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Abstract

Previous eseach into the poblem of cell libary synthesis for digital VLSI design has concateint mostly oneal-
atively simple 1-dimensional cell topgles for static CMOS designs. Recent ieseéhas emeed in less constined
2-dimensional topolgies to support mercompl& non-dual cicuits sub as lathes and flip flops, as well as high
performance cituit families suk as CVSL, PTL, and domino CMO& dliscuss a CAD methodglpwhidt supports
a enenlized placement anduting appoad to the ealization of maskepmetry for sut comple circuits. Vé
explore the options available within this methodploshow how the émsistor leel placement anduting poblems
at the tansistor level difer from those at the bl&clevel, and pesent someesults for a pototype tool, TEMPO,
which adopts this methodag.
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1 Introduction

Library cells mak up the lavest level of the digital VLSI design hierarghClearly the quality of the cells will
have a direct impact on the quality of the final design. The cells must be designed to be comzestt @ttt mini-
mized paver and parasitics, and with careful attention to requirements on yseghappearance of the cells as
viewed by the highelevel placement and routing tools. Automated synthesis techniqueddnd limited applica-
tion at the cell leel becausexasting tools are unable to match the quality of human designed callthi& reason
cells are often designed by hand, requiring a significaastment in manpeer.

An additional dificulty lies in the &ct that the lifetime of a typical cell library may be as short as oneooyears.
Compaction techniques may be used to migrate a cell library @ anoeess technology if little more than a linear
shrink is required, dt this is unlilely to extend the lifetime for more than one orawgenerations before the loss in
performance necessitates a complete redesign of the lidiaege problems are only becomingrse as dece
geometries shrink into the deep submicrayme.

In order to account for deep submicrofeefs, @er closer interaction is required between front end synthesis tools
and back end placement and routing toolsygraand delay optimization tools, and parasiicaetion tools. In order
to enable this interaction, cell libraries must becowez more flaible. Multiple versions of each cell with dérent
drive strengths are required. It mayere be necessary to suppoetsions of cells in diérent logic &milies with dif-
ferent paver/delay trade-d$.

In addition to the need fommilies of cells which are parameterized in terms of their electricavioeha has
been demonstrated [1] that standard-cell placement and routing tools are able to obtain significantly higher routing
quality if they have the ability to choose from multiple instances of cells with a wédety of pin orderings. Gar
five benchmarks circuits, awexage reduction in the number of routing tracks of 10.8% @demonstrated by the
authors.

It seems clear that as the number of cells in a typical cell libravysgiom the hundreds into the thousands, a
dramatic increase in designer produtyi will be required, necessitating a weotovard more automated cell synthe-
sis techniques. The authors of [1], acf, adecate a mee completely way from static cell libraries as we kmo
them, tavard a system which permits the automated synthesis of cells on demandoildipgrmit logic synthesis
tools to request specific logic decompositions, doingyawith the traditional technology mapping step; standard-
cell and datapath placement and routing tools to request cells wittaeinpn ordering; interconnect optimization
tools to request cells with specific input and output impedaalces; and paer optimization tools to request cells,
perhaps from one of geral diferent logic &milies, with specific peer/delay trade-ds.

Such an on-demand cell synthesis system will requiioet @n maly fronts:

1. Automated transistor schematic generation: constraint driven logic family selection, netlist creation, and
transistor sizing.

2. Automated cell geometry synthesis.
3. Automated cell testing and characterization.
4. Development of enabling logic synthesis, placement and routing, and power/delay optimization technology.

In this paper we address the second item in theealisi: the fully automatic synthesis of library cell mask geom-
etry. The input specification consists of a sized translst@l schematic, a process technology description (design
rules, parasitics, etc.), and a description of the constraints imposed by thddighelacement and routingéron-
ment. W\ refer to this last item as thell template A list of common cell template constraints are enumerated in [1].

The CMOS cell synthesis problem has a rich history going back approximately 15 years. Most of this research has
centered on a formulation of the problem whicksweferred to as the “functional cell” in a seminal paper by Uehara
and \anCleemput [2]. In this style, axample of which is gien in Figurel, the transistors takon a ery regular
structure. Thg are arranged in a lineaashion so as to minimize the number of breaks in thHastbih strips (so
called “diffusion breaks”). W will refer to layouts in this style as 1-dimensional, or 1D, layouts.

