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Abstract

Memory access latencies are much larger than processor cycle times, and the trend
has been for this gap to increase over time. Cache performance becomes critical in
bridging this gap. However, since it is difficult to make a cache both large and fast,
cache misses are expected to continue to have a significant performance impact. Victim
caching, proposed by Jouppi [7], is an approach to decrease the miss ratio of direct-
mapped caches without affecting their access time. N'TS caching, proposed by Rivers
[10] is a multilateral cache design scheme that improves performance of first-level(L1)
caches based on the temporal locality of the reference pattern. We propose an improve-
ment of these schemes, which we call NT-victim caching. Taking the lead from NTS
design we have a bilateral 1.1 cache, having a main cache (cache A) and a small fully
associative buffer (cache B). Cache B is similar to a victim buffer, and holds the victim
block replaced by a miss. A cache block is temporal if after it is brought into cache,
some word in that block is accessed more than once before the block is replaced. Unlike
Victim caches a block that is hit in cache B is swapped with a block in cache A only
if it is temporal, and in most of our replacement strategies temporal blocks are less
likely to be selected for replacement than non-temporal blocks. Every cache block loaded
into L1 cache is monitored for temporal behavior by a hardware detection unit. Qur
results show that this design reduces the number of swaps between cache A and cache
B, relative to the Victim cache, yet gives a comparable miss ratio.



1 Introduction

Over the last decade, processor cycle time has been decreasing much faster than main
memory access time. In addition, aggressive superscalar machines target 16 instruc-
tions per clock cycle [9]. With these effects, given that about a third of a program’s
instruction mix are memory references, data cache performance becomes even more
critical. However, data caches are not always used efficiently. In this study we focus
on data cache performance optimization.

The design of an on-chip first-level cache involves a fundamental tradeoff between
miss ratio and access time. Tyson et al. [18] show that cache block placement and
replacement strategy can be improved using characteristics of individual load instruc-
tion. In numeric programs there are several known compiler techniques for optimizing
data cache performance. However, integer programs often have irregular access pat-
terns that are more difficult for the compiler to optimize. Our work concentrates on
performance improvement of L1 caches for integer benchmarks.

To have low access times, the main L1 cache is usually designed to have low
associativity[5]. A direct-mapped cache results in the lowest access time, but often
suffers from high miss rate due to conflicts among memory references. In order to
increase data cache effectiveness we investigate methods of data cache management,
where we control the movement and placement of data in the hierarchy based on the
data usage characteristics.

Prior work shows that the performance of a direct mapped L1 cache can be improved
by adding a small fully associative buffer in the same level, the primary examples being
Victim cache, Assist cache, and NTS cache. Victim cache [7] reduces conflict misses
of a direct mapped cache by adding a small fully associative victim buffer that stores
blocks that are recently replaced in the main cache, i.e., recent “victims”. Assist cache
[8] reduces block interference and cache pollution by loading blocks from memory into
a small fully associative buffer. Blocks are promoted to the main cache only if they
exhibit temporal locality. NTS cache [10] uses a small fully associative buffer in parallel
with the main cache for storing and managing blocks containing non-temporal data.

This reduces block conflicts and cache pollution and separates the reference stream



into temporal and non-temporal block references.

In this paper we analyze the above schemes and present a new scheme, which we call
NT-victim caching. In NT-victim cache, the main cache is associated with a small fully
associative buffer. Hardware determines data placement based on dynamic reference
behavior. Our analysis shows that the victim buffer is very effective in reducing conflict
misses. However, Victim caches swap a pair of blocks between the main cache and the
victim buffer on ewvery hit in the buffer. To achieve miss rates comparable to the
Victim cache we retain the basic characteristics of the victim buffer for our small fully
associative buffer. However, to reduce the number of swaps between the main cache
and the fully associative buffer we exploit temporal locality in a fashion similar to NTS
scheme. We use a hardware detection unit to tag each cache block temporal or non-
temporal. A cache block is temporal if after it is brought into cache, some word in that
block is accessed more than once before the block is replaced. Whenever a temporal
block is hit in the fully associative buffer it is swapped with a block in the main cache.
However, non-temporal block hits in the buffer do not result in any movement between
the caches. In addition we exploit temporality when making replacement decisions. Our
results show that using temporal information reduces the number of swaps compared
to the Victim cache, yet gives a comparable miss ratio.

The rest of the paper is organized as follows. We review related work in Section 2.
Section 3 describes our technique for improving L1 cache performance. We discuss the
performance metrics and present details of the simulation and the benchmarks used
for this study in section 4. We present results in section 5, and conclusions and future

work in section 6.

2 Related Work

Optimizing small caches for numerical workloads and reducing conflict misses have re-
ceived extensive examination. One approach proposed by Jouppi [7]is Victim Caching,
where a small fully-associative “victim buffer” is introduced between the L1 direct-
mapped(DM) cache and main memory. Blocks replaced from the L1 cache are stored

in the victim buffer. References that are served by the victim buffer have a very low



miss penalty. Since the victim buffer is fully-associative, blocks that reside in the vic-
tim buffer may be associated with any set of the DM cache. Consequently, the victim
buffer is ideally suited to relieving conflict misses in hot sets. However, in this scheme
whenever a reference hits in the victim buffer, the hit block is swapped with a block in
the main cache. This causes ping-pong swaps if two conflicting blocks are referenced
alternately. For example, consider an access pattern (a3)", where a and 3 are two
conflicting blocks. In a design with a direct mapped cache A, and a fully associative
cache B (victim buffer), we see that a and 3 are swapped between caches A and B
on every reference. Hence this scheme can potentially lead to an excessive number of
swaps.

