.
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Figure 5.28: Block termination reasons for the vortex benchmark.
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2. max successor — the block already contains two fault operations. Combining it with
its successors would result in its parent block exceeding the max successor constraint.

3. call/return — the block cannot be enlarged any further because it either ends in a call
or return operation or the block itself is the target of a call or return operation.

4. indirect jump — the block cannot be enlarged any further because it either ends in an
indirect jump or the block itself is the target of an indirect jump.

5. library — the block belongs to a library routine that has not been compiled with the
block enlargement optimization.

The figures show that the call/return constraint terminates the overwhelming majority
of the enlarged blocks. The max successor and max size constraints terminate the majority
of the remaining enlarged blocks. However, because the majority of the blocks terminated
by the max size constraint are of size thirteen or larger, the max size constraint has a
very small impact on performance. The indirect jump constraint causes a small number of
enlarged block terminations in the gcc and perl benchmarks but is insignificant in the other
benchmarks. The library routines that were not recompiled with block enlargement had an
insignificant effect across all the benchmarks.

5.4 Function Inlining

This section studies the use of function inlining to overcome the call/return block enlarge-
ment constraint. Function inlining eliminates calls and returns in a program by replacing
selected function calls with the bodies of the called functions. In addition to eliminating
call and return instructions, function inlining also eliminates the extra code needed to set
up the function call such as moves that set up the function’s arguments and return values,
loads and stores of caller and callee saved registers, and increments and decrements to the
stack pointer. Furthermore, function inlining increases the scope with which the compiler
can apply global optimizations by making the inlined function’s code visible at the caller
function’s level. While the block-structured ISA compiler will exploit all these advantages,
the key motivation for using function inlining is to eliminate calls and returns so that even
larger blocks can be formed by the block enlargement optimization.

Because it duplicates the code for the inlined function, function inlining will increase the
program size and more importantly, may decrease the icache hit rate. This optimization
must be carefully controlled to ensure that the performance benefits of function inlining are
not offset by increased icache miss penalties. To do this, only a select set of function calls
(or call sites) within the program are chosen for function inlining. The block-structured ISA
compiler uses a variation of the algorithm proposed by Hwu and Chang [21] to select the call
sites to be inlined. The program to be compiled is first profiled to determine the dynamic
frequencies of each call site within the program where dynamic frequency is defined to be
the ratio of the number of times the call site occurred to the total number of blocks in the
program. The call sites are then ordered according to frequency and are selected for inlining
by the following conditions:
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Number of Total Call Site Inlined Code
Benchmark | Call Sites Frequency Size (bytes)
gee 0 0.00% 0

compress 6 5.99% 1288
go 5 1.02% 2612
ijpeg 2 0.48% 624
li 27 10.76% 2500
m88ksim 19 5.32% 8448
perl 12 5.32% 2528
vortex 13 3.75% 3588

Table 5.1: Call sites that were selected for function inlining.

1. The called function cannot be recursive. It is impossible to completely inline a recursive
function.

2. The dynamic frequency of the call site must be above the specified threshold. This
guarantees that only the call sites that have a significant impact on performance will
be considered for inlining.

3. The total amount of inlined code must not exceed the specified maximum size. This
condition controls the amount of code duplication incurred by function inlining 2.

For the experiments here, the minimum dynamic frequency threshold was set to .001
and the maximum inlined code size was set to 16KB. Table 5.1 lists the number of call sites
chosen for inlining for each benchmark along with the total dynamic frequency and inlined
code size for the chosen call sites. Appendix D lists the locations of the chosen call sites.

Figure 5.29 compares the performance of block-structured ISA executables compiled with
function inlining to the performance of those compiled without function inlining. The average
improvement in execution time is 6.3%. The benchmarks that had the most significant
improvements were li, perl, and compress with improvements in execution times of 20%,
15%, and 9%. The gce benchmark showed no difference because nothing was inlined. The
go benchmark showed a slight decrease in performance, about 1%, due to the increased
icache miss rate offsetting the benefits of the inlined functions.

Figure 5.30 compares the average block size of block-structured ISA executables compiled
with function inlining to those compiled without function inlining. The average block size
increased from 9.3 to 10.2. There are two interesting points in this figure. First, the compress
benchmark had the largest increase in block size, going from 9.1 to 12.4. This increase in
block size translated to only a 9% decrease in execution time because the full window stalls for
the inlined version of compress increased significantly from two million cycles to six million
cycles. The full window stalls for the compress benchmark accounted for over 40% of the

2A better heuristic would have constrained the total amount of inlined code based on the icache require-
ments of the original program. Programs that use a small fraction of the total icache can afford greater
amounts of inlined code than programs than programs that use a large fraction of the total icache space.
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Figure 5.29: Execution times of block-structured ISA executables compiled
with and without function inlining.

== BS |SA
164 == |nlined BS ISA
12
)
N
h
X
S 8-
m
4_
O_
gcc comp go ijpeg i m88k perl vortex
Benchmark

Figure 5.30: Average block sizes of block-structured ISA executables com-
piled with and without function inlining.
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Figure 5.31: Comparing the performance of inlined conventional ISA exe-
cutables to inlined block-structured ISA executables.

total execution time. Second, the average block size for the ijpeg benchmark shrank slightly.
The reason for this is that the function being inlined was very small. Once the function
was inlined and all the instructions associated with the call and return of that function were
eliminated, the resulting block was smaller than any of the original blocks.

Figure 5.31 compares the performance of inlined block-structured ISA executables to
inlined conventional ISA executables. Both sets of executables inlined the same call sites.
The block-structured ISA executables reduced execution time by an average of 26.5%, a slight
improvement over the performance difference for the non-inlined versions of the executables.
Because the dynamic frequency of the functions to be inlined were required to be greater
than the minimum threshold, the number of functions that qualified for inlining was not large
enough to make a significant performance difference. A better approach to overcoming the
call /return constraint might be to partially inline function calls and returns that prematurely
end block enlargement. See chapter 9.2 for more details.

5.5 Handling the Max Successor Constraint

This section examines a profile-guided approach to reducing the performance penalty
due to the max successor constraint. As will be discussed in chapter 6, the branch predictor
restricts each enlarged block in a block-structured ISA program to at most eight control
flow successors — four successors from the taken trap side and four successors for the not
taken trap side. The base block enlargement optimization enforces this restriction by al-
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lowing each enlarged block to have at most two fault operations. The disadvantage of this
approach is that it restricts all the paths in the program to the same degree of enlargement.
A better approach would allow greater degrees of enlargement along frequently executed
paths by reducing the degree of enlargement along infrequently executed paths. To exploit
this tradeoff, the base block enlargement optimization is modified to incorporate program
profile information that specified the relative frequencies of all the paths in the program.
Rather than traversing the control flow graph in a breadth-first order, the block enlarge-
ment optimization will now enlarge the blocks along the most frequently executed program
paths first. Furthermore, block enlargement will no longer stop when an enlarged block
has accumulated two fault instructions. Block enlargement will stop if further enlargement
causes a block to have more than the maximum number of successors. As a result, the block
enlargement optimization will now be able to form even larger blocks along the frequently
executed program paths.

Figure 5.32 contrasts the difference between applying the block enlargement optimization
with the two fault restriction and applying the block enlargement optimization with the
profile-guided approach. The original control flow graph is shown at the top. The control
flow graph on the lower left is the result of applying the block enlargement optimization with
the two fault restriction. The control flow graph on the lower right is the result of applying
the block enlargement optimization with the profile-guided approach where the path through
blocks B, C, E, and I is assumed to be the most frequently executed path. When the block
enlargement optimization is restricted to two faults, it can combine at best blocks B, C, and
E together along the most frequently taken path. When the block enlargement optimization
is able to focus on the frequently taken path, it can combine blocks B, C, E, and I together
along the most frequently taken path. The tradeoff is that the profile-based approach can
combine only blocks B and D together along the less frequently taken path instead of blocks
B, D, and G or H.

Figure 5.33 compares the performance of block-structured ISA executables generated
using the the block enlargement optimization with the profile-based approach to the perfor-
mance of block-structured ISA executables generated using the block enlargement optimiza-
tion with the two fault restriction. Figure 5.34 compares the average block sizes of the two
sets of executables. The profile-based approach is able to reduce the execution time by an
average of 2.6% by increasing the average block size by 4.2%, from 10.2 to 10.6. This further
reduction in execution time reduces the performance difference between block-structured
ISA executables and conventional ISA executables to 28.4%. Further increases in block size
and performance may be achieved by extending the profiled-based approach to dedicate an
even greater fraction of a block’s successors to the most frequently taken paths.

5.6 Summary

The key results presented in this chapter are:

e For the SPECint95 benchmarks, the block-structured ISA executables running on a
sixteen wide HPS processor show a performance improvement of 28.4% as compared to
the conventional ISA executables running on an identically configured HPS processor
that fetches only one basic block each cycle. This performance improvement is due
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Figure 5.32: Comparing the two fault restriction to the profile-guided ap-
proach for enforcing the max successor constraint. The control
flow graph on the lower left is the result of using the two fault
restriction. The control flow graph on the lower right is the
result of using the profile-guided approach.
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Figure 5.34: Average block sizes for the two fault restriction and profile-
based approach to enforcing the max successor constraint.
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the block enlargement optimization increasing the average block size from 5.8 to 10.6
instructions.

The major constraint that prevents the block enlargement optimization from producing
even larger blocks is the optimization’s inability to enlarge blocks beyond call and
return instructions. The other significant constraint is the restriction on the number
of control flow successors for each block that is imposed by the branch predictor.