The synthesis of 1D layouts can be formulated as a straightfdmgvaph optimization problem: the location of a
minimal dual Eulettrail covering for a pair of dual series-parallel multigraphs. Uehara an€Memput desloped
an approximate solution technique for this problem, while Maziasz and Hayes [3] presented thedhit pptimal
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Figure 1: An example of a cell designed in the “functional cell” style of Uehara and VanCleemput

[2].

algorithms.

A major dravback of the 1D layout style is that it directly applies only to fully complementary non-ratioed series-
parallel CMOS circuits. Seral significant systems va extended this style to eer circuits with limited dgrees of
irregularity. Among these arExcelleator [4], LiB [5], andPicasso-II[6]. Dynamic CMOS circuits, if the p-channel
pull up transistors are ignored, can be optimized using a singléBdormulation. A good summary is presented by
Basaran [7].

Despite the egant formulation presented by the one-dimensional abstraction, it must brealatisome point.
When designing aggressi high-performance circuits the designer may call upon lagidlies such as domino-
CMOS, pseudo-NMOS, Cascodeltdge Switch Logic (CVSL), andaBs Tansistor Logic (PTL). These pride the
designer with dierent size/paer/delay trade-&$ than areailable with a static CMOS implementation. wiwer,
these non-complementary ratioed logimilies often result in pisical layouts which are distinctly 2-dimensional in
appearance.

An example of such a circuit is so in Figure2. The @ample is a hand designed mux-flipflop standard cell
implemented in a complementary GaAs process [8]. Mample demonstrates a number of properties whiclatie
from the standard 1-dimensional style:

1. It is highly irregular. Some regularity is present in the rows, or “stacks” of merged transistors, but these stacks
are of non-uniform size and are not arranged in two simple rows.

2. There are instances of complex geometry sharing, such as the “L” shaped structure in the upper-left corner.
3. The transistors are given a wide variety of channel widths.

4. The routing is non-trivial.

5. The port structure required by the back end placement and routing tools must be taken into account.

A variety of approaches @ been taén to address the 2D cell synthesis probleami €t. al. [9] and Gupta and
Hayes [10] discuss a style in which 2-dimensional layouts are formed from multiple 1-dimensiandihve former
presented a heuristic technique based on min-cut partitioning while the latter presemtact éorraulation, called
CLIP, based on inger linear programming.ordistinguish this style from nonwebased 2-dimensional styles, we
refer to it as being 1-1/2 dimensional.

Xia et. al. [11] deeloped a method for BICMOS cell generation. yfgeoup MOS transistors into locally optimal
chains which behe as fixed blocks in the design. Bipolar transistors are treatedidhdilly and are gien a fixed
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Figure 2: A manually designed cell showing complex two-dimensional layout structure

area with a flgible aspect ratio. A branch and bound algorithm is usedpio® a slicing tree based floorplanning
model of the circuit to find a placement of minimal area.

Fukui et. al. [12] deeloped a system for 2-dimensional digital transistor placement and routing. A simulated
annealing algorithm is used to find good groupings of transistors ifbsidii-shared stacks and a greegplera-
tion of a slicing structure is performed to find a 2-dimensional virtual grid floorplan. A symbolic router is used to per-
form detailed routing, and a final compaction step is used to permit transistors within stacks to slide into locally
optimal positions.

In a more recent @rk by the same group, Saika and Fukui et. al. [13] present a second tool which operates by stat-
ically grouping the transistors into maximally sized series chains and then locating a high quality 1-dimensional solu-
tion in order to form more complechains. Then a simulated annealing algorithm is used to modify this linear
ordering by placing the difsion connected groups onto a 2-dimensional virtual grid. Routing is done by hand.

It is also relgant to discuss @ark in analog circuit placement and routing in this cent®ne such system koan/
Anagram by Cohn et. al. [15]. This system uses simulated annealing to find a placement of analog components,
simultaneously seeking to optimizevike connectiity through arbitrary geometry sharing, while satisfying design
rule constraints as well as analog constraints suchvacedsymmetry and matching. It then uses a custom area router
with aggressie rip-up and re-route capability to neathe remaining required connections.

In this work we present the architecture for a 2D cell synthesis system wigeltstaomphe non complementary
digital MOS circuits. & approach the problem as a general transister pdacement and routing problem, andvwgho
how existing placement and routing models and algorithms can be tailored specifically to digital tréewstor
design.