Agarwal and Pudar [1] present a Column Associative Cache to reduce conflict misses
by dynamically applying a second hashing function during conflicts to place some cache
lines in a different set. This scheme relies on the effectiveness (orthogonality) of the
two hash functions. The latency of checking for a cache hit can increase depending
on the number of links that must be followed to fetch the block. A small hash table
lookup time is critical for good performance of this scheme.

Selective Victim caching proposed by Stiliadis and Varma [14] places incoming
blocks selectively in the main cache (cache A) or a small victim buffer (cache B) using
a prediction scheme. This scheme swaps a block from cache B to cache A based on
its history of use. We take the lead from this scheme in doing selective swaps between
cache A and cache B. However, we improve this scheme by taking into account the
temporality of a block when making swap decisions. For instruction caches, Selective
Victim caching shows dramatic performance improvement compared to Victim caching;
however, it shows no performance improvement for data caches.

Bennett and Flynn [3] propose Prediction Caches that use a history of recent cache
misses to predict future misses. Prediction caches combine the features of prefetching
and Victim caching. This scheme, like Victim caches, helps alleviate hot spots in cache.
However, none of the above four studies addresses the problem of cache pollution.

Unlike the above methods, the HP-7200 Assist Cache [8] places a conventional L1
cache in parallel with a small fully associative cache, guaranteeing a one-cycle lookup

in both units. Blocks from memory are first loaded into the assist cache (cache B) and



are promoted into main cache (cache A) only if they exhibit temporal locality. We
use this idea of temporality in our design when we swap blocks between cache B and
cache A. In the Assist Cache, all the incoming blocks are placed in the small cache B
and the LRU block from cache B is replaced to make room for the incoming block.
This could potentially replace blocks before they have a chance to become temporal.
We improve this scheme by placing all incoming blocks in cache A and giving victims
of replacement a longer lifetime in cache B, so they have a greater chance to become
temporal.

The NTS cache proposed by Rivers and Davidson [10] supplements the conventional
direct-mapped cache (cache A) with a parallel fully associative cache (cache B). This
scheme separates the reference stream into temporal and non-temporal block references.
Blocks are treated as non-temporal until they become temporal. Cache blocks that
are identified as non-temporal when they are replaced are allocated to cache B on
subsequent requests. This decreases the conflicts between temporal and non-temporal
blocks for a place in the same cache. However, NTS caching does not allow swaps
between cache A and cache B. This becomes critical when we have conflicts among
temporal blocks or conflicts among non-temporal blocks. This degrades the performance
by not utilizing cache space that might be available in L1. Although we use a similar
mechanism to tag blocks as temporal, we improve this scheme by allowing both temporal
and non-temporal blocks to reside in cache A and in cache B.

Johnson and Hwu [6] have investigated a technique for dynamic analysis of program
data access behavior, which is then used to guide the placement of data within the
cache hierarchy. In this scheme, infrequently accessed data bypass the cache when
they conflict with much more frequently accessed data. This reduces conflicts and
alleviates cache pollution.

All the above methods describe a modification of the cache design to enhance the
performance of an L1 cache. Tyson et al [18] present a detailed characterization of data
cache behavior for individual load instructions and describe a scheme to selectively al-
locate cache lines according to the characteristics of the load instructions. Their results
suggest that data reference behavior plays a critical role in cache block placement and

replacement decisions. In our scheme we control the movement and placement of data



in the hierarchy based on the dynamic data usage characteristics.

3 NT-victim Cache

In this section we present the basic architecture of the memory hierarchy for NT-victim

caching and describe the algorithms involved.

3.1 Cache Organization

PROCESSOR

L1

NT-DETECTION UNIT

MEMORY

Figure 1: NT-victim Cache Organization

A block diagram of the NT-victim cache organization is shown in Figure 1. The
main cache (cache A) is a direct-mapped cache. Cache B is a small fully-associative
cache in the same level, used for storing some combination of non-temporal blocks
and victim blocks. The next lower level of the memory hierarchy can be either a
conventional 1.2 cache or main memory. Cache B is small compared to cache A because
it is a fully associative structure; if it is large, the cost of the tag search may offset the
gain in performance.

The NT detection unit is a hardware bit-map structure similar to the one described
in [10]. It is attached to both cache A and cache B and is laid out as a matrix of bits
with as many columns as the number of words in a cache block and as many rows as
the number of sets in cache A plus the number of blocks in cache B, i.e., the total
number of blocks in A and B. Each cell of this matrix keeps track of the usage count
of each word of the block. On every memory access, the usage count of that word is

incremented using the word offset of the block accessed.



For simplicity, we assume the same cache block size across cache A, cache B, and the
next level of hierarchy. To avoid aliasing problems and cache flushing after a context
switch, our design requires that both cache A and cache B be physically indexed.