Inlining frequently called routines reduces execution time by 6.3%, reducing the per-
formance impact of the call/return constraint.

Using the profile-based approach instead of the two fault restriction to enforce the max
successor constraint reduces execution time by an additional 2.6%.

The code duplication due to block enlargement incurs an insignificant number of icache
misses for an icache of size 128KB. The exception to this observation was the go
benchmark, which spent 27% of its total execution time stalled due to icache misses.
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CHAPTER 6
Branch Prediction for Block-Structured ISAs

Because the block enlargement optimization combines multiple basic blocks into a single
enlarged atomic block, each atomic block in a block-structured ISA can contain multiple
branches. To be effective, a branch predictor for a block-structured ISA processor must be
able to make multiple branch predictions per cycle. This chapter describes a way to extend
the Two-Level Adaptive Branch Predictor and the Branch Target Buffer so that accurate
branch predictions can be made for block-structured [SAs. Using these extensions, a specific
branch predictor implementation is presented. The performance of this predictor imple-
mentation will be studied in chapter 7. Finally, this chapter will discuss branch prediction
issues that are specific to block-structured ISAs and the predictor implementation being
considered.

6.1 Effect on Prediction Accuracy

Because the predictor for a block-structured ISA must make multiple predictions per
cycle, the probability that it will make a misprediction for any given cycle is greater than
that for a predictor making a single prediction per cycle. However, this does not imply that
the overall prediction accuracy achieved by the block-structured ISA predictor is lower than
that achieved by a predictor making a single prediction per cycle. This is because prediction
accuracy is defined as the ratio of the number of correctly predicted branches to the number
of predicted branches. Thus, although the block-structured ISA predictor may be making
more mispredictions per cycle, it is also making more predictions per cycle which makes
the overall ratio between mispredicted branches (or conversely, correctly predicted branches)
and predicted branches equivalent to that achieved by a conventional predictor. So from a
probabilistic viewpoint, the number of branches predicted each cycle by a predictor should
not affect its overall prediction accuracy.
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Figure 6.1: Structure of the global variation of the Two-Level Adaptive
Branch Predictor.

6.2 Two-Level Adaptive Branch Prediction

6.2.1 Background

The Two-level Adaptive Branch Predictor exploits the correlation among a program’s
branches to accurately predict their outcomes [55] [56] [38] [57]. This correlation can be
detected by recording the program’s branch behavior at two levels, branch execution history
and pattern history. The Two-Level Adaptive Branch Predictor has two key variations:
global and per-address. For the global variation, the branch execution history records the
direction taken by the last k& branches executed in the program. This history can be stored
as a k-bit pattern where a “0” represents a not-taken branch and a “1” represents a taken
branch. The pattern history records for a specific branch and k-bit pattern, the outcomes of
that branch for its last 7 occurrences when the branch history had that k-bit pattern. The
per-address variation works in the same general manner as the global variation except that
the branch execution history is recorded on a per branch basis (i.e. for each branch, there is
a record of the last k directions taken by that branch).

Figure 6.1 illustrates an implementation of the the global variation of the Two-Level
Adaptive Branch Predictor. The branch execution history is stored in the branch history
register. The pattern histories for a given branch are stored in the pattern history table. The
predictor possesses one or more pattern history tables (PHTs), where each table is shared by
some number of branches. To predict a branch, the branch’s address selects its corresponding
pattern history table. The current value in the branch history register is used as an index
into that table. The prediction is made based on the contents of the specified table entry.
Research has shown that the two-bit saturating up-down counter serves as an effective PHT
entry [56]. The counter is incremented each time the branch is taken and decremented each
time the branch is not taken. If the counter’s value falls into the lower half of the range
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of possible values, the PHT entry produces a not taken prediction. If the counter’s value
falls into the upper half of the range of possible values, the PHT entry produces a taken
prediction. In this way, the counter captures which branch direction has been most frequent
in the recent past.

6.2.2 Extensions for Block-Structured ISAs

For conventional ISAs, the branch predictor selects one target out of two possibilities.
For block-structured ISAs, the branch predictor must be able to select one target out of
2" possibilities where n is the maximum number of branches allowed in a single block. To
extend the Two-Level Adaptive Branch Predictor so that it can select one target out of 2"
possibilities, the pattern history table and branch history register must be modified.

The Pattern History Table

As discussed above, the purpose of each PHT entry is to record for its corresponding
branch history the branch direction (or branch target) that has occurred most frequently
in the recent past. For a conventional ISA in which each branch has at most two targets
from which to choose, the two bit counter serves this purpose effectively. However, for a
block-structured ISA that may have up to n branches in each enlarged block, the predictor
must choose among 2" possibilities. To make this choice, each PHT entry is extended to
include 2" two bit counters. Each counter is associated with one of the possible targets and
the counter’s job is to record the relative frequency with which its associated target has
occurred in the recent past. Thus, the predictor can then determine the target which has
occurred most frequently in the recent past by comparing the values of all the counters in a
PHT entry and selecting the target whose counter has the largest value.

The actual implementation of the branch predictor PHT entry included one more two
bit counter in addition to the 2" target counters. This two bit counter, the trap counter,
is used to predict the direction taken by the current block’s trap operation. The usage and
update rules for this counter are identical to those for the conventional Two-Level Adaptive
Branch Predictor. The target counters are partitioned into two 2" !-sized subsets, according
to whether the current block’s trap operation had to be taken or not taken for the counter’s
target to be a possible control flow successor for the current block (see chapter 4.1.1). To
make a prediction, the trap counter is first checked to predict the trap’s direction and select
the appropriate target counter subset. The predicted target is the target whose counter
in that subset is set to the maximum possible counter value. The counter update rules
guarantee that at least one counter in each subset will be set to the maximum value. If more
than one counter is set to the the maximum value, then the predicted target with the higher
priority (i.e. the target with the lower target index — see section 6.3) is chosen. Figure 6.2
illustrates the prediction generation process.

The update rules for the target counters are as follows: whenever a target occurs in the
dynamic instruction stream, the target’s counter in the appropriate PHT entry is incremented
if that counter’s value is not already set to the maximum possible counter value. If the
target’s counter value is already at the maximum, the counter values for all the other targets
in its subset are decremented. As a result, each counter gives the frequency with which its
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associated target has occurred relative to the other counters in its subset.

The target counters were split into two subsets so that the predictor could always maintain
information about the relative frequencies of the targets from both sides of the trap operation.
Thus in the event of a trap misprediction, the predictor would still have some information
available to help make an accurate prediction among the targets on the other side of the trap
operation. Keeping the counters in a single set would have allowed the repeated occurrence
of one target for a given branch history to cause all the other counters in the PHT entry to
be decremented to zero. As long as this target remained the correct prediction for the given
branch history, this effect would not be a problem. However, if at some point in the future,
the correct target were to change to another target on the other side of the trap operation,
then upon recovering from the misprediction (which the predictor would inevitably make
because the repeated occurrence of the first target had trained the predictor to choose the
first target), the predictor would have no information as to which target on the other side
of the trap to choose as the point of recovery. This is because all the other target counters
have been decremented to zero, as mentioned above. By splitting the target counters into
two subsets, this problem is avoided.

The Branch History Register

Because the predictions produced by the Two-Level Adaptive Branch Predictor are now
target indexes (that select which target out of the set of possible successors is the next
block) instead of branch directions, the branch history register will now record the target
indexes for the most recent blocks in the dynamic instruction stream instead of the directions
taken by the most recent branches. This change, however, does not change the information
content in the branch history register because the target indexes are really just another
representation of the taken branch directions. Each successor target of a block can be mapped
to a unique sequence of branch directions that must occur in order for that successor to be
the correct successor for the block. In addition, the predictor maps each successor target
to a unique target index. Thus, there is a one-to-one mapping between target indexes and
branch direction sequences.

While target indexes may contain the same amount of information as branch histories,
target indexes do not represent the information as efficiently. If each block in a block-
structured ISA can have up to 2" successors, then each target index will consist of n bits.
However, if a given block has only two successors, then representing the prediction made at
that block as a n bit value will waste space — clearly only one bit is needed to represent
the prediction made. For a branch history register of finite size, shifting in the extra n — 1
bits will result in the history register having to sacrifice n — 1 bits of older history that
could have provided useful information for subsequent predictions. To eliminate this waste,
each block is tagged with the minimum number of bits required to uniquely specify all the
block’s successors (see chapter 4.2.2). This number is used by the predictor to determine
how many bits from the target index of the block’s successor to record in the branch history
register. As a result, the branch history register need not shift in the full target index for
each prediction.
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6.3 Extensions to the Branch Target Buffer

The Branch Target Buffer (BTB) [46, 27] must be extended so that it can keep track of
all the possible control flow successors for a block. For a conventional ISA, the number of
successors is limited to two, the taken and fall-through targets of the block’s branch. For a
block-structured ISA where n is the maximum number of branches allowed in a single block,
the number of successors can be as great as 2.

In addition to keeping track of the 2" possible successors for each block, the BTB must
maintain a mapping between each successor (or target) and its corresponding target index
just as the BTB distinguishes between the taken and fall-through targets in a conventional
ISA. This mapping is established by the compiler. The targets specified by the trap operation
itself are assigned the target indexes zero and 2" — 1. As discussed in chapter 4.2.2, the
predictor incrementally learns about the other possible targets for the block when the fault
operations in the explicit trap targets are mispredicted. These fault operations will redirect
the instruction stream to the other possible targets. The target indexes to be associated
with these targets are encoded by the compiler in the corresponding fault operations.

