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ABSTRACT

We propose and study a scalable flow-control algorithm for multicast ABR (Available Bit Rate) service.
A key idea behind the algorithm is the Soft-Synchronization Protocol (SSP), which derives a single “con-
solidated” RM (Resource Management) cell at each multicast branch-point from feedback RM-cells of
different downstream branches that are not necessarily responses to the same forward RM-cell in each
synchronization cycle. Using balanced and unbalanced binary-tree models, we analyze the scalability of
SSP in terms of height and structure of the multicast tree. In contrast with the other existing schemes,
SSP is shown to be able to effectively support synchronization of feedback RM-cells and make the effective
RM-cell roundtrip delay virtually independent of the multicast-tree’s height and structure, thus making it
scalable.

Another key problem in multicast flow-control is how to deal with the variation of RM-cell roundtrip
delay due to the randomly drifting bottleneck in a multicast tree. This problem is handled by adapting
the second-order rate-control parameter to roundtrip-delay variations. Using a fluid model, we derive an
analytical relationship between the second-order rate parameter and RM-cell roundtrip delay subject to
both lossless transmission and finite buffer capacity constraints. This relationship ensures the feasibility
of the second-order rate control in dealing with RM-cell roundtrip-delay variations and provides an insight
on how the required buffer space can be controlled by adjusting the rate parameter. We develop an opti-
mal control condition, under which the second-order rate control guarantees monotonic convergence of the
system state to the optimal regime from an arbitrary initial value. The proposed second-order rate-control
algorithm is also shown to be feasible and optimal in buffer-allocation efficiency and fairness at the bot-
tleneck.

Index Terms — Multicast flow control, scalable algorithms, ABR service, ATM networks, feedback-based
flow control, rate-based flow control, lossless transmission.
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1 Introduction

Multicast ABR service is an increasingly important class of service in ATM (Asynchronous Transfer
Mode) networks, and has a wide range of applications in distributed computation, group data/news-
broadcasting, and LAN emulation. Conceptually, a multicast connection forms a multicast tree, in which
a single copy of data is sent by the sender at the root, and the data copies are made at all branch-switches
while the data being forwarded towards a group of receivers at the leaf nodes. The data generated by
the sender moves through the multicast tree, traversing each tree edge only once. How to distribute the
data to each member of the multicast group is transparent to the sender. When receivers join or leave a
multicast group, the multicast tree is dynamically reconfigured.

Congestion control plays a critically-important role in providing high-quality services for diverse traffic
through high-speed ATM networks. Supporting multicast ABR service poses a number of new challenges
unseen in the unicast ABR context. Omne of the major problems, especially in large multicast trees, is
commonly known as the feedback implosion problem [1]. Since our goal is to adjust the source transmission
rate to match the bottleneck link bandwidth, the source needs to collect congestion information all branches
in the multicast tree. Simultaneous congestion feedbacks from all branches can cause an implosion at the
source. Hence, it is important to consolidate the congestion feedback at each branch-point and only the
consolidated feedback is forwarded upward. Consolidation requires synchronization of feedbacks from all
downstream branches at each branch-point. Since different branches may have different roundtrip delays,
receiver-returned feedbacks may arrive at the branch-point at significantly different times. If a branch-
point switch waits for feedbacks from all of its multicast-tree specified downstream branches, it may have
to wait a long time, thus resulting in a long feedback delay. On the other hand, if the branch-point switch
forwards an early feedback upstream without waiting for feedbacks from all of its downstream branches,
the source may receive incomplete/incorrect information.

Another important but subtle problem associated with multicast flow control is that the bottleneck may
drift from one path to another within a multicast tree. As a result, the roundtrip delay in the bottleneck
path may change significantly. Since the roundtrip delay plays a critical role in determining the effectiveness
of any feedback flow-control scheme, it is important to handle such dynamic drifting of the bottleneck. The
flow-control scheme should also be able to detect and remove non-responsive or over-congested branches
in order to prevent them from stalling the entire multicast connection.

Although the literature on unicast ABR is extremely rich, the results on multicast ABR flow control is
quite limited. Roberts [2,3] proposed a multicast flow-control scheme which is based on EPRCA (Explicit
Proportional Rate Control Algorithm) and extends unicast to multicast operations. Using a similar tech-
nique, the authors of [4-6] established a framework for extending an existing unicast congestion-control
protocol to a multicast environment. Their schemes are simple and easy to migrate from a unicast environ-
ment to a multicast environment. They employ simple “hop-by-hop feedback” to deal with the feedback
implosion at a branch-point switch, and retain the same source/destination control algorithms as in the
unicast. The pseudocode of this scheme [2-6] is given in Figure 1, focusing on RM-cell processing. In
this scheme, each switch maintains a register MER (Minimum Explicit Rate) and a flag MCI (Multicast
Congestion Indication) for each multicast connection. This scheme ensures exactly one feedback RM-cell
to be returned to the source for each forward RM-cell, and contains the minimum ER (Explicit Rate)
and CI (Congestion Indication) information of all participating branches during the last RM-cell update
interval. At each branch-point, a consolidated feedback RM-cell is generated and sent upstream a single
hop upon receiving a forward RM-cell, thus marching “hop-by-hop” towards the root. All of the schemes
in [2-6] are of this type.



If switch receives an RM(ACR, DIR = forward, ER, CI) cell:
Multicast this RM cell to all participating branches;
MXR:=ER, MXI:=CI, ! MXR and MXI are temorary variables used to update MER and MCI
Send RM (ACR, DIR:=feedback, ER:=MER, CI:=MCI) to the root node;
MCI := MXI, and MER := MXR;
If switch receives an RM(ACR, DIR = feedback, ER, CI) cell:
MCI:=0OR(MCI, CI); MER:=min(MER, ER); Discard this RM cell;

Figure 1: Pseudocode for the “hop-by-hop feedback” algorithm.

While the hop-by-hop feedback scheme is effective in eliminating the feedback implosion problem and
easy to implement by extending the existing unicast, it suffers from serious scalability and feedback in-
efficiency problems. First, the RM-cell roundtrip delay is large and proportional to path length in the
multicast tree. Suppose the source sends an RM-cell once every N, data-cells in the multicast-tree of
height m, then each feedback RM-cell will take mN,.,, data-cell time units to reach the source from the leaf
along the longest path since the feedback RM-cell is sent upstream only one hop upon arrival of a forward
RM-cell. Thus, the hop-by-hop scheme does not scale well with the multicast-tree height. Second, this
feedback is inefficient for the following reasons. For a multicast tree of m levels, the source needs to send
m forward RM-cells for a feedback RM-cell to return to the source. Moreover, delaying any of these m
forward RM-cells will directly affect the delay of the feedback RM-cell. Each branch-switch does not syn-
chronize feedback RM-cells from different downstream branches. This could lead to incomplete/incorrect
feedback information (ER and CI) to be consolidated in a feedback RM-cell. Third, the algorithms [2-6]
based on hop-by-hop feedback cannot handle the variations in RM-cell roundtrip delay (resulting from the
dynamic drifting of the bottleneck) because they apply the same set of rate-control parameters irrespective
of the bottleneck location. However the roundtrip delay has a significant impact on maximum buffer re-
quirement, average throughput, and buffer/bandwidth utilization. Fourth, the identification and removal
of non-responsive! branches are not handled explicitly. If a branch does not respond for a long time or does
not respond at all, then the hop-by-hop switch algorithm will keep using out-of-date feedback information,
which could result in loss of a significant number of data-cells.

To overcome the above-mentioned problems, we propose a new multicast flow-control scheme, which
can avoid the feedback implosion at the source while achieving excellent feedback efficiency through the
“soft-synchronization” protocol (SSP). Specifically, the SSP derives a consolidated RM-cell at each branch-
point from feedback RM-cells of different downstream branches that are not necessarily responses to the
same forward RM-cell in each synchronization cycle. Using balanced/unbalanced binary-tree models,
we analytically evaluate the SSP’s scalability with respect to multicast-tree’s height and structure. The
analytical result shows that SSP can not only effectively provide feedback synchronization, but also reduce
the RM-cell roundtrip delay to such low a level that it is virtually independent of the multicast-tree’s
height and structure, a sharp contrast with the hop-by-hop feedback scheme.

In order to cope with variations in RM-cell roundtrip delay, we have developed a second-order rate-control
algorithm. More specifically, besides adapting the transmission rate based on congestion-information feed-
back, the source also adjusts the second-order parameters that determine the rate at which the transmission
rate itself is adjusted. As a result of employing the second-order rate control, the maximum buffer require-
ment scales well with the dynamically-changing bottleneck-path length when the bottleneck location drifts
from one path to another. Using a fluid model, we analyze the proposed scheme and study the system
dynamics under a heavy load condition. We have developed an optimal control condition, under which the
second-order rate control guarantees the monotonic convergence of system state to the optimal regime from

! A non-responsive branch may be either physically broken or over-congested, thus not returning any feedback for a very
long time.



an arbitrary initial state. We also prove that the proposed second-order rate-control algorithm is feasible
and optimal in convergence to buffer-allocation efficiency and fairness at the multicast-tree bottleneck.

The paper is organized as follows. Section 2 describes the proposed multicast flow-control scheme, and
Section 3 establishes the system and control models for the proposed scheme, identifies the system control-
ling factors, and presents an analytical solution to the multicast-tree bottleneck dynamics. Section 4 ana-
lyzes the RM-cell roundtrip delays for both the proposed and other schemes using the balanced /unbalanced
binary-tree models. The scalability of both schemes are compared numerically. Section 5 analyzes the rela-
tionship among the maximum buffer requirement, rate-control parameters, and RM-cell roundtrip delays.
The second-order rate control is developed and its properties investigated in terms of efficiency and fairness.
The paper concludes with Section 6.

2 The Proposed Scheme

As in the rate-based scheme, we also use the EFCI (Explicit Forward Congestion Indication) bit in data
and RM cells to convey network-congestion information. A forward RM-cell is sent by the root (source)
periodically or once every N,,, data-cells, and each leaf node (receiver) replies by returning to the source a
feedback RM-cell with EFCI and ER (Explicit Rate) information. We redefine the RM-cell format [7] such
that it contains both the cell-rate (first-order) and the rate-parameter (second-order) control information.
More specifically, two new one-bit fields, BCI (Buffer Congestion Indication) and NMQ (New Maximum
Queue), are defined. Our scheme classifies congestion into two types:

bandwidth congestion: when the queue length Q(¢) at a switch exceeds a predetermined threshold Q.
Under this condition the switch sets the local CI (Congestion Indication) bit to 1.

buffer congestion: when the maximum queue length @, at a switch exceeds the target buffer occu-
pancy Qgoat, (Qn < Qgoal < Crax), where Cpqy is the buffer capacity. Under this condition, the
switch sets the local BCI to 1.

When a branch-switch receives a feedback RM-cell from a downstream node, it consolidates the infor-
mation on ER, CI, and BCI for the corresponding connection. The ER is set to the minimum of the ER
computed by the branch-switch and the ERs received from the downstream nodes. The CI field associated
with the connection state is set to 1 if the local CI is 1, or CI field in the RM-cell received from any one
of the downstream nodes is 1. The BCI field associated with the connection state is computed exactly in
the same way. Upon accumulating feedback information from all downstream branches, a single feedback
RM-cell is generated with the consolidated congestion information and sent upward with CI and BCI fields
set to their respective values in the connection state. Note that our algorithm allows branch-switches
to consolidate feedback RM-cells that are not necessarily responses to the same forward RM-cell. This
distinguishes our algorithm from both (i) “strict synchronization,” where only the feedback RM-cells in
response to the same forward RM-cell are consolidated, thus making the feedback delay determined by the
longest path, and (ii) “no synchronization” at all [2-6], which may convey incomplete feedback informa-
tion to the source, thus degrading feedback efficiency. In the proposed scheme, the feedback RM-cells are
“softly synchronized” at each branch-point, providing fast, complete, and efficient feedback, and making
the feedback delay scalable with the height and structure of multicast tree.