On a reference, caches A and B are searched in parallel. A hit in cache A is no
different from a hit in a conventional L1 cache. If the access results in a miss in cache
A, but a hit in cache B, it is simply fetched from cache B, and counted as a hit for the
purpose of performance evaluation.

We tag each block as either temporal or non-temporal following the ideas in [10].
The lifetime of a block refers to the time interval that the block spends in cache from
one of its allocations (in A or B) until its next replacement from L1; a block may thus

have several lifetimes.

o Temporal Block: A block is considered temporal, i.e., its T bit is set, if during
its lifetime, at least one of its words is re-referenced. Such blocks exhibit the

property of temporal reuse and are also referred to as T-blocks.

o Non-Temporal Block: A block leaving the cache is considered non-temporal, i.e.,
its T bit remains reset, if during its lifetime, none of its words is re-referenced.

Such blocks are also referred to as NT-blocks.

In this study, unlike [10], we have assumed that NT /T information is not carried
into the next level of the hierarchy. Every block begins each lifetime in the L1 cache
as an NT-block; it becomes a T-block as soon as it exhibits temporality during this
lifetime. We exploit this NT/T information when we make swap and replacement

decisions.

3.2 NT-victim Algorithm

NT-victim cache differs from Victim cache in its replacement policy and its decision
criteria for swapping blocks between cache A and cache B. (In the rest of the paper we
refer to swap between cache A and cache B simply as swap). In Victim caching, when
a block is hit in cache B, it is swapped with a block in the corresponding set of cache
A; on a cache miss, the LRU block is chosen for replacement, irrespective of its access

patterns.



We now describe the NT-victim caching algorithm in detail. Since the algorithm
does not depend on the associativity of cache A, we present the algorithm for an M-way
associative cache A. On every memory access, both cache directories are accessed in
parallel. Assume that the access is to a block b and that it maps to set s, whose current

LRU block is ¢. The possible cases are:

e Hit in cache A: If b is found in cache A, the actions are no different from any
conventional L1 cache hit. b becomes the most recently used block of set s. If
this reference causes a word reuse in b then the T bit of the block is set. This

update does not introduce any additional delay.

e Hit in cache B: If bis found in cache B, we incur no additional delay. The block
b may have its T bit set already. Otherwise if this reference causes a word reuse
in b, its T bit is set. We have two cases to consider depending on whether b is a

temporal block or not.

— b is a temporal block: b is swapped with ¢ and becomes the most recently
used block of set s. Similarly ¢ becomes the most recently used block in

cache B. A block’s T-bit remains with it while it resides in the L1 structure.

— b is a non-temporal block: We simply update cache B to make b the most

recently used block.

o Miss in both caches: b is brought into the main cache from the next level of
memory. If s has fewer than M blocks, we simply make b the most recently used
block in s. If not, it replaces ¢ (the “victim” of this miss),which then moves to
cache B. If B has an empty block to hold ¢, we simply make ¢ the most recently
used block in cache B; otherwise (cache B is full) we need to select a block in
B for replacement. In the following subsection we describe several replacement

policies that we investigate in this study.
3.3 Cache Replacement Policies
3.3.1 Pseudo-optimum Replacement Policy

Optimal replacement policies based on complete knowledge of future references pro-

vide a standard against which we can compare the performance of the implementable



policies. In order to understand the effect of replacement decisions on performance
improvement, we analyze the miss ratio for our cache configuration using a pseudo-
opt replacement policy. Victim cache, NTS cache and Assist cache, each use a simple
LRU replacement strategy. In our simulations, the pseudo-opt replacement policy typ-
ically produced a 50% reduction in miss ratio, compared to these designs. Although
pseudo-opt itself is not implementable, this result suggests that there is great potential
for improving the performance of these cache designs by discovering and using better
replacement policies. We use the pseudo-opt experiments to first understand the effec-
tiveness of replacement decisions on cache performance and then use these results to
help guide the search for good replacement algorithms for our NT-Victim cache design.

Our pseudo-opt replacement algorithm is an adaptation of Belady’s [2] MIN algo-
rithm, which is an optimum replacement policy for a fully associative cache. On a
miss, the block to be replaced is the one whose next reference is farthest in the future.
This choice clearly minimizes the number of misses in a cache set.

In our scheme, we have two caches A and B with different associativity. We allow
free movement of blocks between them, but maintain disjoint contents in them at any
particular time. We study the following extension to Belady’s MIN algorithm. Consider
an M-way associative cache A and a fully associative cache B of size K. On a miss, if
there is an empty block in the corresponding set of cache A or an empty block in cache
B, we fill it. If not, for each set of cache A that has at least one block in cache B, we
swap blocks if necessary, to make sure that among all blocks in caches A and B that
are associated with each set, the block whose next reference is farthest in the future is
in cache B. Now among the blocks in cache B, the block that is next referenced farthest
in future is replaced (regardless of the set it is associated with). This choice is however
not optimal in all cases.