Instead of creating the mapping statically, the mapping between targets and target in-
dexes could have been created dynamically by the hardware. As each successor for a block
is encountered for the first time, the BTB assigns the next available target index to that
successor. The exact mapping created by the hardware would depend on the order in which
the block’s successors occurred in the dynamic instruction stream. The decision was made
to create the mapping at compile-time to guarantee that the exact mapping between targets
and target indexes would always be the same. This guarantee has a significant performance
impact when executing a program that incurs a significant number of BTB capacity or con-
flict misses. Consider a block whose BTB entry was evicted from the BTB and then brought
back in again at some later point. When the block’s entry is brought back in again to the
BTB | the block’s targets must once again incrementally reacquired and the target mapping
must once again be incrementally recreated. If the target mapping is specified by the com-
piler, then the recreated mapping is guaranteed to be the same as the mapping used when the
block’s entry first resided in the BTB. By using the same mapping as before, the predictor
can exploit any branch behavior information about this block that may still remain in the
PHTs. If the target mapping is created by the hardware, then there is no guarantee that
the recreated mapping will be the same as the original mapping. If the recreated mapping
is different than the original mapping, then the predictor would not be able to exploit the
remaining branch behavior information in the PHTs. This information would be nonsensi-
cal to the predictor because it was based on a different target mapping. As a result, more
accurate branch predictions can be made in the presence of BTB misses if compiler-specified
target mapping is used.

6.4 A Specific Implementation

For the experiments in chapter 7, the branch predictor used in the block-structured ISA
processor is a hybrid branch predictor [30, 8, 6] with two component predictors. For each
branch, each component predictor generates a prediction. The hybrid predictor selects the
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prediction from the component predictor that has been more accurate for that branch in
the recent past to serve as the final branch prediction. The hybrid predictor uses a table of
counters to determine for each branch which component predictor has been more accurate.
Each counter is associated with a particular program branch. If the first predictor generates a
correct prediction for the branch and the second predictor generates an incorrect prediction,
the counter is decremented. If the first predictor generates an incorrect prediction for the
branch and the second predictor generates a correct prediction, the counter is incremented. If
both predictors generate correct predictions or both predictors generate incorrect predictions,
the counter is left unchanged. Under these update rules, the first component predictor’s
prediction is selected as the final prediction if the counter value is within the lower half of
the range of possible values and the second component predictor’s prediction is selected if
the counter value is within the upper half of the range of possible values.

The two component predictors used were the gshare variation [30] and the PAs varia-
tion [56] of the Two-Level Adaptive Branch Predictor. The gshare variation records global
branch history in its branch history register. The direction of every branch that occurred
in the dynamic instruction is recorded in the history register. In addition, the index into to
the PHT was formed by xor’ing the branch history with the current branch address. The
PAs variation records per-address branch history in its branch history registers. The PAs
variation associates one branch history register with each branch. Each branch history regis-
ter records only the directions taken by its associated branch. For the block-structured ISA
predictor, the gshare and PAs component predictors were modified as described above.
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CHAPTER 7

Branch Prediction — Measurements and Analysis

This chapter examines the performance of the block-structured ISA branch predictor
described in the previous chapter. Using this branch predictor, the performance of a block-
structured ISA processor is compared to the performance of an identically configured con-
ventional ISA processor. The conventional ISA processor will use a branch predictor that
has the same configuration as the block-structured ISA predictor but without the extensions

for block-structured ISAs.

7.1 Base Comparison

Figure 7.1 compares the performance of the SPECint95 benchmarks executing on a block-
structured ISA processor with a 32KB branch predictor to the performance of those bench-
marks executing on a conventional ISA processor with the same sized branch predictor.
The configuration of the block-structured ISA branch predictor was gshare(13,1)/PAs(13,1).
The configuration of the conventional ISA branch predictor was gshare(16,1)/PAs(16,1).
The block-structured ISA executables were compiled with the base variation of the block
enlargement optimization (see chapter 5.1). The block-structured ISA executables achieved
an average reduction in execution time of 12%, about half of what was achieved when perfect
branch prediction was assumed. The go benchmark suffered the most dramatic decrease in
performance. The block-structured ISA version of that benchmark is 14% slower than the
conventional ISA version. As will be shown in the following sections, this change in perfor-
mance was due to the block-structured ISA version of the go benchmark suffering a larger
penalty due to mispredicted branches as compared to the conventional ISA version of the
benchmark.

7.2 Branch Predictor Performance

Figure 7.2 shows the number of cycles instruction fetch was stalled due to branch mispre-
dictions while executing each benchmark. The misprediction stall cycles accounted for 28%
of the total execution time for the conventional ISA executables and 39% of the total execu-
tion time for the block-structured ISA executables. Because they accounted for such a large
fraction of the total execution time for both the conventional ISA and block-structured ISA
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Figure 7.1: Execution times for block-structured ISA executables and con-
ventional ISA executables when using a 32KB branch predictor.
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Figure 7.2: Execution times for block-structured ISA executables and con-
ventional ISA executables when using a 32KB branch predictor.
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Figure 7.3: Misprediction rates for a 32KB block-structured ISA predictor
and a 32KB conventional ISA predictor.

executables, the misprediction stall cycles reduced the relative performance improvement
achieved by the block-structured ISA. This relative performance improvement was further
reduced by the fact that the absolute number of misprediction stall cycles was 34% greater
for the block-structured ISA executables than for the conventional [SA executables. This
increase in misprediction stall cycles is due to two reasons: lower prediction accuracy and
greater branch resolution time.

7.2.1 Branch Prediction Accuracy

Figure 7.3 compares the misprediction rate of the block-structured ISA branch predictor
to the conventional ISA branch predictor. The misprediction rate of the block-structured
ISA predictor shows only an 11% increase over the misprediction rate of the conventional ISA
predictor. From a probabilistic viewpoint, the block-structured ISA branch predictor should
be able to achieve the same prediction accuracy as that of the conventional ISA branch
predictor (see chapter 6.1). However, because the individual PHT entries of the block-
structured ISA branch predictor are about 8x larger than those of the conventional ISA
branch predictor, the branch history register length for the block-structured ISA predictor is
three bits shorter than that of the conventional ISA predictor when the predictors are of equal
size. This reduction in the amount of history that the block-structured ISA predictor can
record decreases its accuracy. To demonstrate the importance of these missing history bits,
figure 7.4 compares the prediction accuracies of the block-structured ISA and conventional
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Figure 7.4: Misprediction rates for block-structured and conventional ISA
predictors with 16 bit history registers.

ISA branch predictors where the size of the block-structured ISA predictor has been increased
eight-fold so that its branch history register length is the same as that of the conventional
predictor. By using the same history register length for both predictors, the difference in the
two predictor’s misprediction rates becomes negligible for all the benchmarks except go.
The go benchmark shows a significantly larger increase in misprediction rate than the
other benchmarks even after the performance impact of a shorter history register was taken
into account. This is because a large number of the extra mispredictions suffered by the
block-structured ISA predictor was due to BTB misses. The go benchmark contains a large
number of static branches that are frequently executed which results in a significant number
of BTB misses during the execution of the benchmark. These BTB misses incur a greater
number of mispredictions for the block-structured ISA predictor than for the conventional
[SA predictor because the block-structured ISA predictor’s accuracy is more severely affected
by a BTB miss. When a BTB miss occurs for a conventional [SA predictor, the predictor is
unable to use its PAs component (because the branch’s per-address history register is stored
in its BTB entry), but is still able to generate a prediction using its gshare component.
However, it must wait until the branch instruction in the current block is decoded before the
branch target can be determined. As a result, instruction fetch must be stalled for a cycle
(assuming instruction decode is in the second stage of the pipeline) before the prediction can
be used to determine the address of the next block to be fetched. When a BTB miss occurs
for a block-structured ISA predictor, the predictor is still able to generate a prediction in the
same manner as the conventional ISA predictor and must also wait a cycle until the current
block’s trap operation is decoded to determine the trap targets. However, the key difference
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Figure 7.5: The effect of BTB size on misprediction rates for the go bench-
mark.

for the block-structured ISA predictor is that the trap operation only specifies two of the
current block’s successors (see chapter 4.2.2). If the target index generated by the predictor
corresponds to a target that is not specified by the trap operation, the predictor has no way
to generate the address for that target. As a result, the predictor must alter its prediction
to be one of the targets specified by the trap operation, reducing the prediction accuracy
of the predictor. Figure 7.5 compares the prediction accuracies of the block-structured ISA
and conventional ISA predictors for the go benchmark as the BTB size is increased from
2K entries to 16K entries. The size of both predictors is 32KB. The difference in prediction
accuracy decreases significantly as the BTB size is increased.

7.2.2 Branch Resolution Time

The second reason for the increase in misprediction stall cycles suffered by the block-
structured ISA executables is that the branch resolution time also increases for the block-
structured ISA executables. Figure 7.6 shows the average number of cycles required to
resolve a mispredicted branch for both the block-structured ISA and conventional [SA exe-
cutables. The branch resolution time is 12% longer for the block-structured ISA executables
as compared to the conventional ISA executables. As discussed in chapter 5.1, by combining
separate blocks into a single enlarged block, the block enlargement optimization increases
the average length of time an instruction must wait for its dependencies to resolve. This
phenomenon of increased mispredicted branch resolution time was also observed by Butler
when studying the performance of a conventional ISA processor that fetched and issued
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Figure 7.6: Mispredicted branch resolution times for the block-structured
and conventional ISA predictors.

multiple basic blocks per cycle [3].