The proposed scheme can dynamically identify non-responsive downstream branches and remove them
from the multicast connection. This is critical for multicast flow-control since non-responsive branches can
stall, and even shut down, the entire multicast connection. In our scheme, the non-responsive branches
are defined as those which are either over-congested or physically broken. Specifically, at each switch a
responsive-branch state vector and a non-responsive timer are associated with each multicast connection.
Each bit of the state vector corresponds to one of downstream branches of this multicast connection and
the non-responsive timer contains a predetermined threshold. Whenever the switch receives a feedback



On receipt of an RM cell:

if (LCI=1 A CI=0) {
if (BCI=1) {AIR := q x AIR};
elseif (BCI=0 A LBCI=0) {AIR := p + AIR};
elseif (BCI=0 A LBCI=1) {AIR := AIR/q};
MDF := ¢~ ATR/BW-EST.
LNMQ :=1};

if (CI=0) {ACR := ACR + AIR};

else {ACR := ACR x MDF};

LCI := CI; LBCI := BCI;

Buffer congestion control triggering condition

AIR (Additive Increase Rate) reduced multiplicatively
Increase AIR additively

BCI toggles from 1 to 0; stay around target AIR
MDF (Multiplicative Decrease Factor) updating

Start a new measurement cycle

Increase cell rate additively

Decrease cell rate multiplicatively

Save CI value and BCI value for second-order control

Figure 2: The pseudocode for Source End System (SES).

RM-cell from a downstream branch, the bit of state vector is set to 1. Each time a forward RM-cell is
received by the switch, the non-responsive timer is decreased by one. If feedback RM-cells are received
from all downstream branches before the timer goes off, then a fully-consolidated RM-cell is generated
and sent upward, and the timer is reset to the threshold. If the timer goes off before the switch receives
feedback RM-cells from all downstream branches, then the non-responsive branches are removed from the
multicast connection, and a partially-consolidated RM-cell is sent upward.

There are two rate-control modes at the source corresponding to the two types of congestion: bandwidth
and buffer congestion. If the bandwidth congestion information with CI = 1 (or 0) is detected from a
feedback RM-cell, then the cell rate is reduced multiplicatively (or increased additively) from its current
value. The buffer congestion control is triggered when the source detects a transition from CI= 1 to CI= 0
(i.e., from a rate-decrease cycle to a rate-increase cycle). Depending on the BCI field, three different
variations of this control is exercised by the source. If BCI in both the current and the last RM-cells
received are 0, the rate-increase parameter is increased additively. When BCI toggles from 1 to 0, the rate-
increase parameter is increased multiplicatively. If the current RM-cell has BCI set to 1, the rate-increase
parameter is decreased multiplicatively. Each time when buffer congestion control is triggered, the source
sets NMQ to 1 in the next forward RM-cell to “request” the switches to re-calculate @),,q, for the next
measurement-cycle.

2.1 The Source Algorithm

A pseudocode for the source control algorithm is presented in Figure 2. Upon receiving a feedback RM-
cell, the source must first check if it is time to exercise the buffer-congestion (second-order) control. This
algorithm is triggered when the source detects a transition from a rate-decrease cycle to a rate-increase
cycle, that is, when LCI (local congestion indicator) is equal to 1, and the CI field in the RM-cell received
is set to 0. In this phase, the rate-increase parameter is adjusted depending on the current value of the
local BCI (LBCI) and the BCI field in the RM-cell received. As mentioned before, we consider three cases:
(i) if BCI is set to 1 in the RM-cell received, the rate-increase parameter AIR (Additive Increase Rate) is
decreased multiplicatively by a factor of ¢ (0 < ¢ < 1); (ii) if both LBCI and BCI are set to 0, the rate-
increase parameter AR is increased additively by a step of size p > 0, (iii) if LBCI = 1 and BCI = 0, AIR
is increased multiplicatively by a factor of ¢. For all these three cases, the rate-decrease parameter MDF
(Multiplicative Decrease Factor) is adjusted according to the estimated bottleneck bandwidth BW _EST.
The local NMQ bit is marked and the BCI field is saved in LBCI. The source always exercises the cell-rate
(first-order) control whenever an RM-cell is received. Using the same, or updated, rate-parameter, the
source additively increases, or multiplicatively decreases, its ACR (Allowed Cell Rate) according to the CI
field in the RM-cell received.



On receipt of a DATA cell:
multicast DATA cell based on conn_patt_vec; ! multicast data cell to all connected branches
if (data_qu > Qn) {CI :=1;} ! 1) Bandwidth congestion (EFCT) control
if (data_qu > Qmaz) {Qmas :=data_qu;} ! 2) update Qmaz
if (Qmaz > Qgoat) {BCI :=1;} ! 3) buffer congestion control
else {BCI :=0;} !'1), 2), 3) are applied to all connected branches
On receipt of a feedback RM cell from :—th downstream branch:

if (conn_patt_vec(i) # 1) { ! only process connected branch
resp_branch_vec(1) := 1; ! mark connected/responsive branch
MCI:=MCIvCI; ! bandwidth-congestion indicator processing
MBCI:.= MBCIvV BCI, ! buffer-congestion indicator processing
MER:= min{M ER, ER}; ! ER information processing
if (conn_patt_vec & resp_branch_vec =1) { ! soft-synchronization
send RM cell (dir = backward, ER := minyesp—pranches M ER, CI := Uresp_bmmhes MCI,
BCI = UTGQ b hes MBCI); ! send fully consolidated RM cell upwards
sp—branches
no_resp_count := 0; MCI := 0; ! reset no-responsive count and congestion indicator
resp_branch_vec:= 0;}} ! reset responsive branch vector
On receipt of a forward RM cell:
multicast RM cell based on conn_patt_vec; ! multicast RM cell
if (NMQ=1) {MBCI:=0; Qmas :=0;} ! start a new measurement cycle
no_resp_count := no_resp_count + 1; ! no-responsive branch checking
if (no_resp_count > Ncpeer){ ! there is a no-responsive branch
conn_patt_vec := resp_branch_vec ® 1; ! update connection pattern vector
if (resp_branch_vec # 0){ ! there is at least one responsive branch
send RM cell (di'r = backward, ER := min,esp—tranches M ER, CI := L_Jresp_bnmches MCI,
BCI = Uresp_bmmhes MBCI); ! send partially consolidated RM cell upwards
resp_branch_vec := 0; ! reset responsive branch vector
MCI:=0; MFER := ER; ! reset congestion control variables for RM cell
no_resp_count:=0;}} ! reset no-responsive counter variable
On receipt of a connection request from j—th downstream branch:
conn_patt_vec(j) := 0; ! add/re-activate a branch in the established multicast connection

Figure 3: The pseudocode for Intermediate Switch System (ISS).
2.2 The Switch Algorithm

At the center of switch control algorithm is a pair of state-control vectors: (i) conn_patt_vec, the con-
nection pattern vector where conn_patt_vec(:)=0 (1) indicates the i-th output port of the switch is (not)
a downstream branch of the multicast connection. Thus, conn_patt_vec(:)=0 (1) implies that a data copy
should (not) be sent to the i-th downstream branch and a feedback RM-cell is (not) expected from the i-th
downstream branch; (ii) resp_branch_vec, the responsive branch vector which is reset to 0 initially and
when a consolidated RM-cell is sent upward from the switch. resp_branch_vec(i)is set to 1 if an feedback
RM-cell is received from the i-th downstream branch. The lengths of these two state-control vectors are
equal to the number of output links physically connected to this branch-switch. The connection pattern
specified in conn_patt_vec is updated by resp_branch_vec each time when the non-responsive branch is
detected or a new connection request is received from a downstream branch.

A simplified pseudocode of the switch control algorithm is given in Figure 3. This algorithm deals with
both congestion detection and RM-cell processing. Upon receiving a data cell, the switch multicasts the
data cell to its output ports specified by conn_patt_vec, if the corresponding output links are available, else
enqueues the data cell in its branch’s queue. Mark the branch’s BCI (EFCI)if Q(t) > Q. Update Qs
for the second-order rate control (to be discussed later) if the branch’s new Q(t) exceeds the old @ qz-
BCT :=1if its updated ()00 > @ goai, the target buffer occupancy.

When a feedback RM-cell is received by a switch, do conn_patt_vec @ resp_branch_vec. If the resulting
modulo-2 sum equals 1, an all 1’s vector, representing the synchronization of feedback RM-cells, then a
completely-consolidated feedback RM-cell is generated and sent upward. But, if the modulo-2 addition is



initiglizer CONN_patt_vct:=0100
initialize: ra;p_b%ch:vct: =0000

= conn_patt_vct
jcast switch: = resp_branch_vct
Mult switch: complete- partial-consolidate: no_resp_count > N check
conn_patt_vct:=0100 consolidate:
9100251 send complete-consolicted
RM cell upward
[01 0 0]
0011 + 0=>send partial-consolidated
1 RM cell upward

Multicast switch:

ol
o|r
olo
Blo|lo
D
=] [

L complete- artial-consolidate: no_resp_count > N check
conn_patt_vct:=1100 O,’ consolidate:
© 1100 )
|_—>p=1= send complete-consolidated
o100 0011 L7 RM odll upward
[1100]
0010

# 0=> send partial-consolidated
L@l RM cell upward

Unicast switch:

olr
ok
olo
Blo|-
S}

complete- artial-consolidate: no_resp_count > N check

conn_patt_vct:=1101 o o consolidate: 5
[1101] .
1 1 =1 => send complete-consolidated
0010 RM cell upward
1101
o 0000 = 0=>do not send RM cell upward
3 @ 1=1=>remove this branch node
Removed switch: R 1111
e 0000
conn_patt_vct:=1111 o 6 b o

1 1 1 1
Figure 4: An execution example of switch control algorithm.

not equal to 1, the switch needs to await other feedback RM-cells for synchronization. Since the switch
control algorithm does not require that a consolidated RM-cell be derived from the feedback RM-cells
corresponding to the same forward RM-cell, the feedback RM-cell consolidation is “softly-synchronized.”

When a forward (root-to-leaf) RM-cell is received, the switch first multicasts it to all connected branches
specified by conn_patt_vec. Then, clear ()4 and the buffer congestion indicator MBCI if an NMQ request
is received. To detect and remove the non-responsive or over-congested branches, no_resp_count is used.
no_resp_count is initialized to 0 and reset to 0 whenever a consolidated RM-cell is sent upward. We use the
forward RM-cell arrival time as a natural timeline for detecting/removing non-responsive/over-congested
branches (such that it will work in the presence of faults in the downstream branches). Each time when
a switch receives a forward RM-cell, the multicast connection’s no_resp_count is increased by one. The
updated no_resp_count is compared against its threshold N p..r, which is determined by such factors as
the difference between the maximum and minimum RM-cell roundtrip delays. If no_resp_count > N peck
and resp_branch_vec # 0 (i.e., there is at least one downstream branch is responsive), then the switch
will stop awaiting arrival of feedback RM-cells and immediately generate a partially-consolidated RM-cell,
and send it upward. Whenever no_resp_count > N pecr, at least one non-responsive downstream switch is
detected and will be removed by updating conn_patt_vec with the most recently obtained resp_branch_vec.
Therefore, a downstream branch which has not sent any feedback RM-cell for N pe.r. forward RM-cell time
units will be removed from the multicast tree. On the other hand, a downstream node which is physically-
linked to the branching-switch, but not part of the multicast tree, can join the multicast connection,
at run-time, by submitting a connection request to its immediate upstream branching-switch. So, our
algorithm supports the dynamic reconfiguration of the multicast tree.