For the example reference pattern in Figure 2, consider a design with direct-mapped
cache A of size 2 blocks (2 sets) and a one block cache B. The references shown in
Figure 2 are block addresses. Capital letters map to set 0 and small letters map to
set 1 of cache A. The figure shows the contents of set 0 and setl in cache A and cache
B after each memory access. Using pseudo-opt replacement policy we incur 7 misses,

whereas the minimum possible number of misses is 6. For example, at time 4, if we



Ref: b c F D b E D F c

Time \l \2 \3 \4 \5 \6 \7 \8 \9
\ \ \ \ \ \ \ \ \
Set 0 - - F D D E D D D
Set 1 b b b b b b b b c
CacheB c c F F D E F F
Hit/Miss M M M M H M H M M

Figure 2: Misses using the pseudo-opt policy

replace block F (in set 0 of cache A) instead of block ¢ (in cache B), we incur 6 misses
instead of 7.

The above example shows that pseudo-opt policy is not optimal in all cases. How-
ever, if cache A is also a fully associative structure, caches A and B can be treated as
a single fully associative cache. In this case the problem reduces to the case where Be-
lady’s design is optimal; hence our pseudo-opt replacement policy is also optimal. We
are actively working on finding an optimal replacement policy for an M-way associative
cache A.

For this initial experiment we use the pseudo-opt replacement policy. We use trace
driven simulations to study the miss ratio of an 8KB direct mapped cache A plus a
1KB fully associative cache B. Table 1 also presents the results for a fully associative

cache A.

Benchmark Miss Ratio
DM(8KB)+FA(1KB) | FA(8KB)+FA(1KB) | Victim | Assist | NTS
compress 16.33% 16.29% 16.68% | 16.68% | 16.69%
gcc 3.99% 2.75% 6.7% 9.27% 9.2%
go 3.24% 2.18% 5.46% 7.77% | 10.04%
ijpeq 2.08% 1.25% 3.61% | 5.06% | 5.73%

Table 1: pseudo-opt replacement - Miss Ratio

Although pseudo-opt is not an implementable policy, we use these results as a

standard against which we measure the miss ratio of other cache designs. This helps
us to understand the effect of replacement policies on miss ratio and indicates that

better placement and replacement strategies are key to improving the performance of
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these schemes. The NT-victim cache design is our first step in that direction.

3.3.2 NT-victim Cache Replacement Policies

Since the pseudo-opt replacement policy resulted in a 50% reduction in miss ratio,
relative to Victim, Assist and NTS caches, it is apparent that replacement decisions in
cache B are critical to improving performance. In order to understand how temporality
can be exploited to guide our replacement decisions, we focus on the following three

issues.

o Cache space utilization: Replacement decisions determine the population in the
cache and therefore affect the utilization of the available cache space. Ideally a
good replacement policy should dynamically partition the cache space for T and

NT blocks, so that the available space in L1 is used effectively.

o T-block priority: Temporal reuse of a block is an indication of its usefulness. A
replacement policy can give higher priority to T-blocks so as to retain them in

favor of N'T-blocks.
o NT-block lifetime: We quote from [15]:

“As the replacement algorithm chooses lines closer and closer to the
most-recently used line, however, the risk becomes greater that the re-
placement algorithm will make a mistake and cast out a line that should

be retained for a future hit.”

Therefore, in order to avoid replacing N'T-blocks too soon, i.e., before they have
a chance to stay in cache for a while longer and perhaps exhibit temporal reuse
(which would give them more protection), our replacement policies offer various

degrees of protection to NT-blocks so as to increase their lifetimes.

We now present three replacement policies for our NT-victim cache design. Our
three replacement policies put varying emphasis on the above 3 issues and may therefore
provide contrasting results for different benchmarks. Hence it is interesting to study
the effect of each policy on the miss ratio. As we do not assume future knowledge of

the program’s memory reference trace, our policies depend on the history of the usage
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patterns. Our goal is to improve performance by L1 caches by reducing the number of

swaps without compromising the miss ratio improvement achieved by Victim caching.

o Policy LRU: In this policy we use the simple LRU replacement scheme. This
policy does not use temporal information to make replacement decisions. Here

the least recently used block in cache B is replaced.

o Policy NT-LRU: Here we exploit the temporal behavior of blocks in making the
replacement decision. On a miss, we replace the least recently used NT-block in

cache B. If there are no NT-blocks in B, we replace the least recently used T-block.

e Policy NT-LRU-1/2: This policy is a relaxed version of the NT-LRU policy. To
offset the extremely preferential treatment given to T-blocks by NT-LRU, we
pick a block for replacement only among the least recently used half of the blocks
in cache B. Specifically, if a cache B has K blocks numbered 0 through K - 1,
with block 0 being the most recently used block, we pick a block for replacement
only among those with number > [(K/2)]. Among these blocks we choose the
least recently used N'T-block. If there are no N'T-blocks among the least recently
used half of the blocks in cache B, we pick the least recently used T-block for

replacement.

NTS cache separates the reference stream into temporal and non- temporal and
does not allow swaps. Cache blocks that are identified as non-temporal when they are
replaced are allocated to cache B on subsequent requests. Restricting N'T-blocks to
cache B could lead to conflicts among NT-blocks for space in cache. This might affect
performance by not utilizing all the available cache space. In order to achieve better
space utilization of cache A and cache B, we allow NT and T blocks to reside in cache
A and cache B.

Our first policy uses the simple LRU strategy as in Victim caching. This helps us to
study the effect of temporal information on swaps. For instance, if the access pattern
is a stride through an array, we observe that there is little or no temporal reuse. In
such cases Victim caching and NT-victim caching with LRU policy may have the same

miss ratio, but the NT-victim cache would incur fewer swaps.