Unlike the other benchmarks, the branch resolution times for the go and m88ksim bench-
mark decreases (by 14% and 4%) for the block-structured ISA executables instead of increas-
ing. Part of the decrease for the go benchmark was due to BTB misses and icache misses.
As discussed above, the block-structured ISA branch predictor makes additional mispredic-
tions due to BTB misses. The resolution time for such branches turns out to be faster than
truly mispredicted branches. Icache misses decrease the branch resolution time if they occur
while fetching a branch that will be mispredicted. Instructions that have already been issued
into the machine continue to execute while the icache miss is serviced. As a result, when
the branch is finally fetched and issued, the likelihood that the instructions upon which the
branch depends have already been executed is greater than if the icache miss had not oc-
curred. This, in turn, results in a shorter resolution time for the branch. Eliminating BTB
and icache misses from the execution of the go benchmark reduces the difference in branch
resolution time from 14% to 8%.

The remaining differences in branch resolution times for the go and m88ksim benchmarks
remain unaccounted for. One possible explanation is the conventional ISA executables have
a load balancing problem. When a block of instructions is issued into the processor, the
first instruction in the block is sent to the first functional unit’s node table, the second
instruction is sent to the second functional unit’s node table, and so on. This particular
mapping of instructions to functional units results in a heavier workload for the functional
units in the earlier positions and a lighter workload for the functional units in the later
positions. Stark has shown that such load imbalances can increase the latencies of critical
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Figure 7.7: BTB miss rates for the block-structured ISA and the conven-
tional ISA branch predictors.

paths in the program, lowering performance [50]. By merging multiple blocks into a single
enlarged block, the block enlargement optimization creates a more even distribution of the
workload which speeds up instruction resolution time and in particular, mispredicted branch
resolution time.

7.3 BTB Performance

This section compares the BTB performance for the block-structured ISA branch pre-
dictor to that of the conventional ISA branch predictor. Figure 7.7 shows the BTB miss
rates for a 2K entry BTB. Gcc, go, and vortex were the only benchmarks to have a large
enough number of frequently executed branches to incur a noticeable number of BTB misses.
For the gcc benchmark, the BTB miss rates for the block-structured and conventional ISA
predictors were comparable. For the go benchmark, the block-structured ISA predictor’s
BTB miss rate was over twice that of the conventional ISA predictor. For the vortex bench-
mark, the block-structured ISA predictor’s BTB miss rate was three times smaller than
that of the conventional ISA predictor. These result are deceptive, however. Because the
block-structured ISA combines multiple basic blocks into a single enlarged block enabling it
to fetch the equivalent work of multiple basic blocks each cycle, the block-structured ISA
processor does not need to access the BTB as many times as the conventional ISA processor
to execute the same amount of work. As a result, the block-structured ISA processor may
incur fewer BTB misses but still have a higher BTB miss rate. Table 7.1 lists the absolute
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Benchmark gee comp go ijpeg li  m88k perl vortex
Conventional 462432 310 635518 6203 5H44 5666 1895 126489
Block-Structured | 232831 303 633003 3810 457 981 1503 24640

Table 7.1: BTB miss counts for the block-structured and conventional ISA
branch predictors.

number of BTB misses incurred while executing the block-structured and conventional ISA
executables. In all cases, executing the block-structured ISA executables resulted in fewer
BTB misses. For the gce, go, and vortex benchmarks, the ratio of the absolute number of
BTB misses for the conventional ISA predictor’s to that of the block-structured ISA predic-
tor’s is twice that of the ratio of their BTB hit rates. This ratio indicates that each block
in the block-structured ISA executables contains the equivalent work of two blocks in the
conventional ISA executables, which is consistent with the increase in block size from 5.8 to
10.6 that was seen in chapter 5.

7.4 Increasing the Predictor Size

Figures 7.8-7.15 compares the misprediction rates of the block-structured ISA and
conventional [SA predictors as the predictor sizes are increased from 32KB to 128KB. The
configuration for the 32KB sized block-structured ISA predictor is gshare(13,1)/PAs(13,1).
The configuration for the 32KB sized conventional ISA predictor is gshare(16,1)/PAs(16,1).
To double the size of each predictor to the next cost level, an extra bit of history is added
to each of the component predictor history registers. The average misprediction rate of the
block-structured ISA predictor decreases from 5.3% at 32KB to 4.6% at 128KB. The average
misprediction rate of the conventional ISA predictor decreases from 4.9% at 32KB to 4.0% at
128KB. These figures show two interesting trends. First, for the compress and ijpeg bench-
marks, the conventional ISA predictor’s misprediction rate decreases at a greater rate than
the block-structured ISA predictor’s misprediction rate. Second, for the m88ksim, perl, and
vortex benchmarks, the misprediction rates for the block-structured ISA and conventional
ISA branch predictors are almost identical.

For the majority of the benchmarks, the misprediction rates for both the block-structured
ISA and conventional ISA predictors decreased at the same rate. However, for the compress
and ijpeg benchmarks, the conventional ISA predictor misprediction rate decreases at a
greater rate. This is due to the block-structured ISA predictor’s inability to take full advan-
tage of the hybrid predictor. The power of hybrid branch prediction is that it enables the
branch predictor to choose the most appropriate prediction scheme to use for predicting each
branch. Because the block-structured ISA predictor is predicting multiple branches simulta-
neously (i.e. the branches that are grouped together in an enlarged block) when it generates
the target index of the next block to be fetched, the predictor is constrained to use the same
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Figure 7.8: Misprediction rates for the gcc benchmark for block-structured
ISA and conventional ISA branch predictors of size 32KB to
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Figure 7.9: Misprediction rates for the compress benchmark for block-
structured ISA and conventional ISA branch predictors of size
32KB to 256KB.
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Figure 7.10: Misprediction rates for the go benchmark for block-structured
ISA and conventional ISA branch predictors of size 32KB to
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Figure 7.11: Misprediction rates for the ijpeg benchmark for block-
structured ISA and conventional ISA branch predictors of size
32KB to 256KB.
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Figure 7.12: Misprediction rates for the xlisp benchmark for block-
structured ISA and conventional ISA branch predictors of size
32KB to 256KB.
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Figure 7.13: Misprediction rates for the m&88ksim benchmark for block-
structured ISA and conventional ISA branch predictors of size
32KB to 256KB.
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Figure 7.14: Misprediction rates for the perl benchmark for block-structured
ISA and conventional ISA branch predictors of size 32KB to

256 KB.
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Figure 7.15: Misprediction rates for the vortex benchmark for block-
structured ISA and conventional ISA branch predictors of size
32KB to 256KB.
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predictor component for predicting these branches. The conventional ISA predictor has the
freedom to use any predictor component for each branch it encounters because it predicts
the branches one at a time. This difference is emphasized at the larger predictor sizes for
compress and ijpeg. At the smaller predictor sizes, the gshare predictor component performs
as well or better for many of the branches in compress and ijpeg so the hybrid predictor
spends most of its time selecting the gshare component. However, as the predictor size is
increased, the PAs predictor’s accuracy increases significantly. As a result, the number of
times for which it desirable for the hybrid predictor to switch from one component to the
other as it proceeds from one branch to the next in the dynamic instruction stream increases.
Because the conventional ISA predictor is able to take full advantage of this phenomenon,
it 1s able to achieve a larger reduction in misprediction rate than the block-structured ISA
predictor.

The misprediction rates for the block-structured ISA and conventional ISA branch predic-
tors are almost identical for the m88ksim, perl, and vortex benchmarks because the branches
within these benchmarks are very easy to predict. This is evidenced by the low misprediction
rates achieved for all three benchmarks. The misprediction rate remains almost constant as
the predictor size is increased indicating that the predictors require relatively short history
lengths to capture enough information to accurately predict these branches. This negates
the block-structured ISA predictor’s disadvantage of having shorter history lengths than the
conventional ISA predictor. Furthermore, both the gshare and PAs predictor components
perform equally well in predicting these branches. As a result, the block-structured ISA pre-
dictor’s reduced flexibility in switching from one component predictor to the other becomes
less of a handicap. Because the major disadvantages of the block-structured ISA predictor
do not come into play for these benchmarks, the block-structured ISA predictor is able to
achieve almost the same prediction accuracy as that of the conventional ISA predictor.

7.5 Block Enlargement Effects

This section examines the impact on prediction accuracy of adding function inlining and
the profile-based approach to enforcing the max successor restriction to the block enlargement
optimization. Figure 7.16 shows the misprediction rates achieved by the gshare(13,1)/PAs(13,1)
configuration of the block-structured ISA branch predictor for executables compiled with the
three different block enlargement variations. The figure shows two interesting trends: func-
tion inlining provides a small improvement in prediction accuracy for half of the benchmarks
and the profile-based approach to enforcing the max successor constraint significantly im-
proves prediction accuracy for the gcc and go benchmarks.

The improvement in prediction accuracy provided by inlining may be due to the fact
that the dynamic behavior of a branch within a function may vary according to the program
location from which the function was called!. Suppose such a function with such a branch
existed. If the function is not inlined, the branch predictor would have to make its predictions
for that branch based on an average of all the different dynamic behavior exhibited by the
branch at each of its function’s call sites. By inlining the function at each of its call sites,

Young and Smith observed this correlation between function call site and branch behavior and used it
to improve static branch prediction accuracy [58].
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Figure 7.16: Branch misprediction rates for the three variations of the block
enlargement optimization.

a separate copy of the branches would be created for each call site. This would enable the
branch predictor to tailor its predictions to the specific dynamic behavior of each inlined
copy of the branch.