Figure 4 shows an execution example, demonstrating how to implement RM-cell soft-synchronization,
non-responsive branch detection, and reduction to a unicast connection. In this example, we assume the



branching-switch has four physically-connected downstream branches, but only the first, the third, and the
fourth belong to the multicast connection, thus initially, conn_patt_vec = 0100. If all connected branches
send their feedback RM-cells before no_resp_count > Npeer (i.e., soft-synchronization is achieved), then a
completely-consolidated RM-cell is generated and sent upward because conn_patt_vec @ resp_branch_vec =
1111. The branch connection pattern will remain the same as long as downstream branch-1, branch-3,
and branch-4 keep sending feedback RM-cells upward before the condition no_resp_count > N p.. occurs.
However, when only branch-3 and branch-4 respond in time, a partially-consolidated RM-cell is generated
and sent upward. At the same time, conn_patt_vec is updated as conn_patt_vec = resp_branch_vec ¢
1111 = 1100, which defines a new multicast connection pattern at the branching-switch. A similar control
procedure applies to the case of conn_patt_vec = 1100 which changes to conn_patt_vec = 1101 because
branch-4 became non-responsive. Since there is only one responsive branch, the branching-switch supports
unicasts. So, our algorithm includes unicast as a special case of multicast connection. If the only remaining
branch-3 failed to respond in time resulting in conn_patt_vec = 1111, then the switch ceases generating
and sending RM-cells upward, thus making the switch itself non-responsive to its upstream node (which
will then be removed from the multicast tree).

3 The System Model

The proposed scheme can support both (i) binary rate-control, called the Cl-based scheme since it only
uses the CI bit for rate control, and (ii) explicit rate-control, called the ER-based scheme since the source
rate is controlled by the ER fed back. However, we will focus only on the CI-based scheme (and will report
the results on the ER-based scheme in a separate paper). The Cl-based scheme is more attractive for LANs
because of its least bandwidth cost for multicast signaling and simplicity in switch implementation. On
the other hand, the ER-based scheme is more responsive to congestion and thus more suitable for WANs
where bandwidth and roundtrip-delay product is large. However, the ER-based scheme’s superiority to
the Cl-based scheme comes at the expense of complexity.

We model the proposed CI-based scheme by using the first-order fluid approximation, which characterizes
the flow-control system with coupled time-delayed differential equations [8—14]. We assume the existence
of only a single bottleneck? at a time with queue length Q(¢) and a “persistent” source with ACR = R(t)
for each multicast connection. Such a data-source model enables us to study the proposed scheme under
the most stressful condition. Figure 5 depicts the system model for a multicast connection flow-controlled
by the proposed scheme.

3.1 System Description
As shown in Figure 5, a multicast connection consists of n paths with different RM-cell roundtrip delays
T1,To, "+, Tn, and bottleneck bandwidths gy, ps,---, u,. There is only a single bottleneck on each path

and its location may change with time. Thus, we use T](,i) to represent the “forward” delay from the

source to the bottleneck, and Tb(i) the “backward” delay from the bottleneck to the source via the leaf

node of the ¢-th path. Clearly, Tb(l) =7 — T](f). Fach path’s bottleneck has its own Q;(t),i = 1,2,---,n.
According to the proposed control algorithm, all paths of a flow-controlled multicast connection share
the same source rate R(t) which dictates every path’s dynamic behavior. As a result, all the paths in a
multicast connection “interact” with each other via their source rate R(¢). Thus, the system model consists
of n coupled subsystems, each of which corresponds to an individual path of the multicast connection. The

i-th subsystem (path) is characterized by the following parameters in addition to 7, u;, Tb(i), and Tj(f):

2This is not a restriction, because the bottleneck is defined as the most congested link/switch.
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Figure 5: The system model for a multicast connection.

Jor Multiplicative decrease factor for rate reduction

a: Additive rate-increase slope

P, q: Increase step-size and decrease factor of rate increase parameter
Q;ZO)QZ: Target buffer occupancy

Qn, Q;: High/low queue-length thresholds for detecting traffic overload /underload

We use a synchronous model for rate control in which the fixed rate-update interval A (RM-cell update
interval) is usually a fraction of the roundtrip delay. According to the proposed source algorithm, the
additive increase and the multiplicative decrease of source rate during the n-th rate-update interval can
be modeled by the linear-increase and exponential-decrease in a continuous-time domain as follows [10]:

R(t) =

(t—to)
R(tg)e~ (=9 5 ; exponential decrease

n R,_1+ a; additively increase R(to) + a(t —tp); linear increase

" bR, _1; multiplicative decrease
where a =AIR and b =MDF; t is the current time and #g is the time of the last rate-update; @ = a/A and
B =1+ log b within a rate-adjustment interval (RM-cell update interval) A.

3.2 System Control Factors

At any given time, the most congested path governs the dynamic behavior of a low-controlled multicast
connection. To explicitly model this feature, we introduce the following definition.

Definition 3.1 The multicast-tree bottleneck (path) is the path whose feedback dominates the source
rate-control actions. The multicast-tree RM-cell roundtrip delay is the RM-cell roundtrip delay ex-
perienced in the multicast-tree bottleneck path.

According to the proposed algorithm, the rate-control actions are based on the following feedback signals:
(1) ER = minjeq1 ..o} { FR(1)}; (2) CT = Uieqr 2, {CT1(0)}; (3) BCT = Uiequ 2, i} {BCI(i)} where
ER(7), CI(i), and BCI(i) are the requested minimum rate, bandwidth congestion indication, and buffer
congestion indication for path ¢, respectively. Obviously, F R is determined by the minimum bottleneck
bandwidth, and C'I or BC'I is marked first by the path with minimum available bandwidth. Thus, the
multicast-tree bottleneck is located along the path which has the minimum bottleneck bandwidth.

Soft-synchronization of Feedback RM-cells and Multicast RM-Cell Roundtrip Delay: Let T
be the multicast RM-cell roundtrip delay and 7,4z (Tmin) be the delay of the longest (shortest) path
which consists of maximum (minimum) number of hops if we assume that each intermediate link/switch
has the same processing delay. Since, in the steady state, the arrival rates of feedback RM-cells from
different paths are the same and equal to that of the forward RM-cell stream, the roundtrip delay of the
RM-cells flowing through each path, like a pipeline, depends on the length (number of hops) of that path.



Based on our proposed algorithm, initially 7 is equal to 7,4, for the very first feedback RM-cell since the
soft-synchronization algorithm requires that the feedback RM-cells be synchronized at each branch-switch.
However, after the first cycle of RM cell, 7 is determined by the multicast-tree bottleneck path’s roundtrip
delay which can be any value between 7,,;, and 7,,,, depending on the location of the bottleneck within
the tree.

State Equations for the Multicast-Tree Bottleneck Path: Since the multicast-tree bottleneck dom-
inates the source rate-control actions, it suffices to analyze the multicast flow-control system by focusing on
the multicast-tree bottleneck’s state equations. Let Q(t) (€ 40a1) be the queue-length function (the target
buffer occupancy) at the multicast-tree bottleneck path, and let 7 = T 4+ 7T} be the multicast-tree RM-cell
roundtrip delay at the multicast-tree bottleneck path. Then, the multicast-tree bottleneck state is specified
by two state variables, R(t) and Q(¢). The multicast-tree bottleneck path’s state equations are given by:
Source-rate function:

B R(to) + a(t — to); it Q(t —Ty) < Qp
s { R{to)e (-5, if Q(t = T5) > Qu 3

Multicast-tree bottleneck path’s queue-length functions:

1f Q(t)=0and R(t) < p

0;
Q) = { JLR( — Ty ldo+ QUo): 3 (1) B(1) > s or (2) R(1) < pwand @(1) > 0 (32)

where R(t) represents the fluid approximation to cell-transmission throughput. The average throughput
is then given by lim;_., 1 [ R(v)dv.
3.3 Analytic Solutions of Multicast-tree Bottleneck Path Dynamics

Here we only present the analytical expressions of the key performance measures for the dynamics of
multicast-tree bottleneck path, and omit their derivations, which can be found in [14].

(1) Maximum Queue Length of the multicast-tree bottleneck path:

Trmaz Tq t o A l’l“
maxr — tdt max ~(=Ax _ dt = _T2 —Thax [ .
Qi = [ +/0 (Roace™ & )t = ST 0= Dby = log 51— (33)
where T)ppe = 7+ /=22, Ty = -5 ﬁ) log (1 + & Tmar_), and R0z = 0+ aThgs-
(2) Oscillation Period of the multicast-tree bottleneck path:
A 0

T ="Thar — l T+ T,, A4

1-3 OngaT-i—T-}— 1+ (3.4)
where 17 is non-negative real root of non-linear equation:

_(1_ﬁ)ﬂ 1_ﬂT_|:<Qmaz_Ql) (1_/@) 1] -0 3.5

e s+ 5T . x )T (3.5)

Ti+7
and 1, = q% (1 —(1-p) 1~ ) assuming @ maz > @ goal-
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Figure 6: Balanced and unbalanced binary multicast trees.

(3) Average Throughput of the multicast-tree bottleneck path:

- 1 a_ 9 A —(l—ﬁ)ﬁ a5
R= T Tmaz‘ + 2Tma$ + Rmar(l — ﬂ) (1 — € A ) + TTRmzn + 2T7~ ’ (36)
where T, = 74+ 1] — ﬁ log er:a.r and R, = ue_(l_ﬁ)TJrATl .

All performance measures are shown to be functions of multicast-tree RM-cell roundtrip delay 7 which
varies with time. Thus, we explicitly include the variation of 7 into our model, and study its relationship
with the multicast-tree topology and flow-control performance.

4 The RM-cell Roundtrip Delay Analysis
4.1 Model

To simplify the analysis of RM-cell roundtrip delays, we assume that each switch (link) has the same
processing (queueing and propagation) delay. This assumption can be relaxed easily because the difference
in switch processing delay and link propagation delay can be translated into the difference in number of
hops. We use the hop delay, 75, which is the sum of the switch processing delay and link propagation
delay in taking one hop, as the time unit. We also assume the lossless transmission of RM-cells, as loss of
RM-cells is taken care of by the non-responsive branch detection/removal mechanism. For the worst-case
study and comparison, we only consider two types of multicast trees: balanced and unbalanced binary trees.
Since we are only concerned with a path’s RM-cell roundtrip delay which is determined by its length, it
suffices to consider binary trees. Notice that in a balanced binary tree, the number n of paths from the
root to leaves is equal to the height m of the tree while in a balanced binary tree n = 20"=1). Figure 6
illustrates these two types of trees with height m = 4. The RM-cell roundtrip delay for a given path
may vary at the beginning of the flow-control operation (in an initial state) when feedback RM-cells are
not yet ‘regularly’ synchronized. The RM-cell roundtrip delay becomes stable after feedback RM-cells are
regularly synchronized (in a steady state). We present the properties of RM-cell roundtrip delays with
different flow-control schemes, beginning with a hop-by-hop feedback scheme.