12



NT-LRU policy clearly favors retaining temporal blocks. If the reference stream
exhibits heavy temporal reuse (as in accessing an array repeatedly) and if the NT-blocks
are few and far between, it is beneficial to give preferential treatment to T-blocks and
retain them in favor of NT-blocks. However, for example, if the access pattern is a long
sequence of temporal block accesses, followed by a long sequence of non-temporal block
accesses, NT-LRU policy picks the NT-blocks for replacement even if the T-blocks
may be least recently used and may have no future references. In such a case, the
T-blocks can pollute the cache and, increasing the lifetime of N'T-blocks proves to be
more beneficial than replacing them. The NT-LRU-1/2 policy emphasizes this issue,
tries to strike a more reasonable balance between simple LRU and favoring T-blocks

and manages to retain some of the more recently used N'T-blocks.

4 Experimental Setup

We now present details of the benchmarks used in this study, performance metrics

analyzed, and the simulation environment.

4.1 Benchmarks

In numeric programs there are several known compiler techniques for optimizing data
cache performance. However, integer programs often have irregular access patterns
that are more difficult for the compiler to optimize. Therefore, we concentrate on the
performance of integer benchmarks. In this section, we present the description of the
benchmarks chosen for this study.

Simulating a cache that is much too small causes many capacity misses, which
dominate the miss ratio and therefore obscures the effectiveness of a design in reducing
conflict misses. On the other hand, simulating a cache that is much too large makes
cache A sufficient by itself and therefore does not test the usefulness of cache B. Hence
we study the miss ratio vs. cache size for each benchmark. In this study we use
a direct-mapped L1 cache without cache B. This study gives us insights about the

nature of the benchmarks and help us to choose a suitable size cache to simulate.
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4.1.1 Description

All experiments were performed on the SPECint95 benchmarks (excluding vortex,
m88ksim), which were compiled with gcc -O3. All benchmarks were simulated to

completion. Table 2 describes the characteristics of the benchmarks used in this study.

14



Miss Ratio(%)

o N & o ®
"t

Miss Ratio(%)

Benchmark | Memory References Data Set
099.compress 2,689,118 test.in
126.gcc 116,908,813 ccep.
099.go 55,001,714 2stone9.in
132.ijpeg 174,309,186 specnum.ppm
130.1i 735,318,824 test.lsp
134.perl 1,191,225,868 jumble.pl

Table 2: Benchmark Descriptions

4.1.2 Miss Ratio for Direct-Mapped Cache

In order to choose an appropriate size for cache A and cache B, we analyze the miss

ratio vs. cache size for each benchmark using a direct-mapped L1 cache without any

cache B. Starting from a cache size of 4KB we increase the size and study the miss

ratio until there is little or no change in miss ratio with size.

(a) Benchmark compress

(b) Benchmark go
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[
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(c) Benchmark gcc

4K 8

16
Cache Size(bytes)

(d) Benchmark ijpeg

Figure 3: Miss Ratio vs. Cache Size

32 64

Compress sustains a high miss ratio as seen in Figure 3(a). Hence we conclude that

for a direct-mapped cache A, we cannot get any performance improvement by adding

15



a small cache B in L1, unless the size of cache A is at least 256 KB.

We observe from Figure 3(b), 3(c) and 3(d) for the benchmarks go, gce, and ijpeg,
the curves drop sharply at first and less steeply as the cache size increases. Most of
the improvement in these graphs is obtained by the earlier doublings of the cache size.
For each of these benchmarks, the knee in the curve is reached at different cache sizes.
Gce for instance, has the knee around 64KB, as does go, although go has a secondary
knee at 16KB. I[jpeg has the smallest working set and the knee of the curve is around
16KB.

We also observe that the miss ratio drops to 1-2% around the knee of the curves.
This shows that a design using only cache A (without any cache B) in L1 needs a
large cache to achieve a substantial reduction in miss ratio. Therefore, we consider an
alternative approach to doubling the size of L1 cache, namely, augmenting L1 with a
small fully-associative cache B and achieving a similar reduction in miss ratio. For the
benchmarks go, gcc, and ijpeg, the miss rate drops to nearly half its value when we
increase the cache size from 8KB to 16KB. In addition, the average miss ratio for the
benchmarks in this study is around 5% for a 16KB cache. Since increasing associativity
generally decreases conflict misses, we chose to couple an 8KB direct-mapped cache A

with a small (1KB) fully associative cache B to relieve conflict pressure.

4.2 Performance Metrics

The goal of this study is to develop a novel microarchitecture for an L1 cache design,
by exploring the design space between Victim cache and NTS cache. Our design
selectively uses temporality information in making replacement and swap decisions.
We have observed that victim caching is very effective in reducing conflict misses. The
goal of an NT-victim cache design is to reduce cache pollution and the number of
swaps, without compromising the miss rate achieved by Victim cache. For all cache
designs that we study, we assume that a hit in cache B incurs no additional cycles over
a hit in cache A and that all the designs have the same miss penalty for fetching a
block from the next level of the hierarchy.

In this work we concentrate on two major performance metrics:

16



e the miss ratio

e the number of swaps.