A common theme amongisting 2D cell synthesis systems [11,12,13] is thay thigempt to capture localized
regularity by grouping transistors into locally optimal transistor chains, or “stacke/etéq in all three systems this
grouping is performed statically before placem&uaan [15], which is tageted at analog synthesis, performs no
static clustering or stack formatiorytinstead allevs these structures to form dynamically during placement. When
applied to digital cells we found thatokns dynamic cluster formationag not able to disver the lage reyular
clusters which are characteristic of digital designs (see Fi@)réut we tale inspiration from its fbability. An
important theme in this ark will be an @amination of methods which permit the placement step to dynamically alter
the transistor groupings during placement.

In Section 2 we introduce our proposed cell synthesis fkame Section 4 discusses the implementation of our
experimental system, which is nameBMPQ Section 5 presents someperimental results and Section 6 summa-
rizes our conclusions and discusses our plans for futore w
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Figure 3: Proposed cell synthesis flow
2 Proposed M ethodology

As our top leel framevork we adopt the flo of steps diagrammed in Figusewhich was first suggested in [7].
We bayin with a sized transistor netlist as well as theveeie design rules and cell template information. In the first
step, clusters of transistors are formed, each representing a set to be composed into a gat&trowure, dran-
sistor sta&. Clusters of size one represenfjeleerate stacks, or imiiual transistors. In the second stepgdatran-
sistors may béolded or split into two or more parallel-connected transistors of e@jent width. An ordering for the
transistors in each stack is selected, and the geometry for each stack is generated. In the third step, a placement of the
stacks is found that assigns them unique locations. Such a placement must satisfy the design rules and template con-
straints, should minimize some cost function, anddesmough empty space so that a feasible routing is guaranteed to
exist. The fourth and final step generates the routing geometry te thakemaining electrical connections which
were not made through direct connection bytatent. In general, it is not required that these four steps be performed
sequentiallyAn algorithm may mee two or more steps, or iterate between them.

In the remainder of this section we discuss each step in more detail, outline the choices whiehagetad in
our current implementation, and discuss/tour methodsxdend those of préous authors.

2.1 Transstor Clustering

In the first step, transistor clustering, the task is to determine the optimal number of transistor stacks and which
transistor(s) belongs in each stack. At this staagg little information is wailable, only the transistor connedty
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Figure 4: The clustering step. The schematic implements the CGaAs Mux-FlipFlop of Figure 2,
and shows the partitioning used in the manual design. All transistor lengths are 0.5 microns.

and the sizes of each transis&w the choices can only be heuristic in nature. Figurewssti® clustering used in
the manually designed CGaAs Mux-FlipFlop circuit of Fighre

Authors in prgious works hae used a wideariety of heuristics at this stage. In [12] the authors use simulated
annealing. In [13] only simple stacks made up of maximum length series chains were creategkenistatds are
formed during the 1D optimization step. It is alaoliy common, especially in 1-dimensional tools, to approach clus-
tering by performing logic@e recognition, as in [6].

It is our opinion that, because of the heuristic nature of the decisions made at this stages littieakense to
devote a lage amount of ébrt to determining, a-priori, grsort of “optimal” static clustering. Instead wesbample-
mented a ybrid approach which alles the placement step to dynamically modify the clustering solution. During the
clustering step we simply partition the netlist into maximally sized setsfa$idifi connected same-polarity transis-
tors. These sets are calledperclustes. After an ordering is assigned to the transistors in these-slys¢ers, the
diffusion breaks are used to further partition the stacks into a numbeb-afustes. The corresponding sub-stacks
become the atomic unitvailable during the placement step, and orderings of the transistors in thetsiggsrcan
be used to induce d&rent clusterings in the inddual sub-stacks. Wwill elaborate on this further in Section 2.3.3.

2.2 Transistor Folding and Stack Generation

In the second step, the clusters which were formed in step 1 are realizedysitalpeometryTo begin, lage
transistors may be “folded” in order tosgiindvidual transistors a more square aspect ratio and better stholed
transistors to match the width of other transistors in the same stack. A folded transistor is formed by composing tw
or more parallel connected transistors to form a total channel widtvaéentito the original.