4.2 Properties of Hop-by-Hop Feedback

Theorem 4.1 If an unbalanced-tree multicast connection of height m > 2 is flow-controlled by a hop-
by-hop feedback scheme with an RM-cell interval A > 1, then the RM-cell roundtrip delay, T,(j,A), of
the j-th (counting from left to right) path, P;, remains the same in both steady and initial states, and is

11



determined by:

: _ 2+ A; if2 <A< This
Tu(]vA) = { 2(]_|_1)7 ZfAI 1 (41)

where 1 < A < Traaw,® Tmar = 2m, and 1 < 7 < (m —1).

Proof. P;’s length is j41 (in number of hops) and its leaf is located at the (j+1)-th level of the multicast
tree (see Figure 6 for the case of m = 4). The proof consists of two parts, corresponding to the two parts
of Eq. (4.1).

Part 1: Assume 2 < A < T4 = 2m. We can rewrite the first part of Eq. (4.1) as 7,(j,A) = 2+ jA =

G+2)+Jj(A=2)+7 2 C1 4 Cy 4+ C3. Then, according to the hop-by-hop feedback scheme, the three
components of 7,(j, A) can be found as follows.

C71 =j+ 2 is the time for a forward RM-cell to traverse from the root to P;’s leaf node, then to return
to the first branch-switch from the leaf toward the root (see Figure 6 for the case of m = 4). It
takes (7 + 1) time units for a forward RM-cell to reach P;’s leaf from the root and 1 time unit to
immediately (by hop-by-hop feedback scheme) move one hop back to the first consolidating branch-
switch,soC1 = (7 +1)+1=7+2.

Cy = j(A — 2) is contributed by feedback RM-cells waiting at branch-switches for the subsequent forward
RM-cells, each moving one-hop upward the feedback RM-cell at each branch-switch. Let’s start with
A = 2, implying that feedback RM-cells do not have to wait for forward RM-cells in order to move
upward as they arrive at each branch-switch at the same time as a forward RM-cell arrives at the
branch-switch. Thus, Cy = j(A —2) = 0 holds. Now, suppose A = 2+ ¢ with £ > 1. Then, feedback
RM-cells always arrive at branch-switches £ time units earlier than forward RM-cells, and thus, have
to wait £ = (A — 2) time units before making one-hop move. So, Cy = j(A — 2), since there are j
branch-switches along P;.

('3 = j is the time for P;’s feedback RM-cells to traverse from its first branch-switch from the leaf without
waiting for forward RM-cells to arrive, which is j, since there are j hops between the first branch-
switch and the root.

Part 2: Assume A = 1, then feedback RM-cells will never wait for forward RM-cells at any branch-switch,
implying that Cy; = 0, and C; = j+2 and C3 = j remain the same as in Part 1. Thus, 7,(7,A) = C1+C3 =
2(7+1) for A = 1, completing the Proof. O

Corollary 4.1, which gives the equations for calculating the path delay in a balanced tree for hop-by-hop
feedback, follows directly from Theorem 4.1 by letting 7 = m — 1 in Eq. (4.1).

Corollary 4.1 If a balanced-tree multicast connection of height m > 2 is flow-controlled by the hop-by-hop
feedback scheme with the RM-cell interval A > 1, then RM-cell roundtrip delays of all paths, (7, A), are
the same in both steady and initial states, and are determined by:

(7, A) = max {ru(7,A)} =

4.2
j€{1727"'7(m_1)} ( )

Trazx + (m - 1)(A - 2)7 Zf2 S A S Trazx
Tmaxs fA=1

where Tpae = 2m, 1 < 7 < 2(m~=1)

multicast tree of the same height.

, and 1,(7,A) is P;’s RM-cell roundtrip delay for an unbalanced

3Theorem 4.1 still holds even when A > Tmaz = 2m. But the RM-cell update interval A is usually a fraction of the RM-cell
roundtrip delay. So, we do not consider the case of A > Tmar = 2m even if it is analytically correct.
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4.3 Properties for the Proposed Scheme

Lemma 4.1 Consider an unbalanced-tree multicast connection T’ of height of m > 2. Let P; be a relatively
shorter path than another path P: such that 1 < i < 1 < m—1. If T is flow-controlled by the proposed
scheme with the RM-cell update interval A > 1, then P;’s feedback RM-cell does not have to wait for P;’s
feedback RM-cell to synchronize feedback RM-cells at any branch-node.

Proof. When the switch algorithm checks for feedback RM-cell synchronization (conn_patt_vec & resp_

branch_vec = 17) at a branch-switch, the feedback RM-cell on a shorter path P; always arrives at the
branch-switch earlier than that (in response to the same forward RM-cell) from a longer path P:. Thus,
P:’s feedback RM-cell can be synchronized, without waiting, at least with the feedback RM-cell in response
to the same forward RM-cell, from the shorter path P; at each branch-switch. So, the feedback RM-cell
on a longer path never waits for feedback RM-cells on a shorter path to synchronize feedback RM-cells. O

Lemma 4.2 Let P; be the j-th path in an unbalanced multicast tree T as defined in Lemma 4.1 with
1<j<(m-—1). Then, the following four statements are equivalent for the steady-state RM-cell roundtrip
delay:

S1. P;’s feedback RM-cell doesn’t wait for a longer path P ’s (3 > 7) feedback RM-cell to achieve feedback
synchronization at the first branch-switch from P;’s leaf;

S2. P;’s feedback RM-cell doesn’t wait for feedback RM-cells for synchronization at any branch-switch on
P;;

S3. 3k €{0,1,2,---} such that 2(m — 5 — 1) — kA =0, where 1 <j<(m—1) and1 <A < Tpup = 2m;
S4. P;’s steady-state RM-cell roundtrip delay 7,(j, A) attains its minimum and is given by:

(7, A) = mAin{Tu(j,A)} =2(j+1), where1<j<(m—1)and1 <A < Tper = 2m.

Proof. In contrast to the case described in Lemma 4.1, the feedback RM-cell from a shorter path may or
may not have to wait for the feedback RM-cell from a longer path for feedback synchronization.

S1 = S2: If P;’s feedback RM-cell does not wait at the first branch-switch from P;’s leaf, then it becomes
part of the feedback RM-cell from a longer path after its RM-cell is consolidated at the first branch-switch.
By Lemma 4.1, it does not wait for feedback RM-cells from any path at all subsequent branch-switches on
P; to achieve feedback synchronization.

S2 = S3: If P;’s feedback RM-cell does not wait for a longer path’s feedback at any branch-switch,
then at least it doesn’t wait for synchronization at the first branch-switch from P;’s leaf, i.e., P;’s feedback
RM-cell arrives at its first branch-switch at the exact same time when the feedback RM-cell from the
longest path arrives at this branch-switch. But it takes (2m — j) time units for an RM-cell to traverse
from the root to the leaf of the longest path then return to P;’s first branch-switch. On the other hand,
it takes (j 4+ 2) time units for an RM-cell to traverse from the root to P;’s leaf then return to its first
branch-switch. Thus, the arrival time of P;’s feedback RM-cell at its first branch-switch is (J+2)+ kA
where £ = 0,1, - -, corresponding to the (k + 1)-th RM-cell, respectively. Then, 3k € {0,1,---} such that
the feedback RM-cell from the longest path is synchronized with P;’s feedback RM-cell whose arrival time
is (j 4+ 2) + kA at its first branch-switch, and satisfies the following constraint (on k):

(J+2)+kA<2m—j<(+2)+(k+1DAfor1 <j<(m—1)and 1 <A < 7pppp = 2m. (4.3)

But P;’s feedback RM-cell does not wait for the feedback RM-cell from a longer path at any branch-switch
on P;. Thus, 3k € {0,1,---} such that (j 4+ 2) 4+ kA = 2m — j.

13



S3 — S4: From 2(m — j — 1) — kA = 0, we know that P;’s feedback RM-cell does not wait for a
longer path’s feedback at the first branch-switch from the leaf. According to the proof of S1 = S2, P;’s
feedback RM-cell does not wait for a longer path’s feedback at all branch-switches on P;. Therefore, P;’s
steady-state RM-cell roundtrip delay only consists of the pure transmission (propagation plus processing,
but no waiting) delay, meaning that 7,(j,A) = 2(j +1). Since P;’s feedback RM-cell may or may not have
to wait for the feedback from a longer path for synchronization, depending on the value of A for given m
and j, 7,(j,A) is lower-bounded by 2(j + 1), and thus S4 follows.

S4 — S1: If 7,(j, A) attains its minimum, then P;’s feedback RM-cell does not wait for feedback RM-cells
from a longer path for synchronization at all branch-switches on P;, and hence not at the first branch-switch

from the leaf of P;. This completes the proof. a
Theorem 4.2 Let P; be the j-th path of an unbalanced multicast tree T as defined in Lemma 4.1 (1 <
J<(m=1)). If T is flow-controlled by the proposed scheme with an RM-cell update interval A (1 < A <
Tmar = 2m) 4, then the following claims hold:
Claim 1. The number of P;’s feedback RM-cells going through initial state is determined by:
k3 2 ke{r&%)2<7...}{k |20m—7—1)—kA >0}, j=1,2,- -, (m—1); Traz = 2m; and 1 < A < 7oy (4.4)
Claim 2. P;’s RM-cell roundtrip delay in steady state is determined by:
Tu(]vA) = Tmaz — k;Ay J=12,- '7(m - 1)7Tmaz =2m, and 1 <A < Tp05 (45)
Claim 3. The i-th RM-cell roundtrip delay in P;’s inatial state is determined by:
Tmar — (1 — 1)A; ifk; > 1and 1 <i <k
(7, A1) = Tu(J, A); if k7 > 1 and i > k} (become steady state) (4.6)

Trmaz) if k7 = 0 (become steady state)

where j = 1,2,---,(m—1), Tpaz = 2m, and 1 < A < Tpap.

Proof. For convenience of presentation, we begin with the proof of Claim 2.

Claim 2: By the statements S3 and S4 of Lemma 4.2 and the proofs of S2 —> S3 and S3 — S4, P;’s
steady-state RM-cell roundtrip delay 7,(j, A) can be expressed as the sum of transmission delay 2(j 4 1)
and synchronization delay W

(5, A) =207+ 1) + W; (4.7)

where W; is the net waiting time for P;’s feedback RM-cell to synchronize with the feedback on a longer
path at the first branch-switch from P;’s leaf. Based on Lemma 4.2’s proof of S2 = S3 and Eq. (4.3),
Jk € {0,1,2,---} such that W; can be expressed as

W, = (2m — ) — [(j+2) + kAl = 2(m — j — 1) — kA. (4.8)

Since the feedback RM-cell on a longer path is always synchronized with the most recently arrived
feedback on a shorter path at P;’s first branch-switch as a constraint Eq. (4.3), the minimum possible

*Theorem 4.2 still holds for A > Tyae = 2m, but A is typically a fraction of the maximum RM-cell roundtrip delay
Tmaz = 2M.
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synchronization-waiting time (> 0) determines W;. By Lemma 4.1, W; > 0. Thus, k in Eq. (4.8) is
determined by

A
kY = El2m—j7—-1)—kA > 1<5< —1). 4.
J ke{%{i)zi,...}{ [ 2(m —j —1) > 0}, <j<(m—1) (4.9)

where k7 is obtained by minimizing W; = 2(m — j—1) — kA > 0 over k. Combining Eqs. (4.7), (4.8), and
(4.9), we get Eq. (4.5).