In order to study the importance of swaps, we analyzed the miss ratio without swaps
for both Victim cache and NT-victim cache. We found that the miss ratio increases
without swaps. This suggests that swaps do help in retaining more useful cache blocks
in cache A, and in turn help in picking a block for replacement from among the less
useful blocks. Although NT-victim caches do not incur additional delay for a hit in
cache B, we still need to swap blocks to get better performance. This motivates us
to design a cache which reduces the number of swaps compared to a Victim cache,

without compromising the miss ratio.

4.3 Simulator

We use trace-driven simulations to evaluate the performance of NT-victim cache. A
Memory reference trace of each benchmark is collected using ATOM [13]. We simulate
Victim, NT-victim, Assist, and NTS caches. As a base case, we also simulate a direct-
mapped L1 cache, without any cache B. In the case of NT-victim caches we simulate
all the three replacement policies, namely, NT-LRU, LRU and NT-LRU-1/2.

Due to storage constraints, we could not collect very large (> 2GB) traces. There-
fore, we use execution-driven simulations for those benchmarks. We still use ATOM to
instrument the executables of the benchmarks, but when each load/store instruction
of the instrumented program is executed, it calls simulators for Victim, NT-victim and
base case direct-mapped caches.

In this study we focus on miss ratio and the number of swaps; we plan to analyze
latency effects in future work. Hence we have simulated our design using a timing sim-
ulator - mlcache [16]. This simulator models latencies due to bus width considerations,
bus contention, trailing-edge effects, port limitations and the number of outstanding
accesses that the cache allows before it blocks. mlcache provides a library of routines
that a user may choose from to determine what actions will take place in the cache
for a given event. These routines are useful for simulating different cache designs and

comparing results.
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For each design we simulate an 8KB direct-mapped cache A and 1KB fully-associative
cache B. Cache block size is uniformly fixed at 32 bytes. Choice of cache size is based on
our study of miss ratio of the benchmarks vs. cache size for a direct-mapped L1 cache
without cache B. Results of this study indicate that the average miss ratio for our set of
benchmarks, for a cache of size 8KB is only 9%. The miss rate halves when we double
the cache size to 16KB. Our goal here is to achieve the performance of a 16KB direct-
mapped cache by using an 8KB direct-mapped cache A and a 1KB fully-associative
cache B. All cache configurations are assumed to be copy-back and write-allocate. Ex-
cept for copy-back effects, there are no special considerations to distinguish LOAD and

STORE references.

5 Results

5.1 Miss ratio

The cache miss ratios for the base case (direct-mapped cache without cache B), Victim
cache, NTS cache, Assist cache and NT-victim cache are shown in Figure 4. For each
benchmark, we also present the miss ratio for each cache design in Table 3. For NT-
victim cache we present the miss ratio for each of the replacement policies described
in section 3.3.2.

Compress has a high miss ratio for the configurations simulated. We have examined
the accessing behavior of this application in detail. We simulated this application for
various L1 cache sizes up to 512K and found little or no change in miss ratio until after
256 K. For a cache size of 512K the miss ratio dropped to 3% as shown in Figure 3. As
our design focus is on performance improvement of direct-mapped caches, we conclude
that the working set of this benchmark is too large to fit into direct-mapped caches
of size less than 512K. This agrees with the conclusion in [6]. Johnson and Hwu also
observe that many of the memory accesses in compress are to its hash tables, htab and
codetab. Due to large hash table sizes and the fact that the hash table accesses have
little temporal or spatial locality, there is very little reuse in L1 cache. Figure 5 shows
that even for the Victim cache, 97% of the replacements are NT-blocks. As Victim

caches merely pick the LRU block for replacement, irrespective of whether it is a T
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or an NT-block, this implies that 97% NT-blocks are also LRU blocks. Hence there
is very little temporal reuse exhibited in the code for this cache size. We also observe

that doubling the cache size (DM 16K) has negligible effect on the miss ratio.

All the other benchmarks in our suite exhibit similar trends in their results. For
these benchmarks, our results shown in Table 3 and Figure 4 confirm that adding a
small fully-associative buffer to L1 generally (i.e., except for ijpeg) eliminates more
conflict misses than simply doubling the size of cache A. For the benchmarks gee, go,
perl, and li we see that a direct-mapped 16 KB cache still does not perform as well as
the Victim or NT-Victim cache, which has only an 8KB direct-mapped cache A with
a 1KB fully associative cache B. However, if the working set of the benchmark for a
direct-mapped cache is small, like the one for the benchmark ijpeg, then doubling the
cache size might reduce the miss ratio more than our NT-victim design alternative.