The improvement in prediction accuracy for the gcc and go benchmarks provided by the
profile-based approach to enforcing the max successor constraints was due to the profile-based
approach reducing the impact of BTB misses on branch prediction accuracy. As discussed
above, BTB misses reduce the accuracy of the block-structured ISA branch predictor because
the predictor is constrained by a BTB miss to choosing its prediction from the two targets
specified by the current block’s trap operation instead of choosing its prediction from all
the possible successors to the current block. The profile-based approach reduces the loss
in prediction accuracy due to BTB misses by using the program profile to determine which
successor on the taken side of a given block’s trap operation will occur most frequently and
which successor on the not taken side of the trap will occur most frequently. The profile-
based approach then selects these two successors to be the targets of the trap. By setting the
trap targets to be the most frequently occurring successors instead of selecting the targets
at random, the profile-based approach is able to improve the accuracy of the predictions
made by the block-structured ISA branch predictor during a BTB miss. This advantage led
to improvements in prediction accuracies for only the gcc and go benchmarks because they
were the only two benchmarks that had a significant number of BTB misses.
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Figure 7.17: Misprediction rates for branch predictors with and without the
target count extension.

7.6 Block-Structured ISA Extensions

This section examines the performance benefits of the target count and target mapping
extensions to the block-structured ISA branch predictor.

7.6.1 Target Count

As discussed in chapter 6.2.2, each enlarged block is tagged with the minimum number
of bits required to uniquely specify all the block’s successors (i.e. the log of the number of
targets for the block). The block-structured ISA branch predictor uses this information to
determine how many bits to take from the predicted target index to shift into the branch
history register. Figure 7.17 evaluates the performance benefit of using the block’s target
count to control the number of bits shifted into the branch history register. It compares
the misprediction rate of a gshare(16,1)/PAs(16,1) block-structured ISA branch predictor
that uses the target count extension to the misprediction rate of an identically configured
predictor that always shifts in the complete target index. Ignoring the target count increased
the misprediction rate by 13% which translates to a 2.2% increase in execution time.

7.6.2 Target Mapping

The target map associates each successor of a block to a unique target. This mapping is
specified by the compiler and stored in the BTB. As discussed in chapter 6.3 this mapping
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Figure 7.18: Misprediction rates for branch predictors with and without
compiler specified target mappings.

could also be generated dynamically by the hardware. The compiler was chosen to specify
the mapping to guarantee that it remained constant even in the event of BTB misses. Fig-
ure 7.18 shows the performance benefit of using the compiler to specify the target mapping.
It compares the misprediction rate of a gshare(16,1)/PAs(16,1) block-structured ISA branch
predictor with a 2K entry BTB that uses a compiler specified target mapping to the mis-
prediction rate of an identically configured predictor that uses a hardware specified target
mapping. As expected, go and gcc are the only two benchmarks that show any change in
prediction accuracy because all the other benchmarks have an insignificant number of BTB
misses. The go benchmark had a 7.5% increase in misprediction rate that translated to a
3.4% increase in execution time. The gcc benchmark had a 2.5% increase in misprediction
rate that translated to a .6% increase in execution time.

7.7 Overall Performance

The performance of the block-structured ISA executables compiled with inlining and
the profile-based approach to enforcing max successor constraints is compared to that of
the conventional ISA executables compiled with inlining. The execution times for these
two sets of executables are shown in figure 7.19. Both sets of executables were the highest
performing versions for their respective ISAs. The block-structured ISA branch predictor
used the gshare(13,1)/PAs(13,1) configuration. The conventional ISA branch predictor used
the gshare(16,1)/PAs(16,1) configuration. Both predictors are 32KB in size. The execution
times for the block-structured ISA executables were on average 15% faster than those of the
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Figure 7.19: Execution times for block-structured and and conventional ISA
executables when using a 32KB predictor.

conventional ISA executables.

In this comparison, as well as many others in this chapter, the go benchmark stands out as
the block-structured ISA executable with the worst performance relative to its corresponding
conventional ISA executable. The go benchmark performs so poorly because it includes many
of the attributes that negate the performance benefits provided by block-structured ISAs and
block enlargement. As was shown in previous sections, the go benchmark has a large number
of icache misses and the code duplication incurred by the block enlargement optimization
significantly increases that number. Furthermore, the block-structured ISA branch predictor
fares the worst against the conventional ISA branch predictor for the go benchmark because
of its shorter history length and the significant number of BTB misses. Because of the
increased penalties for icache misses and branch mispredictions, the block-structured ISA
executable performs worse than the conventional ISA executable. Further work needs to be
done to address these issues.

7.8 Summary

The key results presented in this chapter are:

e The block-structured ISA branch predictor achieves a prediction accuracy that is com-
parable to that of the conventional ISA branch predictor. For the 32KB cost level, its
misprediction rate is 11% higher than that of the conventional ISA branch predictor
and that is mostly due to the shorter history register lengths that must be used by the
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block-structured ISA branch predictor to compensate for its larger PHT entries.

Block-structured ISA executables do not incur more BTB misses than conventional ISA
executables. In fact, because multiple blocks can be combined into a single enlarged
block, the block-structured ISA executables often incur significantly fewer BTB misses
than the conventional ISA executables.

The mispredicted branch resolution time is 12% longer for block-structured ISA ex-
ecutables than for conventional I[SA executables. As a result, a mispredicted branch
incurs a larger penalty for a block-structured ISA executable than for a conventional
ISA executable.

For real branch predictors of size 32KB, block-structured ISAs show a performance
improvement of 15% as compared to conventional ISAs.
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CHAPTER 8

Block Enlargement for Scientific Code —
Measurements and Analysis

This chapter examines the performance benefit of block enlargement optimizations for
scientific code. A separate chapter is devoted to the performance of scientific code because
scientific code differs in three ways from the integer code studied in the previous chapters
that make scientific code more amenable to block enlargement. First, the basic blocks in
scientific code are almost twice as large as those in integer code. As a result, the block
enlargement optimization is able to create even larger enlarged blocks than those created for
integer code. In fact, because the basic blocks for scientific code are so large (on the order of
ten instructions), machines with issue widths of 32 instructions are considered in this chapter
in addition to the 16 wide issue machines considered in the previous chapters. Second, the
conditional branches in scientific code can be predicted with a very high degree of accuracy.
This eliminates the negative effect on performance due to branch mispredictions which was
discussed in chapter 7. Third, scientific programs are significantly smaller than their integer
counterparts and as a result, have significantly smaller icache requirements. Because the
icache requirements for scientific programs are so small, the code duplication incurred by
block enlargement will have little effect on performance.

8.1 The Base Block Enlargement Optimization

Using the block enlargement optimization described in section 5.1, the compiler generated
block-structured ISA executables for the SPEC{p95 benchmarks for a 16 and a 32 wide issue

machine !

. Figure 8.1 compares the performance of the block-structured ISA executables
to the performance of the corresponding conventional [SA executables on a 16 wide issue
machine under the assumption of perfect branch prediction. The graph shows the total
number of cycles required to execute each benchmark. Figure 8.2 compares the average
block sizes for the two sets of executables.

The block-structured ISA executables for the 16 wide issue machine showed little perfor-

mance improvement over the conventional ISA executables, because the block enlargement

!The executables generated for the 32 wide issue machine were compiled with the maximum block size
set to 32.
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Figure 8.1: Performance comparison of block-structured ISA executables to
conventional ISA executables for a 16 wide machine with perfect
branch prediction.
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Figure 8.2: Average block sizes for block-structured and conventional ISA
executables for a 16 wide machine.
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Figure 8.3: Performance comparison of block-structured ISA executables to
conventional ISA executables for a 32 wide machine with perfect
branch prediction.

optimization was unable to significantly increase the average block size. The average block
size for the block-structured ISA executables is 10.6 as compared to 10.1 for the conventional
ISA executables. The maximum block size constraint was the major reason why the block
enlargement optimization was unable to significantly increase the block size. Given that the
average block size before block enlargement was ten instructions, the majority of the blocks
formed by block enlargement had more than sixteen instructions. The two exceptions to this
observation were tomcatv and su2cor. Both benchmarks had average block sizes of less than
six instructions for the conventional ISA executables, but showed little increase in block size
for the block enlarged executables for the 16 wide machine. The major reason why the block
enlargement optimization was unable to significantly increase the block size for these two
benchmarks was the call/return constraint. The call/return constraint accounted for a third
of the packet breaks in these two benchmarks.

Figure 8.3 compares the performance of the block-structured ISA executables to the
performance of the corresponding conventional ISA executables on a 32 wide issue machine
under the assumption of perfect branch prediction. Figure 8.4 compares the average block
sizes for the two sets of executables.

The block-structured ISA executables for the 32 wide machine achieved an average re-
duction in execution time of 11%. The average block size for these executables is 15.8, a
34% increase in size over the conventional ISA block size of 11.7. The major reason why the
block enlargement optimization was not able to further increase the block size was due to the
occurrence of call/returns. Inlining may lead to further increases in block size. Because the
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Figure 8.4: Average block sizes for block-structured and conventional ISA
executables for a 32 wide machine.

SPEC{p95 benchmarks are so small, very aggressive levels of inlining can be performed for
these benchmarks without significantly affecting the icache hit rate, increasing the likelihood
that inlining will lead to significant performance gains.

8.2 ICache Performance

The number of icache miss cycles was measured for both the block-structured and con-
ventional ISA executables, running on both the 16 and 32 wide issue machines. In all cases,
the number of icache miss cycles was less than 1% of the total execution time. The code
duplication due to block enlargement had no significant effect on performance. This result is
not surprising given the aforementioned observation that scientific programs have extremely
low icache requirements.