After appropriate foldings are selected for each transiatoordering is selected for the transistors within each
stack. Br individual stacks it is knan that the minimum width solutions correspond to solutions with a minimum
number of ceering Euler trails. It is also kmm that there arexponentially mag Euler trails for ap given stacking
[7]. For example, in Figuré we shav two different stackings for the same transistor netlist [3]. Both staclesdre
diffusion break, bt stack(2) requires one fger horizontal routing track than sta@®. Stack(2) is also slightly nar-
rower because the shared node between transestordb can be made without a contacte Whould point out that,
in this case, stac{?) was actually obtained by modifying the schematic—the togtlgeries chain as reordered.
The two circuits will have the same logical bebiar, but may not be electrically equilent. Stackings which change
the schematic should only bepdored if permitted by the designer

In order to establish the ordering of the transistors within the transistor stacksenedoated the algorithms in
[7] which were deeloped for 1D linear transistor array width minimization. Asvghan Figure 6, a ditision graph
is constructed to represent the transistor conrigctirhe graph ertices represent the electrical nodes in the circuit
and the edges represent a transistor whose channel conredfthese nodes. It is well kwa that an Euler trail
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Figure 5: Two different transistor stackings generated for the same schematic.

can be embedded in &AD if and only if the graph has either zero ootedd-dgree \ertices. In order to makthe

graph Eulerian, an artificialevtex (the “super” ertex) is added and edges arewnaconnecting it to all odd deee

vertices (there must be amem number of these). An algorithm from [23] is used to locate an Eulerian trail on this
graph. The trail must lggn and end at the supeertex, though awg internal \ertex may be used if the input graplasv

already Eulerian. The order in which the graph edges are visited corresponds to the ordering of the transistors in the
stack, with the supezdges corresponding to Wision breaks.

As a final task within step 2, theystical geometry for each of the transistor stacks is realizedmplement this
through a set ofenertors that create the design rule correct geometryhe taget technologyfor stacks and for
individual transistors. In Figuré we shav the output of our stack generator fomall complex stack. Our generator
currently supports stacks with internalfdgfion breaks, as well as adjacent uncontacted transistors. It aligns oddly
sized transistors along the bottom edge, and places ports tdeafiad nets along this wo As shevn in Figure5,
intra-stack routing is performed using a greedy left-edge algorithgmrbeg from the second track anarking
upward. Only if no &ternal ports are bloéd will the first track be used for routinge\allso attempt to placeternal
ports in the top track of each transisibpossible, to enable an escape path in both directions.

2.3 Stack Placement

It is the task of the stack placement step to assemble the transistor stacks into a configuration that is both design



CSE-TR-364-98: Transistor Level Micro Placement and Routing 7

tl = (5121314151618)41716s2!118)

* sub-trail modification move

(S$2,3,456,7,4,56,2,1,9)

Figure 6: Euler trail formation and the sub-trail modification move [7]
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Figure 7: Layout produced by the stack generator

rule correct and which optimizes the desired cost function. In our current implementation this cost function is a
weighted combination of the placement cost (area, perinaeeect ratio violation, etc.) and an estimate for the rout-
ing cost:

cost = w; [placement- w, [fouting Q)

In the implementation of the placement phase it is possible tovbargreat deal from the field of macro-block
placement. Haever at the transistorvel, a problem which we refer to ascro-placemeni{l4], several diferences
manifest themsebs. W list them here and elaborate on each one in thevialjosections.
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Figure 8: An example demonstrating the Sequence Pair representation from [18].

. Modeling of the placement search space
. Support for arbitrary geometry sharing

. Support for transistor stacking

. Routing model

. Electrical considerations

o 01~ W N P

. Presence of cell template constraints

2.3.1 Modeling of the Placement Search Space

Of particular importance is the selection of a method with which to model the placement search space. In [16], a
distinction is made betweadtirectandindirect placement models. Direct models, such as those useadhireolf
[17] and Koan [15], represent the placement as a set of objects, each with a sgauifjacoordinate. Indirect mod-
els, on the other hand, represent the placesymbolicallyin an attempt to reduce the size of the search space. This
reduction is achieed by collapsing mandirect placements into egailence classes which can bgaled as identi-
cal in some sense with respect to the cost functian. &amples of indirect models are tBécing Tee a method
popular in the floorplanning literature whichasvadopted in [11] and [12], and tBequence & introduced by
Murata et. al [18].