Recall that in section 3.3.2, we identified three issues as key to improving the

performance of our design. We now re-visit these issues in light of the observed results.
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Cache Configuration Miss Ratio for Benchmarks

compress gce go ijpeq I perl

DM(8KB) 16.91% | 10.34% | 11.46% | 6.56% - -
DM(16KB) 16.87% | 7.09% | 6.11% | 2.14% | 5.16% | 3.55%

Assist 16.68% | 9.27% | 7.77% | 5.05% - -

NTS 16.69% 9.2% | 10.04% | 5.73% - -
Victim 16.68% 6.7% 5.46% | 3.61% | 3.93% | 2.36%
NT-Victim(LRU) 16.68% 6.7% 5.45% | 3.6% | 3.93% | 2.36%
NT-Victim(NT-LRU) 16.68% | 6.57% | 5.75% | 4.01% | 3.94% | 2.45%
NT-Victim(NT-LRU-1/2) | 16.68% 6.6% 5.44% | 3.64% | 3.86% | 2.34%

Table 3: Miss Ratio

o Cache space utilization: Our results confirm that allowing both NT and T blocks
to reside in cache A and in cache B achieves a better utilization of the cache
space than allowing only NT-blocks to reside in cache B. Therefore, NT-victim
cache performs better than N'TS cache for all these benchmarks. For example, for
the benchmark gce, Table 3 shows that on average Victim caches and NT-Victim
caches achieve a 33% reduction in miss rate relative to NTS cache. Similarly,
for the benchmark go, Assist cache has a lower miss ratio (7.77%) than the N'T'S
cache (10.04%). Since NTS cache restricts NT-blocks to cache B, its high miss
rate could be due to conflicts among temporal blocks and among non-temporal
blocks. Allowing NT and T blocks to reside in both caches seems to relieve this

conflict and achieves better cache space utilization.

T-block priority: NT-LRU replacement policy favors retention of T-blocks over
NT-blocks. In most cases, this scheme seems to unfairly penalize NT-blocks.
Table 3 shows that for the benchmarks go, ijpeg, perl and li, NT-victim cache
using NT-LRU policy has a higher miss ratio than Victim cache or NT-victim
cache using LRU or NT-LRU-1/2 replacement policy. However, for a benchmark
with irregular memory access patterns, favoring retention of T-blocks over NT-
blocks could prove beneficial, as shown by our results on gce. The benchmark gee
has the largest number of dynamic memory accesses; it has 124 malloc calls in
the source code, which leads to irregular memory accesses. Table 3 shows that for

gee, NT-victim caches using NT-LRU replacement policy gives the lowest miss
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ratio (6.57%). In addition, Figure 5 shows that for this benchmark, under the
NT-LRU policy, 52% of the replacements are NT-blocks. Giving higher priority

to T-blocks is beneficial in this case.

NT-block lifetime: NT-LRU-1/2 replacement policy relaxes the special treatment
given to T-blocks and gives NT-blocks a better chance to continue residing in
the cache. Qur results in Table 3 show that in most cases NT-victim cache with
the NT-LRU-1/2 policy performs better than Victim cache. This implies that
temporality based replacement decisions are important to improve performance.
However, we also observe that this improvement is not very high. For the bench-
marks go, li, and perl, NT-victim cache using NT-LRU-1/2 policy gives the lowest
miss ratio among all the cache configurations. Figure 5 also confirms that the
percentage of N'T-replacements for these benchmarks is lower when using the
NT-LRU-1/2 policy rather than the NT-LRU policy. This shows that giving NT-
blocks a better chance of staying in cache, makes them more likely to exhibit

temporal reuse and become T-blocks, which in turn results in improved perfor-
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mance. These results also indicate that NT-LRU policy overpenalizes NT-blocks
and hence increases miss ratio. On the other hand, the NT-LRU-1/2 policy uses
temporal information to make replacement decisions, yet protects NT-blocks from

being replaced too soon, and thereby improves the miss ratio.

The above results show that NT-Victim caches can indeed have miss ratios compa-
rable to Victim caches. We now proceed to compare the number of swaps in each of

these designs.

5.2 Swaps Between Cache A and Cache B

In a Victim cache a hit in cache B incurs an additional penalty cycle; and therefore,
when a block is hit in cache B, it is swapped with the LRU block of that set in cache
A. In our current model there is no penalty for a hit in cache B. As in the design of
Assist cache [8], we place caches A and B in parallel, in the same level of the memory
hierarchy.

In order to understand the effect of swaps on the miss ratio we study the miss
ratio without swaps for both Victim and NT-victim caches. In this experiment, when
a block is a hit in cache B, it continues to remain in cache B. The results of this study
are summarized in Table 4. Comparing these results with our results in Table 3, we
see that the miss ratio increases when swaps are not allowed. The larger size of cache
A helps to retain useful blocks for a longer time. We therefore conclude that swaps are

indeed useful in improving the performance.

Cache Configuration Miss Ratio for Benchmarks
compress | gcc go ijpeq i perl
Victim 16.69% | 7.03% | 5.85% | 3.69% | 3.69% | 5.22%
NT-victim(LRU) 16.69% | 7.03% | 5.85% | 3.69% | 3.69% | 5.22%
NT-victim(NT-LRU) 16.68% | 6.92% | 5.82% | 4.03% | 3.73% | 5.31%
NT-victim(NT-LRU-1/2) | 16.68% | 6.96% | 5.78% | 3.72% | 3.68% | 5.19%

Table 4: Miss Ratio without Swaps

We now address the goal of reducing in the number of swaps without compromising

the miss ratio. Unlike Victim caches, in NT-Victim caches we do selective swapping
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on a hit in cache B, by swapping a block in cache B with a block in cache A only if

it exhibits temporal reuse. This selective swapping does reduce the number of swaps,

relative to Victim caches, and does maintain a comparable miss ratio.