8.3 Branch Prediction Performance

This section considers the effect of branch prediction on performance for the SPEC{p95
benchmarks. The branch predictors used for the experiments in this section were the same
32KB configurations used in chapter 7 (gshare(13,1)/PAs(13,1) for the block-structured ISA
predictor and gshare(16,1)/PAs(16,1) for the conventional ISA branch predictor). Figure 8.5
compares the prediction accuracy for the conventional ISA and the block-structured ISA pre-
dictor for the 32 wide machine. For most of the benchmarks, the misprediction rate for all
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Figure 8.5: Misprediction rates for block-structured and conventional ISA
executables.

three cases is very low. The notable exceptions to this rule are the mgrid and turb3d bench-
marks. The block-structured ISA branch predictor show a notable increase in misprediction
rate for these two benchmarks. The key reason for this increase in misprediction rate is that
the mgrid and turb3d benchmarks both perform calculations on a three dimensional space of
size 16x16x16. As a result, many of the loops in these benchmarks iterate for exactly sixteen
iterations. The conventional ISA predictor’s history register is sixteen bits long, which is just
long enough to predict such loop branches with 100% accuracy. The block-structured ISA
predictor’s history register is thirteen bits long ? which is too short to enable the predictor
to catch the iteration in which the loop branch exits the loop.

Figure 8.6 shows the effect of real branch prediction on execution time for the block-
structured ISA executables executing on a 32 wide machine. For most benchmarks, the
execution time with real branch prediction is comparable to that with perfect branch pre-
diction which is not surprising given the low misprediction rates achieved for the SPEC{p95
benchmarks. The benchmarks that show a significant increase in execution time with real
branch prediction are turb3d, tomcatv, and su2cor. The increase in execution time for the
turb3d benchmark is due to the increase in misprediction rate discussed above. On the other
hand, the tomcatv and su2cor benchmarks show a significant increase in execution time de-
spite achieving a low branch misprediction rate for conditional branches because they have
a significant number of indirect branches whose targets are frequently mispredicted. Using
a target cache [5] to predict the targets of these indirect branches may significantly improve

2The shorter history register length is due to the increased size of the pattern history table entries.
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Figure 8.6: Execution times for block-structured ISA executables running on
a 32 wide machine with and without perfect branch prediction.

the performance of these two benchmarks.

8.4 Future Directions

The performance improvement achieved by the block enlargement optimization for the
SPEC{p95 benchmarks was very disappointing. As discussed at the beginning of this chap-
ter, given the large blocks, predictable branches, and small icache requirements that are
characteristic of scientific code, the block enlargement optimization should be very effective
for scientific code. However, these initial results point to three directions to investigate to
significantly improve performance.

1. The problem size should be increased. The input data sets used in the experiments
were modified to reduce the problem size so as to reduce the time required to simulate
the benchmarks. Increasing the problem size will increase performance in two ways.
First, increasing the problem size will increase the ratio between the parallel portion
of the benchmark (i.e. the loops) to the sequential portion of the benchmark. The
majority of the large blocks in a benchmark are found in its parallel portion. As
a result, the block enlargement optimization is more effective on this portion of the
benchmark. The majority of the procedure calls and small blocks in a benchmark are
found in its sequential portion. As a result, the block enlargement optimization is less
effective on this portion of the benchmark. By increasing this ratio, the fraction of
executed instructions that are from the parallel portion is increased, increasing the
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performance benefit of block enlargement. Second, increasing the problem size will
increase the number of iterations executed for many loops in the benchmark, reducing
impact of the branch prediction problems discussed above and as a result, increasing
overall prediction accuracy.

. One major constraint that prevented block enlargement from creating larger enlarged
blocks was the max size constraint. Because the initial basic blocks were so large,
the block enlargement optimization was unable to combine many of the blocks in the
benchmarks because the resulting enlarged blocks from such combinations would have
violated the max size constraint. One way to reduce the performance impact of this
constraint would be to enable the block enlargement optimization to combine a block
with only a part of its successor block rather than its entire successor block. With
this partial block enlargement, the opportunities for applying the block enlargement
optimization to the SPEC{p95 benchmarks will be significantly increased, increasing
the average size of the enlarged blocks for these benchmarks.

. Another major constraint that prevented block enlargement from creating larger en-
larged blocks was the occurrence of call and return instructions. As discussed above,
inlining may be an effective solution to this problem. Because the SPEC{p95 bench-
marks are so small, more aggressive levels of inlining can be performed without affecting
the icache hit rate than can be performed for the SPECint95 benchmarks, increasing
the likelihood that inlining will lead to significant performance gains.
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CHAPTER 9

Conclusion

9.1 Contributions

To achieve higher levels of instruction level parallelism, processors are being built with
wider issue widths and larger numbers of functional units. To take full advantage of this
increased execution bandwidth, such processors must be able to fetch instructions at a high
enough rate to feed this bandwidth. However, the instruction fetch mechanisms for such
processors continue to fetch only a single basic block per cycle. Because the average basic
block size for integer programs is approximately five instructions, processors that aim to
exploit aggressive levels of instruction level parallelism (on the order of sixteen instructions
per cycle) must be able to fetch multiple basic blocks each cycle.

To meet the need for higher instruction fetch rates, this dissertation examined the perfor-
mance benefit of using the block enlargement optimization to increase the atomic block size
of a block-structured ISA. Through the block enlargement optimization, the atomic blocks of
the block-structured ISA are combined to form larger atomic blocks. As a result, larger units
of work can be fetched from the icache each cycle without having to fetch non-consecutive
cache lines as is done in past hardware-based approaches to the instruction fetch problem.
Furthermore, the block-structured ISA provides support for the use of dynamic branch pre-
diction in selecting the successor block, rather than restricting the processor to static branch
prediction as is required by past software-based approaches.

This dissertation defined one instance of a block-structured ISA and implemented a com-
piler targeted to that ISA and a simulator to model the performance of a sixteen wide
issue, dynamically scheduled processor that implements that ISA. Using this compiler and
simulator, the performance of programs executing on a block-structured ISA processor was
compared to the performance of programs executing on a conventional ISA processor for the
SPECint95 benchmarks. The block-structured ISA processors achieved a 28% performance
improvement over conventional ISA processors when perfect branch prediction was assumed
and a 15% performance improvement when real branch prediction was used. These perfor-
mance improvements were due to the block enlargement optimization increasing the average
block size from 5.8 instructions to 10.6 instructions.

This dissertation also presented the design of a dynamic branch predictor for block-
structured ISAs that was shown to have a misprediction rate that was only 11% larger than
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that of an aggressive branch predictor of the same size for a conventional ISA. The majority of
this difference in prediction accuracy was due to the block-structured ISA predictor having
PHT entries that were larger than those of the conventional ISA predictor. As a result,
when considering predictors of equal size, the conventional ISA predictor was able to record
more branch history than the block-structured ISA predictor which enabled it to make more
accurate predictions.

Finally, this dissertation examined the performance benefit of block enlargement for
the SPECtp95 benchmarks. For a 32 wide issue HPS processor, the block-structured ISA
executables achieved an 11% increase in performance over the conventional ISA executables
and a 34% increase in block size (11.7 instructions to 15.8 instructions). The max size
and call/return constraints were shown to be the major obstacles to higher levels of block
enlargement.

This dissertation focused on the improvements in instruction fetch rate provided by
block-structured ISAs and did not consider the implementation benefits provided by block-
structured [SAs. By reducing the hardware complexity of various microarchitectural mecha-
nisms, block-structured ISAs enable the implementation of extremely wide issue processors.
The performance benefits of these features would further increase the performance advantage
of block-structured ISA processors over conventional ISA processors. In addition, as new
algorithms are developed that increase the instruction level parallelism in programs that use
them, the ability to implement wide issue processors as well as increasing the instruction
fetch rate for such processors will become even more important.

9.2 Future Directions

The dissertation was only a first step in studying the performance benefits of block-
structured ISAs. Future directions for further increasing the performance of block-structured

ISAs include:

o Block-structured ISAs still leave a significant fraction of the total fetch bandwidth
unused. Further performance improvements can be achieved by extending the block
enlargement optimization so that even larger blocks are formed. As shown in chap-
ter 5.3, the major obstacle to higher levels of block enlargement is the occurrence of
calls and returns in the program. Function inlining was shown to provide some per-
formance improvement. A more effective solution might be to use a limited form of
function inlining where the block enlargement optimization is given the freedom to
combine a block that ends in a function call with the first block of the called func-
tion. A similar solution can be used for blocks that end in returns, but because such
blocks may have an enormous number of control flow successors, the block enlargement
performed for such blocks must be carefully controlled.

e This dissertation did not investigate the tradeoffs between using trap operations in
place of fault operations. The key difference between using a trap operation instead of
a fault operation is that a mispredicted trap operation does not cause the work in its
associated block to be discarded. The advantage provided by this difference is that the
work in the trap’s block that is on the correct path does not have to be fetched, issued,
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and executed again when the trap is mispredicted. The disadvantage is that the work
in the trap’s block that is on the wrong path must somehow be suppressed when the
trap is mispredicted. This could possibly be done by adding additional code to the
trap’s successor block that negates the effect of the included code from the wrong path
as is done in trace scheduling and superblocks [14, 4, 22]. Given these tradeoffs, there
may be situations in which it is better for the block enlargement optimization to insert
a trap operation instead of a fault operation.