Claim 1: Let n; be the number of P;’s feedback RM-cells going through the initial state. Since the first
feedback RM-cell received by the root always experiences the longest path’s roundtrip delay, in initial state
the RM-cell roundtrip delay decreases from 7,,,, = 2m to its steady-state value 7,,(7, A) (< Tpae = 2m).
Thus, the number of RM-cells which go through the initial state is given by

Tmaz — Tu(j; A) Tmaxr — (Tmaz - k’;A) N .
" A A P = emax {k|2(m—j-1) >0} (4.10)

which results in Eq. (4.4).

Claim 3: Based on the proposed switch algorithm, all forward RM-cells in the initial state are consoli-
dated in the first feedback RM-cell and sent back to the root at time ¢t = 7,,,. = 2m to start feedback
synchronization. In addition, the very first RM-cell’s roundtrip delay is always equal to 7,4, = 2m for
all paths. Thus, if k7 > 1 for P;, the i-th (1<i< k;) initial-state RM-cell will experience a roundtrip
delay of 7,(7,A,1) = Tpax — (1 — 1)A, since it enters the system (i — 1)A time units later than the very
first RM-cell. After &* RM-cells pass through the flow-controlled system (i.e., i > k3 for P;), the system
reaches steady state and P;’s RM-cell roundtrip delay becomes a constant (independent of 7) specified
by 7.(j, A1) = (4, A). If k% = 0 for Pj, i.e., P;’s feedback must be synchronized with those feedback
RM-cells corresponding to the same forward RM-cell. Thus, the system enters steady state from the
very first RM-cell since P;’s RM-cell roundtrip delay does not have initial-state (i.e., k= 0). Therefore,
Tu(J, Ay 1) = 2m = Ty, if k7 = 0 for P;. This completes the proof. O

The corollary below, giving the equations for calculating the path delay under the proposed scheme for
a balanced-tree structure, follows directly from Theorem 4.2 by letting j = m — 1 in Eq. (4.4) which leads
to k(,,_y) = 0 and thus (J, A) = Ty(m — 1, A) = Tpas by Eq. (4.5).
Corollary 4.2 If a balanced-tree multicast connection of height of m > 2 is flow-controlled by the proposed
scheme with the RM-cell interval A > 1, then all paths’ RM-cell roundtrip delays, 7y(j,A), are the same
in both steady and initial states and are determined by:

A = (s A} = T 4.11
B A) = g pax | Andg A= (4.11)

where Typae =2m, 1 < j < 2(m—1)

tree of the same height.

, and 7,(j, A) is P;’s RM-cell roundtrip delay for an unbalanced multicast

Remarks. Comparing Theorem 4.2 and Theorem 4.1, we can make the followings observations. First, for
hop-by-hop feedback, the initial-state and steady-state RM-cell roundtrip delays are the same. In contrast,
with the proposed scheme, the initial-state RM-cell roundtrip delay, if any, is larger than, and lower bounded
by, the steady-state roundtrip delay. For the proposed scheme, the initial-state acts/behaves like a “warm-
up” for feedback RM-cells to be synchronized at each branch-switch, during which the initial-state RM-cell
roundtrip delays converge to their corresponding steady-state values. The “warm-up” periods for P;-th
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Figure 7: Effects of path length, tree height, and RM-cell interval on 7(j', A), @4z, and R.

path (1 <j < (m— 1)) are determined by k7 values given in Eq. (4.4). Second, for the proposed scheme in
both initial and steady states, the RM-cell roundtrip delay 7,(j,A) is upper-bounded by 7,4, = 2m (see
Eqgs. (4.5) and (4.6)). The increase rate of 7,(j, A) as a function of m, is O (m) in the worst case. Third,
with the hop-by-hop feedback scheme, the RM-cell roundtrip delay 7,(j, A) cannot be upper-bounded by
Tmaz = 2m (see Eq. (4.1)). Instead, 7,(j, A) is very sensitive to path length j and RM-cell update interval
A, and can increase at a rate up to O (m?) in the worst case.

4.4 Comparison between the Proposed and the Existing Schemes

To quantitatively compare the RM-cell roundtrip delays under the hop-by-hop feedback and the proposed
schemes, we present the numerical results drawn from Theorems 4.1 and 4.2 and the fluid modeling in
Section 3. We focus here on the unbalanced multicast tree, which allows us to study the worst case of
RM-cell roundtrip delay variations. We first consider how the multicast-tree path length j' (= j + 1 for
P;), height m (the special case for j = m or j = m — 1), and RM-cell update interval A affect the
RM-cell roundtrip delay 7,(j’,A) under the two different schemes. In Figure 7(a), 7,(j',A) is plotted
against a bivariate (j',A) with m = 50. It is found that 7,(j’, A)’s for the both schemes increase with
j" and A. However, 7,(j’, A) for the existing (hop-by-hop feedback) scheme increases much faster, and is
always larger, than that for the proposed scheme, and tends to blow up (as high as 1200 75,,,) as 7' and
A get larger. On the other hand, for the proposed scheme, 7,(j’, A) increases very slowly as a function
of A and j'. In fact, 7,(j’,A) for the proposed scheme is upper-bounded by 2m = 100 as shown in
Theorem 4.2. We also observed that 7,(j’, A) for the existing scheme is very sensitive to m (the maximum
for j'). By contrast, m’s impact on 7,(j’, A) for the proposed scheme is very small as compared to the
existing scheme. Thus, as shown in Figure 7(a), 7,(j', A) for the proposed scheme is virtually independent
of 7/, m (and so the multicast-tree structure), and A, compared to the existing scheme. This is because
(1) the synchronization-waiting time is much longer for the existing scheme than the proposed one; (2) the
number of forward RM-cells required for a feedback RM-cell to return from a leaf node to the root in the
existing scheme is proportional to m, while in the proposed scheme, any single RM-cell can return from
the leaf node back to the root by itself.

Now, let’s examine how the multicast-tree path length j’ and height m affect the multicast-tree bottleneck
path’s maximum queue length Q,,,, and average throughput R under the two different schemes. We assume

the multicast-tree bottleneck bandwidth p = 155 Mbps & 367 cells/ms; each link-hop delay 75, = 0.1 ms;
the RM-cell update interval A=4 (73) = 0.4 ms. In Figure 7(b) and Figure 7(c), using Eqs. (3.3), (3.4),
and (3.6), Qmar and R under the two different schemes are plotted against j' with m = 50 while varying
a. For the existing scheme, @4, is observed to increase dramatically (see Figure 7(b)) while the average
throughput R drops significantly (see Figure 7(c)) as the multicast-tree path length j’ and tree height
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m (the maximum for j') increase. This undesirable trend worsens as a gets larger. In contrast, with
the proposed scheme under the same parameters settings, both @,,,.-increase and R-drop are very small
when j’ and m (even as a varies) increase. Again, Q.. and R under the proposed scheme are found to be
virtually independent of the multicast-tree structure. Hence, the proposed scheme is more scalable than the
existing scheme in terms of maximum buffer requirement and average throughput when the multicast-tree
height and structure vary.

5 Adaptation to Variation of Multicast-Tree Roundtrip Delay

In a real network environment, there is always cross-traffic at each link, which causes the multicast-tree
bottleneck path to drift from one path to another. So, the RM-cell roundtrip delay varies dynamically
within [Tpin, Tmaz]- The main and direct impact of RM-cell roundtrip-delay variations is on the maximum
buffer requirement for the bottleneck path.

5.1 Maximum Buffer Requirement and Loss Control

Although SSP makes the RM-cell roundtrip delay 7 for the proposed scheme much smaller than that for
the existing scheme, as shown in Section 4, 7’s swing between 7,,,;, and 7,,;, is still large enough to make
a notable impact on @4, particularly when m is large. @4 also depends on the source rate-control
parameter a (see Section 3). Thus, Q4 is a function of a and 7, i.e., @ as(, 7). In reality, the buffer
capacity, Cpqz, on the bottleneck path is finite, and hence, to ensure lossless transmission, the condition
Qmaz < Crar must hold. This constraint divides the (a, 7)-space into two regions as follows.

Definition 5.1 If Cyq, < 00, then the feasible (o, T)-space: 2 {(a,7) | @ > 0,7 > 0} is partitioned
into two parts: lossless transmission-region: F 2 {(a,7) | (a,7) € Q, Quaz(,7) < Cppaz} and lossy

.. . AN
transmission-region: L= Q\ F.
The lemma presented below gives an upper bound for @ ,.(c, 7) as a function of a, 7, and @, in Q.

Lemma 5.1 If (a,7) € Q, then Qpaz(a,7) < (T/a +/2Q1)%

Proof. Since (a,7) € Q, we have T, > 0 and T > 0 (see Eq. (3.3) for definition of 7,4, and 7). Thus,
by the analytical solution given in Eq. (3.3), we get

Tma.r Td t
Qman(a,7) = /0 ot dt—|—/0 (Romawe™0=O% — p)di (5.1)
1
S §(aTma$)(Tmaz + Td) (52)

_ o
1 2Q 201 aA o 201
AL ) e s )

_ 1 a(T+ QZﬁ —I—(T—I— QZQ) (ulog ll—l—%(r—l—\/%)]) (5.3)
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Figure 8: Q4. (shaded area) is upper-bounded by the area of AABC.

= (Vo +v2Q.)° (5.5)

The calculation of @Qqz(a,7) in Eq. (5.1) is detailed in [14]. @Qmaz(e,T) is also equal to the area
(shaded area in Figure 8) between the source rate R(t) and the available bandwidth p at the multicast-tree
bottleneck over the time interval of T,,,, + T, which is upper-bounded by the area of its circumscribed
triangle AABC as shown in Figure 8. The righthand-side of Eq. (5.2) is the area of AABC'. Since a > 0

due to (o, 7) € 2, in Eq. (5.3) we can use the equality of a (ﬁ) = p which is set to balance the increasing

and decreasing speeds of R(t) [9]. Eq. (5.4) is due to the fact that logz < 2 —1and logz~ z —1 for z
close to 1. This completes the proof. a

As analyzed in [9,10,13,14], Q4. is @ monotonic increasing function of both o and 7 (which is also
verified in Figure 7(b), and also reflected in Lemma 5.1), and thus can be controlled by adjusting o for
given 7. The theorem given below establishes an explicit relationship among «a, 7, and ¢, subject to
constraints of lossless transmission and €4, < 0.

Theorem 5.1 Consider a multicast connection flow-controlled by the proposed scheme with Qp > 0 and
Crnar < 00 at the multicast-tree bottleneck. If C > 2Q 1 then the following claims hold:
Claim 1. F # () and 3K > 0 such that (a,7) € F V (a,7) € {(a,7) | Ti/a < K,(a,T) € Q};

Claim 2. L is lower bounded by the function K; = 7v/a where K; = /Cpar — V2Q1 and (a,7) € Q.

Proof. Claim 1: Let K 2 r./a which is a positive real number for (a,7) € Q. We further define

((K) = {(ty/a) 2 (K ++/2Q1)?%, the upper bound function of @ 4.(, 7) obtained from Eq. (5.5). Thus,
by Lemma 5.1 ((K) > Qpax(a,7) for (o, 7) € Q and we have

Qmar(av T) < C(I() = [I(Z + 2\/ QQhI( + (QQ}L - Cmax)] + Cmaz- (56)

Since Char > 2Qp and ((K') is a continuous and monotonically-increasing function of K, 3K > 0 such
that

K* 4+ 220K < (Crae — 2Qn)  ie.,  [K?+2V2QuK + (2Q1 — Cpraz)] < 0. (5.7)
and {(a,7) | 7v/a < K, (a,7) € Q} # 0. Thus, V (a,7) € {(a,7) | 7v/a < K, (a,7) € Q} where K is

specified by Eq. (5.7), by Eqs. (5.6) and (5.7), we get Qnan(a, 7) < [K2422Q1 K +(2Q1 —Crnaz )]+ Crmaz <
Cinaz, which implies (a,7) € F, thus F # 0.