We hare chosen to base our placement engine on the Sequeincgyfbolic representation. This choicasy
made because we conjecture that symbolic methodsdpra more dicient and rigorous frameork with which to
traverse the search space. In particular we chose the SequenoeeP Slicing Tees because, as we will shary
placement reachable within a direct model can be collapsed into aaleqae class of reachable placements in the
Sequence &r representation. Somalid placements, on the other hand, are not representable as Stadsg T

The Sequencedit model is based on the constraint graph formulation of thedtmensional compaction prob-
lem [19,20,21]. Instead ofxplicitly representing thexact x andy coordinates for each object, this model simply
keeps track of the rela8 position which will be enforced for each pair of objects in order t@eptehem from eer-
lapping. For two objectsA andB, we simply need to knoif B is abae, belay, to the right of, or to the left &. This
partial ordering implies a design rule constraint, in the specified direction, betweero thbjésts. When all such



CSE-TR-364-98: Transistor Level Micro Placement and Routing 9

5 - : :

Cost
w

1
10° 10° 104 10°
Temperature

Figure 9: Simulated Annealing algorithm cooling data for a typical run

pairwise relationships are resetl; a constraint graph can be constructed ane@dabvyield the actual nonerlap-
ping, design rule correct, coordinates for each object. .\

A Sequence &lr represents the partial ordering among placement objects as a pair of sequeracet, . The
non-overlap constraint which is enforced between each pair of objects is implied by theie netsitions in the tay
sequences. This is best visualized with the use of an oblique grid wlessaraXabelled by the basequences, as
shavn to the left in Figur®. For example, objeck appears after objedtin both sequences, placing it in the right
guadrant of the grid relag tod. This implies that a right-of constraint will be enforced betwetande. The final
compacted placement for these objects, taking into account the constraints implied by the sequence pair and the sizes
of the objects, is sl to the right.

It has been preen [18] that the set of packings representable with the SequainégdPadmissible meaning that
it is precisely equal to the set of all feasible packingsveder, each “packing” may actually represent aytaset of
equialent placements obtained using a direct placement mode. When the constraint graptl,ialsoljects on the
x andy critical paths will hae fixed positions, bt all other objects will hae someslad in their positions. These
objects may mee around within their range of slack while maintaining the same total aseauNéntly choose the
simplest of these equalent placements by compacting all objectsa the laver left, lut one could conceably
optimize for some secondary criterion such as routing length.

In order to systematicallyxplore the Sequenceal solution+space, as in [18] we use simulated annealing. This
space is defined by the set of all permutations of the sequEncasdl” , and all rotations and mirrorings of each
object. The follaving set of mges are used by the simulated annealing engine:

1. Swap a pair of objects in eith§r+, or ™ or both

2. Translate one object to a different position in eitﬁJén or [ or both

3. Rotate and/or mirror one object into a different orientation

4. Re-order a selected super-stack or sub-stack (explained in Section 2.3.3)

Our simulated annealing engine realuse of a standard adapttooling schedule, automated initial temperature
selection, range limiting, and statistical vacselection [22]. In Figure 9 we sha plot of the cost function during a
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Figure 10: An example of a second-order shared structure
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Figure 11: Three examples demonstrating a pair of transistors in different configurations with re-
spect to geometry sharing.

typical run of the simulated annealing algorithm as the temperature is reduced.

2.3.2 Support for Arbitrary Geometry Sharing

The most noticeable d@rence between block placement and translst@l placement is thett that the objects
being placed are no longer forbidden fromedapping. If two neighboring transistor stacks of the saméusiibn
type share a common electrical node, it will be desirable tav #ifle objects to mge. This will often reduce the cell
area, and is also beneficial from a performance perspeet$ the parasitic source and drain capacitances will be
reduced.

Our methodology supports geometry sharing ai thifferent levels. The formation of transistor stacks dsk
adwantage of a great deal of the potential geometry sharing which is present in the circuit. This will be discussed in
the following section. & also allev pieces of geometry to mgg during the placement step, permittingéarmeged
structures to form and taking ahtage of less efpus patterns of connection.é/all thesesecond-oder shaed
structues An example in Figurel0 shavs two small transistors mging with a single lager transistor

In order to support geometry ngang at the transistor Vel we use adirly simple mechanism, as st in
Figurell. If two objects are in the proper configuration such that ltlaee electrically compatible portading each
other as in Figurel1(b), the design rule constraidj can be releed to a smalleralue, , to allov those ports to
overlap. This may result in design rule violations in the final placement if the ports do not line up pradiskly
can be repaired in a post-processing step. This form of geometry sharing is formulated to encourage the formation of
second-order source/drain shared transistor stacks, and gostgatks such as Figut®. It does not currently sup-
port more compbe shared structures such as Figltéc). This structure auld require & constraint as well as an
constraint to ensure design rule correctness.
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2.3.3 Support for Transistor Stacking

As we mentioned in Section 2.1, it isry difficult to determine an optimal static clustering of the transistors into
diffusion connected stacks. This is because the clustering step has no information aboutvith@asititins of the
stacks in the final placement.atiitional stack optimization algorithms can locate a stacking solution with minimum
width and minimum internal routing cosyttsuch stackings may not be globally optimal whder@al area and wir-
ing costs are tan into account. It is thus not clempriori to which stack a particular transistor should be assigned,
and which stack ordering should be chosen.