Further increases in prediction accuracy for block-structured ISA branch predictors
can be achieved by:

1. Thoroughly exploring the design space to determine the best configuration for the
branch predictor studied in this dissertation

2. Searching for more efficient implementations of the branch predictor so that the
length of its branch history registers are comparable to that of an equal-sized
conventional ISA predictor

3. Extending the predictor so that a different predictor component can be used for
each branch that is being predicted in a given cycle

This dissertation did not investigate the performance benefit of including predicated ex-
ecution in a block-structured ISA. By eliminating branches (in particular, hard to pre-
dict branches), predicated execution will help both conventional and block-structured
[SAs. However, because the average amount of time required to resolve a mispredicted
branch tends to be higher for block-structured ISAs, predicated execution will provide
a larger performance benefit for block-structured ISAs than for conventional [SAs.

As discussed in chapter 8.4, the performance benefit achieved by the block enlargement
optimization for the SPEC{p95 benchmarks may be significantly improved by increas-
ing the problem size simulated to increase the parallel portion of the benchmarks, using
partial block enlargement to reduce the effect of the max block size constraint, and
aggressively inlining function calls to reduce the effect of the call/return constraint..
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APPENDIX A
The Basic Block Fetch Bottleneck

This appendix illustrates the performance bottleneck created when a wide issue processor
is constrained to fetching at most one basic block per cycle. The following figures illustrate
the performance of a sixteen wide issue, dynamically scheduled processor with perfect branch
prediction executing the eight SPECint95 benchmarks. The figures plot the execution time

and average packet size achieved by the processor as the number of basic blocks that could
be fetched each cycle was increased from one to four.
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Figure A.4: Average packet sizes for the compress95 benchmark.

92



Execution Time
(Millions of cycles)
w
e

Packet Size

o1
T

NN
T

N
T

[ -
T

1 2 3 4

Blocks Fetched/Cycle

Figure A.5: Execution times for the go benchmark.

16+

[EEN
Y

(o]
|

04
0

Figure A.6: Average packet sizes for the go benchmark.

1 2 3 4

Blocks Fetched/Cycle

93



Execution Time
(Millions of cycles)
w
e

Packet Size

o1
T

NN
T

N
T

[ -
T

0 1 2 3 4

Blocks Fetched/Cycle
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Figure A.8: Average packet sizes for the ijpeg benchmark.
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Figure A.14: Average packet sizes for the perl benchmark.
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APPENDIX B
The SPECint95 Experimental Data Sets

This section lists the test and training data sets used to execute the SPECint95 bench-
marks that were modified from the data sets distributed with the benchmarks.

B.1 Compress Test Data Set — 30KB.in

The compress test data set was modified to generate a 30KB array of random data to be
compressed. The seed for the random number generator was taken from one of the SPEC
reference data sets. The following is a listing of 30KB.in:

30000 q 2131

B.2 Compress Test Data Set — 300KB.in

The compress test data set was modified to generate a 300B array of random data to be
compressed. The seed for the random number generator was taken from one of the SPEC
reference data set. The following is a listing of 300B.in:

300 e 2231

B.3 Vortex Test Data Set — test.in

The search parameters in the vortex test data set were modified to reduce the running
time of the benchmark. The following is a listing of test.in:

MESSAGE_FILE test.msg
OUTPUT_FILE test.out

DISK_CACHE bmt .dsk
RENV_FILE bendian.rnv
WENV_FILE bendian.wnv

PRIMAL_FILE vortex.pml
PARTS_DB_FILE parts.db
DRAW_DB_FILE draw.db
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EMP_DB_FILE emp.db
PERSONS_FILE persons.1k
PART_COUNT 100
OUTER_LOOP 2
INNER_LOOP 4
LOOKUPS 10
DELETES 10
STUFF_PARTS 10
PCT_NEWPARTS 50
PCT_LOOKUPS 25
PCT_DELETES 50
PCT_STUFFPARTS 100
TRAVERSE_DEPTH 5
FREEZE_GRP 1
ALLOC_CHUNKS 10000
EXTEND_CHUNKS 5000
DELETE_DRAWS 1
DELETE_PARTS 0
QUE_BUG 1000
VOID_BOUNDARY 67108864
VOID_RESERVE 1048576

B.4 Vortex Test Data Set — profile.in

The vortex training set was generated by modifying the the search parameters in the
vortex test data set as well as changing the input persons file. The following is a listing of

profile.in:

MESSAGE_FILE
OUTPUT_FILE

profile.msg
profile.out

DISK_CACHE bmt . dsk
RENV_FILE bendian.rnv
WENV_FILE bendian.wnv
PRIMAL_FILE vortex.pml
PARTS_DB_FILE parts.db
DRAW_DB_FILE draw.db
EMP_DB_FILE emp.db
PERSONS_FILE persons.15
PART_COUNT 10
OUTER_LOOP 1
INNER_LOOP 1

LOOKUPS 10

DELETES 10
STUFF_PARTS 10
PCT_NEWPARTS 50
PCT_LOOKUPS 25
PCT_DELETES 50
PCT_STUFFPARTS 100
TRAVERSE_DEPTH 1
FREEZE_GRP 1
ALLOC_CHUNKS 10000
EXTEND_CHUNKS 5000
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DELETE_DRAWS 1
DELETE_PARTS O
QUE_BUG 1000
VOID_BOUNDARY 67108864
VOID_RESERVE 1048576

101



APPENDIX C
The SPECfp95 Experimental Data Sets

This section describes the test data sets used to execute the SPEC{p95 benchmarks.
These data sets were based upon the reference data sets distributed with the benchmarks.
The data sets were chosen so that a complete run of each benchmark lasted no more than
a few hundred million instructions. Some of the benchmarks had the problem parameters
hardcoded into their source code. In those cases, the benchmark source code was modified
appropriately.

C.1 Tomcatv

The tomcatv test data set was modified so that the size of the mesh generated was
reduced from 513x513 to 129x129. The following is a listing of the input file:

129,5,0.040,1.040,.1d0
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C.2 Swim

The swim test data set was modified so that the size of the plane simulated was reduced
from 512x512 to 128x128 and the iteration count was reduced from 10 to 1. The following
is a listing of the input file:

20.
.25Eb
.25Eb
1.E6
.001
1

1

512
512

C.3 Su2cor

The su2cor test data set was modified so that the size of the grid simulated was reduced
from 8x8x8x16 to 4x4x4x8. The following is a listing of the input file:

44448

C.4 Hydro2d

The hydro2d source code was modified so that the size of the surface simulated was
reduced from 402x160 to 122x48. To accomplish this, the MP parameter in the source code
was modified from 402 to 122 and the NP parameter was modified from 160 to 48.
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C.5 Mgrid

The mgrid test data set was modified so that the size of the grid simulated was reduced
from 64x64x64 to 16x16x16 and the number of iterations to simulate was reduced from 40
to 20. The following is a listing of the input file:

4
20
1
NEGATIVE CHARGES AT
( 65, 48, 27) ( 14, 31, 30) ( 41, 51, 59) ( 31, 64, 56) ( 34, 39, 2)
( 28, 27, 27) ( 27, 16, 38) ( 20, 47, 38) ( 52, 17, 25) ( 40, 62, 53)
POSITIVE CHARGES AT
( 60, 17, 56) ( 60, 21, 64) ( 53, 48, 28) ( 10, 18, 50) ( 19, 45, 55)
( 25, 49, 59) ( 22, 34, 60) ( 47, 25, 51) ( 41, 2, 7) ( 29, 34, 47)

C.6 Turb3d

The turb3d source code was modified so that the size of the cube simulated was reduced
from 64x64x64 to 16x16x16. To accomplish this, the IX, IY, and IZ parameters in the source
code were reduced from 64 to 16.

C.7 Apsi

The apsi test data set was modified so that the size of the grid simulated was reduced
from 128x1x32 to 32x1x8 and the number of timesteps to simulate was reduced from 720 to
100. The following is a listing of the input file:

———————————————————————————————————————————————— ! 00001000
¥k D ATA FOR MESO-RUN **xx ! 00002000
———————————————————————————————————————————————— ! 00003000
INTEGER CONSTANTS ! 00004000
———————————————————————————————————————————————— ! 00005000
LEGENT ! VALUE ! 00006000
———————————————————————————————————————————————— ! 00007000
GRID POINTS IN x DIRECTION ! 16 ! 00008000
GRID POINTS IN y DIRECTION ! 1 ! 00009000
GRID POINTS IN z DIRECTION ! 8 ! 00010000
MOMENTUM SMOOTHING RATIO ! 2 ! 00011000
SPECTRAL FILTERING (O=n,1=y) ! 1 ! 00012000
NUMBER OF TIME STEPS ! 100 ! 00013000
EXCHANGE LEAP TO EULER FREQ ! 20 ! 00014000
VERTICAL SCALE (O=reg,l=map) ! 1 ! 00015000
BIAS FOR HEATING FUNCTION ! 1 ! 00016000
HORIZONTAL FILTERING STEP ! 2000 ! 00017000
BATCH MODE RUN (0=y,1=n) ! 0 ! 00018000
VERTICAL SCHEME (0=Pade 1=CN)! 0 ! 00019000
Z-SMOOTHING (1=YES,0=NO) ! 0 ! 00020000
RERUN ->SAVED DATA (O=n,i=y) ! 0 ! 00021000
SALVAGE DATA PARAMETER STEP ! 100 ! 00022000
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SAVE GRAPH DATA (O0=N, 1=Y)