Claim 2: To obtain a tight lower bound for £, we set the upper bound ((K') of Qqez(a, T) equal to Crgs,
i.e.,

Qmaz(ay T) < C(I() = 1(2 + 2\/ QQhﬁr + QQ}L - Cmal‘v (58)

which reduces to a quadratic equation: K2 + 2,/2Q,K + (2Q1 — Chuaz) = 0. Solving this for K and

taking the positive root: K; = /Craz — vV2Qr > 0 since Cpap > 2Qn. By Eq. (5.8), (a,7) € F, V
(a,7) € {(a,7) | Tv/a < Ky, (a0, 7) € 2}, implying that all points located below or on the curve of function
K;=7v/a ¢ L. Thus, L is lower bounded by this function, completing the proof. a
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9 -— - Exact Border between Lossy and Lossless Transmission-Regions
R Lower-Bound of Lossy Region Defined by K=t (u)l/2
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@
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Rate Control Parameter: a (cel\s/msz)

Figure 9: Lossy and lossless transmission regions divided by the lower bound of lossy transmission region.

Remarks on Theorem 5.1. (1) Claim 1 shows that @,,,, is controllable, and identifies a sufficient
condition for lossless. Moreover, Claim 1 describes the lossless transmission region defined in Q. (2) Claim
2 gives a lower bound of the lossy transmission region £ for given C),4; and @, which is expressed by
a continuous function defined over Q. Since {2 is partitioned into F and L, the lower bound of £ can be
used as an approximate upper-bound for F when the lower bound for £ is tight. Thus, for any given C,,s
and @}, the lower bound function 7/a = \/C,..z — v/2Q provides the network designer with a simple
formula to estimate a without seeking a close-form expression for a as function of 7 and C,,;, which is
impossible to obtain (due to the non-linearity of Eq. (3.3)). Furthermore, since the lower bound function
V& = \/Crar — V2Q1, which divides F and £, is obtained by setting Q,4x < ((K) = Chugz, by letting
Qmaz = Crmaz, We get Quar = (T/a + v/2Q4)?, which can be used to estimate @, when the bound
is tight. (3) Another interesting fact revealed by Theorem 5.1 is that @, is virtually independent of
the multicast-tree bottleneck bandwidth u since neither the lossless transmission condition/region nor the
lower bound of £ contains p. This is not surprising since it is the relative difference between R(t) and g,
instead of the absolute value of u, that determines @4z

To illustrate the tightness of the derived lower bound of L, the exact border which partitions €, the
lower bound of £, and the configurations of F and L are plotted in Figure 9, with C,,,, = 400 cells, Q=50
cells, and p = 367 cell/ms (about 155 Mbps). The exact border between F and L is obtained by solving
Eq. (3.3) numerically. The lower bound of £ plotted in Figure 9 is found to be very close to its exact
value (the exact border between £ and F). In addition, the smaller « is, the tighter the bound is, which
is consistent with the approximation log z ~ z — 1 when z is close to 1 (see Eq. (5.4)).

5.2 Second-Order Rate Control

Based on Theorem 5.1, @ can be controlled to confine @4 t0 Chigr and as long as Crar > 2Q4,

lossless transmission can be guaranteed by adjusting a in response to the variation of 7. The control over
_ R()
- Tdt
to control the dynamics of the proposed flow-control.

— which we call a-control — is the second-order control over R(t), providing one more dimension

5.2.1 «a-Control

The a-control is a discrete-time process as it is only exercised when the source rate control is in a
“decrease-to-increase” transition based on the buffer congestion feedback signal in the n-th rate-control
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cycle, BCI(n) = 0 (1) if the maximum queue length in the n-th rate-control cycle: Qg:fgr < Qgoal

(Q%ﬁr > Qgoat), Where Qgoat (Qr < Qgoat < Crmaz) is the target buffer occupancy (also called setpoint)
in the equilibrium state. If the multicast-tree bottleneck changes from a shorter path to a longer one,
then 7 will increase, making @), larger. When (),,,, eventually grows beyond @);,q:, the buffer will
overflow, implying that the current a is too large for the increased 7. The source must reduce a to prevent
cell loss. On the other hand, if 7 decreases from its current value due to the shift of the multicast-tree
bottleneck from a longer path to a shorter one, then @),,,, will decrease. When @0z < @goai, only a
small portion of buffer space will be utilized, implying that the current a is too small for the decreased
7. The source should increase a to avoid buffer under-utilization and to improve system responsiveness in
grabbing available bandwidth. Keeping @ < @goa1 < Crar has two benefits: (1) the source can quickly
grab available bandwidth; (2) it can achieve high throughput and high utilization.

The main purpose of a-control is to handle the buffer congestion resulting from the variation of 7. We
set four goals for a-control: (1) ensure that Qﬁﬁ(}x quickly converges to, and locks within, the neighborhood
of @ 4041, which is upper-bounded by C,,., from an arbitrary initial value by driving Q%ﬂz’s corresponding
@, to the neighborhood of aymu = Q;,L.(Q0ar) for a given 7; (2) minimize the oscillation amplitude of

Qg,?,;)m for given rate-control parameters; (3) maintain statistical fairness on the buffer occupancy among
multiple multicast connections sharing a common multicast-tree bottleneck; (4) minimize the extra cost
incurred by the a-control. To achieve these goals, we propose a “converge-and-lock” a-control law (see
Figure 2) in which the new value a,,41 is determined by «a,,, and the feedback information BCT on Q,4z's

)

current and one-step-old values, Q%L,;)m and Q%La}l . The a-control law can be expressed by:

ay, + p; if BCI(” - 1,71) = (070)7 (Q%La_zl) < ngal A Q%ng < ngal)
Qnp1 =13 qan;  if BCI(n) =1, Qs > Qgoar) (5.9)
Oén/% if BCI(TL - 17”) = (170)7 (Qgga_xl) > ngal A Qgggx S ngal)

where ¢ is the a-decrease factor such that 0 < ¢ < 1 and p is the a-increase step-size whose value will be
discussed next.

5.2.2 Properties of a-Control

Definition 5.2 The a-control is said to be in an equilibrium state if Q%Lg)m has already converged to a
certain regime and oscillates around @) 4oq1 with constant amplitude and frequency; a-control is said to be
in a transient state if it is not in an equilibrium state.

Definition 5.3 The neighborhood of target buffer occupancy Q4001 in an equiltbrium state is specified

. A n n A . n
by {QéoangLoal} with Qéoal = maX'rLE{O,l,Q,w} {angf | Q’gngl‘ S ngal} and ngal = mln’fLE{O,l,?,m} {angl'
| Q%Lgx > (Qgoal }, where Q%L{lx is governed by the proposed a-control law.

Definition 5.4 {Q%Lgx} 2 {Qmaz(0y)} is said to monotonically converge to Q) 40q1’s neighborhood at
time n = n* from its initial value QL??M = Qmaz(ao), if BCI1(0,1,2,3,---,n* — 1,n*,n* 4+ 1,n* +2,n" +
3,---) = (0,0,0,0,---,0,1,0,1,0,--) for ag < ayoq; and BCI(0,1,2,3,---,n* =1, n*, n*+1,n*+2,n* +
3,---) = (1,1,1,1,---,1,0,1,0,1,---) for ag > agoal.

® A rate-control cycle of R(t) consists of a linear-increase phase and an exponential-decrease phase.
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The a-control can be applied either in a transient state before Qﬁl},lr converging to ) 4,q41’s neighborhood,

{Qéoal,ngal}, or in an equilibrium state after Q%ng has been bounded by {QQOGZ,QSOM}. Note that
{

goal
between Qéoal and ngal‘ The actual location of ¢ 4,,1 between Qéoal and ngal depends on all rate-control

and ngal are the closest attainable points to ()guqi, but @40, may not necessarily be the midpoint

parameters and the initial value of ag. The a-control aims at making Q%L,;)m; converge rapidly in its transient
state and lock steadily within @) 4,4:’s neighborhood in the equilibrium state. The monotonic-convergence

of Q%Lgx to @ goal’s neighborhood ensures that Q%Lgx is confined to the target operation regime at the first
time it reaches the target regime, and is locked within that target regime. Thus, monotonic-convergence
is desired in terms of shortness of transient state and the stability of equilibrium state. The theorem given
below characterizes the properties of a-control in transient state, which provides a sufficient condition on

a-control parameters selections for the monotonic-convergence of Q%x and calculates the neighborhood
of () goqr and gives a formula to compute the number of the transient state cycles.

Theorem 5.2 Suppose the proposed a-control law given by Fq. (5.9) is applied to a multicast connection
with its bottleneck characterized by Qgyoa1, Qn, and 7. If (1) o = ag, an arbitrary initial value at time

o\ 2
n=0,(2)0<qg<1,and (3)p < (l%q) <M) , then during the transient state,

(1) the a-control law guarantees Q%ﬁr to monotonically converge to Q) goq1’s neighborhood {Qé)oah ngal}:
{Qmw(aéoal),Qmw(agoal)}, which are determined by

L { Qo (0" 0); fao>agoa . on { Qrae (40 Dao); if a0 > ayoan (5.10)
Qmaz (Q(n*p + aO)); Zf ag < Qgoal Qmaz (n*p + 040); Zf ap < Qgoal

goal — 3 goal —

(2) n*, the number of transient-state cycles, is determined by
log [~222L] :
nt = Tog o |’ if @0 > goal (5.11)

[agoap+ao—‘; Zf (%] S Qgoal

where agoq; corresponds to Q) goq1, and is the positive real root of equation

2
oa 2 2 1 2
Rgoal (T + @n ) +u (T + @n ) + ad log ad ) — Qgoat = 0. (5.12)

2 Qgoal Qgoal Qgoal o+ Olgoal (7- + 2Qn
X goal

Proof. Claim (1): We prove this claim by considering the following two cases depending upon the range
of the initial value of rate-control parameter ag.

Case 1. ap < 0goqit Qmaz() is a monotonically-increasing function of a, ag < ageu = Q&?&I =
Qmaz(00) < Qgoal = Qmaz(Agoar). Applying the a-control law, Q&?ﬁx monotonically increases from Qg,%x

towards () 5o With an increase-step size p. When Qﬁﬁgﬁ first time becomes larger than Q.41 at n = n*, i.e.,
ag + n'p = aux > Qgeq, the source detects BCI(n* —1,n*) = (0, 1), and then reduces a, exponentially
by setting a,» 41 = g+ (0 < ¢ < 1). We now prove the following fact:

Qmax(an*+1) = Qmax(qan*) S ngal (513)
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—\ 2
Since (T/@g0a1 + V2Q1)* > Qmaz(goal) = Qgoar by Lemma 5.1, we have <7W) < goqr. But,

N 2
since p < (lq;q) <7W) , we get p < (%) Qgoql, Which reduces to ¢(agoa + p) < 0goi. On the

other hand, since a,»_1 < agoq1, we have g(ape—1 + p) < q(@goar + P) < @goqr, implying
Ap*p1 = Opx* < QAgoal (514)

because apx_1 +p = ayx. Thus, Qumaz(qonr) < Qmaz(0goa) = Qgoar, which is Eq. (5.13). Due to
Eq. (5.13), BCI(n*,n*+1) = (1,0). Applying a-control law, we get a,»43 = apry1/q. But apxpq = qogx,
gIVING apxto = qoupr /q = Opx > Qgoqr; thus, BCI(n* + 1,n* 4+ 2) = BCI(0,1). Applying the a-control
law again, aus43 = qOpr42 = qags = op4q. But by Eq. (5.14), aprq3 = qoux < 0y, and thus
BCI(n* +2,n*+ 3)=(1,0). Repeating the above procedure, we have ¥k € {0,1,2,---,}

an*—{—(?k—}—l) = Qp*xyq = qQpx < Qgoal (5 15)
Qp*x 4ok = OQp*x > Qgoal;

implying that BCI1(0,1,2,3,---,n* = 1,n*,n*+ 1,n*+2,n*+3,---) = (0,0,0,0,---,0,1,0,1,0,---). By
Definition 5.4, Q%@I monotonically converges to () 041’s neighborhood {Qéoah ngal}' In addition, in the
equilibrium state,

{ Qmaz(qan*) = Qmax(q(n*p + ao)) = maXnE{()vvav"'} {Q%ng | Q’%L{;I < ngal}; (516)

Qmax(an*) = Qmax(n*p + QO) = minnE{O,l,Q,m} {Q%gﬂv | Q’Eggl“ > ngal}-

Thus, by Definition 5.3, Qéoal = Qmaz(q(n*p + ag)) and ngal = Qmaz(n*p + ap).