Cache Configuration Swaps for Benchmarks
compress gce go ijpeq li perl
Victim 6,265 4,250,374 | 3,300,142 | 5,135,926 | 23,760,351 | 41,402,635
NT-victim(LRU) 5,641 4,096,771 | 3,094,852 | 4,226,530 | 22,531,514 | 40,226,357
NT-victim(NT-LRU) 5,292 4,335,089 | 3,074,227 | 4,235,153 | 22,686,224 | 40,765,365
NT-victim(NT-LRU-1/2) 5,370 4,231,092 | 3,153,037 | 4,330,588 | 22,750,042 | 41,105,485

Table 5: Swaps between Cache A and Cache B

Table 5 shows the number of swaps that occur for NT-victim and Victim caches.

The number of swaps for NT-victim cache is consistently less than for Victim cache.

We now return to the 3 issues that we identified in section 3.3.2 and discuss how

controlling the number of swaps relates to these issues.

o Cache space utilization: We observe from Table 5 that selective swap policy re-

duces the number of swaps, helps us retain more useful blocks in cache A and

further improves cache space utilization.

T-block priority: Our result on miss ratio in Table 3 shows that NT-LRU replace-
ment policy penalizes N'T-blocks and does not give those that should be T-blocks,
a chance to remain in cache long enough to exhibit temporal reuse. However, we
see from Table 5 that the NT-LRU replacement policy incurs the smallest number
of swaps for the benchmarks compress and go. This indicates that although re-
placing NT-blocks more frequently reduces their chance to exhibit temporal reuse,
it does result in fewer swaps. On the other hand, the LRU and NT-LRU-1/2 poli-
cies do provide greater chance for NT-blocks to become temporal and hence they
do incur more swaps.

Contrary to the above general trend, results for gee in Table 5 show that the
number of swaps for Victim cache is less than for NT-victim cache with the NT-
LRU replacement policy. This exception to the above general pattern can be

explained as follows: Results in Table 3 indicate that for gee, NT-victim cache
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with the NT-LRU policy has the lowest miss ratio (6.57%) and N'TS cache shows
a high miss ratio (9.2%). Since NT-victim cache with the NT-LRU replacement
policy retains T-blocks in cache B, it eases the conflicts among T-blocks for space
in cache A and therefore improves the miss ratio. However, retaining T-blocks

results in temporal hits in cache B and hence more swaps.

o NT-block lifetime: Protecting NT-blocks from being replaced too soon, gives them
a greater chance to exhibit temporal reuse and become T-blocks. As a result,
increasing the lifetime of an NT-block should generally increase the number of
swaps. This is confirmed by our results in Table 5. However, our results from the
previous section indicate that increasing the lifetime of NT-blocks also improves

miss ratio.

Our results in this section confirm that using temporal information in swap de-
cisions can indeed improve performance by reducing the number of swaps without

compromising the miss ratio.

6 Conclusions and Future Work

As instruction issue width increases, more demand will be placed on the data cache.
In this work we described several previously proposed cache designs in which a con-
ventional I.1 cache is augmented by a fully associative buffer to improve performance.
After studying the performance improvement achieved by each of these designs, we
focussed on two of the best designs: Victim and N'TS cache.

Victim cache reduces conflict misses and gives the lowest overall miss ratio. How-
ever, Victim caches do incur a large number of swaps between the main cache and
the victim buffer. NTS cache exploits the temporal locality of blocks to improve the
performance of the .1 cache and does not swap blocks between the main cache and
the N'TS buffer. This might affect performance by not utilizing all the available cache
space effectively.

Taking the lead from these two designs, we design a new cache, which we call NT-
victim cache. In this scheme we have a small fully associative buffer similar to the

victim buffer. The goal of the design is to reduce conflict misses and have a miss ratio
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comparable to Victim caches, while also reducing the number of swaps by utilizing
information about whether the blocks have exhibited temporal behavior.

Our results show that even though no additional penalty is incurred in accessing a
block from cache B, swapping blocks does help retain more useful blocks in cache A.
However, swaps do incur additional cycles. Hence a reduction in the number of swaps
is important, provided that the low miss ratio is maintained. Our results confirm that
temporal behavior is quite useful in determining whether to retain a block in cache B
or swap it with a block in cache A. Selectively swapping blocks based on their temporal
reuse does in fact reduce the number of swaps and does not increase the miss ratio.
However, our attempts to exploit NT/T information in our replacement policy did not

have a large effect on performance. The three key issues that we identified, namely,
o Clache space utilization
o T-block priority
o NT-block lifetime

are important in improving the performance of our design. Our results show that al-
lowing NT and T blocks to reside in both caches A and B does improve performance
and provides better cache space utilization relative to the NTS cache. The NT-LRU re-
placement policy is very aggressive in retaining T-blocks; but overpenalizes NT-blocks.
Our results for the NT-LRU-1/2 policy confirms that protecting NT-blocks from be-
ing replaced too soon and thereby increasing their lifetimes, improves performance.
In future work we plan to explore a wider space of cache configurations, policies and
applications.

Our results from the pseudo-optimal replacement policy suggest that for our cache
model, there is a big gap between currently achieved performance and the maximum
achievable performance. We are interested in finding an optimal replacement policy
for our cache model and analyzing its behavior in detail in order to derive better
implementable designs. A deeper understanding of the optimal policy may suggest

ways to further improve the placement and replacement decisions of our cache model.
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