Instead of imesting a great deal offeft making static clustering choices prior to placement, we kaopted a
methodology which alles the placement step to dynamically alter the clustering choices and stack orderings in order
to find a configuration that minimizes global area and wiring costs. As described in Section 2.1, the clustering step is
merely responsible for locating maximal sized sets of same-polartisidii connected transistors. Thesger
staks, after being formed into linear transistor arrays during the stack generation phase described in Section 2.2, are
broken at the dffuision breaks and the resultiagb-staksare passed to the placement engine as the atomic placeable
objects.

It is easy to see that there will be mdtuler trail coerings for a gien supesstack, and that all of them will ha
the same number of flilsion breaks. Thus, if we break the sugircks at the positions of thefdgion breaks, and
treat each sub-stack as a separate placeable object, the number of objects being placed will remain constant. If a ne
Euler trail is found for the supstack, indvidual transistors may me from one sub-stack to anothand the indi-
vidual sub-stacks may gmoor shrink in size depending on the number of edgesrsad in each sub-trail. The sub-
stacks are free to be placed ity &amo-dimensional arrangement that optimizes the area andtév@& routing. Note
that we are not attempting to optimize the height of these transistor stacks, as is traditional in the liter@dtréhdn f
height of the stack is fed by the input schematic. tever, the stack geometry generator will report the number of
internal stack nets which cannot be routeerdop of the stacks, and these are added to the global routing cost. Thus,
the sub-stacks are automatically optimized such that their internal routing costnsrttkaccount as well as the
resulting global routing cost.

In order to unify the transistor clustering and stack formation steps with the transistor placement engiee, tw
moves were added to the simulated annealingavs®t. The first corresponds to theb-tmil modification mae
described by Basaran [7]. One of the stgiacks is selected, and a random sub-trail within the current Euler trail is
eliminated and replaced with afdifent randomly generated sub-trail with the same endpoints. It can\ee ttad
this move is complete, and can thus be used to constvecy @ossible Euler trail which can be embedded in the
selected graph. The secondwemas added to increase théiacy of the algorithm at vy temperatures, when G
sub-trail modification mees can be ery disruptve and are thus rarely accepted. The seconeentive sub-stac
modification mee, simply selects one sub-stack and locatesnaandering for its constituent transistors.

2.3.4 Routing M odel

The most critical dierence between blockyel macro placement and transiskerel micro placement is the rout-
ing model which must be supported. A good routing model is critical because of the serialized spli¢ wedha
between placement and routing. Good estimates for the routing cost must be made in order to encourage placements
that are compactub also easily routeable. In addition, the placement step mustdeficient empty space between
the objects to accommodate the wiring.

Routing costs in lge standard cell blocks can be accurately estimated using statistical means based on Steiner
trees [24], hwever our &periments with these techniques at the transistet &haved that thg tended to underesti-
mate the routing cost and did not encourage final placements which were easily routeable. At the tresisistisr le
our obseration that multi-terminal nets are generally connected in a more point-to-psimbr. V& hase chosen to
estimate the routing cost metric using a minimum spanning tree (MST) approximation.

Even more dificult than computing the wiring cost is the calculation of the additional area required for routing
space. While we can generally assume that the router will be able to find some nearly direct path between terminals
which approximates its minimum spanning toest routingspacecalculations must be able to guegaatly which
path that will be (without requiring a complete detailed routingd.NAfe explored three techniques which are dia-
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Figure 12: A demonstration of different routing space estimation techniques. Example (a) has no
extra space reserved for routing, example (b) uses the method from [18], and example (c) uses
the method from [15]. Example (d) uses our modified version of the method in [15].
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grammed in Figurd?2.

Figure12(a) shavs an intermediate placement without the addition of routing space. It is clear that some nets will
be unroutable. In Figur2(b) we use a technique from tean analog placement tool [15]. Here, each obgect’
bounding box is increased to include atra routing ‘halo’. This halo is proportional in size to the number of I/O
ports and imersely proportional to the perimeter of the object:

#1/0 ports
halg = a B—r—+ 2
perimetey

wherea is an gperimentally determined scalingdtor for tuning purposes.atae found that this method is tif

cult to tune and tends to leamore space than necessary between most blocks, requiring post-routing compaction. In
addition the halos tend to nmalkhe objects more uniform in size, due to itgeie relationship to the perimeter
resulting in placements which are morgular in appearance than manual designs.