SAVE GRAPH DATA EVERY OTHER

NUMBER OF C SOURCES/SINKS

NUMBER OF
SOURCE #1
I.c. #1
SOURCE #2
I.C. #2
x-LOCATION
x-LOCATION
x-LOCATION
x-LOCATION
y-LOCATION
y-LOCATION
y-LOCATION
y-LOCATION
z-LOCATION
z-LOCATION
z-LOCATION
z-LOCATION
STRENGTH
STRENGTH
STRENGTH
STRENGTH
x~-SPREAD
x~-SPREAD
x~-SPREAD
x~-SPREAD
y-SPREAD
y-SPREAD
y-SPREAD
y-SPREAD
z-SPREAD
z-SPREAD
z-SPREAD
z-SPREAD
VARTANCE
VARTANCE
VARTANCE
VARTANCE

STORE AS A THIRD

INITIAL CONDITIONS
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(1=Gauss, 0=Delta)
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OF
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OF
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OF
OF
OF
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SOURCE
IN CON
SOURCE
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SOURCE
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SOURCE
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SOURCE
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SOURCE
IN CON
SOURCE
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SOURCE
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SOURCE
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SOURCE
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SOURCE
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SOURCE
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(I-GP)!
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Sxy OF SOURCE 1
Sxy OF IN CON 1
Sxy OF SOURCE 2
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STORE AS A FIRST =z-LEVEL
STORE AS A SECOND z-LEVEL

z-LEVEL

STORE AS A FOURTH z-LEVEL

HOMOGENIOUS y (0=2-D, 1=3-D)
MEAN FIELD RECALCULATE STEPS
UG RATE OF CHANGE (cm/hour)
VG RATE OF CHANGE (cm/hour)
TO RATE OF CHANGE (K/1Ohour)
TN RATE OF CHANGE (K/1Ohour)

CPU INFORMATION FREQUENCY
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00023000
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00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000



LEGENT ! VALUE ! 00077000

———————————————————————————————————————————————— ! 00078000
STARTING TIME (sec) ! 0.0 ! 00079000
DELTA t (TIME-STEP) (sec) ! 120.0 ! 00080000
STARTING x (m) ! 0.0 ! 00081000
DELTA x (x-STEP) (m) ! 8000.0 ! 00082000
DIFFUSSIVITY Kx (m*m/sec) ! 7000.0 ! 00083000
STARTING y (m) ! 0.0 ! 00084000
DELTA y (y—STEP) (m) ! 5000.0 ! 00085000
DIFFUSSIVITY Ky (m*m/sec) ! 1000.0 ! 00086000
STARTING =z (m) ! 0.0 ! 00087000
DELTA z (z-STEP) (m) ! 100.0 ! 00088000
MIN DIFFUSSIVITY Kz(m*m/sec)! 0.1 ! 00089000
SPREAD OF STRECHED VARIABLE a! 0.3 ! 00090000
AMPLITUDE OF STRECHED VBL b ! 120.0 ! 00091000
HEIGHT H OF OBSERVED DATA (m)! 1000.0 ! 00092000
Ug(H) GEOSTROPHIC WIND (m/s) ! 7.0 ! 00093000
Vg(H) GEOSTROPHIC WIND (m/s) ! 0.0 ! 00094000
POTENTIAL TEMPERATURE AT z=0 ! 290.0 ! 00095000
POTENTIAL TEMPERATURE AT z=H ! 295.0 ! 00096000
STEP FOR WIND ITERATION delt ! 60.0 ! 00097000
TOLLERANCE FOR ITERATION ! 2000.00002 ! 00098000
UPWINDING FOR CRANK-NICOLSON ! 0.5 ! 00099000
x-SYMMETRY OF LAKE ! 2.8 ! 00100000
x-SPREAD OF LAKE ! 45000.0 ! 00101000
y—-SYMMETRY OF LAKE ! 2.0 ! 00102000
y—-SPREAD OF LAKE ! 20000.0 ! 00103000
URBAN ROUGHNESS LENGTH ! 0.02 ! 00104000
HEAT AMPLITUDE IN DEGREES (K)! 11.00 ! 00105000
HEAT LAG FACTOR IN SECONDS ! 50400.00 ! 00106000
CENTRAL LATITUDE IN DEGREES ! 40.00 ! 00107000
IMPLICIT HOR SMOOTHING LAMDA ! 0.5 ! 00108000
X-SYMMETRY OF SPECTRAL FILTER! 2.0 ! 00109000
Y-SYMMETRY OF SPECTRAL FILTER! 2.0 ! 00110000
X-SPREAD OF SPECTRAL FILTER ! 85000.0 ! 00111000
Y-SPREAD OF SPECTRAL FILTER ! 50000.0 ! 00112000
FILTER BASE NUMBER ! .1 ! 00113000
SURFACE LAYER FRACTION OF BL ! .05 ! 00114000
INITIAL MIXED LAYER HEGHT (m)'! 200.0 ! 00115000
INITIAL ROUGHNES OVER WATER ! .01 ! 00116000
ROUGHNES LENGTH OVER LAND (m)! .1 ! 00117000
————————————————————————————————————————————————— 00118000
C.8 Waveb

The wave) test data set was modified so that the size of the surface simulated was reduced
from 1250x40 to 125x4 and the particle distribution from 5000x100 to 500x20. The following
is a listing of the input file:

number of steps
4
particle distribution
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500 20
nplots

2

grid size
125 4
Xmax ymax
62.5 2.0
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APPENDIX D
Inlined Call Sites

Tables D.1- D.7 lists the call sites that were selected for inlining for each of the bench-
marks.

Call Site Call Site  Called Function
Called Function | Call Site Module Line Number Frequency Size (bytes)
getbyte compress95.c 477 1.58% 80
putbyte compress9H.c 739 1.57% 48
putbyte compress9H.c 621 0.97% 48
getcode compress95.c 703 0.88% 440
output compress9H.c 502 0.87% 540
readbytes compress95.c 796 0.12% 132

Table D.1: Inlined call sites for the compress benchmark.

Call Site Call Site  Called Function
Called Function | Call Site Module Line Number Frequency Size (bytes)
match?2 g2shp.c 2331 0.32% 448
mrglist g25.c 182 0.22% 576
match g2shp.c 2328 0.22% 448
markspot g25.c 249 0.15% 604
dellist g2shp.c 2334 0.11% 536

Table D.2: Inlined call sites for the go benchmark.
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Call Site Call Site  Called Function
Called Function | Call Site Module Line Number Frequency Size (bytes)
emit_bits jchuff.c 390 0.24% 312
emit_bits jchuff.c 395 0.24% 312

Table D.3: Inlined call sites for the ijpeg benchmark.

Call Site Call Site  Called Function
Called Function | Call Site Module Line Number Frequency Size (bytes)
xlarg xlsubr.c 50 0.18% 80
xlarg xlsubr.c 75 0.27% 80
xleval xlsubr.c 78 0.27% 232
consd xlsym.c 68 0.14% 48
cons xlsym.c 72 0.14% 56
xIxgetvalue xlsym.c 79 0.75% 164
xlobgetvalue xlsym.c 91 0.75% 376
livecar xldmem.c 294 0.87% 176
livecdr xldmem.c 303 0.27% 132
livecdr xldmem.c 324 0.59% 132
mark xldmem.c 355 0.28% 344
xlgetvalue xleval.c 34 0.75% 68
xlevlist xleval.c 105 0.23% 196
consa xleval.c 190 0.48% 48
iskeyword xleval.c 256 0.14% 88
xlbind xleval.c 259 0.14% 72
xlygetvalue xlobj.c 90 0.75% 104
xlygetvalue xlobj.c 91 0.75% 104

Table D.4: Inlined call sites for the xlisp benchmark.
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Call Site Call Site  Called Function

Called Function | Call Site Module Line Number Frequency Size (bytes)
display _trace dpath.c 860 0.39% 752
check_scoreboard | simtime.c 75 0.39% 444
Data_path go.c 120 0.39% 800
ckbrkpts dpath.c 86 0.39% 284
getmemptr dpath.c 96 0.39% 120
test_issue dpath.c 105 0.39% 264
Statistics dpath.c 105 0.39% 316
do_issue dpath.c 105 0.39% 64
uext dpath.c 105 0.39% 124
execute dpath.c 105 0.39% 4404
killtime dpath.c 105 0.39% 248

Pc dpath.c 105 0.39% 628

Table D.5: Inlined call sites for the m88ksim benchmark.

Call Site Call Site  Called Function
Called Function | Call Site Module Line Number Frequency Size (bytes)
str_numset eval.c 1745 1.31% 80
str_numset str.c 281 0.52% 80
str_free cmd.c 676 0.26% 272
str_sset eval.c 459 0.26% 524
str_mortal eval.c 224 0.26% 228
str_inc eval.c 226 0.26% 684
str_new str.c 1262 0.26% 136
str_sset str.c 1264 0.26% 524

Table D.6: Inlined call sites for the perl benchmark.
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Call Site Call Site  Called Function
Called Function Call Site Module Line Number Frequency Size (bytes)
Chunk_ChkGetChunk | mem10.c 590 1.01% 324
Chunk_ChkGetChunk | mem10.c 749 0.44% 324
TmFetchCoreDb tm.c 148 0.31% 532
Hm _FetchDbObject tm.c 150 0.31% 180
TmGetObject 0al.c 432 0.31% 208
Mem_GetAddr hm.c 749 0.31% 200
TmFetchCoreDb tm.c 133 0.18% 532
Mem_GetWord tm.c 134 0.18% 228
Chunk_ChkGetChunk | mem10.c 416 0.15% 324
Mem_GetStackPtr mem10.c 417 0.15% 160
Mem_GetWord envl.c 965 0.14% 228
memcpy core0l.c 974 0.13% 196
Ut_StackTrack core0l.c 1014 0.13% 152

Table D.7: Inlined call sites for the vortex benchmark.
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