Case 2. ag > 0y, Since Q&?Bm = Qmaz(00) > Quoal = Qmaz(@goal), applying a-control law, Q%ﬁz
monotonically decreases from Q%??w towards Qg0 With a factor ¢ (0 < ¢ < 1). When the first time
Q%ﬂr < Qgoar at the time n = n*, ie., ¢ ag = g < Qgoql, the source detects BCI(n* — 1,n*) = (1,0).
Applying a-control law, we get apxp1 = apx/q = @pr_1 > Qgoqr, and thus BCI(n*,n* + 1) = (0,1). By
a-control, oo = qoprgy = q(apx/q) = aps < 0yoq, and thus BCI(n* + 1,n* + 2) = (1,0). Applying
a-control law again, we get a,xy3 = Qury2/q = Qpry1 > O0yoqr, and thus BCI(n* 4+ 2,n* + 3) = (0,1).
Repeat the above deducing procedure, we have Vk € {0,1,2,---,}

QUpxp(2k41) — Cn*41 = an*/q > Qgoql (5 17)
Opxg ok = Opx* S Qgoal;

which implies that BC'1(0,1,2,3,---,n* =1, n*,n*+1,n* +2,n*+3,---) = (1,1,1,1,---,1,0,1,0,1,--).
Therefore, by Definition 5.4, Q%ﬁz monotonically converges to @ 40.1’s neighborhood {Qéoah ngal}' In
addition, in the equilibrium state,

{ Qmaz(an*) = Qmaz(qn*ao) = MaX,e{0,1,2,-} {Q%L,;)w | Q%ﬁr < ngal}§ (518)

Qmaz(an*/Q) = Qmaz(q(n*_l)QO) = minnE{O,l,Q,m} {Qgﬁgf | Q%QI > ngal}-

Thus, by Definition 5.3, Qéoal = Qmar(q" ag) and ngal = Qmax(q(”*_l)ao).
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Claim (2): We also consider two cases.

Case 1. ap > ayuq: Let a oa1 COTTESpONd to ngal = Qmax(@ goal) From Eq. (5.10), we have aéoal = ¢"" ay,

log ZO‘O lo ag

Xgoal

. a g log
which reduces to n* = goal > Zgoal _ 20 where the second equation is due to a,uq > ol
log 3 log 7 log q 9 goal”
l 20
og 2 20 I [O‘goal]
goal 2goal * ag
But since gagoq < agoal, le., g b T Tl 1 < 1, we get n* = [T}
h h _
Case 2. ag < agoq: Let agoal correspond to ngal Qmal‘(agoal)' From Eq. (5.10), we have Qgoul =
h
. —Qg — .
n*p + ag, which reduces to n* = go“; > 2920220 where the inequality is due to ayeq < agoal Since

ho_
agoal @0 _ Xgoal —0

P P

h
agoal

X goal —0 "

< 1, we get n* = [

— Qyoql <Dp, i'e'a

Since agyoq corresponds to Qgoal = Qmaz(goal), it can be obtained by solving the non-linear Eq. (3.3)
with @ qq substituted by @041, which leads to Eq. (5.12), completing the proof. a

The following theorem characterizes the properties of a-control in the equilibrium state by describing
the bounds of the neighborhood of ¢),,,; and their relationship with the a-control parameters.

Theorem 5.3 For the same multicast connection under the proposed a-control as in Theorem 5.2, if

0<g<landp< ( ) < e ngal ) then during the equilibrium state, the fluctuation amplitudes

of Q&?ﬁx around () 4oq; are bounded as

{ Q;aal ngal < T Qgoql ( 1) + T\/80égoalQh ( 1) 5 (519)
anol ngal < T agoal( ) + T/ 8agoalQh(1 - \/_)7

and the diameter of Q) 4041’s neighborhood is bounded by
1 1
" ~- Q! < Tza oal <_ - Q> + T\/8a oalQh — —V4a), 5.20
gaol goal = g q g \/a \/— ( )

where ag,q; 15 the rate-increase parameter correspondzng to Qgoal-

Proof. Since 0 < g < 1 and p < ( ) < e ngal ) by Theorem 5.2 Qﬁﬁﬁr is guaranteed to converge

to @ goat’s neighborhood in the equilibrium state. Define an error function for given 7 as v(«) 2 ((my/a) —
Qmaz(@) = (T\/a +v/2Q4)? — Qumax(a), which is non-negative since Qnq.() < ((T/a).
Note that y(a) is a monotonically increasing function of a, the proof of which is quite lengthy, thus

omitted (this was already verified in Figure 9). Since agoal > Qgoal, 'y(agoal) —7(0goar) > 0, from which we
get

A

goal Qgoal < [ goal — ngal] [’ (aﬁoaz) - ’Y(ngal)]
h el = Qgoal + [( ah o+ \/@) goaz] - [(T\/m + M)Q - ngaz]

1 /1
’I'2 <§Oégoal - ngal) + 7V 8Qh ( gagoal RV O‘goal) (521)
1 1
2004 <——1)+T«/8a 0al®@n | —=—1 5.22
goal p goal@ h \/q ( )
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where Eq. (5.21) is due to the fact that agoal < %agoal resulted from the a-control law, proving the first part

of Eq. (5.19). The second part of Eq. (5.19) can be proved similarly by using the fact that afqoal > qgoql

due to the a-control law. Combining the Eq. (5.22) and the second part of Eq. (5.19) Eq. (5.20) follows,
completing the proof. a

Remarks: The a-control law is similar to, but different from, AIMD (additive-increase and multiplicative-
decrease) in the following sense. During the transient state, the a-control law behaves like AIMD, which
offers convergence to the target operating regime in terms of efficiency and fairness (to be discussed below)
in buffer allocation. On the other hand, in the equilibrium state, the a-control law guarantees the maximum
buffer occupancy to lock within its setpoint regime as long as @,,.-(n) enters a constant neighborhood
of Qgoa1, regardless of the initial value ag. In contrast, the AIMD algorithm does not guarantee this
monotonic convergence because the a-control is a time-discrete process and its convergence is dependent
on ag. As a result, under AIMD), the equilibrium state with a small oscillation may never be reachable,

and the fluctuation amplitude of Q%ﬁz can be so large that the stability of the flow-control system and

buffer control may not be achieved. Moreover, monotonic convergence enables Q%L{LE to converge to the
neighborhood of @41 in the least amount of time.

5.2.3 Efficiency and Fairness of a-Control for Multiple Multicast Connections

Since @ qz(@) is a one-to-one function between @, and a, buffer-allocation control can be equiva-
lently treated by a-allocation. We introduce below the criteria to evaluate the a-control law for buffer
management in terms of a-allocation.

Definition 5.5 Let vector a(k) = (a1(k), az(k),- -, a,(k)) represent the rate-control parameters at time
k for n multicast connections sharing a common bottleneck characterized by agoq = Q;ﬁw(ngaz)- The

. . . . A
effictency of a allocation is defined by the closeness between the total a-allocation, a,(k) = 37— a;(k),
and its target level oy,

Neither over-allocation, a:(k) > @goq1, nor under-allocation a(k) < goqr is desirable and efficient, as
over-allocation may result in cell loss and under-allocation yields poor transient response, buffer utilization,
and transmission throughput. The goal of a-control is to drive (k) to agu4 as close as possible and as
fast as possible from any initial state.

Definition 5.6 The fairness of a-allocation a(k) = (a1(k),asz(k), -, an(k)) for n connections of the

same priority sharing the common multicast bottleneck at time k is measured by the fairness index defined
A Dy iR

as ¢(a(k)) ~ [E:‘zl a2(k)]”

The fairness index is defined according to the mazmin fairness criterion [15] which ensures all the
connections in an equivalent class to have an equal share of bottleneck resources. Notice that 1 < ¢(a(k)) <
1. ¢(a(k)) = 1if a;(k) = a;(k), Vi # j. This corresponds to “best” fairness. ¢(a(k)) = L if the entire o
is allocated to only one of n active connections. This corresponds to “worst” fairness and ¢(a(k)) — 0 as
n — 00. 50, ¢(a(k)) should be as close to 1 as possible.

The a-control is a negative feedback control over the rate-control parameter, and computes a(k + 1)
based upon the current value a(k) and the feedback BCI(k — 1,k). Thus, a(k 4 1) can be expressed by
the control function as a(k+ 1) = g(a(k), BCI(k—1,k)). For implementation simplicity, we only focus on

a linear control function g(-,-) such that a(k+ 1) = g(a(k), BCI(k—1,k)) 2 p+ qo(k), where coefficients
p and ¢ are determined by feedback information BCI(k — 1,k). The theorem given below (its proof is
omitted due to lack of space) states that the proposed a-control law is feasible and optimal among all
linear control functions.
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Theorem 5.4 Suppose n multicast connections sharing a common bottleneck are synchronously flow-
controlled by the proposed a-control. Then, (1) in transient state, the a-control law is feasible and
optimal linear control in terms of convergence to the efficiency and fairness (to be discussed below) of
buffer allocation; (2) in equilibrium state, the a-control law is feasible and optimal linear control in
terms of maintaining the efficiency and fairness of buffer allocation.

Proof. We prove this theorem by considering the transient state and equilibrium state, respectively.
(I) In Transient State. The a-control function can be expressed by

B + qra;(k); it BCI(k—1,k)=(0,0), (a:(k) < agoar)
k1) = {Zyﬂg%@x it BCI(K) = 1, (ag(k) > argoat) l (5.23)

We now derive the constraints to determine the control-function coefficients pr, ¢7, pp, and ¢p to
guarantee convergence to both efficiency and fairness.

(1) Convergence to Efficiency. To ensure o4(k) to converge to its target ayqq, the a-control must be
a negative feedback at each a-control cycle, i.e.,

{ alk+1) =" 0i(k+1)> 37", ai(k) = as(k); if BCI(k—1,k)=(0,0), (ax(k) < agoal) (5.24)
ar(k+1) =3 ik + 1) < iy ai(k) = ay(k); i BCI(k) = 1, (ox(k) > agoar) '

which, by using Eq. (5.23), reduces to

g >1—- <H—, Vnand V)Y I, a;(k); if BCI(k—1,k)=(0,0),
Ligg 2i(8) (5.25)
gp < 1 — <rP2—, Vnand VYI_, a;(k); if BCI(k) =
Ei=1 a;(k) ¢
(2) Convergence to Fairness. Convergence of a(k) to fairness can be expressed by
n (k)2
lim ¢(a(k)) = lim 2=t %Ny (5.26)

el e w o a2(h)]
Plugging the linear-control function g¢(-,-) into the fairness index and defining = q we get

Dt a?(k)
i[04 ai(k)]?