An additional problem with the halo-based technique is that the non-uniform objeth geads to break apart
second-order shared structures that are formed through design rule relaxation as described in Sectionx®2. An e
ple of this is markd with an arre in the figures.

In Figurel2(c) we use a technique for routing space insertion due to Murata [18], which is an elaboration of a
technique described by Onodera [21]. Here each object is translated from its original coof®jngfeso a nev set
of coordinateqx;", ;") based on an estimate of the routing resources which will be requiredibalw to the left.

The nev position is calculated as folls:

H, EJ w.0

D |

(fn, o Afm, ¢

5 W =% +BTE ®)
E g g

O
g
X' =% +BT E‘ H
O
O O O
whereT is the routing pitchN, andN,, are the set of nets whose boundingeasokgin before object in x andy,
H, andW; are the height and width of ries bounding box, andl andW are the height and width of the original
placement Agin, B is an &perimentally determined scalingdtor In the figure(x;, y;) correspond to the coordi-
nate of the leer-left corner of each object. The additional bsxdemonstrate the mement of each object—their
lower left corners marKx;, y;) and their upperight corners mark(x;", y;'), for the objects appearing at their
upperright corners. This method, designed for block placement, uses a greedy heuristic which assumwery that e
horizontal (ertical) net ma&s eactly one ‘ertical (horizontal) jog at thef left edge of its bounding box.eMave
found that this method introduces a nonuniform bias in the routing, concentrating the routingwspaté®lover
left corner leaving objects closer to the upper and right edgesded together
The final technique which we V& explored is shan in Figurel2(d). This method, attempting to correct some of
the problems which we found with Muraahethod, mas diferent use of the method of Onodera [21¢ ¥imply
solve Equation (3) forx.,,, andy,,, . the upper right corner of the design, and assignsao®rdinates to the

blocks based on the folkeng:

, X . : Yi
X =X+ (Xmax >(max)x Yi =Yt (ymax _ymax)

4
max Ymax ( )
This method approximate the total number of horizontal @ntical routing tracks which will be required, assuming
that each net occupies one horizontal and @mngcal track, and distriies thesewenly throughout the design. As
can be seen in thxample, the allocation of routing space appears more uniform thaanmpée (c), without the
strong bias tevard the lever-left corner

As a final obsemtion, note that the latter bwexpansion-based techniques based on Onadenathod do not
break apart second-order shared structures @daskth an arrey) which were present in the original uxpanded
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placement. This isxplicitly supported in thexpansion algorithm by identifying instances of geometry sharing and
assigning all shared structures the sarpaesion &ctor as the most\uer-left shared object.

We hare chosen to adopt the final technique describedealvehich we ternproportional expansion for the rea-
sons stated abe. Havever, we still feel that these techniques akerty heuristic in nature and we are aety
researching ne alternatves.

2.3.5 Other Issues

We also listed tw other issues which are of concern when adopting blagk pdacement models to transistor
level placement: electrical considerations, and the presence of cell template constraints.

An important aspect of transistovéd synthesis is the optimization of the electrical performance of the circuit.
Parasitic capacitances are minimized through geometry shatihgne may also wish to analyze other properties
such as crosstalk and the noise immunity of semsitynamic nodes. These may be incorporated into the cost func-
tion or as constraints in the n®set.

Finally, one must account for a ¢gr number of possible constraints resulting from the cell template specification,
as discussed in Section 12.1. Some of these may be coamglanon triial to account for in the placement and rout-
ing models. Br our experiments we ha adopted a relatly simple datapath style cell template specification which
we &plain in Section 4.

3 Routing

The final step of the synthesis desigmfis routing. In our implementation, the placement step is responsible for
ensuring that the routing problem is feasible. The routing step as wét dees not directly &ct the cost function
(except perhaps through routing parasiticoy the final placement, either a feasible routirigte or it does not.
Much research has been done in the field of detailed maze routing, and evaseak anasting tool: Anagram-II,
an analog maze router described in [15].

4 Implementation

In this section we discuss a prototype tool calletiPO(Transistor Enabled Micro Placement Optimizationg W
have been using this tool as a framuek to explore the ideas discussed in theyiwas sections. TEMPO is imple-
mented in C++ and has been tested under the Sun Solaris and Linux operating systems.