(Cialp + qai(k)])* (i [0+ ai(k)))’
ny i p+qai(k)]? n i [0+ ai(k))?

dlak +1)=

=dla(k))+[1 - o(a(k))] [1 -

Note that ¢(a(k + 1)) — ¢(a(k)) = [1 — p(a(k))] |1 — %] is a monotonic-increasing function
(F));
D

of § 2 g—j and ¢(a(k + 1)) > ¢(a(k)) iff @ > 0. Thus, if & > 0, fairness increases: ¢p(a(k + 1)) >
£D in

D

G
if @ = 0, the fairness maintains: ¢(a(k + 1)) = ¢(a(k)). Since 6 2 EL in a-increase phase and ¢ 2

a-decrease phase, we get four possible cases as follows:

L~}

L. if B2> 0 A B2 > 0, then ¢(a(k + 1)) > ¢(e(k)) in both a-dec and a-inc;

2. if B2 > 0 A EL = 0, then ¢(a(k + 1)) > ¢(a(k)) in a-dec and ¢(a(k + 1)) = ¢(a(k)) in a-inc; (5.27)
3.if P2 =0 A EL > 0, then ¢(a(k + 1)) = ¢(a(k)) in a-dec and ¢(a(k + 1)) > (ex(k)) in a-ine; *

4. if B =0 A EL = 0, then ¢(a(k + 1)) = ¢(a(k)) in both a-dec and a-inc;

4D a1
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Eq. (5.27) implies that control-function coefficients pp, pr, ¢p, and gr must all have the same signs if not
zeroes. Combining Eq. (5.27) with Eq. (5.23), we conclude that these four control-function coefficients must
be all positive if not zero, and ¢; and ¢gp must be positive since a(k) is always positive. The convergence
condition given in Eq. (5.25) adds further constraints on ¢p such that 0 < ¢p < 1. Thus, the constraints
on the control-function coefficients, in terms of convergence to fairness and efficiency, can be summarized
as

constraint{0 < ¢p < 1,0 < q7,pp > 0A p;r > 0,pp > 0 A p; > 0} (5.28)

which include cases 1., 2., and 3. as described in Eq. (5.27).

Since a-control is exercised on a per-connection basis, and the i-th source does not have any information
on a;(k), Vj # i and value of n (a-control is a distributed algorithm ), the convergence condition given in
Eq. (5.25) cannot be explicitly used to further specify the control-function coefficients. In the absence of
such information, each connection must satisfy the negative feedback condition as follows, which represents
a stronger condition for convergence to the efficiency:

{ ai(k+1) > ai(k) = pr + (g1 = Dai(k) > 0.¥i,  if BOI(k = 1,k) = (0,05 5 5,

ai(k+1) < ai(k) = pp + (¢p — Dei(k) < 0,Vi, if BCI(k) = 1;

Eq. (5.29) yields further constraints in determining control-function coefficients. Since (¢gp — 1) (k) < 0
(due to Eq. (5.28)) may have an arbitrarily small absolute value, the second inequality in Eq. (5.29) requires
pp = 0, which implies p; > 0 by Eq. (5.28) for convergence to fairness in a-increase. The first inequality in
Eq. (5.29) requires g7 > 1 to ensure py + (g7 — 1)i(k) > 0 Vai(k) > 0. Since 6 = L (fairness increases only
in a-increase phase) and ¢(a(k + 1)) — ¢(a(k)) is an increasing function of 8, we let g7 take its minimum
qr = 1 which is the optimal value for the convergence to fairness. Thus, we obtain the feasible and optimal
linear control function defined by the following constraints:

constraint{0 < qp < 1,¢q; = 1,pp = 0,p; > 0} (5.30)

which is the exactly what we proposed for the a-control in the transient state, i.e.,

' B p+ ai(k); it BCI(k—1,k)=(0,0)
cilk+1) = { ga(k); it BCI(k) =1 (5.31)
where pry =p>0,q;=1,pp=0,and 0 < gp = ¢ < 1.
(IT) In Equilibrium State. The a-control function is expressed by
Lai(k); if BOI(k—1,k)=(1,0), (u(k)=2al )
. — q T 9 I 9 9 goal
ailk+1) { goihy it BOIGR) = 1, (k) = o) (532

Since pp =0, pr =0,qp = ¢ (0 < ¢ < 1), and ¢; = % > 1, this control function belongs to case 4. in

Eq. (5.27) where # = 0. Thus, the fairness is maintained as the a-control enters the equilibrium state. On
the other hand, when pp = 0 and p;y = 0, the constraints for convergence to efficiency become:

constraint{0 < ¢p < 1,¢q7 > 1} (5.33)

which is also consistent with Eq. (5.29) and Eq. (5.25). Thus, the convergence to efficiency is also main-
tained for that connection. This completes the proof. a

Remark. Theorem 5.4 is an extension from bandwidth control [16] to buffer control. The results presented
here differ from [16] as follows. Unlike bandwidth control exerted on the RM-cell transmission rate, a-
control is exercised once every rate-control cycle. As a result, a-control distinguishes transient state from
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(a) a(k) convergence to efficiency and fairness. (b) Comparison: a-control vs. AIMD algorithms.
Figure 10: Examples of a-allocation convergence to efficiency and fairness.

equilibrium state, and applies different control algorithms, ensuring convergence to, and lock within, a
small neighborhood of the target operating regime. Since the total allocation ay(k) keeps on going up and
down due to the cross-traffic in real networks (or equivalently, the target a-allocation for each multicast
connection is “moving” up and down), it is sufficient to ensure convergence to fairness/efficiency in transient
state and maintain the achieved fairness/efficiency in equilibrium state. We do not need fairness to go up
in both transient and equilibrium states.

Now, we describe two examples in a 2-dimensional space (for two connections) to graphically show the a-
allocation convergence under the a-control in terms of efficiency and fairness. As shown in Figure 10, any a-
allocation of two multicast connections at the k-th a-control is represented as a point a(k) = (a1(k), az(k))
in a 2-dimensional space. All allocation points (aq, o) for which oy + ay = a4y, form the efficiency line,
and all points for which a7y = ay form the fairness line which is a 45° line. It is easy to verify that

additive increase, (a1, a2) + p 2 (a1 + p,az + p), corresponds to moving up (p > 0) along a 45° line, and

multiplicative decrease or increase, g(ay,as) 2 (qa1,q03) (0 < g < 1 or ¢ > 1), corresponds to moving
along the line that connects the origin to (a1, ag).

Example 1. Two multicast connections sharing a bottleneck are flow-controlled by the a-control law.
The multicast-tree bottleneck is characterized by: p = 184 cells/ms, Qgou = 200 cells, @, = 20 cells,
n _

and 7 = 2 ms (50, Agoq = 18 cells/msQ). Consider a scenario where ay,q; is equal to Xyoul =

(2) (1)

goal = goal

18 initially,

but reduces to « 6 at the ki-th a-control, and then returns to « after the ko-th a-control (see

Figure 10(a)). The variation of ayeq is due to the variations in 7 between 7() = 2 ms and 7(?) = 3.34
ms, or due to the variation in number of connections (between n = 2 and n = 6). We take ¢ = 0.8
for both connections, specifying the total p < 3.82 for the two multicast connections by the condition
(3) in Theorem 5.2 with Qge = 200 and 7 = 2 ms. Thus, %p = 1.91 for each of the two multicast
connections. Suppose a(0) = (3,12.75) initially. Then, by a-control, a(1) = a(0) + 1.91 = (4.9,14.65)

and a(2) = 0.8a(1) = (3.92,11.72) since a1(0)+ ay(0) = 15.75 < aé?al and a1(1)+ az(1) = 19.55 > aé?al.
(1)

Thus, a-control enters equilibrium state around «,,;, during which a(k) fluctuates between (3.92,11.72)

and (4.9, 14.65). When a4 reduces to aé?ll, equilibrium is broken and a(k) converges to a new equilibrium

state multiplicatively by 5 a-control cycles, and fluctuates between (1.32,3.87) and (1.65,4.83). Finally,
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(1)

goal?
cycles and fluctuates between (6.13,8.66) and (7.67,10.83). We observe that in transient state, a-control
not only guarantees the monotonic convergence to the neighborhood of efficiency-line in the increase or
decrease phase, but also improves the fairness index from ¢(a(0)) = 0.72 to ¢(a(ks)) = 0.94 as shown in
Figure 10(a), where a(k3) = (7.67,10.83) is closer to the fairness line than a(0) = (3, 12.75).

Example 2. In the second example, all the parameter settings and a(0) are the same as in Example

(2)

1 except that ag. reduces to, and stays with, Qyoul

0g0q Teturns back to o a(k) converges to the new equilibrium state additively through 3 a-control

after a(k) reaches a(1). Moreover, the trajectories

under both a-control and AIMD algorithms are compared in Figure 10(b). Both schemes share the control
trajectory from a(0) up to a(ky). However, after a(k) is driven to ex(ky), the two trajectories split. Under

2) .

a-control, (k) converges to an equilibrium state and locks itself within a small neighborhood of a

{(1.32,3.87),(1.65,4.83)}. In contrast, under the AIMD algorithm, e(k) does not confine itself within a
(2)

goal and, in fact, a(k) cannot even reach any equilibrium state. The resultant

maximum buffer allocation “overshoot” for the AIMD algorithm at a(k;) is as high as ﬁfiﬁé — Qgoal =

261 — 200 = 61 cells, which is about 9 times as large as that for a-control (with the maximum “overshoot”
equal to ngéjl) — Qgoal = 207 — 200 = 7). So, even though the AIMD algorithm is better than a-control
in term of speed of convergence to fairness, the AIMD’s maximum buffer requirement and potential loss
ratio, which are more important to buffer control and design, are much higher than a-control, especially

small neighborhood of «

when the RM-cell roundtrip delay variation 7(2) — 7(1) ig large.

6 Conclusion

We proposed and evaluated a flow-control scheme for multicast ABR service, which scales well with the
multicast-tree structure and size, and is efficient in dealing with variations in RM-cell roundtrip delay. The
proposed scheme consists of two key components: soft-synchronization protocol (SSP) and second-order
rate control. Using balanced and unbalanced binary-tree models, we analyzed the scalability of SSP in
terms of the height and structure of the multicast tree. The analysis results show that as compared to the
existing scheme, SSP can not only effectively achieve feedback synchronization, but also make the effective
RM-cell roundtrip delay virtually independent of the multicast-tree’s height and structure.

We proposed an algorithm which adapts the second-order rate-control parameter (a) to roundtrip-delay
variations such that the maximum buffer requirement scales well with the bottleneck-path length. Using
the fluid approximation, we modeled the proposed scheme for binary feedback and derived the system
performance measures for multicast ABR services under the most stringent traffic condition. We also
developed an optimal control condition, under which a-control guarantees the monotonic convergence of
system state to the optimal regime from an arbitrary initial value. This a-control is also shown to be
feasible and optimal in buffer-allocation efficiency and fairness at the multicast-tree bottleneck.

The oscillation of system state around the optimal operating point is the price to pay for the simplicity
of binary feedback. This oscillation can be avoided by applying ER-feedback flow control. Moreover, it
is necessary to add error-control facilities to the proposed scheme and study its performance in a more
general environment. These are matters of our future inquiry.
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