As discussed in Section 2.2.3., wedamplemented a generic placement engine based on the symbolic Sequence
Pair model. This has been adapted to transistatl f[dacement through the representation of placeable transistor and
stack geometry primites, dynamic transistor clustering and stack gedtization, and an adjacgneanalysis step
which collapses the design rule constraints in order twaltbitrary geometry sharing. A simulated annealing opti-
mization algorithm has been implemented with a standard sdagmoling schedule, range limiting, and statistical
move selection [22].

The input is a Spice netlist file and a technology file specifying the design rules. Genenrsadogdraimple-
mented to construct the transistor stack geometaking use of optional static clustering and stacking order specifi-
cations supplied by the user through annotations in the Spice file. Routing length estimates are made using a
minimum spanning tree model, and thrededént methods for performing routing space estimates haen imple-
mented. V€ male use of theAnagram-Il router for post-placement routing. Output mask geometry is produced in
Berkeley Magic format.

We have adopted a datapath-style cell template for the current sgp@fiments. Internal routing is performed in
poly and metal-1. Control inputs are assumed toeanertically in metal-2 and data inputs agihorizontally in
metal-3. V¢ place these inputs ageocell routing tracks in a position which is as close as possible to the center of the
associated net’bounding box.
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Figure 13: The mux-flipflop placement produced by: (a) the Koan analog placement system [15],
(b) TEMPO with transistor stacking disabled.

5 Experiments

The lack of a standard set of 2D circuit benchmarksamakiantitatie comparison among 2D cell synthesis tools
difficult. In this section we discussveeal experiments which qualitately illustrate the alue of seeral aspects of
our methodology

In Figurel3 we shw an &periment conducted on the mux-flipflop circuit, our runnirgnaeple from Figure.
Figure13(a) shas the placement as realized by wananalog placement system [15]. Figaf{b) shas the out-
put of TEMPOwhen clustering and dynamic transistor stackinghseen disabled. Here all geometry sharing results
from the meging of adjacent geometrit closely resembles the outputkdan Without integrated transistor stack-
ing, Koan and TEMPO are not able to diswer the long transistor chains which are clearly visible in the manual
design.
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Figure 14: Two placed and routed example circuits. Example (a) is the mux-flipflop circuit from
Figure 2. Example (b) is a CVSL carry-save adder with muxed latching inputs from [25].

Two complete placed and routedaenples are shan in Figurel4. Figureld(a) demonstrates a placement of the
mux-flipflop circuit realized by TEMPO with clustering and dynamic transistor stacking enabled, whilelHithre
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shaws the final routing solution realized by theaagram-I11 router The second circuit, stum in Figurel4(c), is the
“CSA-MUX” circuit from [25]. Both circuits were implemented in the MOSIS 0.35 micron CMOS process HP14B.
The former used the transistor sizes specified in the original CGaAs designasiogtinized for minimum area,
while the latter \&s sized by us using HSpice anasvwoptimized to find its minimum widthvgin a fixed height.

In Figurel4(a) the mux-flipflop xeample has dimensions (h367w=44.31). This comparesaforably with the
hand-designedxample in Figure, which has dimensions (h535v=6Qu). However, a direct comparisons is impos-
sible—the MOSIS CMOS process used in TEMPO has tighter metal geometries than the CGaAs process used in the
manual design.

6 Conclusions and Future Work

In this paper we he formulated a general four step framoek for 2-dimensional cell synthesis based on transis-
tor-level placement and routing. Our methodology igeted at compledigital designs in non-dual logiarilies
such as CVSL, PTL, and domino CMOS, for whichsgéng 1-dimensional methods are inadequate. Wae
explored a number of optionvailable at each step of this process, and described the choicesevmdde in the
implementation of our prototype tool framerk, TEMPQ We hare presented a number ofaenples which illustrate
the main features of our model: a non-gridded 2D symbolic placement engine, dynamic clustering and stack forma-
tion through transistor stack rganization and through arbitrary geometry sharing, andrated routing space esti-
mation.

We are currently researching the wire space estimation problem in search of more accurate techniques, and we are
compiling a set of benchmark circuits for 2-dimensional cell placement problems. These benchmarks will be obtained
from the literature as well as from industrial sources, and we intend to release these to the community in order to
encourage more accurate comparison between competing tools.

As along term goal, weauld like to explore methods for linking on-demand cell synthesis to front-end logic syn-
thesis and back-endiffer sizing, paver reduction, and wire optimization techniques.
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